Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / crypto / ux500 / hash / hash_core.c
diff --git a/kernel/drivers/crypto/ux500/hash/hash_core.c b/kernel/drivers/crypto/ux500/hash/hash_core.c
new file mode 100644 (file)
index 0000000..5f5f360
--- /dev/null
@@ -0,0 +1,2002 @@
+/*
+ * Cryptographic API.
+ * Support for Nomadik hardware crypto engine.
+
+ * Copyright (C) ST-Ericsson SA 2010
+ * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
+ * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
+ * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
+ * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
+ * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
+ * License terms: GNU General Public License (GPL) version 2
+ */
+
+#define pr_fmt(fmt) "hashX hashX: " fmt
+
+#include <linux/clk.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/klist.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/crypto.h>
+
+#include <linux/regulator/consumer.h>
+#include <linux/dmaengine.h>
+#include <linux/bitops.h>
+
+#include <crypto/internal/hash.h>
+#include <crypto/sha.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/algapi.h>
+
+#include <linux/platform_data/crypto-ux500.h>
+
+#include "hash_alg.h"
+
+static int hash_mode;
+module_param(hash_mode, int, 0);
+MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
+
+/**
+ * Pre-calculated empty message digests.
+ */
+static const u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
+       0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
+       0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
+       0xaf, 0xd8, 0x07, 0x09
+};
+
+static const u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
+       0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
+       0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
+       0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
+       0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
+};
+
+/* HMAC-SHA1, no key */
+static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
+       0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
+       0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
+       0x70, 0x69, 0x0e, 0x1d
+};
+
+/* HMAC-SHA256, no key */
+static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
+       0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
+       0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
+       0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
+       0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
+};
+
+/**
+ * struct hash_driver_data - data specific to the driver.
+ *
+ * @device_list:       A list of registered devices to choose from.
+ * @device_allocation: A semaphore initialized with number of devices.
+ */
+struct hash_driver_data {
+       struct klist            device_list;
+       struct semaphore        device_allocation;
+};
+
+static struct hash_driver_data driver_data;
+
+/* Declaration of functions */
+/**
+ * hash_messagepad - Pads a message and write the nblw bits.
+ * @device_data:       Structure for the hash device.
+ * @message:           Last word of a message
+ * @index_bytes:       The number of bytes in the last message
+ *
+ * This function manages the final part of the digest calculation, when less
+ * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
+ *
+ */
+static void hash_messagepad(struct hash_device_data *device_data,
+                           const u32 *message, u8 index_bytes);
+
+/**
+ * release_hash_device - Releases a previously allocated hash device.
+ * @device_data:       Structure for the hash device.
+ *
+ */
+static void release_hash_device(struct hash_device_data *device_data)
+{
+       spin_lock(&device_data->ctx_lock);
+       device_data->current_ctx->device = NULL;
+       device_data->current_ctx = NULL;
+       spin_unlock(&device_data->ctx_lock);
+
+       /*
+        * The down_interruptible part for this semaphore is called in
+        * cryp_get_device_data.
+        */
+       up(&driver_data.device_allocation);
+}
+
+static void hash_dma_setup_channel(struct hash_device_data *device_data,
+                                  struct device *dev)
+{
+       struct hash_platform_data *platform_data = dev->platform_data;
+       struct dma_slave_config conf = {
+               .direction = DMA_MEM_TO_DEV,
+               .dst_addr = device_data->phybase + HASH_DMA_FIFO,
+               .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
+               .dst_maxburst = 16,
+       };
+
+       dma_cap_zero(device_data->dma.mask);
+       dma_cap_set(DMA_SLAVE, device_data->dma.mask);
+
+       device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
+       device_data->dma.chan_mem2hash =
+               dma_request_channel(device_data->dma.mask,
+                                   platform_data->dma_filter,
+                                   device_data->dma.cfg_mem2hash);
+
+       dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
+
+       init_completion(&device_data->dma.complete);
+}
+
+static void hash_dma_callback(void *data)
+{
+       struct hash_ctx *ctx = data;
+
+       complete(&ctx->device->dma.complete);
+}
+
+static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
+                                int len, enum dma_data_direction direction)
+{
+       struct dma_async_tx_descriptor *desc = NULL;
+       struct dma_chan *channel = NULL;
+       dma_cookie_t cookie;
+
+       if (direction != DMA_TO_DEVICE) {
+               dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
+                       __func__);
+               return -EFAULT;
+       }
+
+       sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
+
+       channel = ctx->device->dma.chan_mem2hash;
+       ctx->device->dma.sg = sg;
+       ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
+                       ctx->device->dma.sg, ctx->device->dma.nents,
+                       direction);
+
+       if (!ctx->device->dma.sg_len) {
+               dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
+                       __func__);
+               return -EFAULT;
+       }
+
+       dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
+               __func__);
+       desc = dmaengine_prep_slave_sg(channel,
+                       ctx->device->dma.sg, ctx->device->dma.sg_len,
+                       direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+       if (!desc) {
+               dev_err(ctx->device->dev,
+                       "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
+               return -EFAULT;
+       }
+
+       desc->callback = hash_dma_callback;
+       desc->callback_param = ctx;
+
+       cookie = dmaengine_submit(desc);
+       dma_async_issue_pending(channel);
+
+       return 0;
+}
+
+static void hash_dma_done(struct hash_ctx *ctx)
+{
+       struct dma_chan *chan;
+
+       chan = ctx->device->dma.chan_mem2hash;
+       dmaengine_terminate_all(chan);
+       dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
+                    ctx->device->dma.sg_len, DMA_TO_DEVICE);
+}
+
+static int hash_dma_write(struct hash_ctx *ctx,
+                         struct scatterlist *sg, int len)
+{
+       int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
+       if (error) {
+               dev_dbg(ctx->device->dev,
+                       "%s: hash_set_dma_transfer() failed\n", __func__);
+               return error;
+       }
+
+       return len;
+}
+
+/**
+ * get_empty_message_digest - Returns a pre-calculated digest for
+ * the empty message.
+ * @device_data:       Structure for the hash device.
+ * @zero_hash:         Buffer to return the empty message digest.
+ * @zero_hash_size:    Hash size of the empty message digest.
+ * @zero_digest:       True if zero_digest returned.
+ */
+static int get_empty_message_digest(
+               struct hash_device_data *device_data,
+               u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
+{
+       int ret = 0;
+       struct hash_ctx *ctx = device_data->current_ctx;
+       *zero_digest = false;
+
+       /**
+        * Caller responsible for ctx != NULL.
+        */
+
+       if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
+               if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
+                       memcpy(zero_hash, &zero_message_hash_sha1[0],
+                              SHA1_DIGEST_SIZE);
+                       *zero_hash_size = SHA1_DIGEST_SIZE;
+                       *zero_digest = true;
+               } else if (HASH_ALGO_SHA256 ==
+                               ctx->config.algorithm) {
+                       memcpy(zero_hash, &zero_message_hash_sha256[0],
+                              SHA256_DIGEST_SIZE);
+                       *zero_hash_size = SHA256_DIGEST_SIZE;
+                       *zero_digest = true;
+               } else {
+                       dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
+                               __func__);
+                       ret = -EINVAL;
+                       goto out;
+               }
+       } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
+               if (!ctx->keylen) {
+                       if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
+                               memcpy(zero_hash, &zero_message_hmac_sha1[0],
+                                      SHA1_DIGEST_SIZE);
+                               *zero_hash_size = SHA1_DIGEST_SIZE;
+                               *zero_digest = true;
+                       } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
+                               memcpy(zero_hash, &zero_message_hmac_sha256[0],
+                                      SHA256_DIGEST_SIZE);
+                               *zero_hash_size = SHA256_DIGEST_SIZE;
+                               *zero_digest = true;
+                       } else {
+                               dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
+                                       __func__);
+                               ret = -EINVAL;
+                               goto out;
+                       }
+               } else {
+                       dev_dbg(device_data->dev,
+                               "%s: Continue hash calculation, since hmac key available\n",
+                               __func__);
+               }
+       }
+out:
+
+       return ret;
+}
+
+/**
+ * hash_disable_power - Request to disable power and clock.
+ * @device_data:       Structure for the hash device.
+ * @save_device_state: If true, saves the current hw state.
+ *
+ * This function request for disabling power (regulator) and clock,
+ * and could also save current hw state.
+ */
+static int hash_disable_power(struct hash_device_data *device_data,
+                             bool save_device_state)
+{
+       int ret = 0;
+       struct device *dev = device_data->dev;
+
+       spin_lock(&device_data->power_state_lock);
+       if (!device_data->power_state)
+               goto out;
+
+       if (save_device_state) {
+               hash_save_state(device_data,
+                               &device_data->state);
+               device_data->restore_dev_state = true;
+       }
+
+       clk_disable(device_data->clk);
+       ret = regulator_disable(device_data->regulator);
+       if (ret)
+               dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
+
+       device_data->power_state = false;
+
+out:
+       spin_unlock(&device_data->power_state_lock);
+
+       return ret;
+}
+
+/**
+ * hash_enable_power - Request to enable power and clock.
+ * @device_data:               Structure for the hash device.
+ * @restore_device_state:      If true, restores a previous saved hw state.
+ *
+ * This function request for enabling power (regulator) and clock,
+ * and could also restore a previously saved hw state.
+ */
+static int hash_enable_power(struct hash_device_data *device_data,
+                            bool restore_device_state)
+{
+       int ret = 0;
+       struct device *dev = device_data->dev;
+
+       spin_lock(&device_data->power_state_lock);
+       if (!device_data->power_state) {
+               ret = regulator_enable(device_data->regulator);
+               if (ret) {
+                       dev_err(dev, "%s: regulator_enable() failed!\n",
+                               __func__);
+                       goto out;
+               }
+               ret = clk_enable(device_data->clk);
+               if (ret) {
+                       dev_err(dev, "%s: clk_enable() failed!\n", __func__);
+                       ret = regulator_disable(
+                                       device_data->regulator);
+                       goto out;
+               }
+               device_data->power_state = true;
+       }
+
+       if (device_data->restore_dev_state) {
+               if (restore_device_state) {
+                       device_data->restore_dev_state = false;
+                       hash_resume_state(device_data, &device_data->state);
+               }
+       }
+out:
+       spin_unlock(&device_data->power_state_lock);
+
+       return ret;
+}
+
+/**
+ * hash_get_device_data - Checks for an available hash device and return it.
+ * @hash_ctx:          Structure for the hash context.
+ * @device_data:       Structure for the hash device.
+ *
+ * This function check for an available hash device and return it to
+ * the caller.
+ * Note! Caller need to release the device, calling up().
+ */
+static int hash_get_device_data(struct hash_ctx *ctx,
+                               struct hash_device_data **device_data)
+{
+       int                     ret;
+       struct klist_iter       device_iterator;
+       struct klist_node       *device_node;
+       struct hash_device_data *local_device_data = NULL;
+
+       /* Wait until a device is available */
+       ret = down_interruptible(&driver_data.device_allocation);
+       if (ret)
+               return ret;  /* Interrupted */
+
+       /* Select a device */
+       klist_iter_init(&driver_data.device_list, &device_iterator);
+       device_node = klist_next(&device_iterator);
+       while (device_node) {
+               local_device_data = container_of(device_node,
+                                          struct hash_device_data, list_node);
+               spin_lock(&local_device_data->ctx_lock);
+               /* current_ctx allocates a device, NULL = unallocated */
+               if (local_device_data->current_ctx) {
+                       device_node = klist_next(&device_iterator);
+               } else {
+                       local_device_data->current_ctx = ctx;
+                       ctx->device = local_device_data;
+                       spin_unlock(&local_device_data->ctx_lock);
+                       break;
+               }
+               spin_unlock(&local_device_data->ctx_lock);
+       }
+       klist_iter_exit(&device_iterator);
+
+       if (!device_node) {
+               /**
+                * No free device found.
+                * Since we allocated a device with down_interruptible, this
+                * should not be able to happen.
+                * Number of available devices, which are contained in
+                * device_allocation, is therefore decremented by not doing
+                * an up(device_allocation).
+                */
+               return -EBUSY;
+       }
+
+       *device_data = local_device_data;
+
+       return 0;
+}
+
+/**
+ * hash_hw_write_key - Writes the key to the hardware registries.
+ *
+ * @device_data:       Structure for the hash device.
+ * @key:               Key to be written.
+ * @keylen:            The lengt of the key.
+ *
+ * Note! This function DOES NOT write to the NBLW registry, even though
+ * specified in the the hw design spec. Either due to incorrect info in the
+ * spec or due to a bug in the hw.
+ */
+static void hash_hw_write_key(struct hash_device_data *device_data,
+                             const u8 *key, unsigned int keylen)
+{
+       u32 word = 0;
+       int nwords = 1;
+
+       HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
+
+       while (keylen >= 4) {
+               u32 *key_word = (u32 *)key;
+
+               HASH_SET_DIN(key_word, nwords);
+               keylen -= 4;
+               key += 4;
+       }
+
+       /* Take care of the remaining bytes in the last word */
+       if (keylen) {
+               word = 0;
+               while (keylen) {
+                       word |= (key[keylen - 1] << (8 * (keylen - 1)));
+                       keylen--;
+               }
+
+               HASH_SET_DIN(&word, nwords);
+       }
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+
+       HASH_SET_DCAL;
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+}
+
+/**
+ * init_hash_hw - Initialise the hash hardware for a new calculation.
+ * @device_data:       Structure for the hash device.
+ * @ctx:               The hash context.
+ *
+ * This function will enable the bits needed to clear and start a new
+ * calculation.
+ */
+static int init_hash_hw(struct hash_device_data *device_data,
+                       struct hash_ctx *ctx)
+{
+       int ret = 0;
+
+       ret = hash_setconfiguration(device_data, &ctx->config);
+       if (ret) {
+               dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
+                       __func__);
+               return ret;
+       }
+
+       hash_begin(device_data, ctx);
+
+       if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
+               hash_hw_write_key(device_data, ctx->key, ctx->keylen);
+
+       return ret;
+}
+
+/**
+ * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
+ *
+ * @sg:                Scatterlist.
+ * @size:      Size in bytes.
+ * @aligned:   True if sg data aligned to work in DMA mode.
+ *
+ */
+static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
+{
+       int nents = 0;
+       bool aligned_data = true;
+
+       while (size > 0 && sg) {
+               nents++;
+               size -= sg->length;
+
+               /* hash_set_dma_transfer will align last nent */
+               if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
+                   (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
+                       aligned_data = false;
+
+               sg = sg_next(sg);
+       }
+
+       if (aligned)
+               *aligned = aligned_data;
+
+       if (size != 0)
+               return -EFAULT;
+
+       return nents;
+}
+
+/**
+ * hash_dma_valid_data - checks for dma valid sg data.
+ * @sg:                Scatterlist.
+ * @datasize:  Datasize in bytes.
+ *
+ * NOTE! This function checks for dma valid sg data, since dma
+ * only accept datasizes of even wordsize.
+ */
+static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
+{
+       bool aligned;
+
+       /* Need to include at least one nent, else error */
+       if (hash_get_nents(sg, datasize, &aligned) < 1)
+               return false;
+
+       return aligned;
+}
+
+/**
+ * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
+ * @req: The hash request for the job.
+ *
+ * Initialize structures.
+ */
+static int hash_init(struct ahash_request *req)
+{
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+
+       if (!ctx->key)
+               ctx->keylen = 0;
+
+       memset(&req_ctx->state, 0, sizeof(struct hash_state));
+       req_ctx->updated = 0;
+       if (hash_mode == HASH_MODE_DMA) {
+               if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
+                       req_ctx->dma_mode = false; /* Don't use DMA */
+
+                       pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
+                                __func__, HASH_DMA_ALIGN_SIZE);
+               } else {
+                       if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
+                           hash_dma_valid_data(req->src, req->nbytes)) {
+                               req_ctx->dma_mode = true;
+                       } else {
+                               req_ctx->dma_mode = false;
+                               pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
+                                        __func__,
+                                        HASH_DMA_PERFORMANCE_MIN_SIZE);
+                       }
+               }
+       }
+       return 0;
+}
+
+/**
+ * hash_processblock - This function processes a single block of 512 bits (64
+ *                     bytes), word aligned, starting at message.
+ * @device_data:       Structure for the hash device.
+ * @message:           Block (512 bits) of message to be written to
+ *                     the HASH hardware.
+ *
+ */
+static void hash_processblock(struct hash_device_data *device_data,
+                             const u32 *message, int length)
+{
+       int len = length / HASH_BYTES_PER_WORD;
+       /*
+        * NBLW bits. Reset the number of bits in last word (NBLW).
+        */
+       HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
+
+       /*
+        * Write message data to the HASH_DIN register.
+        */
+       HASH_SET_DIN(message, len);
+}
+
+/**
+ * hash_messagepad - Pads a message and write the nblw bits.
+ * @device_data:       Structure for the hash device.
+ * @message:           Last word of a message.
+ * @index_bytes:       The number of bytes in the last message.
+ *
+ * This function manages the final part of the digest calculation, when less
+ * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
+ *
+ */
+static void hash_messagepad(struct hash_device_data *device_data,
+                           const u32 *message, u8 index_bytes)
+{
+       int nwords = 1;
+
+       /*
+        * Clear hash str register, only clear NBLW
+        * since DCAL will be reset by hardware.
+        */
+       HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
+
+       /* Main loop */
+       while (index_bytes >= 4) {
+               HASH_SET_DIN(message, nwords);
+               index_bytes -= 4;
+               message++;
+       }
+
+       if (index_bytes)
+               HASH_SET_DIN(message, nwords);
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+
+       /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
+       HASH_SET_NBLW(index_bytes * 8);
+       dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
+               __func__, readl_relaxed(&device_data->base->din),
+               readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
+       HASH_SET_DCAL;
+       dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
+               __func__, readl_relaxed(&device_data->base->din),
+               readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+}
+
+/**
+ * hash_incrementlength - Increments the length of the current message.
+ * @ctx: Hash context
+ * @incr: Length of message processed already
+ *
+ * Overflow cannot occur, because conditions for overflow are checked in
+ * hash_hw_update.
+ */
+static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
+{
+       ctx->state.length.low_word += incr;
+
+       /* Check for wrap-around */
+       if (ctx->state.length.low_word < incr)
+               ctx->state.length.high_word++;
+}
+
+/**
+ * hash_setconfiguration - Sets the required configuration for the hash
+ *                         hardware.
+ * @device_data:       Structure for the hash device.
+ * @config:            Pointer to a configuration structure.
+ */
+int hash_setconfiguration(struct hash_device_data *device_data,
+                         struct hash_config *config)
+{
+       int ret = 0;
+
+       if (config->algorithm != HASH_ALGO_SHA1 &&
+           config->algorithm != HASH_ALGO_SHA256)
+               return -EPERM;
+
+       /*
+        * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
+        * to be written to HASH_DIN is considered as 32 bits.
+        */
+       HASH_SET_DATA_FORMAT(config->data_format);
+
+       /*
+        * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
+        */
+       switch (config->algorithm) {
+       case HASH_ALGO_SHA1:
+               HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
+               break;
+
+       case HASH_ALGO_SHA256:
+               HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
+               break;
+
+       default:
+               dev_err(device_data->dev, "%s: Incorrect algorithm\n",
+                       __func__);
+               return -EPERM;
+       }
+
+       /*
+        * MODE bit. This bit selects between HASH or HMAC mode for the
+        * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
+        */
+       if (HASH_OPER_MODE_HASH == config->oper_mode)
+               HASH_CLEAR_BITS(&device_data->base->cr,
+                               HASH_CR_MODE_MASK);
+       else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
+               HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
+               if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
+                       /* Truncate key to blocksize */
+                       dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
+                       HASH_SET_BITS(&device_data->base->cr,
+                                     HASH_CR_LKEY_MASK);
+               } else {
+                       dev_dbg(device_data->dev, "%s: LKEY cleared\n",
+                               __func__);
+                       HASH_CLEAR_BITS(&device_data->base->cr,
+                                       HASH_CR_LKEY_MASK);
+               }
+       } else {        /* Wrong hash mode */
+               ret = -EPERM;
+               dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
+                       __func__);
+       }
+       return ret;
+}
+
+/**
+ * hash_begin - This routine resets some globals and initializes the hash
+ *              hardware.
+ * @device_data:       Structure for the hash device.
+ * @ctx:               Hash context.
+ */
+void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
+{
+       /* HW and SW initializations */
+       /* Note: there is no need to initialize buffer and digest members */
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+
+       /*
+        * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
+        * prepare the initialize the HASH accelerator to compute the message
+        * digest of a new message.
+        */
+       HASH_INITIALIZE;
+
+       /*
+        * NBLW bits. Reset the number of bits in last word (NBLW).
+        */
+       HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
+}
+
+static int hash_process_data(struct hash_device_data *device_data,
+                            struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
+                            int msg_length, u8 *data_buffer, u8 *buffer,
+                            u8 *index)
+{
+       int ret = 0;
+       u32 count;
+
+       do {
+               if ((*index + msg_length) < HASH_BLOCK_SIZE) {
+                       for (count = 0; count < msg_length; count++) {
+                               buffer[*index + count] =
+                                       *(data_buffer + count);
+                       }
+                       *index += msg_length;
+                       msg_length = 0;
+               } else {
+                       if (req_ctx->updated) {
+                               ret = hash_resume_state(device_data,
+                                               &device_data->state);
+                               memmove(req_ctx->state.buffer,
+                                       device_data->state.buffer,
+                                       HASH_BLOCK_SIZE / sizeof(u32));
+                               if (ret) {
+                                       dev_err(device_data->dev,
+                                               "%s: hash_resume_state() failed!\n",
+                                               __func__);
+                                       goto out;
+                               }
+                       } else {
+                               ret = init_hash_hw(device_data, ctx);
+                               if (ret) {
+                                       dev_err(device_data->dev,
+                                               "%s: init_hash_hw() failed!\n",
+                                               __func__);
+                                       goto out;
+                               }
+                               req_ctx->updated = 1;
+                       }
+                       /*
+                        * If 'data_buffer' is four byte aligned and
+                        * local buffer does not have any data, we can
+                        * write data directly from 'data_buffer' to
+                        * HW peripheral, otherwise we first copy data
+                        * to a local buffer
+                        */
+                       if ((0 == (((u32)data_buffer) % 4)) &&
+                           (0 == *index))
+                               hash_processblock(device_data,
+                                                 (const u32 *)data_buffer,
+                                                 HASH_BLOCK_SIZE);
+                       else {
+                               for (count = 0;
+                                    count < (u32)(HASH_BLOCK_SIZE - *index);
+                                    count++) {
+                                       buffer[*index + count] =
+                                               *(data_buffer + count);
+                               }
+                               hash_processblock(device_data,
+                                                 (const u32 *)buffer,
+                                                 HASH_BLOCK_SIZE);
+                       }
+                       hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
+                       data_buffer += (HASH_BLOCK_SIZE - *index);
+
+                       msg_length -= (HASH_BLOCK_SIZE - *index);
+                       *index = 0;
+
+                       ret = hash_save_state(device_data,
+                                       &device_data->state);
+
+                       memmove(device_data->state.buffer,
+                               req_ctx->state.buffer,
+                               HASH_BLOCK_SIZE / sizeof(u32));
+                       if (ret) {
+                               dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
+                                       __func__);
+                               goto out;
+                       }
+               }
+       } while (msg_length != 0);
+out:
+
+       return ret;
+}
+
+/**
+ * hash_dma_final - The hash dma final function for SHA1/SHA256.
+ * @req:       The hash request for the job.
+ */
+static int hash_dma_final(struct ahash_request *req)
+{
+       int ret = 0;
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+       struct hash_device_data *device_data;
+       u8 digest[SHA256_DIGEST_SIZE];
+       int bytes_written = 0;
+
+       ret = hash_get_device_data(ctx, &device_data);
+       if (ret)
+               return ret;
+
+       dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
+
+       if (req_ctx->updated) {
+               ret = hash_resume_state(device_data, &device_data->state);
+
+               if (ret) {
+                       dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
+                               __func__);
+                       goto out;
+               }
+       }
+
+       if (!req_ctx->updated) {
+               ret = hash_setconfiguration(device_data, &ctx->config);
+               if (ret) {
+                       dev_err(device_data->dev,
+                               "%s: hash_setconfiguration() failed!\n",
+                               __func__);
+                       goto out;
+               }
+
+               /* Enable DMA input */
+               if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
+                       HASH_CLEAR_BITS(&device_data->base->cr,
+                                       HASH_CR_DMAE_MASK);
+               } else {
+                       HASH_SET_BITS(&device_data->base->cr,
+                                     HASH_CR_DMAE_MASK);
+                       HASH_SET_BITS(&device_data->base->cr,
+                                     HASH_CR_PRIVN_MASK);
+               }
+
+               HASH_INITIALIZE;
+
+               if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
+                       hash_hw_write_key(device_data, ctx->key, ctx->keylen);
+
+               /* Number of bits in last word = (nbytes * 8) % 32 */
+               HASH_SET_NBLW((req->nbytes * 8) % 32);
+               req_ctx->updated = 1;
+       }
+
+       /* Store the nents in the dma struct. */
+       ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
+       if (!ctx->device->dma.nents) {
+               dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
+                       __func__);
+               ret = ctx->device->dma.nents;
+               goto out;
+       }
+
+       bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
+       if (bytes_written != req->nbytes) {
+               dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
+                       __func__);
+               ret = bytes_written;
+               goto out;
+       }
+
+       wait_for_completion(&ctx->device->dma.complete);
+       hash_dma_done(ctx);
+
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+
+       if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
+               unsigned int keylen = ctx->keylen;
+               u8 *key = ctx->key;
+
+               dev_dbg(device_data->dev, "%s: keylen: %d\n",
+                       __func__, ctx->keylen);
+               hash_hw_write_key(device_data, key, keylen);
+       }
+
+       hash_get_digest(device_data, digest, ctx->config.algorithm);
+       memcpy(req->result, digest, ctx->digestsize);
+
+out:
+       release_hash_device(device_data);
+
+       /**
+        * Allocated in setkey, and only used in HMAC.
+        */
+       kfree(ctx->key);
+
+       return ret;
+}
+
+/**
+ * hash_hw_final - The final hash calculation function
+ * @req:       The hash request for the job.
+ */
+static int hash_hw_final(struct ahash_request *req)
+{
+       int ret = 0;
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+       struct hash_device_data *device_data;
+       u8 digest[SHA256_DIGEST_SIZE];
+
+       ret = hash_get_device_data(ctx, &device_data);
+       if (ret)
+               return ret;
+
+       dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
+
+       if (req_ctx->updated) {
+               ret = hash_resume_state(device_data, &device_data->state);
+
+               if (ret) {
+                       dev_err(device_data->dev,
+                               "%s: hash_resume_state() failed!\n", __func__);
+                       goto out;
+               }
+       } else if (req->nbytes == 0 && ctx->keylen == 0) {
+               u8 zero_hash[SHA256_DIGEST_SIZE];
+               u32 zero_hash_size = 0;
+               bool zero_digest = false;
+               /**
+                * Use a pre-calculated empty message digest
+                * (workaround since hw return zeroes, hw bug!?)
+                */
+               ret = get_empty_message_digest(device_data, &zero_hash[0],
+                               &zero_hash_size, &zero_digest);
+               if (!ret && likely(zero_hash_size == ctx->digestsize) &&
+                   zero_digest) {
+                       memcpy(req->result, &zero_hash[0], ctx->digestsize);
+                       goto out;
+               } else if (!ret && !zero_digest) {
+                       dev_dbg(device_data->dev,
+                               "%s: HMAC zero msg with key, continue...\n",
+                               __func__);
+               } else {
+                       dev_err(device_data->dev,
+                               "%s: ret=%d, or wrong digest size? %s\n",
+                               __func__, ret,
+                               zero_hash_size == ctx->digestsize ?
+                               "true" : "false");
+                       /* Return error */
+                       goto out;
+               }
+       } else if (req->nbytes == 0 && ctx->keylen > 0) {
+               dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
+                       __func__);
+               goto out;
+       }
+
+       if (!req_ctx->updated) {
+               ret = init_hash_hw(device_data, ctx);
+               if (ret) {
+                       dev_err(device_data->dev,
+                               "%s: init_hash_hw() failed!\n", __func__);
+                       goto out;
+               }
+       }
+
+       if (req_ctx->state.index) {
+               hash_messagepad(device_data, req_ctx->state.buffer,
+                               req_ctx->state.index);
+       } else {
+               HASH_SET_DCAL;
+               while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+                       cpu_relax();
+       }
+
+       if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
+               unsigned int keylen = ctx->keylen;
+               u8 *key = ctx->key;
+
+               dev_dbg(device_data->dev, "%s: keylen: %d\n",
+                       __func__, ctx->keylen);
+               hash_hw_write_key(device_data, key, keylen);
+       }
+
+       hash_get_digest(device_data, digest, ctx->config.algorithm);
+       memcpy(req->result, digest, ctx->digestsize);
+
+out:
+       release_hash_device(device_data);
+
+       /**
+        * Allocated in setkey, and only used in HMAC.
+        */
+       kfree(ctx->key);
+
+       return ret;
+}
+
+/**
+ * hash_hw_update - Updates current HASH computation hashing another part of
+ *                  the message.
+ * @req:       Byte array containing the message to be hashed (caller
+ *             allocated).
+ */
+int hash_hw_update(struct ahash_request *req)
+{
+       int ret = 0;
+       u8 index = 0;
+       u8 *buffer;
+       struct hash_device_data *device_data;
+       u8 *data_buffer;
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+       struct crypto_hash_walk walk;
+       int msg_length = crypto_hash_walk_first(req, &walk);
+
+       /* Empty message ("") is correct indata */
+       if (msg_length == 0)
+               return ret;
+
+       index = req_ctx->state.index;
+       buffer = (u8 *)req_ctx->state.buffer;
+
+       /* Check if ctx->state.length + msg_length
+          overflows */
+       if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
+           HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
+               pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
+               return -EPERM;
+       }
+
+       ret = hash_get_device_data(ctx, &device_data);
+       if (ret)
+               return ret;
+
+       /* Main loop */
+       while (0 != msg_length) {
+               data_buffer = walk.data;
+               ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
+                               data_buffer, buffer, &index);
+
+               if (ret) {
+                       dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
+                               __func__);
+                       goto out;
+               }
+
+               msg_length = crypto_hash_walk_done(&walk, 0);
+       }
+
+       req_ctx->state.index = index;
+       dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
+               __func__, req_ctx->state.index, req_ctx->state.bit_index);
+
+out:
+       release_hash_device(device_data);
+
+       return ret;
+}
+
+/**
+ * hash_resume_state - Function that resumes the state of an calculation.
+ * @device_data:       Pointer to the device structure.
+ * @device_state:      The state to be restored in the hash hardware
+ */
+int hash_resume_state(struct hash_device_data *device_data,
+                     const struct hash_state *device_state)
+{
+       u32 temp_cr;
+       s32 count;
+       int hash_mode = HASH_OPER_MODE_HASH;
+
+       if (NULL == device_state) {
+               dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
+                       __func__);
+               return -EPERM;
+       }
+
+       /* Check correctness of index and length members */
+       if (device_state->index > HASH_BLOCK_SIZE ||
+           (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
+               dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
+                       __func__);
+               return -EPERM;
+       }
+
+       /*
+        * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
+        * prepare the initialize the HASH accelerator to compute the message
+        * digest of a new message.
+        */
+       HASH_INITIALIZE;
+
+       temp_cr = device_state->temp_cr;
+       writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
+
+       if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
+               hash_mode = HASH_OPER_MODE_HMAC;
+       else
+               hash_mode = HASH_OPER_MODE_HASH;
+
+       for (count = 0; count < HASH_CSR_COUNT; count++) {
+               if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
+                       break;
+
+               writel_relaxed(device_state->csr[count],
+                              &device_data->base->csrx[count]);
+       }
+
+       writel_relaxed(device_state->csfull, &device_data->base->csfull);
+       writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
+
+       writel_relaxed(device_state->str_reg, &device_data->base->str);
+       writel_relaxed(temp_cr, &device_data->base->cr);
+
+       return 0;
+}
+
+/**
+ * hash_save_state - Function that saves the state of hardware.
+ * @device_data:       Pointer to the device structure.
+ * @device_state:      The strucure where the hardware state should be saved.
+ */
+int hash_save_state(struct hash_device_data *device_data,
+                   struct hash_state *device_state)
+{
+       u32 temp_cr;
+       u32 count;
+       int hash_mode = HASH_OPER_MODE_HASH;
+
+       if (NULL == device_state) {
+               dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
+                       __func__);
+               return -ENOTSUPP;
+       }
+
+       /* Write dummy value to force digest intermediate calculation. This
+        * actually makes sure that there isn't any ongoing calculation in the
+        * hardware.
+        */
+       while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
+               cpu_relax();
+
+       temp_cr = readl_relaxed(&device_data->base->cr);
+
+       device_state->str_reg = readl_relaxed(&device_data->base->str);
+
+       device_state->din_reg = readl_relaxed(&device_data->base->din);
+
+       if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
+               hash_mode = HASH_OPER_MODE_HMAC;
+       else
+               hash_mode = HASH_OPER_MODE_HASH;
+
+       for (count = 0; count < HASH_CSR_COUNT; count++) {
+               if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
+                       break;
+
+               device_state->csr[count] =
+                       readl_relaxed(&device_data->base->csrx[count]);
+       }
+
+       device_state->csfull = readl_relaxed(&device_data->base->csfull);
+       device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
+
+       device_state->temp_cr = temp_cr;
+
+       return 0;
+}
+
+/**
+ * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
+ * @device_data:
+ *
+ */
+int hash_check_hw(struct hash_device_data *device_data)
+{
+       /* Checking Peripheral Ids  */
+       if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
+           HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
+           HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
+           HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
+           HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
+           HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
+           HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
+           HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
+               return 0;
+       }
+
+       dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
+       return -ENOTSUPP;
+}
+
+/**
+ * hash_get_digest - Gets the digest.
+ * @device_data:       Pointer to the device structure.
+ * @digest:            User allocated byte array for the calculated digest.
+ * @algorithm:         The algorithm in use.
+ */
+void hash_get_digest(struct hash_device_data *device_data,
+                    u8 *digest, int algorithm)
+{
+       u32 temp_hx_val, count;
+       int loop_ctr;
+
+       if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
+               dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
+                       __func__, algorithm);
+               return;
+       }
+
+       if (algorithm == HASH_ALGO_SHA1)
+               loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
+       else
+               loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
+
+       dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
+               __func__, (u32) digest);
+
+       /* Copy result into digest array */
+       for (count = 0; count < loop_ctr; count++) {
+               temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
+               digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
+               digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
+               digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
+               digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
+       }
+}
+
+/**
+ * hash_update - The hash update function for SHA1/SHA2 (SHA256).
+ * @req: The hash request for the job.
+ */
+static int ahash_update(struct ahash_request *req)
+{
+       int ret = 0;
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+
+       if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
+               ret = hash_hw_update(req);
+       /* Skip update for DMA, all data will be passed to DMA in final */
+
+       if (ret) {
+               pr_err("%s: hash_hw_update() failed!\n", __func__);
+       }
+
+       return ret;
+}
+
+/**
+ * hash_final - The hash final function for SHA1/SHA2 (SHA256).
+ * @req:       The hash request for the job.
+ */
+static int ahash_final(struct ahash_request *req)
+{
+       int ret = 0;
+       struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
+
+       pr_debug("%s: data size: %d\n", __func__, req->nbytes);
+
+       if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
+               ret = hash_dma_final(req);
+       else
+               ret = hash_hw_final(req);
+
+       if (ret) {
+               pr_err("%s: hash_hw/dma_final() failed\n", __func__);
+       }
+
+       return ret;
+}
+
+static int hash_setkey(struct crypto_ahash *tfm,
+                      const u8 *key, unsigned int keylen, int alg)
+{
+       int ret = 0;
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+       /**
+        * Freed in final.
+        */
+       ctx->key = kmemdup(key, keylen, GFP_KERNEL);
+       if (!ctx->key) {
+               pr_err("%s: Failed to allocate ctx->key for %d\n",
+                      __func__, alg);
+               return -ENOMEM;
+       }
+       ctx->keylen = keylen;
+
+       return ret;
+}
+
+static int ahash_sha1_init(struct ahash_request *req)
+{
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+       ctx->config.data_format = HASH_DATA_8_BITS;
+       ctx->config.algorithm = HASH_ALGO_SHA1;
+       ctx->config.oper_mode = HASH_OPER_MODE_HASH;
+       ctx->digestsize = SHA1_DIGEST_SIZE;
+
+       return hash_init(req);
+}
+
+static int ahash_sha256_init(struct ahash_request *req)
+{
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+       ctx->config.data_format = HASH_DATA_8_BITS;
+       ctx->config.algorithm = HASH_ALGO_SHA256;
+       ctx->config.oper_mode = HASH_OPER_MODE_HASH;
+       ctx->digestsize = SHA256_DIGEST_SIZE;
+
+       return hash_init(req);
+}
+
+static int ahash_sha1_digest(struct ahash_request *req)
+{
+       int ret2, ret1;
+
+       ret1 = ahash_sha1_init(req);
+       if (ret1)
+               goto out;
+
+       ret1 = ahash_update(req);
+       ret2 = ahash_final(req);
+
+out:
+       return ret1 ? ret1 : ret2;
+}
+
+static int ahash_sha256_digest(struct ahash_request *req)
+{
+       int ret2, ret1;
+
+       ret1 = ahash_sha256_init(req);
+       if (ret1)
+               goto out;
+
+       ret1 = ahash_update(req);
+       ret2 = ahash_final(req);
+
+out:
+       return ret1 ? ret1 : ret2;
+}
+
+static int hmac_sha1_init(struct ahash_request *req)
+{
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+       ctx->config.data_format = HASH_DATA_8_BITS;
+       ctx->config.algorithm   = HASH_ALGO_SHA1;
+       ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
+       ctx->digestsize         = SHA1_DIGEST_SIZE;
+
+       return hash_init(req);
+}
+
+static int hmac_sha256_init(struct ahash_request *req)
+{
+       struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+       struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+       ctx->config.data_format = HASH_DATA_8_BITS;
+       ctx->config.algorithm   = HASH_ALGO_SHA256;
+       ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
+       ctx->digestsize         = SHA256_DIGEST_SIZE;
+
+       return hash_init(req);
+}
+
+static int hmac_sha1_digest(struct ahash_request *req)
+{
+       int ret2, ret1;
+
+       ret1 = hmac_sha1_init(req);
+       if (ret1)
+               goto out;
+
+       ret1 = ahash_update(req);
+       ret2 = ahash_final(req);
+
+out:
+       return ret1 ? ret1 : ret2;
+}
+
+static int hmac_sha256_digest(struct ahash_request *req)
+{
+       int ret2, ret1;
+
+       ret1 = hmac_sha256_init(req);
+       if (ret1)
+               goto out;
+
+       ret1 = ahash_update(req);
+       ret2 = ahash_final(req);
+
+out:
+       return ret1 ? ret1 : ret2;
+}
+
+static int hmac_sha1_setkey(struct crypto_ahash *tfm,
+                           const u8 *key, unsigned int keylen)
+{
+       return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
+}
+
+static int hmac_sha256_setkey(struct crypto_ahash *tfm,
+                             const u8 *key, unsigned int keylen)
+{
+       return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
+}
+
+struct hash_algo_template {
+       struct hash_config conf;
+       struct ahash_alg hash;
+};
+
+static int hash_cra_init(struct crypto_tfm *tfm)
+{
+       struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
+       struct crypto_alg *alg = tfm->__crt_alg;
+       struct hash_algo_template *hash_alg;
+
+       hash_alg = container_of(__crypto_ahash_alg(alg),
+                       struct hash_algo_template,
+                       hash);
+
+       crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+                                sizeof(struct hash_req_ctx));
+
+       ctx->config.data_format = HASH_DATA_8_BITS;
+       ctx->config.algorithm = hash_alg->conf.algorithm;
+       ctx->config.oper_mode = hash_alg->conf.oper_mode;
+
+       ctx->digestsize = hash_alg->hash.halg.digestsize;
+
+       return 0;
+}
+
+static struct hash_algo_template hash_algs[] = {
+       {
+               .conf.algorithm = HASH_ALGO_SHA1,
+               .conf.oper_mode = HASH_OPER_MODE_HASH,
+               .hash = {
+                       .init = hash_init,
+                       .update = ahash_update,
+                       .final = ahash_final,
+                       .digest = ahash_sha1_digest,
+                       .halg.digestsize = SHA1_DIGEST_SIZE,
+                       .halg.statesize = sizeof(struct hash_ctx),
+                       .halg.base = {
+                               .cra_name = "sha1",
+                               .cra_driver_name = "sha1-ux500",
+                               .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
+                                             CRYPTO_ALG_ASYNC),
+                               .cra_blocksize = SHA1_BLOCK_SIZE,
+                               .cra_ctxsize = sizeof(struct hash_ctx),
+                               .cra_init = hash_cra_init,
+                               .cra_module = THIS_MODULE,
+                       }
+               }
+       },
+       {
+               .conf.algorithm = HASH_ALGO_SHA256,
+               .conf.oper_mode = HASH_OPER_MODE_HASH,
+               .hash = {
+                       .init = hash_init,
+                       .update = ahash_update,
+                       .final = ahash_final,
+                       .digest = ahash_sha256_digest,
+                       .halg.digestsize = SHA256_DIGEST_SIZE,
+                       .halg.statesize = sizeof(struct hash_ctx),
+                       .halg.base = {
+                               .cra_name = "sha256",
+                               .cra_driver_name = "sha256-ux500",
+                               .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
+                                             CRYPTO_ALG_ASYNC),
+                               .cra_blocksize = SHA256_BLOCK_SIZE,
+                               .cra_ctxsize = sizeof(struct hash_ctx),
+                               .cra_type = &crypto_ahash_type,
+                               .cra_init = hash_cra_init,
+                               .cra_module = THIS_MODULE,
+                       }
+               }
+       },
+       {
+               .conf.algorithm = HASH_ALGO_SHA1,
+               .conf.oper_mode = HASH_OPER_MODE_HMAC,
+                       .hash = {
+                       .init = hash_init,
+                       .update = ahash_update,
+                       .final = ahash_final,
+                       .digest = hmac_sha1_digest,
+                       .setkey = hmac_sha1_setkey,
+                       .halg.digestsize = SHA1_DIGEST_SIZE,
+                       .halg.statesize = sizeof(struct hash_ctx),
+                       .halg.base = {
+                               .cra_name = "hmac(sha1)",
+                               .cra_driver_name = "hmac-sha1-ux500",
+                               .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
+                                             CRYPTO_ALG_ASYNC),
+                               .cra_blocksize = SHA1_BLOCK_SIZE,
+                               .cra_ctxsize = sizeof(struct hash_ctx),
+                               .cra_type = &crypto_ahash_type,
+                               .cra_init = hash_cra_init,
+                               .cra_module = THIS_MODULE,
+                       }
+               }
+       },
+       {
+               .conf.algorithm = HASH_ALGO_SHA256,
+               .conf.oper_mode = HASH_OPER_MODE_HMAC,
+               .hash = {
+                       .init = hash_init,
+                       .update = ahash_update,
+                       .final = ahash_final,
+                       .digest = hmac_sha256_digest,
+                       .setkey = hmac_sha256_setkey,
+                       .halg.digestsize = SHA256_DIGEST_SIZE,
+                       .halg.statesize = sizeof(struct hash_ctx),
+                       .halg.base = {
+                               .cra_name = "hmac(sha256)",
+                               .cra_driver_name = "hmac-sha256-ux500",
+                               .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
+                                             CRYPTO_ALG_ASYNC),
+                               .cra_blocksize = SHA256_BLOCK_SIZE,
+                               .cra_ctxsize = sizeof(struct hash_ctx),
+                               .cra_type = &crypto_ahash_type,
+                               .cra_init = hash_cra_init,
+                               .cra_module = THIS_MODULE,
+                       }
+               }
+       }
+};
+
+/**
+ * hash_algs_register_all -
+ */
+static int ahash_algs_register_all(struct hash_device_data *device_data)
+{
+       int ret;
+       int i;
+       int count;
+
+       for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
+               ret = crypto_register_ahash(&hash_algs[i].hash);
+               if (ret) {
+                       count = i;
+                       dev_err(device_data->dev, "%s: alg registration failed\n",
+                               hash_algs[i].hash.halg.base.cra_driver_name);
+                       goto unreg;
+               }
+       }
+       return 0;
+unreg:
+       for (i = 0; i < count; i++)
+               crypto_unregister_ahash(&hash_algs[i].hash);
+       return ret;
+}
+
+/**
+ * hash_algs_unregister_all -
+ */
+static void ahash_algs_unregister_all(struct hash_device_data *device_data)
+{
+       int i;
+
+       for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
+               crypto_unregister_ahash(&hash_algs[i].hash);
+}
+
+/**
+ * ux500_hash_probe - Function that probes the hash hardware.
+ * @pdev: The platform device.
+ */
+static int ux500_hash_probe(struct platform_device *pdev)
+{
+       int                     ret = 0;
+       struct resource         *res = NULL;
+       struct hash_device_data *device_data;
+       struct device           *dev = &pdev->dev;
+
+       device_data = kzalloc(sizeof(*device_data), GFP_ATOMIC);
+       if (!device_data) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       device_data->dev = dev;
+       device_data->current_ctx = NULL;
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (!res) {
+               dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
+               ret = -ENODEV;
+               goto out_kfree;
+       }
+
+       res = request_mem_region(res->start, resource_size(res), pdev->name);
+       if (res == NULL) {
+               dev_dbg(dev, "%s: request_mem_region() failed!\n", __func__);
+               ret = -EBUSY;
+               goto out_kfree;
+       }
+
+       device_data->phybase = res->start;
+       device_data->base = ioremap(res->start, resource_size(res));
+       if (!device_data->base) {
+               dev_err(dev, "%s: ioremap() failed!\n", __func__);
+               ret = -ENOMEM;
+               goto out_free_mem;
+       }
+       spin_lock_init(&device_data->ctx_lock);
+       spin_lock_init(&device_data->power_state_lock);
+
+       /* Enable power for HASH1 hardware block */
+       device_data->regulator = regulator_get(dev, "v-ape");
+       if (IS_ERR(device_data->regulator)) {
+               dev_err(dev, "%s: regulator_get() failed!\n", __func__);
+               ret = PTR_ERR(device_data->regulator);
+               device_data->regulator = NULL;
+               goto out_unmap;
+       }
+
+       /* Enable the clock for HASH1 hardware block */
+       device_data->clk = clk_get(dev, NULL);
+       if (IS_ERR(device_data->clk)) {
+               dev_err(dev, "%s: clk_get() failed!\n", __func__);
+               ret = PTR_ERR(device_data->clk);
+               goto out_regulator;
+       }
+
+       ret = clk_prepare(device_data->clk);
+       if (ret) {
+               dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
+               goto out_clk;
+       }
+
+       /* Enable device power (and clock) */
+       ret = hash_enable_power(device_data, false);
+       if (ret) {
+               dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
+               goto out_clk_unprepare;
+       }
+
+       ret = hash_check_hw(device_data);
+       if (ret) {
+               dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
+               goto out_power;
+       }
+
+       if (hash_mode == HASH_MODE_DMA)
+               hash_dma_setup_channel(device_data, dev);
+
+       platform_set_drvdata(pdev, device_data);
+
+       /* Put the new device into the device list... */
+       klist_add_tail(&device_data->list_node, &driver_data.device_list);
+       /* ... and signal that a new device is available. */
+       up(&driver_data.device_allocation);
+
+       ret = ahash_algs_register_all(device_data);
+       if (ret) {
+               dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
+                       __func__);
+               goto out_power;
+       }
+
+       dev_info(dev, "successfully registered\n");
+       return 0;
+
+out_power:
+       hash_disable_power(device_data, false);
+
+out_clk_unprepare:
+       clk_unprepare(device_data->clk);
+
+out_clk:
+       clk_put(device_data->clk);
+
+out_regulator:
+       regulator_put(device_data->regulator);
+
+out_unmap:
+       iounmap(device_data->base);
+
+out_free_mem:
+       release_mem_region(res->start, resource_size(res));
+
+out_kfree:
+       kfree(device_data);
+out:
+       return ret;
+}
+
+/**
+ * ux500_hash_remove - Function that removes the hash device from the platform.
+ * @pdev: The platform device.
+ */
+static int ux500_hash_remove(struct platform_device *pdev)
+{
+       struct resource         *res;
+       struct hash_device_data *device_data;
+       struct device           *dev = &pdev->dev;
+
+       device_data = platform_get_drvdata(pdev);
+       if (!device_data) {
+               dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
+               return -ENOMEM;
+       }
+
+       /* Try to decrease the number of available devices. */
+       if (down_trylock(&driver_data.device_allocation))
+               return -EBUSY;
+
+       /* Check that the device is free */
+       spin_lock(&device_data->ctx_lock);
+       /* current_ctx allocates a device, NULL = unallocated */
+       if (device_data->current_ctx) {
+               /* The device is busy */
+               spin_unlock(&device_data->ctx_lock);
+               /* Return the device to the pool. */
+               up(&driver_data.device_allocation);
+               return -EBUSY;
+       }
+
+       spin_unlock(&device_data->ctx_lock);
+
+       /* Remove the device from the list */
+       if (klist_node_attached(&device_data->list_node))
+               klist_remove(&device_data->list_node);
+
+       /* If this was the last device, remove the services */
+       if (list_empty(&driver_data.device_list.k_list))
+               ahash_algs_unregister_all(device_data);
+
+       if (hash_disable_power(device_data, false))
+               dev_err(dev, "%s: hash_disable_power() failed\n",
+                       __func__);
+
+       clk_unprepare(device_data->clk);
+       clk_put(device_data->clk);
+       regulator_put(device_data->regulator);
+
+       iounmap(device_data->base);
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (res)
+               release_mem_region(res->start, resource_size(res));
+
+       kfree(device_data);
+
+       return 0;
+}
+
+/**
+ * ux500_hash_shutdown - Function that shutdown the hash device.
+ * @pdev: The platform device
+ */
+static void ux500_hash_shutdown(struct platform_device *pdev)
+{
+       struct resource *res = NULL;
+       struct hash_device_data *device_data;
+
+       device_data = platform_get_drvdata(pdev);
+       if (!device_data) {
+               dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
+                       __func__);
+               return;
+       }
+
+       /* Check that the device is free */
+       spin_lock(&device_data->ctx_lock);
+       /* current_ctx allocates a device, NULL = unallocated */
+       if (!device_data->current_ctx) {
+               if (down_trylock(&driver_data.device_allocation))
+                       dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
+                               __func__);
+               /**
+                * (Allocate the device)
+                * Need to set this to non-null (dummy) value,
+                * to avoid usage if context switching.
+                */
+               device_data->current_ctx++;
+       }
+       spin_unlock(&device_data->ctx_lock);
+
+       /* Remove the device from the list */
+       if (klist_node_attached(&device_data->list_node))
+               klist_remove(&device_data->list_node);
+
+       /* If this was the last device, remove the services */
+       if (list_empty(&driver_data.device_list.k_list))
+               ahash_algs_unregister_all(device_data);
+
+       iounmap(device_data->base);
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (res)
+               release_mem_region(res->start, resource_size(res));
+
+       if (hash_disable_power(device_data, false))
+               dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
+                       __func__);
+}
+
+#ifdef CONFIG_PM_SLEEP
+/**
+ * ux500_hash_suspend - Function that suspends the hash device.
+ * @dev:       Device to suspend.
+ */
+static int ux500_hash_suspend(struct device *dev)
+{
+       int ret;
+       struct hash_device_data *device_data;
+       struct hash_ctx *temp_ctx = NULL;
+
+       device_data = dev_get_drvdata(dev);
+       if (!device_data) {
+               dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
+               return -ENOMEM;
+       }
+
+       spin_lock(&device_data->ctx_lock);
+       if (!device_data->current_ctx)
+               device_data->current_ctx++;
+       spin_unlock(&device_data->ctx_lock);
+
+       if (device_data->current_ctx == ++temp_ctx) {
+               if (down_interruptible(&driver_data.device_allocation))
+                       dev_dbg(dev, "%s: down_interruptible() failed\n",
+                               __func__);
+               ret = hash_disable_power(device_data, false);
+
+       } else {
+               ret = hash_disable_power(device_data, true);
+       }
+
+       if (ret)
+               dev_err(dev, "%s: hash_disable_power()\n", __func__);
+
+       return ret;
+}
+
+/**
+ * ux500_hash_resume - Function that resume the hash device.
+ * @dev:       Device to resume.
+ */
+static int ux500_hash_resume(struct device *dev)
+{
+       int ret = 0;
+       struct hash_device_data *device_data;
+       struct hash_ctx *temp_ctx = NULL;
+
+       device_data = dev_get_drvdata(dev);
+       if (!device_data) {
+               dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
+               return -ENOMEM;
+       }
+
+       spin_lock(&device_data->ctx_lock);
+       if (device_data->current_ctx == ++temp_ctx)
+               device_data->current_ctx = NULL;
+       spin_unlock(&device_data->ctx_lock);
+
+       if (!device_data->current_ctx)
+               up(&driver_data.device_allocation);
+       else
+               ret = hash_enable_power(device_data, true);
+
+       if (ret)
+               dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
+
+       return ret;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
+
+static const struct of_device_id ux500_hash_match[] = {
+       { .compatible = "stericsson,ux500-hash" },
+       { },
+};
+
+static struct platform_driver hash_driver = {
+       .probe  = ux500_hash_probe,
+       .remove = ux500_hash_remove,
+       .shutdown = ux500_hash_shutdown,
+       .driver = {
+               .name  = "hash1",
+               .of_match_table = ux500_hash_match,
+               .pm    = &ux500_hash_pm,
+       }
+};
+
+/**
+ * ux500_hash_mod_init - The kernel module init function.
+ */
+static int __init ux500_hash_mod_init(void)
+{
+       klist_init(&driver_data.device_list, NULL, NULL);
+       /* Initialize the semaphore to 0 devices (locked state) */
+       sema_init(&driver_data.device_allocation, 0);
+
+       return platform_driver_register(&hash_driver);
+}
+
+/**
+ * ux500_hash_mod_fini - The kernel module exit function.
+ */
+static void __exit ux500_hash_mod_fini(void)
+{
+       platform_driver_unregister(&hash_driver);
+}
+
+module_init(ux500_hash_mod_init);
+module_exit(ux500_hash_mod_fini);
+
+MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
+MODULE_LICENSE("GPL");
+
+MODULE_ALIAS_CRYPTO("sha1-all");
+MODULE_ALIAS_CRYPTO("sha256-all");
+MODULE_ALIAS_CRYPTO("hmac-sha1-all");
+MODULE_ALIAS_CRYPTO("hmac-sha256-all");