Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / crypto / ccp / ccp-ops.c
diff --git a/kernel/drivers/crypto/ccp/ccp-ops.c b/kernel/drivers/crypto/ccp/ccp-ops.c
new file mode 100644 (file)
index 0000000..71f2e3c
--- /dev/null
@@ -0,0 +1,2126 @@
+/*
+ * AMD Cryptographic Coprocessor (CCP) driver
+ *
+ * Copyright (C) 2013 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/kthread.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/ccp.h>
+#include <linux/scatterlist.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/sha.h>
+
+#include "ccp-dev.h"
+
+enum ccp_memtype {
+       CCP_MEMTYPE_SYSTEM = 0,
+       CCP_MEMTYPE_KSB,
+       CCP_MEMTYPE_LOCAL,
+       CCP_MEMTYPE__LAST,
+};
+
+struct ccp_dma_info {
+       dma_addr_t address;
+       unsigned int offset;
+       unsigned int length;
+       enum dma_data_direction dir;
+};
+
+struct ccp_dm_workarea {
+       struct device *dev;
+       struct dma_pool *dma_pool;
+       unsigned int length;
+
+       u8 *address;
+       struct ccp_dma_info dma;
+};
+
+struct ccp_sg_workarea {
+       struct scatterlist *sg;
+       unsigned int nents;
+       unsigned int length;
+
+       struct scatterlist *dma_sg;
+       struct device *dma_dev;
+       unsigned int dma_count;
+       enum dma_data_direction dma_dir;
+
+       unsigned int sg_used;
+
+       u64 bytes_left;
+};
+
+struct ccp_data {
+       struct ccp_sg_workarea sg_wa;
+       struct ccp_dm_workarea dm_wa;
+};
+
+struct ccp_mem {
+       enum ccp_memtype type;
+       union {
+               struct ccp_dma_info dma;
+               u32 ksb;
+       } u;
+};
+
+struct ccp_aes_op {
+       enum ccp_aes_type type;
+       enum ccp_aes_mode mode;
+       enum ccp_aes_action action;
+};
+
+struct ccp_xts_aes_op {
+       enum ccp_aes_action action;
+       enum ccp_xts_aes_unit_size unit_size;
+};
+
+struct ccp_sha_op {
+       enum ccp_sha_type type;
+       u64 msg_bits;
+};
+
+struct ccp_rsa_op {
+       u32 mod_size;
+       u32 input_len;
+};
+
+struct ccp_passthru_op {
+       enum ccp_passthru_bitwise bit_mod;
+       enum ccp_passthru_byteswap byte_swap;
+};
+
+struct ccp_ecc_op {
+       enum ccp_ecc_function function;
+};
+
+struct ccp_op {
+       struct ccp_cmd_queue *cmd_q;
+
+       u32 jobid;
+       u32 ioc;
+       u32 soc;
+       u32 ksb_key;
+       u32 ksb_ctx;
+       u32 init;
+       u32 eom;
+
+       struct ccp_mem src;
+       struct ccp_mem dst;
+
+       union {
+               struct ccp_aes_op aes;
+               struct ccp_xts_aes_op xts;
+               struct ccp_sha_op sha;
+               struct ccp_rsa_op rsa;
+               struct ccp_passthru_op passthru;
+               struct ccp_ecc_op ecc;
+       } u;
+};
+
+/* SHA initial context values */
+static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+       cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
+       cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
+       cpu_to_be32(SHA1_H4), 0, 0, 0,
+};
+
+static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+       cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
+       cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
+       cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
+       cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
+};
+
+static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+       cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
+       cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
+       cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
+       cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
+};
+
+/* The CCP cannot perform zero-length sha operations so the caller
+ * is required to buffer data for the final operation.  However, a
+ * sha operation for a message with a total length of zero is valid
+ * so known values are required to supply the result.
+ */
+static const u8 ccp_sha1_zero[CCP_SHA_CTXSIZE] = {
+       0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
+       0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
+       0xaf, 0xd8, 0x07, 0x09, 0x00, 0x00, 0x00, 0x00,
+       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+};
+
+static const u8 ccp_sha224_zero[CCP_SHA_CTXSIZE] = {
+       0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9,
+       0x47, 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4,
+       0x15, 0xa2, 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a,
+       0xc5, 0xb3, 0xe4, 0x2f, 0x00, 0x00, 0x00, 0x00,
+};
+
+static const u8 ccp_sha256_zero[CCP_SHA_CTXSIZE] = {
+       0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
+       0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
+       0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
+       0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55,
+};
+
+static u32 ccp_addr_lo(struct ccp_dma_info *info)
+{
+       return lower_32_bits(info->address + info->offset);
+}
+
+static u32 ccp_addr_hi(struct ccp_dma_info *info)
+{
+       return upper_32_bits(info->address + info->offset) & 0x0000ffff;
+}
+
+static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
+{
+       struct ccp_cmd_queue *cmd_q = op->cmd_q;
+       struct ccp_device *ccp = cmd_q->ccp;
+       void __iomem *cr_addr;
+       u32 cr0, cmd;
+       unsigned int i;
+       int ret = 0;
+
+       /* We could read a status register to see how many free slots
+        * are actually available, but reading that register resets it
+        * and you could lose some error information.
+        */
+       cmd_q->free_slots--;
+
+       cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
+             | (op->jobid << REQ0_JOBID_SHIFT)
+             | REQ0_WAIT_FOR_WRITE;
+
+       if (op->soc)
+               cr0 |= REQ0_STOP_ON_COMPLETE
+                      | REQ0_INT_ON_COMPLETE;
+
+       if (op->ioc || !cmd_q->free_slots)
+               cr0 |= REQ0_INT_ON_COMPLETE;
+
+       /* Start at CMD_REQ1 */
+       cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
+
+       mutex_lock(&ccp->req_mutex);
+
+       /* Write CMD_REQ1 through CMD_REQx first */
+       for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
+               iowrite32(*(cr + i), cr_addr);
+
+       /* Tell the CCP to start */
+       wmb();
+       iowrite32(cr0, ccp->io_regs + CMD_REQ0);
+
+       mutex_unlock(&ccp->req_mutex);
+
+       if (cr0 & REQ0_INT_ON_COMPLETE) {
+               /* Wait for the job to complete */
+               ret = wait_event_interruptible(cmd_q->int_queue,
+                                              cmd_q->int_rcvd);
+               if (ret || cmd_q->cmd_error) {
+                       /* On error delete all related jobs from the queue */
+                       cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
+                             | op->jobid;
+
+                       iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
+
+                       if (!ret)
+                               ret = -EIO;
+               } else if (op->soc) {
+                       /* Delete just head job from the queue on SoC */
+                       cmd = DEL_Q_ACTIVE
+                             | (cmd_q->id << DEL_Q_ID_SHIFT)
+                             | op->jobid;
+
+                       iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
+               }
+
+               cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
+
+               cmd_q->int_rcvd = 0;
+       }
+
+       return ret;
+}
+
+static int ccp_perform_aes(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
+               | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
+               | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
+               | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
+               | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+       cr[1] = op->src.u.dma.length - 1;
+       cr[2] = ccp_addr_lo(&op->src.u.dma);
+       cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+               | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->src.u.dma);
+       cr[4] = ccp_addr_lo(&op->dst.u.dma);
+       cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->dst.u.dma);
+
+       if (op->u.aes.mode == CCP_AES_MODE_CFB)
+               cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
+
+       if (op->eom)
+               cr[0] |= REQ1_EOM;
+
+       if (op->init)
+               cr[0] |= REQ1_INIT;
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_xts_aes(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
+               | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
+               | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
+               | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+       cr[1] = op->src.u.dma.length - 1;
+       cr[2] = ccp_addr_lo(&op->src.u.dma);
+       cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+               | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->src.u.dma);
+       cr[4] = ccp_addr_lo(&op->dst.u.dma);
+       cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->dst.u.dma);
+
+       if (op->eom)
+               cr[0] |= REQ1_EOM;
+
+       if (op->init)
+               cr[0] |= REQ1_INIT;
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_sha(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
+               | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
+               | REQ1_INIT;
+       cr[1] = op->src.u.dma.length - 1;
+       cr[2] = ccp_addr_lo(&op->src.u.dma);
+       cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+               | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->src.u.dma);
+
+       if (op->eom) {
+               cr[0] |= REQ1_EOM;
+               cr[4] = lower_32_bits(op->u.sha.msg_bits);
+               cr[5] = upper_32_bits(op->u.sha.msg_bits);
+       } else {
+               cr[4] = 0;
+               cr[5] = 0;
+       }
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_rsa(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
+               | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
+               | (op->ksb_key << REQ1_KEY_KSB_SHIFT)
+               | REQ1_EOM;
+       cr[1] = op->u.rsa.input_len - 1;
+       cr[2] = ccp_addr_lo(&op->src.u.dma);
+       cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+               | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->src.u.dma);
+       cr[4] = ccp_addr_lo(&op->dst.u.dma);
+       cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->dst.u.dma);
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_passthru(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
+               | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
+               | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
+
+       if (op->src.type == CCP_MEMTYPE_SYSTEM)
+               cr[1] = op->src.u.dma.length - 1;
+       else
+               cr[1] = op->dst.u.dma.length - 1;
+
+       if (op->src.type == CCP_MEMTYPE_SYSTEM) {
+               cr[2] = ccp_addr_lo(&op->src.u.dma);
+               cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+                       | ccp_addr_hi(&op->src.u.dma);
+
+               if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+                       cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
+       } else {
+               cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
+               cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
+       }
+
+       if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
+               cr[4] = ccp_addr_lo(&op->dst.u.dma);
+               cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+                       | ccp_addr_hi(&op->dst.u.dma);
+       } else {
+               cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
+               cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
+       }
+
+       if (op->eom)
+               cr[0] |= REQ1_EOM;
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_ecc(struct ccp_op *op)
+{
+       u32 cr[6];
+
+       /* Fill out the register contents for REQ1 through REQ6 */
+       cr[0] = REQ1_ECC_AFFINE_CONVERT
+               | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
+               | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
+               | REQ1_EOM;
+       cr[1] = op->src.u.dma.length - 1;
+       cr[2] = ccp_addr_lo(&op->src.u.dma);
+       cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->src.u.dma);
+       cr[4] = ccp_addr_lo(&op->dst.u.dma);
+       cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+               | ccp_addr_hi(&op->dst.u.dma);
+
+       return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
+{
+       int start;
+
+       for (;;) {
+               mutex_lock(&ccp->ksb_mutex);
+
+               start = (u32)bitmap_find_next_zero_area(ccp->ksb,
+                                                       ccp->ksb_count,
+                                                       ccp->ksb_start,
+                                                       count, 0);
+               if (start <= ccp->ksb_count) {
+                       bitmap_set(ccp->ksb, start, count);
+
+                       mutex_unlock(&ccp->ksb_mutex);
+                       break;
+               }
+
+               ccp->ksb_avail = 0;
+
+               mutex_unlock(&ccp->ksb_mutex);
+
+               /* Wait for KSB entries to become available */
+               if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
+                       return 0;
+       }
+
+       return KSB_START + start;
+}
+
+static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
+                        unsigned int count)
+{
+       if (!start)
+               return;
+
+       mutex_lock(&ccp->ksb_mutex);
+
+       bitmap_clear(ccp->ksb, start - KSB_START, count);
+
+       ccp->ksb_avail = 1;
+
+       mutex_unlock(&ccp->ksb_mutex);
+
+       wake_up_interruptible_all(&ccp->ksb_queue);
+}
+
+static u32 ccp_gen_jobid(struct ccp_device *ccp)
+{
+       return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
+}
+
+static void ccp_sg_free(struct ccp_sg_workarea *wa)
+{
+       if (wa->dma_count)
+               dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
+
+       wa->dma_count = 0;
+}
+
+static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
+                               struct scatterlist *sg, u64 len,
+                               enum dma_data_direction dma_dir)
+{
+       memset(wa, 0, sizeof(*wa));
+
+       wa->sg = sg;
+       if (!sg)
+               return 0;
+
+       wa->nents = sg_nents(sg);
+       wa->length = sg->length;
+       wa->bytes_left = len;
+       wa->sg_used = 0;
+
+       if (len == 0)
+               return 0;
+
+       if (dma_dir == DMA_NONE)
+               return 0;
+
+       wa->dma_sg = sg;
+       wa->dma_dev = dev;
+       wa->dma_dir = dma_dir;
+       wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
+       if (!wa->dma_count)
+               return -ENOMEM;
+
+       return 0;
+}
+
+static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
+{
+       unsigned int nbytes = min_t(u64, len, wa->bytes_left);
+
+       if (!wa->sg)
+               return;
+
+       wa->sg_used += nbytes;
+       wa->bytes_left -= nbytes;
+       if (wa->sg_used == wa->sg->length) {
+               wa->sg = sg_next(wa->sg);
+               wa->sg_used = 0;
+       }
+}
+
+static void ccp_dm_free(struct ccp_dm_workarea *wa)
+{
+       if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
+               if (wa->address)
+                       dma_pool_free(wa->dma_pool, wa->address,
+                                     wa->dma.address);
+       } else {
+               if (wa->dma.address)
+                       dma_unmap_single(wa->dev, wa->dma.address, wa->length,
+                                        wa->dma.dir);
+               kfree(wa->address);
+       }
+
+       wa->address = NULL;
+       wa->dma.address = 0;
+}
+
+static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
+                               struct ccp_cmd_queue *cmd_q,
+                               unsigned int len,
+                               enum dma_data_direction dir)
+{
+       memset(wa, 0, sizeof(*wa));
+
+       if (!len)
+               return 0;
+
+       wa->dev = cmd_q->ccp->dev;
+       wa->length = len;
+
+       if (len <= CCP_DMAPOOL_MAX_SIZE) {
+               wa->dma_pool = cmd_q->dma_pool;
+
+               wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
+                                            &wa->dma.address);
+               if (!wa->address)
+                       return -ENOMEM;
+
+               wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
+
+               memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
+       } else {
+               wa->address = kzalloc(len, GFP_KERNEL);
+               if (!wa->address)
+                       return -ENOMEM;
+
+               wa->dma.address = dma_map_single(wa->dev, wa->address, len,
+                                                dir);
+               if (!wa->dma.address)
+                       return -ENOMEM;
+
+               wa->dma.length = len;
+       }
+       wa->dma.dir = dir;
+
+       return 0;
+}
+
+static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+                           struct scatterlist *sg, unsigned int sg_offset,
+                           unsigned int len)
+{
+       WARN_ON(!wa->address);
+
+       scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+                                0);
+}
+
+static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+                           struct scatterlist *sg, unsigned int sg_offset,
+                           unsigned int len)
+{
+       WARN_ON(!wa->address);
+
+       scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+                                1);
+}
+
+static void ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
+                                   struct scatterlist *sg,
+                                   unsigned int len, unsigned int se_len,
+                                   bool sign_extend)
+{
+       unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+       u8 buffer[CCP_REVERSE_BUF_SIZE];
+
+       BUG_ON(se_len > sizeof(buffer));
+
+       sg_offset = len;
+       dm_offset = 0;
+       nbytes = len;
+       while (nbytes) {
+               ksb_len = min_t(unsigned int, nbytes, se_len);
+               sg_offset -= ksb_len;
+
+               scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
+               for (i = 0; i < ksb_len; i++)
+                       wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
+
+               dm_offset += ksb_len;
+               nbytes -= ksb_len;
+
+               if ((ksb_len != se_len) && sign_extend) {
+                       /* Must sign-extend to nearest sign-extend length */
+                       if (wa->address[dm_offset - 1] & 0x80)
+                               memset(wa->address + dm_offset, 0xff,
+                                      se_len - ksb_len);
+               }
+       }
+}
+
+static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
+                                   struct scatterlist *sg,
+                                   unsigned int len)
+{
+       unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+       u8 buffer[CCP_REVERSE_BUF_SIZE];
+
+       sg_offset = 0;
+       dm_offset = len;
+       nbytes = len;
+       while (nbytes) {
+               ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
+               dm_offset -= ksb_len;
+
+               for (i = 0; i < ksb_len; i++)
+                       buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
+               scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
+
+               sg_offset += ksb_len;
+               nbytes -= ksb_len;
+       }
+}
+
+static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
+{
+       ccp_dm_free(&data->dm_wa);
+       ccp_sg_free(&data->sg_wa);
+}
+
+static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
+                        struct scatterlist *sg, u64 sg_len,
+                        unsigned int dm_len,
+                        enum dma_data_direction dir)
+{
+       int ret;
+
+       memset(data, 0, sizeof(*data));
+
+       ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
+                                  dir);
+       if (ret)
+               goto e_err;
+
+       ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
+       if (ret)
+               goto e_err;
+
+       return 0;
+
+e_err:
+       ccp_free_data(data, cmd_q);
+
+       return ret;
+}
+
+static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
+{
+       struct ccp_sg_workarea *sg_wa = &data->sg_wa;
+       struct ccp_dm_workarea *dm_wa = &data->dm_wa;
+       unsigned int buf_count, nbytes;
+
+       /* Clear the buffer if setting it */
+       if (!from)
+               memset(dm_wa->address, 0, dm_wa->length);
+
+       if (!sg_wa->sg)
+               return 0;
+
+       /* Perform the copy operation
+        *   nbytes will always be <= UINT_MAX because dm_wa->length is
+        *   an unsigned int
+        */
+       nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
+       scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
+                                nbytes, from);
+
+       /* Update the structures and generate the count */
+       buf_count = 0;
+       while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
+               nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
+                            dm_wa->length - buf_count);
+               nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
+
+               buf_count += nbytes;
+               ccp_update_sg_workarea(sg_wa, nbytes);
+       }
+
+       return buf_count;
+}
+
+static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
+{
+       return ccp_queue_buf(data, 0);
+}
+
+static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
+{
+       return ccp_queue_buf(data, 1);
+}
+
+static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
+                            struct ccp_op *op, unsigned int block_size,
+                            bool blocksize_op)
+{
+       unsigned int sg_src_len, sg_dst_len, op_len;
+
+       /* The CCP can only DMA from/to one address each per operation. This
+        * requires that we find the smallest DMA area between the source
+        * and destination. The resulting len values will always be <= UINT_MAX
+        * because the dma length is an unsigned int.
+        */
+       sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
+       sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
+
+       if (dst) {
+               sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
+               sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
+               op_len = min(sg_src_len, sg_dst_len);
+       } else {
+               op_len = sg_src_len;
+       }
+
+       /* The data operation length will be at least block_size in length
+        * or the smaller of available sg room remaining for the source or
+        * the destination
+        */
+       op_len = max(op_len, block_size);
+
+       /* Unless we have to buffer data, there's no reason to wait */
+       op->soc = 0;
+
+       if (sg_src_len < block_size) {
+               /* Not enough data in the sg element, so it
+                * needs to be buffered into a blocksize chunk
+                */
+               int cp_len = ccp_fill_queue_buf(src);
+
+               op->soc = 1;
+               op->src.u.dma.address = src->dm_wa.dma.address;
+               op->src.u.dma.offset = 0;
+               op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
+       } else {
+               /* Enough data in the sg element, but we need to
+                * adjust for any previously copied data
+                */
+               op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
+               op->src.u.dma.offset = src->sg_wa.sg_used;
+               op->src.u.dma.length = op_len & ~(block_size - 1);
+
+               ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
+       }
+
+       if (dst) {
+               if (sg_dst_len < block_size) {
+                       /* Not enough room in the sg element or we're on the
+                        * last piece of data (when using padding), so the
+                        * output needs to be buffered into a blocksize chunk
+                        */
+                       op->soc = 1;
+                       op->dst.u.dma.address = dst->dm_wa.dma.address;
+                       op->dst.u.dma.offset = 0;
+                       op->dst.u.dma.length = op->src.u.dma.length;
+               } else {
+                       /* Enough room in the sg element, but we need to
+                        * adjust for any previously used area
+                        */
+                       op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
+                       op->dst.u.dma.offset = dst->sg_wa.sg_used;
+                       op->dst.u.dma.length = op->src.u.dma.length;
+               }
+       }
+}
+
+static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
+                            struct ccp_op *op)
+{
+       op->init = 0;
+
+       if (dst) {
+               if (op->dst.u.dma.address == dst->dm_wa.dma.address)
+                       ccp_empty_queue_buf(dst);
+               else
+                       ccp_update_sg_workarea(&dst->sg_wa,
+                                              op->dst.u.dma.length);
+       }
+}
+
+static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
+                               struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+                               u32 byte_swap, bool from)
+{
+       struct ccp_op op;
+
+       memset(&op, 0, sizeof(op));
+
+       op.cmd_q = cmd_q;
+       op.jobid = jobid;
+       op.eom = 1;
+
+       if (from) {
+               op.soc = 1;
+               op.src.type = CCP_MEMTYPE_KSB;
+               op.src.u.ksb = ksb;
+               op.dst.type = CCP_MEMTYPE_SYSTEM;
+               op.dst.u.dma.address = wa->dma.address;
+               op.dst.u.dma.length = wa->length;
+       } else {
+               op.src.type = CCP_MEMTYPE_SYSTEM;
+               op.src.u.dma.address = wa->dma.address;
+               op.src.u.dma.length = wa->length;
+               op.dst.type = CCP_MEMTYPE_KSB;
+               op.dst.u.ksb = ksb;
+       }
+
+       op.u.passthru.byte_swap = byte_swap;
+
+       return ccp_perform_passthru(&op);
+}
+
+static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
+                          struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+                          u32 byte_swap)
+{
+       return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
+}
+
+static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
+                            struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+                            u32 byte_swap)
+{
+       return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
+}
+
+static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
+                               struct ccp_cmd *cmd)
+{
+       struct ccp_aes_engine *aes = &cmd->u.aes;
+       struct ccp_dm_workarea key, ctx;
+       struct ccp_data src;
+       struct ccp_op op;
+       unsigned int dm_offset;
+       int ret;
+
+       if (!((aes->key_len == AES_KEYSIZE_128) ||
+             (aes->key_len == AES_KEYSIZE_192) ||
+             (aes->key_len == AES_KEYSIZE_256)))
+               return -EINVAL;
+
+       if (aes->src_len & (AES_BLOCK_SIZE - 1))
+               return -EINVAL;
+
+       if (aes->iv_len != AES_BLOCK_SIZE)
+               return -EINVAL;
+
+       if (!aes->key || !aes->iv || !aes->src)
+               return -EINVAL;
+
+       if (aes->cmac_final) {
+               if (aes->cmac_key_len != AES_BLOCK_SIZE)
+                       return -EINVAL;
+
+               if (!aes->cmac_key)
+                       return -EINVAL;
+       }
+
+       BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
+       BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+
+       ret = -EIO;
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+       op.ksb_key = cmd_q->ksb_key;
+       op.ksb_ctx = cmd_q->ksb_ctx;
+       op.init = 1;
+       op.u.aes.type = aes->type;
+       op.u.aes.mode = aes->mode;
+       op.u.aes.action = aes->action;
+
+       /* All supported key sizes fit in a single (32-byte) KSB entry
+        * and must be in little endian format. Use the 256-bit byte
+        * swap passthru option to convert from big endian to little
+        * endian.
+        */
+       ret = ccp_init_dm_workarea(&key, cmd_q,
+                                  CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_TO_DEVICE);
+       if (ret)
+               return ret;
+
+       dm_offset = CCP_KSB_BYTES - aes->key_len;
+       ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+       ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+                             CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_key;
+       }
+
+       /* The AES context fits in a single (32-byte) KSB entry and
+        * must be in little endian format. Use the 256-bit byte swap
+        * passthru option to convert from big endian to little endian.
+        */
+       ret = ccp_init_dm_workarea(&ctx, cmd_q,
+                                  CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_BIDIRECTIONAL);
+       if (ret)
+               goto e_key;
+
+       dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+       ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+       ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                             CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_ctx;
+       }
+
+       /* Send data to the CCP AES engine */
+       ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+                           AES_BLOCK_SIZE, DMA_TO_DEVICE);
+       if (ret)
+               goto e_ctx;
+
+       while (src.sg_wa.bytes_left) {
+               ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
+               if (aes->cmac_final && !src.sg_wa.bytes_left) {
+                       op.eom = 1;
+
+                       /* Push the K1/K2 key to the CCP now */
+                       ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
+                                               op.ksb_ctx,
+                                               CCP_PASSTHRU_BYTESWAP_256BIT);
+                       if (ret) {
+                               cmd->engine_error = cmd_q->cmd_error;
+                               goto e_src;
+                       }
+
+                       ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
+                                       aes->cmac_key_len);
+                       ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                                             CCP_PASSTHRU_BYTESWAP_256BIT);
+                       if (ret) {
+                               cmd->engine_error = cmd_q->cmd_error;
+                               goto e_src;
+                       }
+               }
+
+               ret = ccp_perform_aes(&op);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_src;
+               }
+
+               ccp_process_data(&src, NULL, &op);
+       }
+
+       /* Retrieve the AES context - convert from LE to BE using
+        * 32-byte (256-bit) byteswapping
+        */
+       ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                               CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_src;
+       }
+
+       /* ...but we only need AES_BLOCK_SIZE bytes */
+       dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+       ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+
+e_src:
+       ccp_free_data(&src, cmd_q);
+
+e_ctx:
+       ccp_dm_free(&ctx);
+
+e_key:
+       ccp_dm_free(&key);
+
+       return ret;
+}
+
+static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_aes_engine *aes = &cmd->u.aes;
+       struct ccp_dm_workarea key, ctx;
+       struct ccp_data src, dst;
+       struct ccp_op op;
+       unsigned int dm_offset;
+       bool in_place = false;
+       int ret;
+
+       if (aes->mode == CCP_AES_MODE_CMAC)
+               return ccp_run_aes_cmac_cmd(cmd_q, cmd);
+
+       if (!((aes->key_len == AES_KEYSIZE_128) ||
+             (aes->key_len == AES_KEYSIZE_192) ||
+             (aes->key_len == AES_KEYSIZE_256)))
+               return -EINVAL;
+
+       if (((aes->mode == CCP_AES_MODE_ECB) ||
+            (aes->mode == CCP_AES_MODE_CBC) ||
+            (aes->mode == CCP_AES_MODE_CFB)) &&
+           (aes->src_len & (AES_BLOCK_SIZE - 1)))
+               return -EINVAL;
+
+       if (!aes->key || !aes->src || !aes->dst)
+               return -EINVAL;
+
+       if (aes->mode != CCP_AES_MODE_ECB) {
+               if (aes->iv_len != AES_BLOCK_SIZE)
+                       return -EINVAL;
+
+               if (!aes->iv)
+                       return -EINVAL;
+       }
+
+       BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
+       BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+
+       ret = -EIO;
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+       op.ksb_key = cmd_q->ksb_key;
+       op.ksb_ctx = cmd_q->ksb_ctx;
+       op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
+       op.u.aes.type = aes->type;
+       op.u.aes.mode = aes->mode;
+       op.u.aes.action = aes->action;
+
+       /* All supported key sizes fit in a single (32-byte) KSB entry
+        * and must be in little endian format. Use the 256-bit byte
+        * swap passthru option to convert from big endian to little
+        * endian.
+        */
+       ret = ccp_init_dm_workarea(&key, cmd_q,
+                                  CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_TO_DEVICE);
+       if (ret)
+               return ret;
+
+       dm_offset = CCP_KSB_BYTES - aes->key_len;
+       ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+       ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+                             CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_key;
+       }
+
+       /* The AES context fits in a single (32-byte) KSB entry and
+        * must be in little endian format. Use the 256-bit byte swap
+        * passthru option to convert from big endian to little endian.
+        */
+       ret = ccp_init_dm_workarea(&ctx, cmd_q,
+                                  CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_BIDIRECTIONAL);
+       if (ret)
+               goto e_key;
+
+       if (aes->mode != CCP_AES_MODE_ECB) {
+               /* Load the AES context - conver to LE */
+               dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+               ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+               ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                                     CCP_PASSTHRU_BYTESWAP_256BIT);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_ctx;
+               }
+       }
+
+       /* Prepare the input and output data workareas. For in-place
+        * operations we need to set the dma direction to BIDIRECTIONAL
+        * and copy the src workarea to the dst workarea.
+        */
+       if (sg_virt(aes->src) == sg_virt(aes->dst))
+               in_place = true;
+
+       ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+                           AES_BLOCK_SIZE,
+                           in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+       if (ret)
+               goto e_ctx;
+
+       if (in_place) {
+               dst = src;
+       } else {
+               ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
+                                   AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+               if (ret)
+                       goto e_src;
+       }
+
+       /* Send data to the CCP AES engine */
+       while (src.sg_wa.bytes_left) {
+               ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+               if (!src.sg_wa.bytes_left) {
+                       op.eom = 1;
+
+                       /* Since we don't retrieve the AES context in ECB
+                        * mode we have to wait for the operation to complete
+                        * on the last piece of data
+                        */
+                       if (aes->mode == CCP_AES_MODE_ECB)
+                               op.soc = 1;
+               }
+
+               ret = ccp_perform_aes(&op);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_dst;
+               }
+
+               ccp_process_data(&src, &dst, &op);
+       }
+
+       if (aes->mode != CCP_AES_MODE_ECB) {
+               /* Retrieve the AES context - convert from LE to BE using
+                * 32-byte (256-bit) byteswapping
+                */
+               ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                                       CCP_PASSTHRU_BYTESWAP_256BIT);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_dst;
+               }
+
+               /* ...but we only need AES_BLOCK_SIZE bytes */
+               dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+               ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+       }
+
+e_dst:
+       if (!in_place)
+               ccp_free_data(&dst, cmd_q);
+
+e_src:
+       ccp_free_data(&src, cmd_q);
+
+e_ctx:
+       ccp_dm_free(&ctx);
+
+e_key:
+       ccp_dm_free(&key);
+
+       return ret;
+}
+
+static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
+                              struct ccp_cmd *cmd)
+{
+       struct ccp_xts_aes_engine *xts = &cmd->u.xts;
+       struct ccp_dm_workarea key, ctx;
+       struct ccp_data src, dst;
+       struct ccp_op op;
+       unsigned int unit_size, dm_offset;
+       bool in_place = false;
+       int ret;
+
+       switch (xts->unit_size) {
+       case CCP_XTS_AES_UNIT_SIZE_16:
+               unit_size = 16;
+               break;
+       case CCP_XTS_AES_UNIT_SIZE_512:
+               unit_size = 512;
+               break;
+       case CCP_XTS_AES_UNIT_SIZE_1024:
+               unit_size = 1024;
+               break;
+       case CCP_XTS_AES_UNIT_SIZE_2048:
+               unit_size = 2048;
+               break;
+       case CCP_XTS_AES_UNIT_SIZE_4096:
+               unit_size = 4096;
+               break;
+
+       default:
+               return -EINVAL;
+       }
+
+       if (xts->key_len != AES_KEYSIZE_128)
+               return -EINVAL;
+
+       if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
+               return -EINVAL;
+
+       if (xts->iv_len != AES_BLOCK_SIZE)
+               return -EINVAL;
+
+       if (!xts->key || !xts->iv || !xts->src || !xts->dst)
+               return -EINVAL;
+
+       BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
+       BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
+
+       ret = -EIO;
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+       op.ksb_key = cmd_q->ksb_key;
+       op.ksb_ctx = cmd_q->ksb_ctx;
+       op.init = 1;
+       op.u.xts.action = xts->action;
+       op.u.xts.unit_size = xts->unit_size;
+
+       /* All supported key sizes fit in a single (32-byte) KSB entry
+        * and must be in little endian format. Use the 256-bit byte
+        * swap passthru option to convert from big endian to little
+        * endian.
+        */
+       ret = ccp_init_dm_workarea(&key, cmd_q,
+                                  CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_TO_DEVICE);
+       if (ret)
+               return ret;
+
+       dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
+       ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
+       ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
+       ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+                             CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_key;
+       }
+
+       /* The AES context fits in a single (32-byte) KSB entry and
+        * for XTS is already in little endian format so no byte swapping
+        * is needed.
+        */
+       ret = ccp_init_dm_workarea(&ctx, cmd_q,
+                                  CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_BIDIRECTIONAL);
+       if (ret)
+               goto e_key;
+
+       ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
+       ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                             CCP_PASSTHRU_BYTESWAP_NOOP);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_ctx;
+       }
+
+       /* Prepare the input and output data workareas. For in-place
+        * operations we need to set the dma direction to BIDIRECTIONAL
+        * and copy the src workarea to the dst workarea.
+        */
+       if (sg_virt(xts->src) == sg_virt(xts->dst))
+               in_place = true;
+
+       ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
+                           unit_size,
+                           in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+       if (ret)
+               goto e_ctx;
+
+       if (in_place) {
+               dst = src;
+       } else {
+               ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
+                                   unit_size, DMA_FROM_DEVICE);
+               if (ret)
+                       goto e_src;
+       }
+
+       /* Send data to the CCP AES engine */
+       while (src.sg_wa.bytes_left) {
+               ccp_prepare_data(&src, &dst, &op, unit_size, true);
+               if (!src.sg_wa.bytes_left)
+                       op.eom = 1;
+
+               ret = ccp_perform_xts_aes(&op);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_dst;
+               }
+
+               ccp_process_data(&src, &dst, &op);
+       }
+
+       /* Retrieve the AES context - convert from LE to BE using
+        * 32-byte (256-bit) byteswapping
+        */
+       ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                               CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_dst;
+       }
+
+       /* ...but we only need AES_BLOCK_SIZE bytes */
+       dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+       ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
+
+e_dst:
+       if (!in_place)
+               ccp_free_data(&dst, cmd_q);
+
+e_src:
+       ccp_free_data(&src, cmd_q);
+
+e_ctx:
+       ccp_dm_free(&ctx);
+
+e_key:
+       ccp_dm_free(&key);
+
+       return ret;
+}
+
+static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_sha_engine *sha = &cmd->u.sha;
+       struct ccp_dm_workarea ctx;
+       struct ccp_data src;
+       struct ccp_op op;
+       int ret;
+
+       if (sha->ctx_len != CCP_SHA_CTXSIZE)
+               return -EINVAL;
+
+       if (!sha->ctx)
+               return -EINVAL;
+
+       if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
+               return -EINVAL;
+
+       if (!sha->src_len) {
+               const u8 *sha_zero;
+
+               /* Not final, just return */
+               if (!sha->final)
+                       return 0;
+
+               /* CCP can't do a zero length sha operation so the caller
+                * must buffer the data.
+                */
+               if (sha->msg_bits)
+                       return -EINVAL;
+
+               /* A sha operation for a message with a total length of zero,
+                * return known result.
+                */
+               switch (sha->type) {
+               case CCP_SHA_TYPE_1:
+                       sha_zero = ccp_sha1_zero;
+                       break;
+               case CCP_SHA_TYPE_224:
+                       sha_zero = ccp_sha224_zero;
+                       break;
+               case CCP_SHA_TYPE_256:
+                       sha_zero = ccp_sha256_zero;
+                       break;
+               default:
+                       return -EINVAL;
+               }
+
+               scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
+                                        sha->ctx_len, 1);
+
+               return 0;
+       }
+
+       if (!sha->src)
+               return -EINVAL;
+
+       BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
+
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+       op.ksb_ctx = cmd_q->ksb_ctx;
+       op.u.sha.type = sha->type;
+       op.u.sha.msg_bits = sha->msg_bits;
+
+       /* The SHA context fits in a single (32-byte) KSB entry and
+        * must be in little endian format. Use the 256-bit byte swap
+        * passthru option to convert from big endian to little endian.
+        */
+       ret = ccp_init_dm_workarea(&ctx, cmd_q,
+                                  CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
+                                  DMA_BIDIRECTIONAL);
+       if (ret)
+               return ret;
+
+       if (sha->first) {
+               const __be32 *init;
+
+               switch (sha->type) {
+               case CCP_SHA_TYPE_1:
+                       init = ccp_sha1_init;
+                       break;
+               case CCP_SHA_TYPE_224:
+                       init = ccp_sha224_init;
+                       break;
+               case CCP_SHA_TYPE_256:
+                       init = ccp_sha256_init;
+                       break;
+               default:
+                       ret = -EINVAL;
+                       goto e_ctx;
+               }
+               memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
+       } else {
+               ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
+       }
+
+       ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                             CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_ctx;
+       }
+
+       /* Send data to the CCP SHA engine */
+       ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
+                           CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
+       if (ret)
+               goto e_ctx;
+
+       while (src.sg_wa.bytes_left) {
+               ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
+               if (sha->final && !src.sg_wa.bytes_left)
+                       op.eom = 1;
+
+               ret = ccp_perform_sha(&op);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_data;
+               }
+
+               ccp_process_data(&src, NULL, &op);
+       }
+
+       /* Retrieve the SHA context - convert from LE to BE using
+        * 32-byte (256-bit) byteswapping to BE
+        */
+       ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+                               CCP_PASSTHRU_BYTESWAP_256BIT);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_data;
+       }
+
+       ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
+
+       if (sha->final && sha->opad) {
+               /* HMAC operation, recursively perform final SHA */
+               struct ccp_cmd hmac_cmd;
+               struct scatterlist sg;
+               u64 block_size, digest_size;
+               u8 *hmac_buf;
+
+               switch (sha->type) {
+               case CCP_SHA_TYPE_1:
+                       block_size = SHA1_BLOCK_SIZE;
+                       digest_size = SHA1_DIGEST_SIZE;
+                       break;
+               case CCP_SHA_TYPE_224:
+                       block_size = SHA224_BLOCK_SIZE;
+                       digest_size = SHA224_DIGEST_SIZE;
+                       break;
+               case CCP_SHA_TYPE_256:
+                       block_size = SHA256_BLOCK_SIZE;
+                       digest_size = SHA256_DIGEST_SIZE;
+                       break;
+               default:
+                       ret = -EINVAL;
+                       goto e_data;
+               }
+
+               if (sha->opad_len != block_size) {
+                       ret = -EINVAL;
+                       goto e_data;
+               }
+
+               hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
+               if (!hmac_buf) {
+                       ret = -ENOMEM;
+                       goto e_data;
+               }
+               sg_init_one(&sg, hmac_buf, block_size + digest_size);
+
+               scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
+               memcpy(hmac_buf + block_size, ctx.address, digest_size);
+
+               memset(&hmac_cmd, 0, sizeof(hmac_cmd));
+               hmac_cmd.engine = CCP_ENGINE_SHA;
+               hmac_cmd.u.sha.type = sha->type;
+               hmac_cmd.u.sha.ctx = sha->ctx;
+               hmac_cmd.u.sha.ctx_len = sha->ctx_len;
+               hmac_cmd.u.sha.src = &sg;
+               hmac_cmd.u.sha.src_len = block_size + digest_size;
+               hmac_cmd.u.sha.opad = NULL;
+               hmac_cmd.u.sha.opad_len = 0;
+               hmac_cmd.u.sha.first = 1;
+               hmac_cmd.u.sha.final = 1;
+               hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
+
+               ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
+               if (ret)
+                       cmd->engine_error = hmac_cmd.engine_error;
+
+               kfree(hmac_buf);
+       }
+
+e_data:
+       ccp_free_data(&src, cmd_q);
+
+e_ctx:
+       ccp_dm_free(&ctx);
+
+       return ret;
+}
+
+static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_rsa_engine *rsa = &cmd->u.rsa;
+       struct ccp_dm_workarea exp, src;
+       struct ccp_data dst;
+       struct ccp_op op;
+       unsigned int ksb_count, i_len, o_len;
+       int ret;
+
+       if (rsa->key_size > CCP_RSA_MAX_WIDTH)
+               return -EINVAL;
+
+       if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
+               return -EINVAL;
+
+       /* The RSA modulus must precede the message being acted upon, so
+        * it must be copied to a DMA area where the message and the
+        * modulus can be concatenated.  Therefore the input buffer
+        * length required is twice the output buffer length (which
+        * must be a multiple of 256-bits).
+        */
+       o_len = ((rsa->key_size + 255) / 256) * 32;
+       i_len = o_len * 2;
+
+       ksb_count = o_len / CCP_KSB_BYTES;
+
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+       op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
+       if (!op.ksb_key)
+               return -EIO;
+
+       /* The RSA exponent may span multiple (32-byte) KSB entries and must
+        * be in little endian format. Reverse copy each 32-byte chunk
+        * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
+        * and each byte within that chunk and do not perform any byte swap
+        * operations on the passthru operation.
+        */
+       ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
+       if (ret)
+               goto e_ksb;
+
+       ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len, CCP_KSB_BYTES,
+                               false);
+       ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
+                             CCP_PASSTHRU_BYTESWAP_NOOP);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_exp;
+       }
+
+       /* Concatenate the modulus and the message. Both the modulus and
+        * the operands must be in little endian format.  Since the input
+        * is in big endian format it must be converted.
+        */
+       ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
+       if (ret)
+               goto e_exp;
+
+       ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len, CCP_KSB_BYTES,
+                               false);
+       src.address += o_len;   /* Adjust the address for the copy operation */
+       ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len, CCP_KSB_BYTES,
+                               false);
+       src.address -= o_len;   /* Reset the address to original value */
+
+       /* Prepare the output area for the operation */
+       ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
+                           o_len, DMA_FROM_DEVICE);
+       if (ret)
+               goto e_src;
+
+       op.soc = 1;
+       op.src.u.dma.address = src.dma.address;
+       op.src.u.dma.offset = 0;
+       op.src.u.dma.length = i_len;
+       op.dst.u.dma.address = dst.dm_wa.dma.address;
+       op.dst.u.dma.offset = 0;
+       op.dst.u.dma.length = o_len;
+
+       op.u.rsa.mod_size = rsa->key_size;
+       op.u.rsa.input_len = i_len;
+
+       ret = ccp_perform_rsa(&op);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_dst;
+       }
+
+       ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
+
+e_dst:
+       ccp_free_data(&dst, cmd_q);
+
+e_src:
+       ccp_dm_free(&src);
+
+e_exp:
+       ccp_dm_free(&exp);
+
+e_ksb:
+       ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
+
+       return ret;
+}
+
+static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
+                               struct ccp_cmd *cmd)
+{
+       struct ccp_passthru_engine *pt = &cmd->u.passthru;
+       struct ccp_dm_workarea mask;
+       struct ccp_data src, dst;
+       struct ccp_op op;
+       bool in_place = false;
+       unsigned int i;
+       int ret;
+
+       if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+               return -EINVAL;
+
+       if (!pt->src || !pt->dst)
+               return -EINVAL;
+
+       if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+               if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+                       return -EINVAL;
+               if (!pt->mask)
+                       return -EINVAL;
+       }
+
+       BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
+
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+       if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+               /* Load the mask */
+               op.ksb_key = cmd_q->ksb_key;
+
+               ret = ccp_init_dm_workarea(&mask, cmd_q,
+                                          CCP_PASSTHRU_KSB_COUNT *
+                                          CCP_KSB_BYTES,
+                                          DMA_TO_DEVICE);
+               if (ret)
+                       return ret;
+
+               ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
+               ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
+                                     CCP_PASSTHRU_BYTESWAP_NOOP);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_mask;
+               }
+       }
+
+       /* Prepare the input and output data workareas. For in-place
+        * operations we need to set the dma direction to BIDIRECTIONAL
+        * and copy the src workarea to the dst workarea.
+        */
+       if (sg_virt(pt->src) == sg_virt(pt->dst))
+               in_place = true;
+
+       ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
+                           CCP_PASSTHRU_MASKSIZE,
+                           in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+       if (ret)
+               goto e_mask;
+
+       if (in_place) {
+               dst = src;
+       } else {
+               ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
+                                   CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
+               if (ret)
+                       goto e_src;
+       }
+
+       /* Send data to the CCP Passthru engine
+        *   Because the CCP engine works on a single source and destination
+        *   dma address at a time, each entry in the source scatterlist
+        *   (after the dma_map_sg call) must be less than or equal to the
+        *   (remaining) length in the destination scatterlist entry and the
+        *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
+        */
+       dst.sg_wa.sg_used = 0;
+       for (i = 1; i <= src.sg_wa.dma_count; i++) {
+               if (!dst.sg_wa.sg ||
+                   (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
+                       ret = -EINVAL;
+                       goto e_dst;
+               }
+
+               if (i == src.sg_wa.dma_count) {
+                       op.eom = 1;
+                       op.soc = 1;
+               }
+
+               op.src.type = CCP_MEMTYPE_SYSTEM;
+               op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
+               op.src.u.dma.offset = 0;
+               op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
+
+               op.dst.type = CCP_MEMTYPE_SYSTEM;
+               op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
+               op.dst.u.dma.offset = dst.sg_wa.sg_used;
+               op.dst.u.dma.length = op.src.u.dma.length;
+
+               ret = ccp_perform_passthru(&op);
+               if (ret) {
+                       cmd->engine_error = cmd_q->cmd_error;
+                       goto e_dst;
+               }
+
+               dst.sg_wa.sg_used += src.sg_wa.sg->length;
+               if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
+                       dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
+                       dst.sg_wa.sg_used = 0;
+               }
+               src.sg_wa.sg = sg_next(src.sg_wa.sg);
+       }
+
+e_dst:
+       if (!in_place)
+               ccp_free_data(&dst, cmd_q);
+
+e_src:
+       ccp_free_data(&src, cmd_q);
+
+e_mask:
+       if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+               ccp_dm_free(&mask);
+
+       return ret;
+}
+
+static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+       struct ccp_dm_workarea src, dst;
+       struct ccp_op op;
+       int ret;
+       u8 *save;
+
+       if (!ecc->u.mm.operand_1 ||
+           (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
+               return -EINVAL;
+
+       if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
+               if (!ecc->u.mm.operand_2 ||
+                   (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
+                       return -EINVAL;
+
+       if (!ecc->u.mm.result ||
+           (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
+               return -EINVAL;
+
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+       /* Concatenate the modulus and the operands. Both the modulus and
+        * the operands must be in little endian format.  Since the input
+        * is in big endian format it must be converted and placed in a
+        * fixed length buffer.
+        */
+       ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+                                  DMA_TO_DEVICE);
+       if (ret)
+               return ret;
+
+       /* Save the workarea address since it is updated in order to perform
+        * the concatenation
+        */
+       save = src.address;
+
+       /* Copy the ECC modulus */
+       ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
+                               CCP_ECC_OPERAND_SIZE, false);
+       src.address += CCP_ECC_OPERAND_SIZE;
+
+       /* Copy the first operand */
+       ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
+                               ecc->u.mm.operand_1_len,
+                               CCP_ECC_OPERAND_SIZE, false);
+       src.address += CCP_ECC_OPERAND_SIZE;
+
+       if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
+               /* Copy the second operand */
+               ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
+                                       ecc->u.mm.operand_2_len,
+                                       CCP_ECC_OPERAND_SIZE, false);
+               src.address += CCP_ECC_OPERAND_SIZE;
+       }
+
+       /* Restore the workarea address */
+       src.address = save;
+
+       /* Prepare the output area for the operation */
+       ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+                                  DMA_FROM_DEVICE);
+       if (ret)
+               goto e_src;
+
+       op.soc = 1;
+       op.src.u.dma.address = src.dma.address;
+       op.src.u.dma.offset = 0;
+       op.src.u.dma.length = src.length;
+       op.dst.u.dma.address = dst.dma.address;
+       op.dst.u.dma.offset = 0;
+       op.dst.u.dma.length = dst.length;
+
+       op.u.ecc.function = cmd->u.ecc.function;
+
+       ret = ccp_perform_ecc(&op);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_dst;
+       }
+
+       ecc->ecc_result = le16_to_cpup(
+               (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+       if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+               ret = -EIO;
+               goto e_dst;
+       }
+
+       /* Save the ECC result */
+       ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
+
+e_dst:
+       ccp_dm_free(&dst);
+
+e_src:
+       ccp_dm_free(&src);
+
+       return ret;
+}
+
+static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+       struct ccp_dm_workarea src, dst;
+       struct ccp_op op;
+       int ret;
+       u8 *save;
+
+       if (!ecc->u.pm.point_1.x ||
+           (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
+           !ecc->u.pm.point_1.y ||
+           (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
+               return -EINVAL;
+
+       if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+               if (!ecc->u.pm.point_2.x ||
+                   (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
+                   !ecc->u.pm.point_2.y ||
+                   (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
+                       return -EINVAL;
+       } else {
+               if (!ecc->u.pm.domain_a ||
+                   (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
+                       return -EINVAL;
+
+               if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
+                       if (!ecc->u.pm.scalar ||
+                           (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
+                               return -EINVAL;
+       }
+
+       if (!ecc->u.pm.result.x ||
+           (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
+           !ecc->u.pm.result.y ||
+           (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
+               return -EINVAL;
+
+       memset(&op, 0, sizeof(op));
+       op.cmd_q = cmd_q;
+       op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+       /* Concatenate the modulus and the operands. Both the modulus and
+        * the operands must be in little endian format.  Since the input
+        * is in big endian format it must be converted and placed in a
+        * fixed length buffer.
+        */
+       ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+                                  DMA_TO_DEVICE);
+       if (ret)
+               return ret;
+
+       /* Save the workarea address since it is updated in order to perform
+        * the concatenation
+        */
+       save = src.address;
+
+       /* Copy the ECC modulus */
+       ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
+                               CCP_ECC_OPERAND_SIZE, false);
+       src.address += CCP_ECC_OPERAND_SIZE;
+
+       /* Copy the first point X and Y coordinate */
+       ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
+                               ecc->u.pm.point_1.x_len,
+                               CCP_ECC_OPERAND_SIZE, false);
+       src.address += CCP_ECC_OPERAND_SIZE;
+       ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
+                               ecc->u.pm.point_1.y_len,
+                               CCP_ECC_OPERAND_SIZE, false);
+       src.address += CCP_ECC_OPERAND_SIZE;
+
+       /* Set the first point Z coordianate to 1 */
+       *src.address = 0x01;
+       src.address += CCP_ECC_OPERAND_SIZE;
+
+       if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+               /* Copy the second point X and Y coordinate */
+               ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
+                                       ecc->u.pm.point_2.x_len,
+                                       CCP_ECC_OPERAND_SIZE, false);
+               src.address += CCP_ECC_OPERAND_SIZE;
+               ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
+                                       ecc->u.pm.point_2.y_len,
+                                       CCP_ECC_OPERAND_SIZE, false);
+               src.address += CCP_ECC_OPERAND_SIZE;
+
+               /* Set the second point Z coordianate to 1 */
+               *src.address = 0x01;
+               src.address += CCP_ECC_OPERAND_SIZE;
+       } else {
+               /* Copy the Domain "a" parameter */
+               ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
+                                       ecc->u.pm.domain_a_len,
+                                       CCP_ECC_OPERAND_SIZE, false);
+               src.address += CCP_ECC_OPERAND_SIZE;
+
+               if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
+                       /* Copy the scalar value */
+                       ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
+                                               ecc->u.pm.scalar_len,
+                                               CCP_ECC_OPERAND_SIZE, false);
+                       src.address += CCP_ECC_OPERAND_SIZE;
+               }
+       }
+
+       /* Restore the workarea address */
+       src.address = save;
+
+       /* Prepare the output area for the operation */
+       ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+                                  DMA_FROM_DEVICE);
+       if (ret)
+               goto e_src;
+
+       op.soc = 1;
+       op.src.u.dma.address = src.dma.address;
+       op.src.u.dma.offset = 0;
+       op.src.u.dma.length = src.length;
+       op.dst.u.dma.address = dst.dma.address;
+       op.dst.u.dma.offset = 0;
+       op.dst.u.dma.length = dst.length;
+
+       op.u.ecc.function = cmd->u.ecc.function;
+
+       ret = ccp_perform_ecc(&op);
+       if (ret) {
+               cmd->engine_error = cmd_q->cmd_error;
+               goto e_dst;
+       }
+
+       ecc->ecc_result = le16_to_cpup(
+               (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+       if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+               ret = -EIO;
+               goto e_dst;
+       }
+
+       /* Save the workarea address since it is updated as we walk through
+        * to copy the point math result
+        */
+       save = dst.address;
+
+       /* Save the ECC result X and Y coordinates */
+       ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
+                               CCP_ECC_MODULUS_BYTES);
+       dst.address += CCP_ECC_OUTPUT_SIZE;
+       ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
+                               CCP_ECC_MODULUS_BYTES);
+       dst.address += CCP_ECC_OUTPUT_SIZE;
+
+       /* Restore the workarea address */
+       dst.address = save;
+
+e_dst:
+       ccp_dm_free(&dst);
+
+e_src:
+       ccp_dm_free(&src);
+
+       return ret;
+}
+
+static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+
+       ecc->ecc_result = 0;
+
+       if (!ecc->mod ||
+           (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
+               return -EINVAL;
+
+       switch (ecc->function) {
+       case CCP_ECC_FUNCTION_MMUL_384BIT:
+       case CCP_ECC_FUNCTION_MADD_384BIT:
+       case CCP_ECC_FUNCTION_MINV_384BIT:
+               return ccp_run_ecc_mm_cmd(cmd_q, cmd);
+
+       case CCP_ECC_FUNCTION_PADD_384BIT:
+       case CCP_ECC_FUNCTION_PMUL_384BIT:
+       case CCP_ECC_FUNCTION_PDBL_384BIT:
+               return ccp_run_ecc_pm_cmd(cmd_q, cmd);
+
+       default:
+               return -EINVAL;
+       }
+}
+
+int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+       int ret;
+
+       cmd->engine_error = 0;
+       cmd_q->cmd_error = 0;
+       cmd_q->int_rcvd = 0;
+       cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
+
+       switch (cmd->engine) {
+       case CCP_ENGINE_AES:
+               ret = ccp_run_aes_cmd(cmd_q, cmd);
+               break;
+       case CCP_ENGINE_XTS_AES_128:
+               ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
+               break;
+       case CCP_ENGINE_SHA:
+               ret = ccp_run_sha_cmd(cmd_q, cmd);
+               break;
+       case CCP_ENGINE_RSA:
+               ret = ccp_run_rsa_cmd(cmd_q, cmd);
+               break;
+       case CCP_ENGINE_PASSTHRU:
+               ret = ccp_run_passthru_cmd(cmd_q, cmd);
+               break;
+       case CCP_ENGINE_ECC:
+               ret = ccp_run_ecc_cmd(cmd_q, cmd);
+               break;
+       default:
+               ret = -EINVAL;
+       }
+
+       return ret;
+}