Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / block / umem.c
diff --git a/kernel/drivers/block/umem.c b/kernel/drivers/block/umem.c
new file mode 100644 (file)
index 0000000..4cf81b5
--- /dev/null
@@ -0,0 +1,1136 @@
+/*
+ * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
+ *
+ * (C) 2001 San Mehat <nettwerk@valinux.com>
+ * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
+ * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
+ *
+ * This driver for the Micro Memory PCI Memory Module with Battery Backup
+ * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
+ *
+ * This driver is released to the public under the terms of the
+ *  GNU GENERAL PUBLIC LICENSE version 2
+ * See the file COPYING for details.
+ *
+ * This driver provides a standard block device interface for Micro Memory(tm)
+ * PCI based RAM boards.
+ * 10/05/01: Phap Nguyen - Rebuilt the driver
+ * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
+ * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
+ *                       - use stand disk partitioning (so fdisk works).
+ * 08nov2001:NeilBrown  - change driver name from "mm" to "umem"
+ *                      - incorporate into main kernel
+ * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
+ *                      - use spin_lock_bh instead of _irq
+ *                      - Never block on make_request.  queue
+ *                        bh's instead.
+ *                      - unregister umem from devfs at mod unload
+ *                      - Change version to 2.3
+ * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
+ * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
+ * 15May2002:NeilBrown   - convert to bio for 2.5
+ * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
+ *                      - a sequence of writes that cover the card, and
+ *                      - set initialised bit then.
+ */
+
+#undef DEBUG   /* #define DEBUG if you want debugging info (pr_debug) */
+#include <linux/fs.h>
+#include <linux/bio.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/mman.h>
+#include <linux/gfp.h>
+#include <linux/ioctl.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/timer.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+
+#include <linux/fcntl.h>        /* O_ACCMODE */
+#include <linux/hdreg.h>  /* HDIO_GETGEO */
+
+#include "umem.h"
+
+#include <asm/uaccess.h>
+#include <asm/io.h>
+
+#define MM_MAXCARDS 4
+#define MM_RAHEAD 2      /* two sectors */
+#define MM_BLKSIZE 1024  /* 1k blocks */
+#define MM_HARDSECT 512  /* 512-byte hardware sectors */
+#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
+
+/*
+ * Version Information
+ */
+
+#define DRIVER_NAME    "umem"
+#define DRIVER_VERSION "v2.3"
+#define DRIVER_AUTHOR  "San Mehat, Johannes Erdfelt, NeilBrown"
+#define DRIVER_DESC    "Micro Memory(tm) PCI memory board block driver"
+
+static int debug;
+/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
+#define HW_TRACE(x)
+
+#define DEBUG_LED_ON_TRANSFER  0x01
+#define DEBUG_BATTERY_POLLING  0x02
+
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Debug bitmask");
+
+static int pci_read_cmd = 0x0C;                /* Read Multiple */
+module_param(pci_read_cmd, int, 0);
+MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
+
+static int pci_write_cmd = 0x0F;       /* Write and Invalidate */
+module_param(pci_write_cmd, int, 0);
+MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
+
+static int pci_cmds;
+
+static int major_nr;
+
+#include <linux/blkdev.h>
+#include <linux/blkpg.h>
+
+struct cardinfo {
+       struct pci_dev  *dev;
+
+       unsigned char   __iomem *csr_remap;
+       unsigned int    mm_size;  /* size in kbytes */
+
+       unsigned int    init_size; /* initial segment, in sectors,
+                                   * that we know to
+                                   * have been written
+                                   */
+       struct bio      *bio, *currentbio, **biotail;
+       struct bvec_iter current_iter;
+
+       struct request_queue *queue;
+
+       struct mm_page {
+               dma_addr_t              page_dma;
+               struct mm_dma_desc      *desc;
+               int                     cnt, headcnt;
+               struct bio              *bio, **biotail;
+               struct bvec_iter        iter;
+       } mm_pages[2];
+#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
+
+       int  Active, Ready;
+
+       struct tasklet_struct   tasklet;
+       unsigned int dma_status;
+
+       struct {
+               int             good;
+               int             warned;
+               unsigned long   last_change;
+       } battery[2];
+
+       spinlock_t      lock;
+       int             check_batteries;
+
+       int             flags;
+};
+
+static struct cardinfo cards[MM_MAXCARDS];
+static struct timer_list battery_timer;
+
+static int num_cards;
+
+static struct gendisk *mm_gendisk[MM_MAXCARDS];
+
+static void check_batteries(struct cardinfo *card);
+
+static int get_userbit(struct cardinfo *card, int bit)
+{
+       unsigned char led;
+
+       led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+       return led & bit;
+}
+
+static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
+{
+       unsigned char led;
+
+       led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+       if (state)
+               led |= bit;
+       else
+               led &= ~bit;
+       writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
+
+       return 0;
+}
+
+/*
+ * NOTE: For the power LED, use the LED_POWER_* macros since they differ
+ */
+static void set_led(struct cardinfo *card, int shift, unsigned char state)
+{
+       unsigned char led;
+
+       led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+       if (state == LED_FLIP)
+               led ^= (1<<shift);
+       else {
+               led &= ~(0x03 << shift);
+               led |= (state << shift);
+       }
+       writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
+
+}
+
+#ifdef MM_DIAG
+static void dump_regs(struct cardinfo *card)
+{
+       unsigned char *p;
+       int i, i1;
+
+       p = card->csr_remap;
+       for (i = 0; i < 8; i++) {
+               printk(KERN_DEBUG "%p   ", p);
+
+               for (i1 = 0; i1 < 16; i1++)
+                       printk("%02x ", *p++);
+
+               printk("\n");
+       }
+}
+#endif
+
+static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
+{
+       dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
+       if (dmastat & DMASCR_ANY_ERR)
+               printk(KERN_CONT "ANY_ERR ");
+       if (dmastat & DMASCR_MBE_ERR)
+               printk(KERN_CONT "MBE_ERR ");
+       if (dmastat & DMASCR_PARITY_ERR_REP)
+               printk(KERN_CONT "PARITY_ERR_REP ");
+       if (dmastat & DMASCR_PARITY_ERR_DET)
+               printk(KERN_CONT "PARITY_ERR_DET ");
+       if (dmastat & DMASCR_SYSTEM_ERR_SIG)
+               printk(KERN_CONT "SYSTEM_ERR_SIG ");
+       if (dmastat & DMASCR_TARGET_ABT)
+               printk(KERN_CONT "TARGET_ABT ");
+       if (dmastat & DMASCR_MASTER_ABT)
+               printk(KERN_CONT "MASTER_ABT ");
+       if (dmastat & DMASCR_CHAIN_COMPLETE)
+               printk(KERN_CONT "CHAIN_COMPLETE ");
+       if (dmastat & DMASCR_DMA_COMPLETE)
+               printk(KERN_CONT "DMA_COMPLETE ");
+       printk("\n");
+}
+
+/*
+ * Theory of request handling
+ *
+ * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
+ * We have two pages of mm_dma_desc, holding about 64 descriptors
+ * each.  These are allocated at init time.
+ * One page is "Ready" and is either full, or can have request added.
+ * The other page might be "Active", which DMA is happening on it.
+ *
+ * Whenever IO on the active page completes, the Ready page is activated
+ * and the ex-Active page is clean out and made Ready.
+ * Otherwise the Ready page is only activated when it becomes full.
+ *
+ * If a request arrives while both pages a full, it is queued, and b_rdev is
+ * overloaded to record whether it was a read or a write.
+ *
+ * The interrupt handler only polls the device to clear the interrupt.
+ * The processing of the result is done in a tasklet.
+ */
+
+static void mm_start_io(struct cardinfo *card)
+{
+       /* we have the lock, we know there is
+        * no IO active, and we know that card->Active
+        * is set
+        */
+       struct mm_dma_desc *desc;
+       struct mm_page *page;
+       int offset;
+
+       /* make the last descriptor end the chain */
+       page = &card->mm_pages[card->Active];
+       pr_debug("start_io: %d %d->%d\n",
+               card->Active, page->headcnt, page->cnt - 1);
+       desc = &page->desc[page->cnt-1];
+
+       desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
+       desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
+       desc->sem_control_bits = desc->control_bits;
+
+
+       if (debug & DEBUG_LED_ON_TRANSFER)
+               set_led(card, LED_REMOVE, LED_ON);
+
+       desc = &page->desc[page->headcnt];
+       writel(0, card->csr_remap + DMA_PCI_ADDR);
+       writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
+
+       writel(0, card->csr_remap + DMA_LOCAL_ADDR);
+       writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
+
+       writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
+       writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
+
+       writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
+       writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
+
+       offset = ((char *)desc) - ((char *)page->desc);
+       writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
+              card->csr_remap + DMA_DESCRIPTOR_ADDR);
+       /* Force the value to u64 before shifting otherwise >> 32 is undefined C
+        * and on some ports will do nothing ! */
+       writel(cpu_to_le32(((u64)page->page_dma)>>32),
+              card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
+
+       /* Go, go, go */
+       writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
+              card->csr_remap + DMA_STATUS_CTRL);
+}
+
+static int add_bio(struct cardinfo *card);
+
+static void activate(struct cardinfo *card)
+{
+       /* if No page is Active, and Ready is
+        * not empty, then switch Ready page
+        * to active and start IO.
+        * Then add any bh's that are available to Ready
+        */
+
+       do {
+               while (add_bio(card))
+                       ;
+
+               if (card->Active == -1 &&
+                   card->mm_pages[card->Ready].cnt > 0) {
+                       card->Active = card->Ready;
+                       card->Ready = 1-card->Ready;
+                       mm_start_io(card);
+               }
+
+       } while (card->Active == -1 && add_bio(card));
+}
+
+static inline void reset_page(struct mm_page *page)
+{
+       page->cnt = 0;
+       page->headcnt = 0;
+       page->bio = NULL;
+       page->biotail = &page->bio;
+}
+
+/*
+ * If there is room on Ready page, take
+ * one bh off list and add it.
+ * return 1 if there was room, else 0.
+ */
+static int add_bio(struct cardinfo *card)
+{
+       struct mm_page *p;
+       struct mm_dma_desc *desc;
+       dma_addr_t dma_handle;
+       int offset;
+       struct bio *bio;
+       struct bio_vec vec;
+       int rw;
+
+       bio = card->currentbio;
+       if (!bio && card->bio) {
+               card->currentbio = card->bio;
+               card->current_iter = card->bio->bi_iter;
+               card->bio = card->bio->bi_next;
+               if (card->bio == NULL)
+                       card->biotail = &card->bio;
+               card->currentbio->bi_next = NULL;
+               return 1;
+       }
+       if (!bio)
+               return 0;
+
+       rw = bio_rw(bio);
+       if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
+               return 0;
+
+       vec = bio_iter_iovec(bio, card->current_iter);
+
+       dma_handle = pci_map_page(card->dev,
+                                 vec.bv_page,
+                                 vec.bv_offset,
+                                 vec.bv_len,
+                                 (rw == READ) ?
+                                 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
+
+       p = &card->mm_pages[card->Ready];
+       desc = &p->desc[p->cnt];
+       p->cnt++;
+       if (p->bio == NULL)
+               p->iter = card->current_iter;
+       if ((p->biotail) != &bio->bi_next) {
+               *(p->biotail) = bio;
+               p->biotail = &(bio->bi_next);
+               bio->bi_next = NULL;
+       }
+
+       desc->data_dma_handle = dma_handle;
+
+       desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
+       desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
+       desc->transfer_size = cpu_to_le32(vec.bv_len);
+       offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
+       desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
+       desc->zero1 = desc->zero2 = 0;
+       offset = (((char *)(desc+1)) - ((char *)p->desc));
+       desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
+       desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
+                                        DMASCR_PARITY_INT_EN|
+                                        DMASCR_CHAIN_EN |
+                                        DMASCR_SEM_EN |
+                                        pci_cmds);
+       if (rw == WRITE)
+               desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
+       desc->sem_control_bits = desc->control_bits;
+
+
+       bio_advance_iter(bio, &card->current_iter, vec.bv_len);
+       if (!card->current_iter.bi_size)
+               card->currentbio = NULL;
+
+       return 1;
+}
+
+static void process_page(unsigned long data)
+{
+       /* check if any of the requests in the page are DMA_COMPLETE,
+        * and deal with them appropriately.
+        * If we find a descriptor without DMA_COMPLETE in the semaphore, then
+        * dma must have hit an error on that descriptor, so use dma_status
+        * instead and assume that all following descriptors must be re-tried.
+        */
+       struct mm_page *page;
+       struct bio *return_bio = NULL;
+       struct cardinfo *card = (struct cardinfo *)data;
+       unsigned int dma_status = card->dma_status;
+
+       spin_lock_bh(&card->lock);
+       if (card->Active < 0)
+               goto out_unlock;
+       page = &card->mm_pages[card->Active];
+
+       while (page->headcnt < page->cnt) {
+               struct bio *bio = page->bio;
+               struct mm_dma_desc *desc = &page->desc[page->headcnt];
+               int control = le32_to_cpu(desc->sem_control_bits);
+               int last = 0;
+               struct bio_vec vec;
+
+               if (!(control & DMASCR_DMA_COMPLETE)) {
+                       control = dma_status;
+                       last = 1;
+               }
+
+               page->headcnt++;
+               vec = bio_iter_iovec(bio, page->iter);
+               bio_advance_iter(bio, &page->iter, vec.bv_len);
+
+               if (!page->iter.bi_size) {
+                       page->bio = bio->bi_next;
+                       if (page->bio)
+                               page->iter = page->bio->bi_iter;
+               }
+
+               pci_unmap_page(card->dev, desc->data_dma_handle,
+                              vec.bv_len,
+                                (control & DMASCR_TRANSFER_READ) ?
+                               PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
+               if (control & DMASCR_HARD_ERROR) {
+                       /* error */
+                       clear_bit(BIO_UPTODATE, &bio->bi_flags);
+                       dev_printk(KERN_WARNING, &card->dev->dev,
+                               "I/O error on sector %d/%d\n",
+                               le32_to_cpu(desc->local_addr)>>9,
+                               le32_to_cpu(desc->transfer_size));
+                       dump_dmastat(card, control);
+               } else if ((bio->bi_rw & REQ_WRITE) &&
+                          le32_to_cpu(desc->local_addr) >> 9 ==
+                               card->init_size) {
+                       card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
+                       if (card->init_size >> 1 >= card->mm_size) {
+                               dev_printk(KERN_INFO, &card->dev->dev,
+                                       "memory now initialised\n");
+                               set_userbit(card, MEMORY_INITIALIZED, 1);
+                       }
+               }
+               if (bio != page->bio) {
+                       bio->bi_next = return_bio;
+                       return_bio = bio;
+               }
+
+               if (last)
+                       break;
+       }
+
+       if (debug & DEBUG_LED_ON_TRANSFER)
+               set_led(card, LED_REMOVE, LED_OFF);
+
+       if (card->check_batteries) {
+               card->check_batteries = 0;
+               check_batteries(card);
+       }
+       if (page->headcnt >= page->cnt) {
+               reset_page(page);
+               card->Active = -1;
+               activate(card);
+       } else {
+               /* haven't finished with this one yet */
+               pr_debug("do some more\n");
+               mm_start_io(card);
+       }
+ out_unlock:
+       spin_unlock_bh(&card->lock);
+
+       while (return_bio) {
+               struct bio *bio = return_bio;
+
+               return_bio = bio->bi_next;
+               bio->bi_next = NULL;
+               bio_endio(bio, 0);
+       }
+}
+
+static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
+{
+       struct cardinfo *card = cb->data;
+
+       spin_lock_irq(&card->lock);
+       activate(card);
+       spin_unlock_irq(&card->lock);
+       kfree(cb);
+}
+
+static int mm_check_plugged(struct cardinfo *card)
+{
+       return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
+}
+
+static void mm_make_request(struct request_queue *q, struct bio *bio)
+{
+       struct cardinfo *card = q->queuedata;
+       pr_debug("mm_make_request %llu %u\n",
+                (unsigned long long)bio->bi_iter.bi_sector,
+                bio->bi_iter.bi_size);
+
+       spin_lock_irq(&card->lock);
+       *card->biotail = bio;
+       bio->bi_next = NULL;
+       card->biotail = &bio->bi_next;
+       if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
+               activate(card);
+       spin_unlock_irq(&card->lock);
+
+       return;
+}
+
+static irqreturn_t mm_interrupt(int irq, void *__card)
+{
+       struct cardinfo *card = (struct cardinfo *) __card;
+       unsigned int dma_status;
+       unsigned short cfg_status;
+
+HW_TRACE(0x30);
+
+       dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
+
+       if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
+               /* interrupt wasn't for me ... */
+               return IRQ_NONE;
+       }
+
+       /* clear COMPLETION interrupts */
+       if (card->flags & UM_FLAG_NO_BYTE_STATUS)
+               writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
+                      card->csr_remap + DMA_STATUS_CTRL);
+       else
+               writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
+                      card->csr_remap + DMA_STATUS_CTRL + 2);
+
+       /* log errors and clear interrupt status */
+       if (dma_status & DMASCR_ANY_ERR) {
+               unsigned int    data_log1, data_log2;
+               unsigned int    addr_log1, addr_log2;
+               unsigned char   stat, count, syndrome, check;
+
+               stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
+
+               data_log1 = le32_to_cpu(readl(card->csr_remap +
+                                               ERROR_DATA_LOG));
+               data_log2 = le32_to_cpu(readl(card->csr_remap +
+                                               ERROR_DATA_LOG + 4));
+               addr_log1 = le32_to_cpu(readl(card->csr_remap +
+                                               ERROR_ADDR_LOG));
+               addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
+
+               count = readb(card->csr_remap + ERROR_COUNT);
+               syndrome = readb(card->csr_remap + ERROR_SYNDROME);
+               check = readb(card->csr_remap + ERROR_CHECK);
+
+               dump_dmastat(card, dma_status);
+
+               if (stat & 0x01)
+                       dev_printk(KERN_ERR, &card->dev->dev,
+                               "Memory access error detected (err count %d)\n",
+                               count);
+               if (stat & 0x02)
+                       dev_printk(KERN_ERR, &card->dev->dev,
+                               "Multi-bit EDC error\n");
+
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
+                       addr_log2, addr_log1, data_log2, data_log1);
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
+                       check, syndrome);
+
+               writeb(0, card->csr_remap + ERROR_COUNT);
+       }
+
+       if (dma_status & DMASCR_PARITY_ERR_REP) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "PARITY ERROR REPORTED\n");
+               pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+               pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+       }
+
+       if (dma_status & DMASCR_PARITY_ERR_DET) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "PARITY ERROR DETECTED\n");
+               pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+               pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+       }
+
+       if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
+               dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
+               pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+               pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+       }
+
+       if (dma_status & DMASCR_TARGET_ABT) {
+               dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
+               pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+               pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+       }
+
+       if (dma_status & DMASCR_MASTER_ABT) {
+               dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
+               pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+               pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+       }
+
+       /* and process the DMA descriptors */
+       card->dma_status = dma_status;
+       tasklet_schedule(&card->tasklet);
+
+HW_TRACE(0x36);
+
+       return IRQ_HANDLED;
+}
+
+/*
+ * If both batteries are good, no LED
+ * If either battery has been warned, solid LED
+ * If both batteries are bad, flash the LED quickly
+ * If either battery is bad, flash the LED semi quickly
+ */
+static void set_fault_to_battery_status(struct cardinfo *card)
+{
+       if (card->battery[0].good && card->battery[1].good)
+               set_led(card, LED_FAULT, LED_OFF);
+       else if (card->battery[0].warned || card->battery[1].warned)
+               set_led(card, LED_FAULT, LED_ON);
+       else if (!card->battery[0].good && !card->battery[1].good)
+               set_led(card, LED_FAULT, LED_FLASH_7_0);
+       else
+               set_led(card, LED_FAULT, LED_FLASH_3_5);
+}
+
+static void init_battery_timer(void);
+
+static int check_battery(struct cardinfo *card, int battery, int status)
+{
+       if (status != card->battery[battery].good) {
+               card->battery[battery].good = !card->battery[battery].good;
+               card->battery[battery].last_change = jiffies;
+
+               if (card->battery[battery].good) {
+                       dev_printk(KERN_ERR, &card->dev->dev,
+                               "Battery %d now good\n", battery + 1);
+                       card->battery[battery].warned = 0;
+               } else
+                       dev_printk(KERN_ERR, &card->dev->dev,
+                               "Battery %d now FAILED\n", battery + 1);
+
+               return 1;
+       } else if (!card->battery[battery].good &&
+                  !card->battery[battery].warned &&
+                  time_after_eq(jiffies, card->battery[battery].last_change +
+                                (HZ * 60 * 60 * 5))) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Battery %d still FAILED after 5 hours\n", battery + 1);
+               card->battery[battery].warned = 1;
+
+               return 1;
+       }
+
+       return 0;
+}
+
+static void check_batteries(struct cardinfo *card)
+{
+       /* NOTE: this must *never* be called while the card
+        * is doing (bus-to-card) DMA, or you will need the
+        * reset switch
+        */
+       unsigned char status;
+       int ret1, ret2;
+
+       status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
+       if (debug & DEBUG_BATTERY_POLLING)
+               dev_printk(KERN_DEBUG, &card->dev->dev,
+                       "checking battery status, 1 = %s, 2 = %s\n",
+                      (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
+                      (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
+
+       ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
+       ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
+
+       if (ret1 || ret2)
+               set_fault_to_battery_status(card);
+}
+
+static void check_all_batteries(unsigned long ptr)
+{
+       int i;
+
+       for (i = 0; i < num_cards; i++)
+               if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
+                       struct cardinfo *card = &cards[i];
+                       spin_lock_bh(&card->lock);
+                       if (card->Active >= 0)
+                               card->check_batteries = 1;
+                       else
+                               check_batteries(card);
+                       spin_unlock_bh(&card->lock);
+               }
+
+       init_battery_timer();
+}
+
+static void init_battery_timer(void)
+{
+       init_timer(&battery_timer);
+       battery_timer.function = check_all_batteries;
+       battery_timer.expires = jiffies + (HZ * 60);
+       add_timer(&battery_timer);
+}
+
+static void del_battery_timer(void)
+{
+       del_timer(&battery_timer);
+}
+
+/*
+ * Note no locks taken out here.  In a worst case scenario, we could drop
+ * a chunk of system memory.  But that should never happen, since validation
+ * happens at open or mount time, when locks are held.
+ *
+ *     That's crap, since doing that while some partitions are opened
+ * or mounted will give you really nasty results.
+ */
+static int mm_revalidate(struct gendisk *disk)
+{
+       struct cardinfo *card = disk->private_data;
+       set_capacity(disk, card->mm_size << 1);
+       return 0;
+}
+
+static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+       struct cardinfo *card = bdev->bd_disk->private_data;
+       int size = card->mm_size * (1024 / MM_HARDSECT);
+
+       /*
+        * get geometry: we have to fake one...  trim the size to a
+        * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
+        * whatever cylinders.
+        */
+       geo->heads     = 64;
+       geo->sectors   = 32;
+       geo->cylinders = size / (geo->heads * geo->sectors);
+       return 0;
+}
+
+static const struct block_device_operations mm_fops = {
+       .owner          = THIS_MODULE,
+       .getgeo         = mm_getgeo,
+       .revalidate_disk = mm_revalidate,
+};
+
+static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+       int ret = -ENODEV;
+       struct cardinfo *card = &cards[num_cards];
+       unsigned char   mem_present;
+       unsigned char   batt_status;
+       unsigned int    saved_bar, data;
+       unsigned long   csr_base;
+       unsigned long   csr_len;
+       int             magic_number;
+       static int      printed_version;
+
+       if (!printed_version++)
+               printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
+
+       ret = pci_enable_device(dev);
+       if (ret)
+               return ret;
+
+       pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
+       pci_set_master(dev);
+
+       card->dev         = dev;
+
+       csr_base = pci_resource_start(dev, 0);
+       csr_len  = pci_resource_len(dev, 0);
+       if (!csr_base || !csr_len)
+               return -ENODEV;
+
+       dev_printk(KERN_INFO, &dev->dev,
+         "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
+
+       if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
+           pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
+               dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
+               return  -ENOMEM;
+       }
+
+       ret = pci_request_regions(dev, DRIVER_NAME);
+       if (ret) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Unable to request memory region\n");
+               goto failed_req_csr;
+       }
+
+       card->csr_remap = ioremap_nocache(csr_base, csr_len);
+       if (!card->csr_remap) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Unable to remap memory region\n");
+               ret = -ENOMEM;
+
+               goto failed_remap_csr;
+       }
+
+       dev_printk(KERN_INFO, &card->dev->dev,
+               "CSR 0x%08lx -> 0x%p (0x%lx)\n",
+              csr_base, card->csr_remap, csr_len);
+
+       switch (card->dev->device) {
+       case 0x5415:
+               card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
+               magic_number = 0x59;
+               break;
+
+       case 0x5425:
+               card->flags |= UM_FLAG_NO_BYTE_STATUS;
+               magic_number = 0x5C;
+               break;
+
+       case 0x6155:
+               card->flags |= UM_FLAG_NO_BYTE_STATUS |
+                               UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
+               magic_number = 0x99;
+               break;
+
+       default:
+               magic_number = 0x100;
+               break;
+       }
+
+       if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
+               dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
+               ret = -ENOMEM;
+               goto failed_magic;
+       }
+
+       card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
+                                               PAGE_SIZE * 2,
+                                               &card->mm_pages[0].page_dma);
+       card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
+                                               PAGE_SIZE * 2,
+                                               &card->mm_pages[1].page_dma);
+       if (card->mm_pages[0].desc == NULL ||
+           card->mm_pages[1].desc == NULL) {
+               dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
+               goto failed_alloc;
+       }
+       reset_page(&card->mm_pages[0]);
+       reset_page(&card->mm_pages[1]);
+       card->Ready = 0;        /* page 0 is ready */
+       card->Active = -1;      /* no page is active */
+       card->bio = NULL;
+       card->biotail = &card->bio;
+
+       card->queue = blk_alloc_queue(GFP_KERNEL);
+       if (!card->queue)
+               goto failed_alloc;
+
+       blk_queue_make_request(card->queue, mm_make_request);
+       card->queue->queue_lock = &card->lock;
+       card->queue->queuedata = card;
+
+       tasklet_init(&card->tasklet, process_page, (unsigned long)card);
+
+       card->check_batteries = 0;
+
+       mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
+       switch (mem_present) {
+       case MEM_128_MB:
+               card->mm_size = 1024 * 128;
+               break;
+       case MEM_256_MB:
+               card->mm_size = 1024 * 256;
+               break;
+       case MEM_512_MB:
+               card->mm_size = 1024 * 512;
+               break;
+       case MEM_1_GB:
+               card->mm_size = 1024 * 1024;
+               break;
+       case MEM_2_GB:
+               card->mm_size = 1024 * 2048;
+               break;
+       default:
+               card->mm_size = 0;
+               break;
+       }
+
+       /* Clear the LED's we control */
+       set_led(card, LED_REMOVE, LED_OFF);
+       set_led(card, LED_FAULT, LED_OFF);
+
+       batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
+
+       card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
+       card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
+       card->battery[0].last_change = card->battery[1].last_change = jiffies;
+
+       if (card->flags & UM_FLAG_NO_BATT)
+               dev_printk(KERN_INFO, &card->dev->dev,
+                       "Size %d KB\n", card->mm_size);
+       else {
+               dev_printk(KERN_INFO, &card->dev->dev,
+                       "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
+                      card->mm_size,
+                      batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
+                      card->battery[0].good ? "OK" : "FAILURE",
+                      batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
+                      card->battery[1].good ? "OK" : "FAILURE");
+
+               set_fault_to_battery_status(card);
+       }
+
+       pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
+       data = 0xffffffff;
+       pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
+       pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
+       pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
+       data &= 0xfffffff0;
+       data = ~data;
+       data += 1;
+
+       if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
+                       card)) {
+               dev_printk(KERN_ERR, &card->dev->dev,
+                       "Unable to allocate IRQ\n");
+               ret = -ENODEV;
+               goto failed_req_irq;
+       }
+
+       dev_printk(KERN_INFO, &card->dev->dev,
+               "Window size %d bytes, IRQ %d\n", data, dev->irq);
+
+       spin_lock_init(&card->lock);
+
+       pci_set_drvdata(dev, card);
+
+       if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
+               pci_write_cmd = 0x07;   /* then Memory Write command */
+
+       if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
+               unsigned short cfg_command;
+               pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
+               cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
+               pci_write_config_word(dev, PCI_COMMAND, cfg_command);
+       }
+       pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
+
+       num_cards++;
+
+       if (!get_userbit(card, MEMORY_INITIALIZED)) {
+               dev_printk(KERN_INFO, &card->dev->dev,
+                 "memory NOT initialized. Consider over-writing whole device.\n");
+               card->init_size = 0;
+       } else {
+               dev_printk(KERN_INFO, &card->dev->dev,
+                       "memory already initialized\n");
+               card->init_size = card->mm_size;
+       }
+
+       /* Enable ECC */
+       writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
+
+       return 0;
+
+ failed_req_irq:
+ failed_alloc:
+       if (card->mm_pages[0].desc)
+               pci_free_consistent(card->dev, PAGE_SIZE*2,
+                                   card->mm_pages[0].desc,
+                                   card->mm_pages[0].page_dma);
+       if (card->mm_pages[1].desc)
+               pci_free_consistent(card->dev, PAGE_SIZE*2,
+                                   card->mm_pages[1].desc,
+                                   card->mm_pages[1].page_dma);
+ failed_magic:
+       iounmap(card->csr_remap);
+ failed_remap_csr:
+       pci_release_regions(dev);
+ failed_req_csr:
+
+       return ret;
+}
+
+static void mm_pci_remove(struct pci_dev *dev)
+{
+       struct cardinfo *card = pci_get_drvdata(dev);
+
+       tasklet_kill(&card->tasklet);
+       free_irq(dev->irq, card);
+       iounmap(card->csr_remap);
+
+       if (card->mm_pages[0].desc)
+               pci_free_consistent(card->dev, PAGE_SIZE*2,
+                                   card->mm_pages[0].desc,
+                                   card->mm_pages[0].page_dma);
+       if (card->mm_pages[1].desc)
+               pci_free_consistent(card->dev, PAGE_SIZE*2,
+                                   card->mm_pages[1].desc,
+                                   card->mm_pages[1].page_dma);
+       blk_cleanup_queue(card->queue);
+
+       pci_release_regions(dev);
+       pci_disable_device(dev);
+}
+
+static const struct pci_device_id mm_pci_ids[] = {
+    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
+    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
+    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
+    {
+       .vendor =       0x8086,
+       .device =       0xB555,
+       .subvendor =    0x1332,
+       .subdevice =    0x5460,
+       .class =        0x050000,
+       .class_mask =   0,
+    }, { /* end: all zeroes */ }
+};
+
+MODULE_DEVICE_TABLE(pci, mm_pci_ids);
+
+static struct pci_driver mm_pci_driver = {
+       .name           = DRIVER_NAME,
+       .id_table       = mm_pci_ids,
+       .probe          = mm_pci_probe,
+       .remove         = mm_pci_remove,
+};
+
+static int __init mm_init(void)
+{
+       int retval, i;
+       int err;
+
+       retval = pci_register_driver(&mm_pci_driver);
+       if (retval)
+               return -ENOMEM;
+
+       err = major_nr = register_blkdev(0, DRIVER_NAME);
+       if (err < 0) {
+               pci_unregister_driver(&mm_pci_driver);
+               return -EIO;
+       }
+
+       for (i = 0; i < num_cards; i++) {
+               mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
+               if (!mm_gendisk[i])
+                       goto out;
+       }
+
+       for (i = 0; i < num_cards; i++) {
+               struct gendisk *disk = mm_gendisk[i];
+               sprintf(disk->disk_name, "umem%c", 'a'+i);
+               spin_lock_init(&cards[i].lock);
+               disk->major = major_nr;
+               disk->first_minor  = i << MM_SHIFT;
+               disk->fops = &mm_fops;
+               disk->private_data = &cards[i];
+               disk->queue = cards[i].queue;
+               set_capacity(disk, cards[i].mm_size << 1);
+               add_disk(disk);
+       }
+
+       init_battery_timer();
+       printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
+/* printk("mm_init: Done. 10-19-01 9:00\n"); */
+       return 0;
+
+out:
+       pci_unregister_driver(&mm_pci_driver);
+       unregister_blkdev(major_nr, DRIVER_NAME);
+       while (i--)
+               put_disk(mm_gendisk[i]);
+       return -ENOMEM;
+}
+
+static void __exit mm_cleanup(void)
+{
+       int i;
+
+       del_battery_timer();
+
+       for (i = 0; i < num_cards ; i++) {
+               del_gendisk(mm_gendisk[i]);
+               put_disk(mm_gendisk[i]);
+       }
+
+       pci_unregister_driver(&mm_pci_driver);
+
+       unregister_blkdev(major_nr, DRIVER_NAME);
+}
+
+module_init(mm_init);
+module_exit(mm_cleanup);
+
+MODULE_AUTHOR(DRIVER_AUTHOR);
+MODULE_DESCRIPTION(DRIVER_DESC);
+MODULE_LICENSE("GPL");