// Code for manipulating stack locations. // // Copyright (C) 2009-2014 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_GLOBAL #include "bregs.h" // CR0_PE #include "fw/paravirt.h" // PORT_SMI_CMD #include "hw/rtc.h" // rtc_use #include "list.h" // hlist_node #include "malloc.h" // free #include "output.h" // dprintf #include "romfile.h" // romfile_loadint #include "stacks.h" // struct mutex_s #include "util.h" // useRTC #define MAIN_STACK_MAX (1024*1024) /**************************************************************** * 16bit / 32bit calling ****************************************************************/ struct { u8 method; u8 cmosindex; u8 a20; u16 ss, fs, gs; struct descloc_s gdt; } Call32Data VARLOW; #define C32_SLOPPY 1 #define C32_SMM 2 int HaveSmmCall32 VARFSEG; // Backup state in preparation for call32_smm() static void call32_smm_prep(void) { // Backup cmos index register and disable nmi u8 cmosindex = inb(PORT_CMOS_INDEX); outb(cmosindex | NMI_DISABLE_BIT, PORT_CMOS_INDEX); inb(PORT_CMOS_DATA); SET_LOW(Call32Data.cmosindex, cmosindex); // Backup ss SET_LOW(Call32Data.ss, GET_SEG(SS)); SET_LOW(Call32Data.method, C32_SMM); } // Restore state backed up during call32_smm() static void call32_smm_post(void) { SET_LOW(Call32Data.method, 0); SET_LOW(Call32Data.ss, 0); // Restore cmos index register outb(GET_LOW(Call32Data.cmosindex), PORT_CMOS_INDEX); inb(PORT_CMOS_DATA); } #define ASM32_SWITCH16 " .pushsection .text.32fseg." UNIQSEC "\n .code16\n" #define ASM32_BACK32 " .popsection\n .code32\n" #define ASM16_SWITCH32 " .code32\n" #define ASM16_BACK16 " .code16gcc\n" // Call a SeaBIOS C function in 32bit mode using smm trampoline static u32 call32_smm(void *func, u32 eax) { ASSERT16(); dprintf(9, "call32_smm %p %x\n", func, eax); call32_smm_prep(); u32 bkup_esp; asm volatile( // Backup esp / set esp to flat stack location " movl %%esp, %0\n" " movl %%ss, %%eax\n" " shll $4, %%eax\n" " addl %%eax, %%esp\n" // Transition to 32bit mode, call func, return to 16bit " movl $" __stringify(CALL32SMM_CMDID) ", %%eax\n" " movl $" __stringify(CALL32SMM_ENTERID) ", %%ecx\n" " movl $(" __stringify(BUILD_BIOS_ADDR) " + 1f), %%ebx\n" " outb %%al, $" __stringify(PORT_SMI_CMD) "\n" " rep; nop\n" " hlt\n" ASM16_SWITCH32 "1:movl %1, %%eax\n" " calll *%2\n" " movl %%eax, %1\n" " movl $" __stringify(CALL32SMM_CMDID) ", %%eax\n" " movl $" __stringify(CALL32SMM_RETURNID) ", %%ecx\n" " movl $2f, %%ebx\n" " outb %%al, $" __stringify(PORT_SMI_CMD) "\n" " rep; nop\n" " hlt\n" // Restore esp ASM16_BACK16 "2:movl %0, %%esp\n" : "=&r" (bkup_esp), "+r" (eax) : "r" (func) : "eax", "ecx", "edx", "ebx", "cc", "memory"); call32_smm_post(); dprintf(9, "call32_smm done %p %x\n", func, eax); return eax; } // 16bit handler code called from call16_smm() u32 VISIBLE16 call16_smm_helper(u32 eax, u32 edx, u32 (*func)(u32 eax, u32 edx)) { if (!CONFIG_CALL32_SMM) return eax; call32_smm_post(); u32 ret = func(eax, edx); call32_smm_prep(); return ret; } static u32 call16_smm(u32 eax, u32 edx, void *func) { ASSERT32FLAT(); if (!CONFIG_CALL32_SMM) return eax; func -= BUILD_BIOS_ADDR; dprintf(9, "call16_smm %p %x %x\n", func, eax, edx); u32 stackoffset = Call32Data.ss << 4; asm volatile( // Restore esp " subl %0, %%esp\n" // Transition to 16bit mode, call func, return to 32bit " movl $" __stringify(CALL32SMM_CMDID) ", %%eax\n" " movl $" __stringify(CALL32SMM_RETURNID) ", %%ecx\n" " movl $(1f - " __stringify(BUILD_BIOS_ADDR) "), %%ebx\n" " outb %%al, $" __stringify(PORT_SMI_CMD) "\n" " rep; nop\n" " hlt\n" ASM32_SWITCH16 "1:movl %1, %%eax\n" " movl %3, %%ecx\n" " calll _cfunc16_call16_smm_helper\n" " movl %%eax, %1\n" " movl $" __stringify(CALL32SMM_CMDID) ", %%eax\n" " movl $" __stringify(CALL32SMM_ENTERID) ", %%ecx\n" " movl $2f, %%ebx\n" " outb %%al, $" __stringify(PORT_SMI_CMD) "\n" " rep; nop\n" " hlt\n" // Set esp to flat stack location ASM32_BACK32 "2:addl %0, %%esp\n" : "+r" (stackoffset), "+r" (eax), "+d" (edx) : "r" (func) : "eax", "ecx", "ebx", "cc", "memory"); return eax; } // Backup state in preparation for call32_sloppy() static void call32_sloppy_prep(void) { // Backup cmos index register and disable nmi u8 cmosindex = inb(PORT_CMOS_INDEX); outb(cmosindex | NMI_DISABLE_BIT, PORT_CMOS_INDEX); inb(PORT_CMOS_DATA); SET_LOW(Call32Data.cmosindex, cmosindex); // Enable a20 and backup it's previous state SET_LOW(Call32Data.a20, set_a20(1)); // Backup ss/fs/gs and gdt SET_LOW(Call32Data.ss, GET_SEG(SS)); SET_LOW(Call32Data.fs, GET_SEG(FS)); SET_LOW(Call32Data.gs, GET_SEG(GS)); struct descloc_s gdt; sgdt(&gdt); SET_LOW(Call32Data.gdt.length, gdt.length); SET_LOW(Call32Data.gdt.addr, gdt.addr); SET_LOW(Call32Data.method, C32_SLOPPY); } // Restore state backed up during call32_sloppy() static void call32_sloppy_post(void) { SET_LOW(Call32Data.method, 0); SET_LOW(Call32Data.ss, 0); // Restore gdt and fs/gs struct descloc_s gdt; gdt.length = GET_LOW(Call32Data.gdt.length); gdt.addr = GET_LOW(Call32Data.gdt.addr); lgdt(&gdt); SET_SEG(FS, GET_LOW(Call32Data.fs)); SET_SEG(GS, GET_LOW(Call32Data.gs)); // Restore a20 set_a20(GET_LOW(Call32Data.a20)); // Restore cmos index register outb(GET_LOW(Call32Data.cmosindex), PORT_CMOS_INDEX); inb(PORT_CMOS_DATA); } // Call a C function in 32bit mode. This clobbers the 16bit segment // selector registers. static u32 call32_sloppy(void *func, u32 eax) { ASSERT16(); call32_sloppy_prep(); u32 bkup_ss, bkup_esp; asm volatile( // Backup ss/esp / set esp to flat stack location " movl %%ss, %0\n" " movl %%esp, %1\n" " shll $4, %0\n" " addl %0, %%esp\n" " shrl $4, %0\n" // Transition to 32bit mode, call func, return to 16bit " movl $(" __stringify(BUILD_BIOS_ADDR) " + 1f), %%edx\n" " jmp transition32\n" ASM16_SWITCH32 "1:calll *%3\n" " movl $2f, %%edx\n" " jmp transition16big\n" // Restore ds/ss/esp ASM16_BACK16 "2:movl %0, %%ds\n" " movl %0, %%ss\n" " movl %1, %%esp\n" : "=&r" (bkup_ss), "=&r" (bkup_esp), "+a" (eax) : "r" (func) : "ecx", "edx", "cc", "memory"); call32_sloppy_post(); return eax; } // 16bit handler code called from call16_sloppy() u32 VISIBLE16 call16_sloppy_helper(u32 eax, u32 edx, u32 (*func)(u32 eax, u32 edx)) { call32_sloppy_post(); u32 ret = func(eax, edx); call32_sloppy_prep(); return ret; } // Jump back to 16bit mode while in 32bit mode from call32_sloppy() static u32 call16_sloppy(u32 eax, u32 edx, void *func) { ASSERT32FLAT(); if (getesp() > MAIN_STACK_MAX) panic("call16_sloppy with invalid stack\n"); func -= BUILD_BIOS_ADDR; u32 stackseg = Call32Data.ss; asm volatile( // Transition to 16bit mode " movl $(1f - " __stringify(BUILD_BIOS_ADDR) "), %%edx\n" " jmp transition16big\n" // Setup ss/esp and call func ASM32_SWITCH16 "1:movl %3, %%ecx\n" " shll $4, %3\n" " movw %%cx, %%ss\n" " subl %3, %%esp\n" " movw %%cx, %%ds\n" " movl %2, %%edx\n" " movl %1, %%ecx\n" " calll _cfunc16_call16_sloppy_helper\n" // Return to 32bit and restore esp " movl $2f, %%edx\n" " jmp transition32\n" ASM32_BACK32 "2:addl %3, %%esp\n" : "+a" (eax) : "r" (func), "r" (edx), "r" (stackseg) : "edx", "ecx", "cc", "memory"); return eax; } // Call a 32bit SeaBIOS function from a 16bit SeaBIOS function. u32 VISIBLE16 call32(void *func, u32 eax, u32 errret) { ASSERT16(); if (CONFIG_CALL32_SMM && GET_GLOBAL(HaveSmmCall32)) return call32_smm(func, eax); u32 cr0 = getcr0(); if (cr0 & CR0_PE) // Called in 16bit protected mode?! return errret; return call32_sloppy(func, eax); } // Call a 16bit SeaBIOS function from a 32bit SeaBIOS function. static u32 call16(u32 eax, u32 edx, void *func) { ASSERT32FLAT(); if (getesp() > BUILD_STACK_ADDR) panic("call16 with invalid stack\n"); func -= BUILD_BIOS_ADDR; asm volatile( // Transition to 16bit mode " movl $(1f - " __stringify(BUILD_BIOS_ADDR) "), %%edx\n" " jmp transition16\n" // Call func ASM32_SWITCH16 "1:movl %2, %%edx\n" " calll *%1\n" // Return to 32bit " movl $2f, %%edx\n" " jmp transition32\n" ASM32_BACK32 "2:\n" : "+a" (eax) : "r" (func), "r" (edx) : "edx", "ecx", "cc", "memory"); return eax; } // Call a 16bit SeaBIOS function in "big real" mode. static u32 call16big(u32 eax, u32 edx, void *func) { ASSERT32FLAT(); if (getesp() > BUILD_STACK_ADDR) panic("call16big with invalid stack\n"); func -= BUILD_BIOS_ADDR; asm volatile( // Transition to 16bit mode " movl $(1f - " __stringify(BUILD_BIOS_ADDR) "), %%edx\n" " jmp transition16big\n" // Call func ASM32_SWITCH16 "1:movl %2, %%edx\n" " calll *%1\n" // Return to 32bit " movl $2f, %%edx\n" " jmp transition32\n" ASM32_BACK32 "2:\n" : "+a" (eax) : "r" (func), "r" (edx) : "edx", "ecx", "cc", "memory"); return eax; } // Call a 16bit SeaBIOS function, restoring the mode from last call32(). static u32 call16_back(u32 eax, u32 edx, void *func) { ASSERT32FLAT(); if (CONFIG_CALL32_SMM && Call32Data.method == C32_SMM) return call16_smm(eax, edx, func); if (Call32Data.method == C32_SLOPPY) return call16_sloppy(eax, edx, func); if (in_post()) return call16big(eax, edx, func); return call16(eax, edx, func); } /**************************************************************** * Extra 16bit stack ****************************************************************/ // Space for a stack for 16bit code. u8 ExtraStack[BUILD_EXTRA_STACK_SIZE+1] VARLOW __aligned(8); u8 *StackPos VARLOW; // Test if currently on the extra stack int on_extra_stack(void) { return MODE16 && GET_SEG(SS) == SEG_LOW && getesp() > (u32)ExtraStack; } // Switch to the extra stack and call a function. u32 stack_hop(u32 eax, u32 edx, void *func) { if (on_extra_stack()) return ((u32 (*)(u32, u32))func)(eax, edx); ASSERT16(); u16 stack_seg = SEG_LOW; u32 bkup_ss, bkup_esp; asm volatile( // Backup current %ss/%esp values. "movw %%ss, %w3\n" "movl %%esp, %4\n" // Copy stack seg to %ds/%ss and set %esp "movw %w6, %%ds\n" "movw %w6, %%ss\n" "movl %5, %%esp\n" "pushl %3\n" "pushl %4\n" // Call func "calll *%2\n" "popl %4\n" "popl %3\n" // Restore segments and stack "movw %w3, %%ds\n" "movw %w3, %%ss\n" "movl %4, %%esp" : "+a" (eax), "+d" (edx), "+c" (func), "=&r" (bkup_ss), "=&r" (bkup_esp) : "m" (StackPos), "r" (stack_seg) : "cc", "memory"); return eax; } // Switch back to original caller's stack and call a function. u32 stack_hop_back(u32 eax, u32 edx, void *func) { if (!MODESEGMENT) return call16_back(eax, edx, func); if (!MODE16 || !on_extra_stack()) return ((u32 (*)(u32, u32))func)(eax, edx); ASSERT16(); u16 bkup_ss; u32 bkup_stack_pos, temp; asm volatile( // Backup stack_pos and current %ss/%esp "movl %6, %4\n" "movw %%ss, %w3\n" "movl %%esp, %6\n" // Restore original callers' %ss/%esp "movl -4(%4), %5\n" "movl %5, %%ss\n" "movw %%ds:-8(%4), %%sp\n" "movl %5, %%ds\n" // Call func "calll *%2\n" // Restore %ss/%esp and stack_pos "movw %w3, %%ds\n" "movw %w3, %%ss\n" "movl %6, %%esp\n" "movl %4, %6" : "+a" (eax), "+d" (edx), "+c" (func), "=&r" (bkup_ss) , "=&r" (bkup_stack_pos), "=&r" (temp), "+m" (StackPos) : : "cc", "memory"); return eax; } /**************************************************************** * External 16bit interface calling ****************************************************************/ // Far call 16bit code with a specified register state. void VISIBLE16 _farcall16(struct bregs *callregs, u16 callregseg) { if (need_hop_back()) { extern void _cfunc16__farcall16(void); stack_hop_back((u32)callregs, callregseg, _cfunc16__farcall16); return; } ASSERT16(); asm volatile( "calll __farcall16\n" : "+a" (callregs), "+m" (*callregs), "+d" (callregseg) : : "ebx", "ecx", "esi", "edi", "cc", "memory"); } void farcall16(struct bregs *callregs) { extern void _cfunc16__farcall16(void); call16((u32)callregs, 0, _cfunc16__farcall16); } void farcall16big(struct bregs *callregs) { extern void _cfunc16__farcall16(void); call16big((u32)callregs, 0, _cfunc16__farcall16); } // Invoke a 16bit software interrupt. void __call16_int(struct bregs *callregs, u16 offset) { callregs->code.offset = offset; if (!MODESEGMENT) { callregs->code.seg = SEG_BIOS; _farcall16((void*)callregs - Call32Data.ss * 16, Call32Data.ss); return; } callregs->code.seg = GET_SEG(CS); _farcall16(callregs, GET_SEG(SS)); } // Reset the machine void reset(void) { extern void reset_vector(void) __noreturn; if (!MODE16) call16_back(0, 0, reset_vector); reset_vector(); } /**************************************************************** * Threads ****************************************************************/ // Thread info - stored at bottom of each thread stack - don't change // without also updating the inline assembler below. struct thread_info { void *stackpos; struct hlist_node node; }; struct thread_info MainThread VARFSEG = { NULL, { &MainThread.node, &MainThread.node.next } }; #define THREADSTACKSIZE 4096 // Check if any threads are running. static int have_threads(void) { return (CONFIG_THREADS && GET_FLATPTR(MainThread.node.next) != &MainThread.node); } // Return the 'struct thread_info' for the currently running thread. struct thread_info * getCurThread(void) { u32 esp = getesp(); if (esp <= MAIN_STACK_MAX) return &MainThread; return (void*)ALIGN_DOWN(esp, THREADSTACKSIZE); } static int ThreadControl; // Initialize the support for internal threads. void thread_init(void) { if (! CONFIG_THREADS) return; ThreadControl = romfile_loadint("etc/threads", 1); } // Should hardware initialization threads run during optionrom execution. int threads_during_optionroms(void) { return CONFIG_THREADS && ThreadControl == 2 && in_post(); } // Switch to next thread stack. static void switch_next(struct thread_info *cur) { struct thread_info *next = container_of( cur->node.next, struct thread_info, node); if (cur == next) // Nothing to do. return; asm volatile( " pushl $1f\n" // store return pc " pushl %%ebp\n" // backup %ebp " movl %%esp, (%%eax)\n" // cur->stackpos = %esp " movl (%%ecx), %%esp\n" // %esp = next->stackpos " popl %%ebp\n" // restore %ebp " retl\n" // restore pc "1:\n" : "+a"(cur), "+c"(next) : : "ebx", "edx", "esi", "edi", "cc", "memory"); } // Last thing called from a thread (called on MainThread stack). static void __end_thread(struct thread_info *old) { hlist_del(&old->node); dprintf(DEBUG_thread, "\\%08x/ End thread\n", (u32)old); free(old); if (!have_threads()) dprintf(1, "All threads complete.\n"); } // Create a new thread and start executing 'func' in it. void run_thread(void (*func)(void*), void *data) { ASSERT32FLAT(); if (! CONFIG_THREADS || ! ThreadControl) goto fail; struct thread_info *thread; thread = memalign_tmphigh(THREADSTACKSIZE, THREADSTACKSIZE); if (!thread) goto fail; dprintf(DEBUG_thread, "/%08x\\ Start thread\n", (u32)thread); thread->stackpos = (void*)thread + THREADSTACKSIZE; struct thread_info *cur = getCurThread(); hlist_add_after(&thread->node, &cur->node); asm volatile( // Start thread " pushl $1f\n" // store return pc " pushl %%ebp\n" // backup %ebp " movl %%esp, (%%edx)\n" // cur->stackpos = %esp " movl (%%ebx), %%esp\n" // %esp = thread->stackpos " calll *%%ecx\n" // Call func // End thread " movl %%ebx, %%eax\n" // %eax = thread " movl 4(%%ebx), %%ebx\n" // %ebx = thread->node.next " movl (%5), %%esp\n" // %esp = MainThread.stackpos " calll %4\n" // call __end_thread(thread) " movl -4(%%ebx), %%esp\n" // %esp = next->stackpos " popl %%ebp\n" // restore %ebp " retl\n" // restore pc "1:\n" : "+a"(data), "+c"(func), "+b"(thread), "+d"(cur) : "m"(*(u8*)__end_thread), "m"(MainThread) : "esi", "edi", "cc", "memory"); return; fail: func(data); } /**************************************************************** * Thread helpers ****************************************************************/ // Low-level irq enable. void VISIBLE16 check_irqs(void) { if (need_hop_back()) { extern void _cfunc16_check_irqs(void); stack_hop_back(0, 0, _cfunc16_check_irqs); return; } asm volatile("sti ; nop ; rep ; nop ; cli ; cld" : : :"memory"); } // Briefly permit irqs to occur. void yield(void) { if (MODESEGMENT || !CONFIG_THREADS) { check_irqs(); return; } struct thread_info *cur = getCurThread(); if (cur == &MainThread) // Permit irqs to fire check_irqs(); // Switch to the next thread switch_next(cur); } void VISIBLE16 wait_irq(void) { if (need_hop_back()) { extern void _cfunc16_wait_irq(void); stack_hop_back(0, 0, _cfunc16_wait_irq); return; } asm volatile("sti ; hlt ; cli ; cld": : :"memory"); } // Wait for next irq to occur. void yield_toirq(void) { if (!MODESEGMENT && have_threads()) { // Threads still active - do a yield instead. yield(); return; } wait_irq(); } // Wait for all threads (other than the main thread) to complete. void wait_threads(void) { ASSERT32FLAT(); while (have_threads()) yield(); } void mutex_lock(struct mutex_s *mutex) { ASSERT32FLAT(); if (! CONFIG_THREADS) return; while (mutex->isLocked) yield(); mutex->isLocked = 1; } void mutex_unlock(struct mutex_s *mutex) { ASSERT32FLAT(); if (! CONFIG_THREADS) return; mutex->isLocked = 0; } /**************************************************************** * Thread preemption ****************************************************************/ int CanPreempt VARFSEG; static u32 PreemptCount; // Turn on RTC irqs and arrange for them to check the 32bit threads. void start_preempt(void) { if (! threads_during_optionroms()) return; CanPreempt = 1; PreemptCount = 0; rtc_use(); } // Turn off RTC irqs / stop checking for thread execution. void finish_preempt(void) { if (! threads_during_optionroms()) { yield(); return; } CanPreempt = 0; rtc_release(); dprintf(9, "Done preempt - %d checks\n", PreemptCount); yield(); } // Check if preemption is on, and wait for it to complete if so. int wait_preempt(void) { if (MODESEGMENT || !CONFIG_THREADS || !CanPreempt || getesp() < MAIN_STACK_MAX) return 0; while (CanPreempt) yield(); return 1; } // Try to execute 32bit threads. void VISIBLE32INIT yield_preempt(void) { PreemptCount++; switch_next(&MainThread); } // 16bit code that checks if threads are pending and executes them if so. void check_preempt(void) { extern void _cfunc32flat_yield_preempt(void); if (CONFIG_THREADS && GET_GLOBAL(CanPreempt) && have_threads()) call32(_cfunc32flat_yield_preempt, 0, 0); } /**************************************************************** * call32 helper ****************************************************************/ struct call32_params_s { void *func; u32 eax, edx, ecx; }; u32 VISIBLE32FLAT call32_params_helper(struct call32_params_s *params) { return ((u32 (*)(u32, u32, u32))params->func)( params->eax, params->edx, params->ecx); } u32 call32_params(void *func, u32 eax, u32 edx, u32 ecx, u32 errret) { ASSERT16(); struct call32_params_s params = {func, eax, edx, ecx}; extern void _cfunc32flat_call32_params_helper(void); return call32(_cfunc32flat_call32_params_helper , (u32)MAKE_FLATPTR(GET_SEG(SS), ¶ms), errret); }