// Support for generating ACPI tables (on emulators) // DO NOT ADD NEW FEATURES HERE. (See paravirt.c / biostables.c instead.) // // Copyright (C) 2008-2010 Kevin O'Connor // Copyright (C) 2006 Fabrice Bellard // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "byteorder.h" // cpu_to_le16 #include "config.h" // CONFIG_* #include "dev-q35.h" #include "dev-piix.h" #include "hw/pci.h" // pci_find_init_device #include "hw/pci_ids.h" // PCI_VENDOR_ID_INTEL #include "hw/pci_regs.h" // PCI_INTERRUPT_LINE #include "malloc.h" // free #include "output.h" // dprintf #include "paravirt.h" // RamSize #include "romfile.h" // romfile_loadint #include "std/acpi.h" // struct rsdp_descriptor #include "string.h" // memset #include "util.h" // MaxCountCPUs #include "x86.h" // readl #include "src/fw/acpi-dsdt.hex" static void build_header(struct acpi_table_header *h, u32 sig, int len, u8 rev) { h->signature = cpu_to_le32(sig); h->length = cpu_to_le32(len); h->revision = rev; memcpy(h->oem_id, BUILD_APPNAME6, 6); memcpy(h->oem_table_id, BUILD_APPNAME4, 4); memcpy(h->oem_table_id + 4, (void*)&sig, 4); h->oem_revision = cpu_to_le32(1); memcpy(h->asl_compiler_id, BUILD_APPNAME4, 4); h->asl_compiler_revision = cpu_to_le32(1); h->checksum -= checksum(h, len); } static void piix4_fadt_setup(struct pci_device *pci, void *arg) { struct fadt_descriptor_rev1 *fadt = arg; fadt->model = 1; fadt->reserved1 = 0; fadt->sci_int = cpu_to_le16(PIIX_PM_INTRRUPT); fadt->smi_cmd = cpu_to_le32(PORT_SMI_CMD); fadt->acpi_enable = PIIX_ACPI_ENABLE; fadt->acpi_disable = PIIX_ACPI_DISABLE; fadt->pm1a_evt_blk = cpu_to_le32(acpi_pm_base); fadt->pm1a_cnt_blk = cpu_to_le32(acpi_pm_base + 0x04); fadt->pm_tmr_blk = cpu_to_le32(acpi_pm_base + 0x08); fadt->gpe0_blk = cpu_to_le32(PIIX_GPE0_BLK); fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; fadt->pm_tmr_len = 4; fadt->gpe0_blk_len = PIIX_GPE0_BLK_LEN; fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported fadt->flags = cpu_to_le32(ACPI_FADT_F_WBINVD | ACPI_FADT_F_PROC_C1 | ACPI_FADT_F_SLP_BUTTON | ACPI_FADT_F_RTC_S4 | ACPI_FADT_F_USE_PLATFORM_CLOCK); } /* PCI_VENDOR_ID_INTEL && PCI_DEVICE_ID_INTEL_ICH9_LPC */ static void ich9_lpc_fadt_setup(struct pci_device *dev, void *arg) { struct fadt_descriptor_rev1 *fadt = arg; fadt->model = 1; fadt->reserved1 = 0; fadt->sci_int = cpu_to_le16(9); fadt->smi_cmd = cpu_to_le32(PORT_SMI_CMD); fadt->acpi_enable = ICH9_ACPI_ENABLE; fadt->acpi_disable = ICH9_ACPI_DISABLE; fadt->pm1a_evt_blk = cpu_to_le32(acpi_pm_base); fadt->pm1a_cnt_blk = cpu_to_le32(acpi_pm_base + 0x04); fadt->pm_tmr_blk = cpu_to_le32(acpi_pm_base + 0x08); fadt->gpe0_blk = cpu_to_le32(acpi_pm_base + ICH9_PMIO_GPE0_STS); fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; fadt->pm_tmr_len = 4; fadt->gpe0_blk_len = ICH9_PMIO_GPE0_BLK_LEN; fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported fadt->flags = cpu_to_le32(ACPI_FADT_F_WBINVD | ACPI_FADT_F_PROC_C1 | ACPI_FADT_F_SLP_BUTTON | ACPI_FADT_F_RTC_S4 | ACPI_FADT_F_USE_PLATFORM_CLOCK); } static const struct pci_device_id fadt_init_tbl[] = { /* PIIX4 Power Management device (for ACPI) */ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, piix4_fadt_setup), PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_LPC, ich9_lpc_fadt_setup), PCI_DEVICE_END }; static void fill_dsdt(struct fadt_descriptor_rev1 *fadt, void *dsdt) { if (fadt->dsdt) { free((void *)le32_to_cpu(fadt->dsdt)); } fadt->dsdt = cpu_to_le32((u32)dsdt); fadt->checksum -= checksum(fadt, sizeof(*fadt)); dprintf(1, "ACPI DSDT=%p\n", dsdt); } static void * build_fadt(struct pci_device *pci) { struct fadt_descriptor_rev1 *fadt = malloc_high(sizeof(*fadt)); struct facs_descriptor_rev1 *facs = memalign_high(64, sizeof(*facs)); if (!fadt || !facs) { warn_noalloc(); return NULL; } /* FACS */ memset(facs, 0, sizeof(*facs)); facs->signature = cpu_to_le32(FACS_SIGNATURE); facs->length = cpu_to_le32(sizeof(*facs)); /* FADT */ memset(fadt, 0, sizeof(*fadt)); fadt->firmware_ctrl = cpu_to_le32((u32)facs); fadt->dsdt = 0; /* dsdt will be filled later in acpi_setup() by fill_dsdt() */ pci_init_device(fadt_init_tbl, pci, fadt); build_header((void*)fadt, FACP_SIGNATURE, sizeof(*fadt), 1); return fadt; } static void* build_madt(void) { int madt_size = (sizeof(struct multiple_apic_table) + sizeof(struct madt_processor_apic) * MaxCountCPUs + sizeof(struct madt_io_apic) + sizeof(struct madt_intsrcovr) * 16 + sizeof(struct madt_local_nmi)); struct multiple_apic_table *madt = malloc_high(madt_size); if (!madt) { warn_noalloc(); return NULL; } memset(madt, 0, madt_size); madt->local_apic_address = cpu_to_le32(BUILD_APIC_ADDR); madt->flags = cpu_to_le32(1); struct madt_processor_apic *apic = (void*)&madt[1]; int i; for (i=0; itype = APIC_PROCESSOR; apic->length = sizeof(*apic); apic->processor_id = i; apic->local_apic_id = i; if (apic_id_is_present(apic->local_apic_id)) apic->flags = cpu_to_le32(1); else apic->flags = cpu_to_le32(0); apic++; } struct madt_io_apic *io_apic = (void*)apic; io_apic->type = APIC_IO; io_apic->length = sizeof(*io_apic); io_apic->io_apic_id = BUILD_IOAPIC_ID; io_apic->address = cpu_to_le32(BUILD_IOAPIC_ADDR); io_apic->interrupt = cpu_to_le32(0); struct madt_intsrcovr *intsrcovr = (void*)&io_apic[1]; if (romfile_loadint("etc/irq0-override", 0)) { memset(intsrcovr, 0, sizeof(*intsrcovr)); intsrcovr->type = APIC_XRUPT_OVERRIDE; intsrcovr->length = sizeof(*intsrcovr); intsrcovr->source = 0; intsrcovr->gsi = cpu_to_le32(2); intsrcovr->flags = cpu_to_le16(0); /* conforms to bus specifications */ intsrcovr++; } for (i = 1; i < 16; i++) { if (!(BUILD_PCI_IRQS & (1 << i))) /* No need for a INT source override structure. */ continue; memset(intsrcovr, 0, sizeof(*intsrcovr)); intsrcovr->type = APIC_XRUPT_OVERRIDE; intsrcovr->length = sizeof(*intsrcovr); intsrcovr->source = i; intsrcovr->gsi = cpu_to_le32(i); intsrcovr->flags = cpu_to_le16(0xd); /* active high, level triggered */ intsrcovr++; } struct madt_local_nmi *local_nmi = (void*)intsrcovr; local_nmi->type = APIC_LOCAL_NMI; local_nmi->length = sizeof(*local_nmi); local_nmi->processor_id = 0xff; /* all processors */ local_nmi->flags = cpu_to_le16(0); local_nmi->lint = 1; /* LINT1 */ local_nmi++; build_header((void*)madt, APIC_SIGNATURE, (void*)local_nmi - (void*)madt, 1); return madt; } // Encode a hex value static inline char getHex(u32 val) { val &= 0x0f; return (val <= 9) ? ('0' + val) : ('A' + val - 10); } // Encode a length in an SSDT. static u8 * encodeLen(u8 *ssdt_ptr, int length, int bytes) { switch (bytes) { default: case 4: ssdt_ptr[3] = ((length >> 20) & 0xff); case 3: ssdt_ptr[2] = ((length >> 12) & 0xff); case 2: ssdt_ptr[1] = ((length >> 4) & 0xff); ssdt_ptr[0] = (((bytes-1) & 0x3) << 6) | (length & 0x0f); break; case 1: ssdt_ptr[0] = length & 0x3f; } return ssdt_ptr + bytes; } #include "src/fw/ssdt-proc.hex" /* 0x5B 0x83 ProcessorOp PkgLength NameString ProcID */ #define PROC_OFFSET_CPUHEX (*ssdt_proc_name - *ssdt_proc_start + 2) #define PROC_OFFSET_CPUID1 (*ssdt_proc_name - *ssdt_proc_start + 4) #define PROC_OFFSET_CPUID2 (*ssdt_proc_id - *ssdt_proc_start) #define PROC_SIZEOF (*ssdt_proc_end - *ssdt_proc_start) #define PROC_AML (ssdp_proc_aml + *ssdt_proc_start) /* 0x5B 0x82 DeviceOp PkgLength NameString */ #define PCIHP_OFFSET_HEX (*ssdt_pcihp_name - *ssdt_pcihp_start + 1) #define PCIHP_OFFSET_ID (*ssdt_pcihp_id - *ssdt_pcihp_start) #define PCIHP_OFFSET_ADR (*ssdt_pcihp_adr - *ssdt_pcihp_start) #define PCIHP_OFFSET_EJ0 (*ssdt_pcihp_ej0 - *ssdt_pcihp_start) #define PCIHP_SIZEOF (*ssdt_pcihp_end - *ssdt_pcihp_start) #define PCIHP_AML (ssdp_pcihp_aml + *ssdt_pcihp_start) #define PCI_SLOTS 32 #define SSDT_SIGNATURE 0x54445353 // SSDT #define SSDT_HEADER_LENGTH 36 #include "src/fw/ssdt-misc.hex" #include "src/fw/ssdt-pcihp.hex" #define PCI_RMV_BASE 0xae0c static u8* build_notify(u8 *ssdt_ptr, const char *name, int skip, int count, const char *target, int ofs) { count -= skip; *(ssdt_ptr++) = 0x14; // MethodOp ssdt_ptr = encodeLen(ssdt_ptr, 2+5+(12*count), 2); memcpy(ssdt_ptr, name, 4); ssdt_ptr += 4; *(ssdt_ptr++) = 0x02; // MethodOp int i; for (i = skip; count-- > 0; i++) { *(ssdt_ptr++) = 0xA0; // IfOp ssdt_ptr = encodeLen(ssdt_ptr, 11, 1); *(ssdt_ptr++) = 0x93; // LEqualOp *(ssdt_ptr++) = 0x68; // Arg0Op *(ssdt_ptr++) = 0x0A; // BytePrefix *(ssdt_ptr++) = i; *(ssdt_ptr++) = 0x86; // NotifyOp memcpy(ssdt_ptr, target, 4); ssdt_ptr[ofs] = getHex(i >> 4); ssdt_ptr[ofs + 1] = getHex(i); ssdt_ptr += 4; *(ssdt_ptr++) = 0x69; // Arg1Op } return ssdt_ptr; } static void patch_pcihp(int slot, u8 *ssdt_ptr, u32 eject) { ssdt_ptr[PCIHP_OFFSET_HEX] = getHex(slot >> 4); ssdt_ptr[PCIHP_OFFSET_HEX+1] = getHex(slot); ssdt_ptr[PCIHP_OFFSET_ID] = slot; ssdt_ptr[PCIHP_OFFSET_ADR + 2] = slot; /* Runtime patching of EJ0: to disable hotplug for a slot, * replace the method name: _EJ0 by EJ0_. */ /* Sanity check */ if (memcmp(ssdt_ptr + PCIHP_OFFSET_EJ0, "_EJ0", 4)) { warn_internalerror(); } if (!eject) { memcpy(ssdt_ptr + PCIHP_OFFSET_EJ0, "EJ0_", 4); } } static void* build_ssdt(void) { int acpi_cpus = MaxCountCPUs > 0xff ? 0xff : MaxCountCPUs; int length = (sizeof(ssdp_misc_aml) // _S3_ / _S4_ / _S5_ + (1+3+4) // Scope(_SB_) + (acpi_cpus * PROC_SIZEOF) // procs + (1+2+5+(12*acpi_cpus)) // NTFY + (6+2+1+(1*acpi_cpus)) // CPON + (1+3+4) // Scope(PCI0) + ((PCI_SLOTS - 1) * PCIHP_SIZEOF) // slots + (1+2+5+(12*(PCI_SLOTS - 1)))); // PCNT u8 *ssdt = malloc_high(length); if (! ssdt) { warn_noalloc(); return NULL; } u8 *ssdt_ptr = ssdt; // Copy header and encode fwcfg values in the S3_ / S4_ / S5_ packages int sys_state_size; char *sys_states = romfile_loadfile("etc/system-states", &sys_state_size); if (!sys_states || sys_state_size != 6) sys_states = (char[]){128, 0, 0, 129, 128, 128}; memcpy(ssdt_ptr, ssdp_misc_aml, sizeof(ssdp_misc_aml)); if (!(sys_states[3] & 128)) ssdt_ptr[acpi_s3_name[0]] = 'X'; if (!(sys_states[4] & 128)) ssdt_ptr[acpi_s4_name[0]] = 'X'; else ssdt_ptr[acpi_s4_pkg[0] + 1] = ssdt[acpi_s4_pkg[0] + 3] = sys_states[4] & 127; // store pci io windows *(u32*)&ssdt_ptr[acpi_pci32_start[0]] = cpu_to_le32(pcimem_start); *(u32*)&ssdt_ptr[acpi_pci32_end[0]] = cpu_to_le32(pcimem_end - 1); if (pcimem64_start) { ssdt_ptr[acpi_pci64_valid[0]] = 1; *(u64*)&ssdt_ptr[acpi_pci64_start[0]] = cpu_to_le64(pcimem64_start); *(u64*)&ssdt_ptr[acpi_pci64_end[0]] = cpu_to_le64(pcimem64_end - 1); *(u64*)&ssdt_ptr[acpi_pci64_length[0]] = cpu_to_le64( pcimem64_end - pcimem64_start); } else { ssdt_ptr[acpi_pci64_valid[0]] = 0; } int pvpanic_port = romfile_loadint("etc/pvpanic-port", 0x0); *(u16 *)(ssdt_ptr + *ssdt_isa_pest) = pvpanic_port; ssdt_ptr += sizeof(ssdp_misc_aml); // build Scope(_SB_) header *(ssdt_ptr++) = 0x10; // ScopeOp ssdt_ptr = encodeLen(ssdt_ptr, length - (ssdt_ptr - ssdt), 3); *(ssdt_ptr++) = '_'; *(ssdt_ptr++) = 'S'; *(ssdt_ptr++) = 'B'; *(ssdt_ptr++) = '_'; // build Processor object for each processor int i; for (i=0; i> 4); ssdt_ptr[PROC_OFFSET_CPUHEX+1] = getHex(i); ssdt_ptr[PROC_OFFSET_CPUID1] = i; ssdt_ptr[PROC_OFFSET_CPUID2] = i; ssdt_ptr += PROC_SIZEOF; } // build "Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}" // Arg0 = Processor ID = APIC ID ssdt_ptr = build_notify(ssdt_ptr, "NTFY", 0, acpi_cpus, "CP00", 2); // build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })" *(ssdt_ptr++) = 0x08; // NameOp *(ssdt_ptr++) = 'C'; *(ssdt_ptr++) = 'P'; *(ssdt_ptr++) = 'O'; *(ssdt_ptr++) = 'N'; *(ssdt_ptr++) = 0x12; // PackageOp ssdt_ptr = encodeLen(ssdt_ptr, 2+1+(1*acpi_cpus), 2); *(ssdt_ptr++) = acpi_cpus; for (i=0; i> 16; u32 hpet_period = readl(hpet_base + HPET_PERIOD); if (hpet_vendor == 0 || hpet_vendor == 0xffff || hpet_period == 0 || hpet_period > 100000000) return NULL; hpet = malloc_high(sizeof(*hpet)); if (!hpet) { warn_noalloc(); return NULL; } memset(hpet, 0, sizeof(*hpet)); /* Note timer_block_id value must be kept in sync with value advertised by * emulated hpet */ hpet->timer_block_id = cpu_to_le32(0x8086a201); hpet->addr.address = cpu_to_le64(BUILD_HPET_ADDRESS); build_header((void*)hpet, HPET_SIGNATURE, sizeof(*hpet), 1); return hpet; } static void acpi_build_srat_memory(struct srat_memory_affinity *numamem, u64 base, u64 len, int node, int enabled) { numamem->type = SRAT_MEMORY; numamem->length = sizeof(*numamem); memset(numamem->proximity, 0, 4); numamem->proximity[0] = node; numamem->flags = cpu_to_le32(!!enabled); numamem->base_addr = cpu_to_le64(base); numamem->range_length = cpu_to_le64(len); } static void * build_srat(void) { int numadatasize, numacpusize; u64 *numadata = romfile_loadfile("etc/numa-nodes", &numadatasize); u64 *numacpumap = romfile_loadfile("etc/numa-cpu-map", &numacpusize); if (!numadata || !numacpumap) goto fail; int max_cpu = numacpusize / sizeof(u64); int nb_numa_nodes = numadatasize / sizeof(u64); struct system_resource_affinity_table *srat; int srat_size = sizeof(*srat) + sizeof(struct srat_processor_affinity) * max_cpu + sizeof(struct srat_memory_affinity) * (nb_numa_nodes + 2); srat = malloc_high(srat_size); if (!srat) { warn_noalloc(); goto fail; } memset(srat, 0, srat_size); srat->reserved1=cpu_to_le32(1); struct srat_processor_affinity *core = (void*)(srat + 1); int i; u64 curnode; for (i = 0; i < max_cpu; ++i) { core->type = SRAT_PROCESSOR; core->length = sizeof(*core); core->local_apic_id = i; curnode = *numacpumap++; core->proximity_lo = curnode; memset(core->proximity_hi, 0, 3); core->local_sapic_eid = 0; if (apic_id_is_present(i)) core->flags = cpu_to_le32(1); else core->flags = cpu_to_le32(0); core++; } /* the memory map is a bit tricky, it contains at least one hole * from 640k-1M and possibly another one from 3.5G-4G. */ struct srat_memory_affinity *numamem = (void*)core; int slots = 0; u64 mem_len, mem_base, next_base = 0; acpi_build_srat_memory(numamem, 0, 640*1024, 0, 1); next_base = 1024 * 1024; numamem++; slots++; for (i = 1; i < nb_numa_nodes + 1; ++i) { mem_base = next_base; mem_len = *numadata++; if (i == 1) mem_len -= 1024 * 1024; next_base = mem_base + mem_len; /* Cut out the PCI hole */ if (mem_base <= RamSize && next_base > RamSize) { mem_len -= next_base - RamSize; if (mem_len > 0) { acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1); numamem++; slots++; } mem_base = 1ULL << 32; mem_len = next_base - RamSize; next_base += (1ULL << 32) - RamSize; } acpi_build_srat_memory(numamem, mem_base, mem_len, i-1, 1); numamem++; slots++; } for (; slots < nb_numa_nodes + 2; slots++) { acpi_build_srat_memory(numamem, 0, 0, 0, 0); numamem++; } build_header((void*)srat, SRAT_SIGNATURE, srat_size, 1); free(numadata); free(numacpumap); return srat; fail: free(numadata); free(numacpumap); return NULL; } static void * build_mcfg_q35(void) { struct acpi_table_mcfg *mcfg; int len = sizeof(*mcfg) + 1 * sizeof(mcfg->allocation[0]); mcfg = malloc_high(len); if (!mcfg) { warn_noalloc(); return NULL; } memset(mcfg, 0, len); mcfg->allocation[0].address = cpu_to_le64(Q35_HOST_BRIDGE_PCIEXBAR_ADDR); mcfg->allocation[0].pci_segment = cpu_to_le16(Q35_HOST_PCIE_PCI_SEGMENT); mcfg->allocation[0].start_bus_number = Q35_HOST_PCIE_START_BUS_NUMBER; mcfg->allocation[0].end_bus_number = Q35_HOST_PCIE_END_BUS_NUMBER; build_header((void *)mcfg, MCFG_SIGNATURE, len, 1); return mcfg; } static const struct pci_device_id acpi_find_tbl[] = { /* PIIX4 Power Management device. */ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, NULL), PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_LPC, NULL), PCI_DEVICE_END, }; #define MAX_ACPI_TABLES 20 void acpi_setup(void) { if (! CONFIG_ACPI) return; dprintf(3, "init ACPI tables\n"); // This code is hardcoded for PIIX4 Power Management device. struct pci_device *pci = pci_find_init_device(acpi_find_tbl, NULL); if (!pci) // Device not found return; // Build ACPI tables u32 tables[MAX_ACPI_TABLES], tbl_idx = 0; #define ACPI_INIT_TABLE(X) \ do { \ tables[tbl_idx] = cpu_to_le32((u32)(X)); \ if (le32_to_cpu(tables[tbl_idx])) \ tbl_idx++; \ } while(0) struct fadt_descriptor_rev1 *fadt = build_fadt(pci); ACPI_INIT_TABLE(fadt); ACPI_INIT_TABLE(build_ssdt()); ACPI_INIT_TABLE(build_madt()); ACPI_INIT_TABLE(build_hpet()); ACPI_INIT_TABLE(build_srat()); if (pci->device == PCI_DEVICE_ID_INTEL_ICH9_LPC) ACPI_INIT_TABLE(build_mcfg_q35()); struct romfile_s *file = NULL; for (;;) { file = romfile_findprefix("acpi/", file); if (!file) break; struct acpi_table_header *table = malloc_high(file->size); if (!table) { warn_noalloc(); continue; } int ret = file->copy(file, table, file->size); if (ret <= sizeof(*table)) continue; if (table->signature == DSDT_SIGNATURE) { if (fadt) { fill_dsdt(fadt, table); } } else { ACPI_INIT_TABLE(table); } if (tbl_idx == MAX_ACPI_TABLES) { warn_noalloc(); break; } } if (CONFIG_ACPI_DSDT && fadt && !fadt->dsdt) { /* default DSDT */ struct acpi_table_header *dsdt = malloc_high(sizeof(AmlCode)); if (!dsdt) { warn_noalloc(); return; } memcpy(dsdt, AmlCode, sizeof(AmlCode)); fill_dsdt(fadt, dsdt); /* Strip out compiler-generated header if any */ memset(dsdt, 0, sizeof *dsdt); build_header(dsdt, DSDT_SIGNATURE, sizeof(AmlCode), 1); } // Build final rsdt table struct rsdt_descriptor_rev1 *rsdt; size_t rsdt_len = sizeof(*rsdt) + sizeof(u32) * tbl_idx; rsdt = malloc_high(rsdt_len); if (!rsdt) { warn_noalloc(); return; } memset(rsdt, 0, rsdt_len); memcpy(rsdt->table_offset_entry, tables, sizeof(u32) * tbl_idx); build_header((void*)rsdt, RSDT_SIGNATURE, rsdt_len, 1); // Build rsdp pointer table struct rsdp_descriptor rsdp; memset(&rsdp, 0, sizeof(rsdp)); rsdp.signature = cpu_to_le64(RSDP_SIGNATURE); memcpy(rsdp.oem_id, BUILD_APPNAME6, 6); rsdp.rsdt_physical_address = cpu_to_le32((u32)rsdt); rsdp.checksum -= checksum(&rsdp, 20); copy_acpi_rsdp(&rsdp); }