/************************************************************************** * * GPL net driver for Level 5 Etherfabric network cards * * Written by Michael Brown * * Copyright Fen Systems Ltd. 2005 * Copyright Level 5 Networks Inc. 2005 * * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by * reference. Drivers based on or derived from this code fall under * the GPL and must retain the authorship, copyright and license * notice. This file is not a complete program and may only be used * when the entire operating system is licensed under the GPL. * ************************************************************************** */ FILE_LICENCE ( GPL_ANY ); #ifndef EFAB_BITFIELD_H #define EFAB_BITFIELD_H /** @file * * Etherfabric bitfield access * * Etherfabric NICs make extensive use of bitfields up to 128 bits * wide. Since there is no native 128-bit datatype on most systems, * and since 64-bit datatypes are inefficient on 32-bit systems and * vice versa, we wrap accesses in a way that uses the most efficient * datatype. * * The NICs are PCI devices and therefore little-endian. Since most * of the quantities that we deal with are DMAed to/from host memory, * we define our datatypes (efab_oword_t, efab_qword_t and * efab_dword_t) to be little-endian. * * In the less common case of using PIO for individual register * writes, we construct the little-endian datatype in host memory and * then use non-swapping equivalents of writel/writeq, rather than * constructing a native-endian datatype and relying on the implicit * byte-swapping done by writel/writeq. (We use a similar strategy * for register reads.) */ /** Dummy field low bit number */ #define EFAB_DUMMY_FIELD_LBN 0 /** Dummy field width */ #define EFAB_DUMMY_FIELD_WIDTH 0 /** Dword 0 low bit number */ #define EFAB_DWORD_0_LBN 0 /** Dword 0 width */ #define EFAB_DWORD_0_WIDTH 32 /** Dword 1 low bit number */ #define EFAB_DWORD_1_LBN 32 /** Dword 1 width */ #define EFAB_DWORD_1_WIDTH 32 /** Dword 2 low bit number */ #define EFAB_DWORD_2_LBN 64 /** Dword 2 width */ #define EFAB_DWORD_2_WIDTH 32 /** Dword 3 low bit number */ #define EFAB_DWORD_3_LBN 96 /** Dword 3 width */ #define EFAB_DWORD_3_WIDTH 32 /** Specified attribute (e.g. LBN) of the specified field */ #define EFAB_VAL(field,attribute) field ## _ ## attribute /** Low bit number of the specified field */ #define EFAB_LOW_BIT( field ) EFAB_VAL ( field, LBN ) /** Bit width of the specified field */ #define EFAB_WIDTH( field ) EFAB_VAL ( field, WIDTH ) /** High bit number of the specified field */ #define EFAB_HIGH_BIT(field) ( EFAB_LOW_BIT(field) + EFAB_WIDTH(field) - 1 ) /** Mask equal in width to the specified field. * * For example, a field with width 5 would have a mask of 0x1f. * * The maximum width mask that can be generated is 64 bits. */ #define EFAB_MASK64( field ) \ ( EFAB_WIDTH(field) == 64 ? ~( ( uint64_t ) 0 ) : \ ( ( ( ( ( uint64_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) ) /** Mask equal in width to the specified field. * * For example, a field with width 5 would have a mask of 0x1f. * * The maximum width mask that can be generated is 32 bits. Use * EFAB_MASK64 for higher width fields. */ #define EFAB_MASK32( field ) \ ( EFAB_WIDTH(field) == 32 ? ~( ( uint32_t ) 0 ) : \ ( ( ( ( ( uint32_t ) 1 ) << EFAB_WIDTH(field) ) ) - 1 ) ) /** A doubleword (i.e. 4 byte) datatype * * This datatype is defined to be little-endian. */ typedef union efab_dword { uint32_t u32[1]; uint32_t opaque; /* For bitwise operations between two efab_dwords */ } efab_dword_t; /** A quadword (i.e. 8 byte) datatype * * This datatype is defined to be little-endian. */ typedef union efab_qword { uint64_t u64[1]; uint32_t u32[2]; efab_dword_t dword[2]; } efab_qword_t; /** * An octword (eight-word, i.e. 16 byte) datatype * * This datatype is defined to be little-endian. */ typedef union efab_oword { uint64_t u64[2]; efab_qword_t qword[2]; uint32_t u32[4]; efab_dword_t dword[4]; } efab_oword_t; /** Format string for printing an efab_dword_t */ #define EFAB_DWORD_FMT "%08x" /** Format string for printing an efab_qword_t */ #define EFAB_QWORD_FMT "%08x:%08x" /** Format string for printing an efab_oword_t */ #define EFAB_OWORD_FMT "%08x:%08x:%08x:%08x" /** printk parameters for printing an efab_dword_t */ #define EFAB_DWORD_VAL(dword) \ ( ( unsigned int ) le32_to_cpu ( (dword).u32[0] ) ) /** printk parameters for printing an efab_qword_t */ #define EFAB_QWORD_VAL(qword) \ ( ( unsigned int ) le32_to_cpu ( (qword).u32[1] ) ), \ ( ( unsigned int ) le32_to_cpu ( (qword).u32[0] ) ) /** printk parameters for printing an efab_oword_t */ #define EFAB_OWORD_VAL(oword) \ ( ( unsigned int ) le32_to_cpu ( (oword).u32[3] ) ), \ ( ( unsigned int ) le32_to_cpu ( (oword).u32[2] ) ), \ ( ( unsigned int ) le32_to_cpu ( (oword).u32[1] ) ), \ ( ( unsigned int ) le32_to_cpu ( (oword).u32[0] ) ) /** * Extract bit field portion [low,high) from the native-endian element * which contains bits [min,max). * * For example, suppose "element" represents the high 32 bits of a * 64-bit value, and we wish to extract the bits belonging to the bit * field occupying bits 28-45 of this 64-bit value. * * Then EFAB_EXTRACT ( element, 32, 63, 28, 45 ) would give * * ( element ) << 4 * * The result will contain the relevant bits filled in in the range * [0,high-low), with garbage in bits [high-low+1,...). */ #define EFAB_EXTRACT_NATIVE( native_element, min ,max ,low ,high ) \ ( ( ( low > max ) || ( high < min ) ) ? 0 : \ ( ( low > min ) ? \ ( (native_element) >> ( low - min ) ) : \ ( (native_element) << ( min - low ) ) ) ) /** * Extract bit field portion [low,high) from the 64-bit little-endian * element which contains bits [min,max) */ #define EFAB_EXTRACT64( element, min, max, low, high ) \ EFAB_EXTRACT_NATIVE ( le64_to_cpu(element), min, max, low, high ) /** * Extract bit field portion [low,high) from the 32-bit little-endian * element which contains bits [min,max) */ #define EFAB_EXTRACT32( element, min, max, low, high ) \ EFAB_EXTRACT_NATIVE ( le32_to_cpu(element), min, max, low, high ) #define EFAB_EXTRACT_OWORD64( oword, low, high ) \ ( EFAB_EXTRACT64 ( (oword).u64[0], 0, 63, low, high ) | \ EFAB_EXTRACT64 ( (oword).u64[1], 64, 127, low, high ) ) #define EFAB_EXTRACT_QWORD64( qword, low, high ) \ ( EFAB_EXTRACT64 ( (qword).u64[0], 0, 63, low, high ) ) #define EFAB_EXTRACT_OWORD32( oword, low, high ) \ ( EFAB_EXTRACT32 ( (oword).u32[0], 0, 31, low, high ) | \ EFAB_EXTRACT32 ( (oword).u32[1], 32, 63, low, high ) | \ EFAB_EXTRACT32 ( (oword).u32[2], 64, 95, low, high ) | \ EFAB_EXTRACT32 ( (oword).u32[3], 96, 127, low, high ) ) #define EFAB_EXTRACT_QWORD32( qword, low, high ) \ ( EFAB_EXTRACT32 ( (qword).u32[0], 0, 31, low, high ) | \ EFAB_EXTRACT32 ( (qword).u32[1], 32, 63, low, high ) ) #define EFAB_EXTRACT_DWORD( dword, low, high ) \ ( EFAB_EXTRACT32 ( (dword).u32[0], 0, 31, low, high ) ) #define EFAB_OWORD_FIELD64( oword, field ) \ ( EFAB_EXTRACT_OWORD64 ( oword, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ) ) & \ EFAB_MASK64 ( field ) ) #define EFAB_QWORD_FIELD64( qword, field ) \ ( EFAB_EXTRACT_QWORD64 ( qword, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ) ) & \ EFAB_MASK64 ( field ) ) #define EFAB_OWORD_FIELD32( oword, field ) \ ( EFAB_EXTRACT_OWORD32 ( oword, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ) ) & \ EFAB_MASK32 ( field ) ) #define EFAB_QWORD_FIELD32( qword, field ) \ ( EFAB_EXTRACT_QWORD32 ( qword, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ) ) & \ EFAB_MASK32 ( field ) ) #define EFAB_DWORD_FIELD( dword, field ) \ ( EFAB_EXTRACT_DWORD ( dword, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ) ) & \ EFAB_MASK32 ( field ) ) #define EFAB_OWORD_IS_ZERO64( oword ) \ ( ! ( (oword).u64[0] || (oword).u64[1] ) ) #define EFAB_QWORD_IS_ZERO64( qword ) \ ( ! ( (qword).u64[0] ) ) #define EFAB_OWORD_IS_ZERO32( oword ) \ ( ! ( (oword).u32[0] || (oword).u32[1] || \ (oword).u32[2] || (oword).u32[3] ) ) #define EFAB_QWORD_IS_ZERO32( qword ) \ ( ! ( (qword).u32[0] || (qword).u32[1] ) ) #define EFAB_DWORD_IS_ZERO( dword ) \ ( ! ( (dword).u32[0] ) ) #define EFAB_OWORD_IS_ALL_ONES64( oword ) \ ( ( (oword).u64[0] & (oword).u64[1] ) == ~( ( uint64_t ) 0 ) ) #define EFAB_QWORD_IS_ALL_ONES64( qword ) \ ( (qword).u64[0] == ~( ( uint64_t ) 0 ) ) #define EFAB_OWORD_IS_ALL_ONES32( oword ) \ ( ( (oword).u32[0] & (oword).u32[1] & \ (oword).u32[2] & (oword).u32[3] ) == ~( ( uint32_t ) 0 ) ) #define EFAB_QWORD_IS_ALL_ONES32( qword ) \ ( ( (qword).u32[0] & (qword).u32[1] ) == ~( ( uint32_t ) 0 ) ) #define EFAB_DWORD_IS_ALL_ONES( dword ) \ ( (dword).u32[0] == ~( ( uint32_t ) 0 ) ) #if ( BITS_PER_LONG == 64 ) #define EFAB_OWORD_FIELD EFAB_OWORD_FIELD64 #define EFAB_QWORD_FIELD EFAB_QWORD_FIELD64 #define EFAB_OWORD_IS_ZERO EFAB_OWORD_IS_ZERO64 #define EFAB_QWORD_IS_ZERO EFAB_QWORD_IS_ZERO64 #define EFAB_OWORD_IS_ALL_ONES EFAB_OWORD_IS_ALL_ONES64 #define EFAB_QWORD_IS_ALL_ONES EFAB_QWORD_IS_ALL_ONES64 #else #define EFAB_OWORD_FIELD EFAB_OWORD_FIELD32 #define EFAB_QWORD_FIELD EFAB_QWORD_FIELD32 #define EFAB_OWORD_IS_ZERO EFAB_OWORD_IS_ZERO32 #define EFAB_QWORD_IS_ZERO EFAB_QWORD_IS_ZERO32 #define EFAB_OWORD_IS_ALL_ONES EFAB_OWORD_IS_ALL_ONES32 #define EFAB_QWORD_IS_ALL_ONES EFAB_QWORD_IS_ALL_ONES32 #endif /** * Construct bit field portion * * Creates the portion of the bit field [low,high) that lies within * the range [min,max). */ #define EFAB_INSERT_NATIVE64( min, max, low, high, value ) \ ( ( ( low > max ) || ( high < min ) ) ? 0 : \ ( ( low > min ) ? \ ( ( ( uint64_t ) (value) ) << ( low - min ) ) : \ ( ( ( uint64_t ) (value) ) >> ( min - low ) ) ) ) #define EFAB_INSERT_NATIVE32( min, max, low, high, value ) \ ( ( ( low > max ) || ( high < min ) ) ? 0 : \ ( ( low > min ) ? \ ( ( ( uint32_t ) (value) ) << ( low - min ) ) : \ ( ( ( uint32_t ) (value) ) >> ( min - low ) ) ) ) #define EFAB_INSERT_NATIVE( min, max, low, high, value ) \ ( ( ( ( max - min ) >= 32 ) || \ ( ( high - low ) >= 32 ) ) \ ? EFAB_INSERT_NATIVE64 ( min, max, low, high, value ) \ : EFAB_INSERT_NATIVE32 ( min, max, low, high, value ) ) /** * Construct bit field portion * * Creates the portion of the named bit field that lies within the * range [min,max). */ #define EFAB_INSERT_FIELD_NATIVE( min, max, field, value ) \ EFAB_INSERT_NATIVE ( min, max, EFAB_LOW_BIT ( field ), \ EFAB_HIGH_BIT ( field ), value ) /** * Construct bit field * * Creates the portion of the named bit fields that lie within the * range [min,max). */ #define EFAB_INSERT_FIELDS_NATIVE( min, max, \ field1, value1, \ field2, value2, \ field3, value3, \ field4, value4, \ field5, value5, \ field6, value6, \ field7, value7, \ field8, value8, \ field9, value9, \ field10, value10 ) \ ( EFAB_INSERT_FIELD_NATIVE ( min, max, field1, value1 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field2, value2 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field3, value3 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field4, value4 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field5, value5 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field6, value6 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field7, value7 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field8, value8 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field9, value9 ) | \ EFAB_INSERT_FIELD_NATIVE ( min, max, field10, value10 ) ) #define EFAB_INSERT_FIELDS64( ... ) \ cpu_to_le64 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) ) #define EFAB_INSERT_FIELDS32( ... ) \ cpu_to_le32 ( EFAB_INSERT_FIELDS_NATIVE ( __VA_ARGS__ ) ) #define EFAB_POPULATE_OWORD64( oword, ... ) do { \ (oword).u64[0] = EFAB_INSERT_FIELDS64 ( 0, 63, __VA_ARGS__ );\ (oword).u64[1] = EFAB_INSERT_FIELDS64 ( 64, 127, __VA_ARGS__ );\ } while ( 0 ) #define EFAB_POPULATE_QWORD64( qword, ... ) do { \ (qword).u64[0] = EFAB_INSERT_FIELDS64 ( 0, 63, __VA_ARGS__ );\ } while ( 0 ) #define EFAB_POPULATE_OWORD32( oword, ... ) do { \ (oword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\ (oword).u32[1] = EFAB_INSERT_FIELDS32 ( 32, 63, __VA_ARGS__ );\ (oword).u32[2] = EFAB_INSERT_FIELDS32 ( 64, 95, __VA_ARGS__ );\ (oword).u32[3] = EFAB_INSERT_FIELDS32 ( 96, 127, __VA_ARGS__ );\ } while ( 0 ) #define EFAB_POPULATE_QWORD32( qword, ... ) do { \ (qword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\ (qword).u32[1] = EFAB_INSERT_FIELDS32 ( 32, 63, __VA_ARGS__ );\ } while ( 0 ) #define EFAB_POPULATE_DWORD( dword, ... ) do { \ (dword).u32[0] = EFAB_INSERT_FIELDS32 ( 0, 31, __VA_ARGS__ );\ } while ( 0 ) #if ( BITS_PER_LONG == 64 ) #define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD64 #define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD64 #else #define EFAB_POPULATE_OWORD EFAB_POPULATE_OWORD32 #define EFAB_POPULATE_QWORD EFAB_POPULATE_QWORD32 #endif /* Populate an octword field with various numbers of arguments */ #define EFAB_POPULATE_OWORD_10 EFAB_POPULATE_OWORD #define EFAB_POPULATE_OWORD_9( oword, ... ) \ EFAB_POPULATE_OWORD_10 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_8( oword, ... ) \ EFAB_POPULATE_OWORD_9 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_7( oword, ... ) \ EFAB_POPULATE_OWORD_8 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_6( oword, ... ) \ EFAB_POPULATE_OWORD_7 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_5( oword, ... ) \ EFAB_POPULATE_OWORD_6 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_4( oword, ... ) \ EFAB_POPULATE_OWORD_5 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_3( oword, ... ) \ EFAB_POPULATE_OWORD_4 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_2( oword, ... ) \ EFAB_POPULATE_OWORD_3 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_OWORD_1( oword, ... ) \ EFAB_POPULATE_OWORD_2 ( oword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_ZERO_OWORD( oword ) \ EFAB_POPULATE_OWORD_1 ( oword, EFAB_DUMMY_FIELD, 0 ) #define EFAB_SET_OWORD( oword ) \ EFAB_POPULATE_OWORD_4 ( oword, \ EFAB_DWORD_0, 0xffffffff, \ EFAB_DWORD_1, 0xffffffff, \ EFAB_DWORD_2, 0xffffffff, \ EFAB_DWORD_3, 0xffffffff ) /* Populate a quadword field with various numbers of arguments */ #define EFAB_POPULATE_QWORD_10 EFAB_POPULATE_QWORD #define EFAB_POPULATE_QWORD_9( qword, ... ) \ EFAB_POPULATE_QWORD_10 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_8( qword, ... ) \ EFAB_POPULATE_QWORD_9 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_7( qword, ... ) \ EFAB_POPULATE_QWORD_8 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_6( qword, ... ) \ EFAB_POPULATE_QWORD_7 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_5( qword, ... ) \ EFAB_POPULATE_QWORD_6 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_4( qword, ... ) \ EFAB_POPULATE_QWORD_5 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_3( qword, ... ) \ EFAB_POPULATE_QWORD_4 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_2( qword, ... ) \ EFAB_POPULATE_QWORD_3 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_QWORD_1( qword, ... ) \ EFAB_POPULATE_QWORD_2 ( qword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_ZERO_QWORD( qword ) \ EFAB_POPULATE_QWORD_1 ( qword, EFAB_DUMMY_FIELD, 0 ) #define EFAB_SET_QWORD( qword ) \ EFAB_POPULATE_QWORD_2 ( qword, \ EFAB_DWORD_0, 0xffffffff, \ EFAB_DWORD_1, 0xffffffff ) /* Populate a dword field with various numbers of arguments */ #define EFAB_POPULATE_DWORD_10 EFAB_POPULATE_DWORD #define EFAB_POPULATE_DWORD_9( dword, ... ) \ EFAB_POPULATE_DWORD_10 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_8( dword, ... ) \ EFAB_POPULATE_DWORD_9 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_7( dword, ... ) \ EFAB_POPULATE_DWORD_8 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_6( dword, ... ) \ EFAB_POPULATE_DWORD_7 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_5( dword, ... ) \ EFAB_POPULATE_DWORD_6 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_4( dword, ... ) \ EFAB_POPULATE_DWORD_5 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_3( dword, ... ) \ EFAB_POPULATE_DWORD_4 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_2( dword, ... ) \ EFAB_POPULATE_DWORD_3 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_POPULATE_DWORD_1( dword, ... ) \ EFAB_POPULATE_DWORD_2 ( dword, EFAB_DUMMY_FIELD, 0, __VA_ARGS__ ) #define EFAB_ZERO_DWORD( dword ) \ EFAB_POPULATE_DWORD_1 ( dword, EFAB_DUMMY_FIELD, 0 ) #define EFAB_SET_DWORD( dword ) \ EFAB_POPULATE_DWORD_1 ( dword, EFAB_DWORD_0, 0xffffffff ) /* * Modify a named field within an already-populated structure. Used * for read-modify-write operations. * */ #define EFAB_INSERT_FIELD64( ... ) \ cpu_to_le64 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) ) #define EFAB_INSERT_FIELD32( ... ) \ cpu_to_le32 ( EFAB_INSERT_FIELD_NATIVE ( __VA_ARGS__ ) ) #define EFAB_INPLACE_MASK64( min, max, field ) \ EFAB_INSERT_FIELD64 ( min, max, field, EFAB_MASK64 ( field ) ) #define EFAB_INPLACE_MASK32( min, max, field ) \ EFAB_INSERT_FIELD32 ( min, max, field, EFAB_MASK32 ( field ) ) #define EFAB_SET_OWORD_FIELD64( oword, field, value ) do { \ (oword).u64[0] = ( ( (oword).u64[0] \ & ~EFAB_INPLACE_MASK64 ( 0, 63, field ) ) \ | EFAB_INSERT_FIELD64 ( 0, 63, field, value ) ); \ (oword).u64[1] = ( ( (oword).u64[1] \ & ~EFAB_INPLACE_MASK64 ( 64, 127, field ) ) \ | EFAB_INSERT_FIELD64 ( 64, 127, field, value ) ); \ } while ( 0 ) #define EFAB_SET_QWORD_FIELD64( qword, field, value ) do { \ (qword).u64[0] = ( ( (qword).u64[0] \ & ~EFAB_INPLACE_MASK64 ( 0, 63, field ) ) \ | EFAB_INSERT_FIELD64 ( 0, 63, field, value ) ); \ } while ( 0 ) #define EFAB_SET_OWORD_FIELD32( oword, field, value ) do { \ (oword).u32[0] = ( ( (oword).u32[0] \ & ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \ | EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \ (oword).u32[1] = ( ( (oword).u32[1] \ & ~EFAB_INPLACE_MASK32 ( 32, 63, field ) ) \ | EFAB_INSERT_FIELD32 ( 32, 63, field, value ) ); \ (oword).u32[2] = ( ( (oword).u32[2] \ & ~EFAB_INPLACE_MASK32 ( 64, 95, field ) ) \ | EFAB_INSERT_FIELD32 ( 64, 95, field, value ) ); \ (oword).u32[3] = ( ( (oword).u32[3] \ & ~EFAB_INPLACE_MASK32 ( 96, 127, field ) ) \ | EFAB_INSERT_FIELD32 ( 96, 127, field, value ) ); \ } while ( 0 ) #define EFAB_SET_QWORD_FIELD32( qword, field, value ) do { \ (qword).u32[0] = ( ( (qword).u32[0] \ & ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \ | EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \ (qword).u32[1] = ( ( (qword).u32[1] \ & ~EFAB_INPLACE_MASK32 ( 32, 63, field ) ) \ | EFAB_INSERT_FIELD32 ( 32, 63, field, value ) ); \ } while ( 0 ) #define EFAB_SET_DWORD_FIELD( dword, field, value ) do { \ (dword).u32[0] = ( ( (dword).u32[0] \ & ~EFAB_INPLACE_MASK32 ( 0, 31, field ) ) \ | EFAB_INSERT_FIELD32 ( 0, 31, field, value ) ); \ } while ( 0 ) #if ( BITS_PER_LONG == 64 ) #define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD64 #define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD64 #else #define EFAB_SET_OWORD_FIELD EFAB_SET_OWORD_FIELD32 #define EFAB_SET_QWORD_FIELD EFAB_SET_QWORD_FIELD32 #endif /* Used to avoid compiler warnings about shift range exceeding width * of the data types when dma_addr_t is only 32 bits wide. */ #define DMA_ADDR_T_WIDTH ( 8 * sizeof ( dma_addr_t ) ) #define EFAB_DMA_TYPE_WIDTH( width ) \ ( ( (width) < DMA_ADDR_T_WIDTH ) ? (width) : DMA_ADDR_T_WIDTH ) #define EFAB_DMA_MAX_MASK ( ( DMA_ADDR_T_WIDTH == 64 ) ? \ ~( ( uint64_t ) 0 ) : ~( ( uint32_t ) 0 ) ) #define EFAB_DMA_MASK(mask) ( (mask) & EFAB_DMA_MAX_MASK ) #endif /* EFAB_BITFIELD_H */ /* * Local variables: * c-basic-offset: 8 * c-indent-level: 8 * tab-width: 8 * End: */