/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * ******************************************************************************/ /* Description: */ /* This file is for 92CE/92CU dynamic mechanism only */ /* include files */ #include "odm_precomp.h" #include #define DPK_DELTA_MAPPING_NUM 13 #define index_mapping_HP_NUM 15 /* 091212 chiyokolin */ static void odm_TXPowerTrackingCallback_ThermalMeter_92C(struct rtw_adapter *Adapter) { struct hal_data_8723a *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; u8 ThermalValue = 0, delta, delta_LCK, delta_IQK, delta_HP; int ele_A, ele_D, TempCCk, X, value32; int Y, ele_C; s8 OFDM_index[2], CCK_index = 0, OFDM_index_old[2] = {0}; s8 CCK_index_old = 0; int i = 0; u8 OFDM_min_index = 6, rf; /* OFDM BB Swing should be less than +3.0dB*/ u8 ThermalValue_HP_count = 0; u32 ThermalValue_HP = 0; s32 index_mapping_HP[index_mapping_HP_NUM] = { 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21 }; s8 index_HP; pdmpriv->TXPowerTrackingCallbackCnt++; /* cosa add for debug */ pdmpriv->bTXPowerTrackingInit = true; if (pHalData->CurrentChannel == 14 && !pdmpriv->bCCKinCH14) pdmpriv->bCCKinCH14 = true; else if (pHalData->CurrentChannel != 14 && pdmpriv->bCCKinCH14) pdmpriv->bCCKinCH14 = false; ThermalValue = (u8)PHY_QueryRFReg(Adapter, RF_PATH_A, RF_T_METER, 0x1f);/* 0x24: RF Reg[4:0] */ rtl8723a_phy_ap_calibrate(Adapter, (ThermalValue - pHalData->EEPROMThermalMeter)); if (pHalData->rf_type == RF_2T2R) rf = 2; else rf = 1; if (ThermalValue) { /* Query OFDM path A default setting */ ele_D = rtl8723au_read32(Adapter, rOFDM0_XATxIQImbalance) & bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92C; i++) { /* find the index */ if (ele_D == (OFDMSwingTable23A[i]&bMaskOFDM_D)) { OFDM_index_old[0] = (u8)i; break; } } /* Query OFDM path B default setting */ if (pHalData->rf_type == RF_2T2R) { ele_D = rtl8723au_read32(Adapter, rOFDM0_XBTxIQImbalance); ele_D &= bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92C; i++) { /* find the index */ if (ele_D == (OFDMSwingTable23A[i]&bMaskOFDM_D)) { OFDM_index_old[1] = (u8)i; break; } } } /* Query CCK default setting From 0xa24 */ TempCCk = rtl8723au_read32(Adapter, rCCK0_TxFilter2) & bMaskCCK; for (i = 0 ; i < CCK_TABLE_SIZE ; i++) { if (pdmpriv->bCCKinCH14) { if (!memcmp(&TempCCk, &CCKSwingTable_Ch1423A[i][2], 4)) { CCK_index_old = (u8)i; break; } } else { if (!memcmp(&TempCCk, &CCKSwingTable_Ch1_Ch1323A[i][2], 4)) { CCK_index_old = (u8)i; break; } } } if (!pdmpriv->ThermalValue) { pdmpriv->ThermalValue = pHalData->EEPROMThermalMeter; pdmpriv->ThermalValue_LCK = ThermalValue; pdmpriv->ThermalValue_IQK = ThermalValue; pdmpriv->ThermalValue_DPK = pHalData->EEPROMThermalMeter; for (i = 0; i < rf; i++) { pdmpriv->OFDM_index_HP[i] = OFDM_index_old[i]; pdmpriv->OFDM_index[i] = OFDM_index_old[i]; } pdmpriv->CCK_index_HP = CCK_index_old; pdmpriv->CCK_index = CCK_index_old; } if (pHalData->BoardType == BOARD_USB_High_PA) { pdmpriv->ThermalValue_HP[pdmpriv->ThermalValue_HP_index] = ThermalValue; pdmpriv->ThermalValue_HP_index++; if (pdmpriv->ThermalValue_HP_index == HP_THERMAL_NUM) pdmpriv->ThermalValue_HP_index = 0; for (i = 0; i < HP_THERMAL_NUM; i++) { if (pdmpriv->ThermalValue_HP[i]) { ThermalValue_HP += pdmpriv->ThermalValue_HP[i]; ThermalValue_HP_count++; } } if (ThermalValue_HP_count) ThermalValue = (u8)(ThermalValue_HP / ThermalValue_HP_count); } delta = (ThermalValue > pdmpriv->ThermalValue) ? (ThermalValue - pdmpriv->ThermalValue) : (pdmpriv->ThermalValue - ThermalValue); if (pHalData->BoardType == BOARD_USB_High_PA) { if (pdmpriv->bDoneTxpower) delta_HP = (ThermalValue > pdmpriv->ThermalValue) ? (ThermalValue - pdmpriv->ThermalValue) : (pdmpriv->ThermalValue - ThermalValue); else delta_HP = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); } else { delta_HP = 0; } delta_LCK = (ThermalValue > pdmpriv->ThermalValue_LCK) ? (ThermalValue - pdmpriv->ThermalValue_LCK) : (pdmpriv->ThermalValue_LCK - ThermalValue); delta_IQK = (ThermalValue > pdmpriv->ThermalValue_IQK) ? (ThermalValue - pdmpriv->ThermalValue_IQK) : (pdmpriv->ThermalValue_IQK - ThermalValue); if (delta_LCK > 1) { pdmpriv->ThermalValue_LCK = ThermalValue; rtl8723a_phy_lc_calibrate(Adapter); } if ((delta > 0 || delta_HP > 0) && pdmpriv->TxPowerTrackControl) { if (pHalData->BoardType == BOARD_USB_High_PA) { pdmpriv->bDoneTxpower = true; delta_HP = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); if (delta_HP > index_mapping_HP_NUM-1) index_HP = index_mapping_HP[index_mapping_HP_NUM-1]; else index_HP = index_mapping_HP[delta_HP]; if (ThermalValue > pHalData->EEPROMThermalMeter) { /* set larger Tx power */ for (i = 0; i < rf; i++) OFDM_index[i] = pdmpriv->OFDM_index_HP[i] - index_HP; CCK_index = pdmpriv->CCK_index_HP - index_HP; } else { for (i = 0; i < rf; i++) OFDM_index[i] = pdmpriv->OFDM_index_HP[i] + index_HP; CCK_index = pdmpriv->CCK_index_HP + index_HP; } delta_HP = (ThermalValue > pdmpriv->ThermalValue) ? (ThermalValue - pdmpriv->ThermalValue) : (pdmpriv->ThermalValue - ThermalValue); } else { if (ThermalValue > pdmpriv->ThermalValue) { for (i = 0; i < rf; i++) pdmpriv->OFDM_index[i] -= delta; pdmpriv->CCK_index -= delta; } else { for (i = 0; i < rf; i++) pdmpriv->OFDM_index[i] += delta; pdmpriv->CCK_index += delta; } } /* no adjust */ if (pHalData->BoardType != BOARD_USB_High_PA) { if (ThermalValue > pHalData->EEPROMThermalMeter) { for (i = 0; i < rf; i++) OFDM_index[i] = pdmpriv->OFDM_index[i]+1; CCK_index = pdmpriv->CCK_index+1; } else { for (i = 0; i < rf; i++) OFDM_index[i] = pdmpriv->OFDM_index[i]; CCK_index = pdmpriv->CCK_index; } } for (i = 0; i < rf; i++) { if (OFDM_index[i] > (OFDM_TABLE_SIZE_92C-1)) OFDM_index[i] = (OFDM_TABLE_SIZE_92C-1); else if (OFDM_index[i] < OFDM_min_index) OFDM_index[i] = OFDM_min_index; } if (CCK_index > (CCK_TABLE_SIZE-1)) CCK_index = CCK_TABLE_SIZE-1; else if (CCK_index < 0) CCK_index = 0; } if (pdmpriv->TxPowerTrackControl && (delta != 0 || delta_HP != 0)) { /* Adujst OFDM Ant_A according to IQK result */ ele_D = (OFDMSwingTable23A[OFDM_index[0]] & 0xFFC00000)>>22; X = pdmpriv->RegE94; Y = pdmpriv->RegE9C; if (X != 0) { if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; ele_A = ((X * ele_D)>>8)&0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D)>>8)&0x000003FF; /* write new elements A, C, D to regC80 and regC94, element B is always 0 */ value32 = (ele_D<<22)|((ele_C&0x3F)<<16)|ele_A; rtl8723au_write32(Adapter, rOFDM0_XATxIQImbalance, value32); value32 = (ele_C&0x000003C0)>>6; PHY_SetBBReg(Adapter, rOFDM0_XCTxAFE, bMaskH4Bits, value32); value32 = ((X * ele_D)>>7)&0x01; PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(31), value32); value32 = ((Y * ele_D)>>7)&0x01; PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(29), value32); } else { rtl8723au_write32(Adapter, rOFDM0_XATxIQImbalance, OFDMSwingTable23A[OFDM_index[0]]); PHY_SetBBReg(Adapter, rOFDM0_XCTxAFE, bMaskH4Bits, 0x00); PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(31) | BIT(29), 0x00); } /* Adjust CCK according to IQK result */ if (!pdmpriv->bCCKinCH14) { rtl8723au_write8(Adapter, 0xa22, CCKSwingTable_Ch1_Ch1323A[CCK_index][0]); rtl8723au_write8(Adapter, 0xa23, CCKSwingTable_Ch1_Ch1323A[CCK_index][1]); rtl8723au_write8(Adapter, 0xa24, CCKSwingTable_Ch1_Ch1323A[CCK_index][2]); rtl8723au_write8(Adapter, 0xa25, CCKSwingTable_Ch1_Ch1323A[CCK_index][3]); rtl8723au_write8(Adapter, 0xa26, CCKSwingTable_Ch1_Ch1323A[CCK_index][4]); rtl8723au_write8(Adapter, 0xa27, CCKSwingTable_Ch1_Ch1323A[CCK_index][5]); rtl8723au_write8(Adapter, 0xa28, CCKSwingTable_Ch1_Ch1323A[CCK_index][6]); rtl8723au_write8(Adapter, 0xa29, CCKSwingTable_Ch1_Ch1323A[CCK_index][7]); } else { rtl8723au_write8(Adapter, 0xa22, CCKSwingTable_Ch1423A[CCK_index][0]); rtl8723au_write8(Adapter, 0xa23, CCKSwingTable_Ch1423A[CCK_index][1]); rtl8723au_write8(Adapter, 0xa24, CCKSwingTable_Ch1423A[CCK_index][2]); rtl8723au_write8(Adapter, 0xa25, CCKSwingTable_Ch1423A[CCK_index][3]); rtl8723au_write8(Adapter, 0xa26, CCKSwingTable_Ch1423A[CCK_index][4]); rtl8723au_write8(Adapter, 0xa27, CCKSwingTable_Ch1423A[CCK_index][5]); rtl8723au_write8(Adapter, 0xa28, CCKSwingTable_Ch1423A[CCK_index][6]); rtl8723au_write8(Adapter, 0xa29, CCKSwingTable_Ch1423A[CCK_index][7]); } if (pHalData->rf_type == RF_2T2R) { ele_D = (OFDMSwingTable23A[(u8)OFDM_index[1]] & 0xFFC00000)>>22; /* new element A = element D x X */ X = pdmpriv->RegEB4; Y = pdmpriv->RegEBC; if (X != 0) { if ((X & 0x00000200) != 0) /* consider minus */ X = X | 0xFFFFFC00; ele_A = ((X * ele_D)>>8)&0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D)>>8)&0x00003FF; /* write new elements A, C, D to regC88 and regC9C, element B is always 0 */ value32 = (ele_D<<22)|((ele_C&0x3F)<<16) | ele_A; rtl8723au_write32(Adapter, rOFDM0_XBTxIQImbalance, value32); value32 = (ele_C&0x000003C0)>>6; PHY_SetBBReg(Adapter, rOFDM0_XDTxAFE, bMaskH4Bits, value32); value32 = ((X * ele_D)>>7)&0x01; PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(27), value32); value32 = ((Y * ele_D)>>7)&0x01; PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(25), value32); } else { rtl8723au_write32(Adapter, rOFDM0_XBTxIQImbalance, OFDMSwingTable23A[OFDM_index[1]]); PHY_SetBBReg(Adapter, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00); PHY_SetBBReg(Adapter, rOFDM0_ECCAThreshold, BIT(27) | BIT(25), 0x00); } } } if (delta_IQK > 3) { pdmpriv->ThermalValue_IQK = ThermalValue; rtl8723a_phy_iq_calibrate(Adapter, false); } /* update thermal meter value */ if (pdmpriv->TxPowerTrackControl) pdmpriv->ThermalValue = ThermalValue; } pdmpriv->TXPowercount = 0; } /* Description: */ /* - Dispatch TxPower Tracking direct call ONLY for 92s. */ /* - We shall NOT schedule Workitem within PASSIVE LEVEL, which will cause system resource */ /* leakage under some platform. */ /* Assumption: */ /* PASSIVE_LEVEL when this routine is called. */ static void ODM_TXPowerTracking92CDirectCall(struct rtw_adapter *Adapter) { odm_TXPowerTrackingCallback_ThermalMeter_92C(Adapter); } void rtl8723a_odm_check_tx_power_tracking(struct rtw_adapter *Adapter) { struct hal_data_8723a *pHalData = GET_HAL_DATA(Adapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; if (!pdmpriv->TM_Trigger) { /* at least delay 1 sec */ PHY_SetRFReg(Adapter, RF_PATH_A, RF_T_METER, bRFRegOffsetMask, 0x60); pdmpriv->TM_Trigger = 1; return; } else { ODM_TXPowerTracking92CDirectCall(Adapter); pdmpriv->TM_Trigger = 0; } } /* IQK */ #define MAX_TOLERANCE 5 #define IQK_DELAY_TIME 1 /* ms */ static u8 _PHY_PathA_IQK(struct rtw_adapter *pAdapter, bool configPathB) { u32 regEAC, regE94, regE9C, regEA4; u8 result = 0x00; struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter); /* path-A IQK setting */ rtl8723au_write32(pAdapter, rTx_IQK_Tone_A, 0x10008c1f); rtl8723au_write32(pAdapter, rRx_IQK_Tone_A, 0x10008c1f); rtl8723au_write32(pAdapter, rTx_IQK_PI_A, 0x82140102); rtl8723au_write32(pAdapter, rRx_IQK_PI_A, configPathB ? 0x28160202 : IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)?0x28160202:0x28160502); /* path-B IQK setting */ if (configPathB) { rtl8723au_write32(pAdapter, rTx_IQK_Tone_B, 0x10008c22); rtl8723au_write32(pAdapter, rRx_IQK_Tone_B, 0x10008c22); rtl8723au_write32(pAdapter, rTx_IQK_PI_B, 0x82140102); rtl8723au_write32(pAdapter, rRx_IQK_PI_B, 0x28160202); } /* LO calibration setting */ rtl8723au_write32(pAdapter, rIQK_AGC_Rsp, 0x001028d1); /* One shot, path A LOK & IQK */ rtl8723au_write32(pAdapter, rIQK_AGC_Pts, 0xf9000000); rtl8723au_write32(pAdapter, rIQK_AGC_Pts, 0xf8000000); /* delay x ms */ /* PlatformStallExecution(IQK_DELAY_TIME*1000); */ udelay(IQK_DELAY_TIME*1000); /* Check failed */ regEAC = rtl8723au_read32(pAdapter, rRx_Power_After_IQK_A_2); regE94 = rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_A); regE9C = rtl8723au_read32(pAdapter, rTx_Power_After_IQK_A); regEA4 = rtl8723au_read32(pAdapter, rRx_Power_Before_IQK_A_2); if (!(regEAC & BIT(28)) && (((regE94 & 0x03FF0000)>>16) != 0x142) && (((regE9C & 0x03FF0000)>>16) != 0x42)) result |= 0x01; else /* if Tx not OK, ignore Rx */ return result; if (!(regEAC & BIT(27)) && /* if Tx is OK, check whether Rx is OK */ (((regEA4 & 0x03FF0000)>>16) != 0x132) && (((regEAC & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else DBG_8723A("Path A Rx IQK fail!!\n"); return result; } static u8 _PHY_PathB_IQK(struct rtw_adapter *pAdapter) { u32 regEAC, regEB4, regEBC, regEC4, regECC; u8 result = 0x00; /* One shot, path B LOK & IQK */ rtl8723au_write32(pAdapter, rIQK_AGC_Cont, 0x00000002); rtl8723au_write32(pAdapter, rIQK_AGC_Cont, 0x00000000); /* delay x ms */ udelay(IQK_DELAY_TIME*1000); /* Check failed */ regEAC = rtl8723au_read32(pAdapter, rRx_Power_After_IQK_A_2); regEB4 = rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_B); regEBC = rtl8723au_read32(pAdapter, rTx_Power_After_IQK_B); regEC4 = rtl8723au_read32(pAdapter, rRx_Power_Before_IQK_B_2); regECC = rtl8723au_read32(pAdapter, rRx_Power_After_IQK_B_2); if (!(regEAC & BIT(31)) && (((regEB4 & 0x03FF0000)>>16) != 0x142) && (((regEBC & 0x03FF0000)>>16) != 0x42)) result |= 0x01; else return result; if (!(regEAC & BIT(30)) && (((regEC4 & 0x03FF0000)>>16) != 0x132) && (((regECC & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else DBG_8723A("Path B Rx IQK fail!!\n"); return result; } static void _PHY_PathAFillIQKMatrix(struct rtw_adapter *pAdapter, bool bIQKOK, int result[][8], u8 final_candidate, bool bTxOnly ) { u32 Oldval_0, X, TX0_A, reg; s32 Y, TX0_C; DBG_8723A("Path A IQ Calibration %s !\n", (bIQKOK)?"Success":"Failed"); if (final_candidate == 0xFF) { return; } else if (bIQKOK) { Oldval_0 = rtl8723au_read32(pAdapter, rOFDM0_XATxIQImbalance); Oldval_0 = (Oldval_0 >> 22) & 0x3FF; X = result[final_candidate][0]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX0_A = (X * Oldval_0) >> 8; PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A); PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(31), ((X * Oldval_0>>7) & 0x1)); Y = result[final_candidate][1]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX0_C = (Y * Oldval_0) >> 8; PHY_SetBBReg(pAdapter, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C&0x3C0)>>6)); PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C&0x3F)); PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(29), ((Y * Oldval_0>>7) & 0x1)); if (bTxOnly) { DBG_8723A("_PHY_PathAFillIQKMatrix only Tx OK\n"); return; } reg = result[final_candidate][2]; PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0x3FF, reg); reg = result[final_candidate][3] & 0x3F; PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][3] >> 6) & 0xF; PHY_SetBBReg(pAdapter, rOFDM0_RxIQExtAnta, 0xF0000000, reg); } } static void _PHY_PathBFillIQKMatrix(struct rtw_adapter *pAdapter, bool bIQKOK, int result[][8], u8 final_candidate, bool bTxOnly) { u32 Oldval_1, X, TX1_A, reg; s32 Y, TX1_C; DBG_8723A("Path B IQ Calibration %s !\n", (bIQKOK)?"Success":"Failed"); if (final_candidate == 0xFF) { return; } else if (bIQKOK) { Oldval_1 = rtl8723au_read32(pAdapter, rOFDM0_XBTxIQImbalance); Oldval_1 = (Oldval_1 >> 22) & 0x3FF; X = result[final_candidate][4]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX1_A = (X * Oldval_1) >> 8; PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A); PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(27), ((X * Oldval_1 >> 7) & 0x1)); Y = result[final_candidate][5]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX1_C = (Y * Oldval_1) >> 8; PHY_SetBBReg(pAdapter, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C & 0x3C0) >> 6)); PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C & 0x3F)); PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(25), ((Y * Oldval_1 >> 7) & 0x1)); if (bTxOnly) return; reg = result[final_candidate][6]; PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0x3FF, reg); reg = result[final_candidate][7] & 0x3F; PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][7] >> 6) & 0xF; PHY_SetBBReg(pAdapter, rOFDM0_AGCRSSITable, 0x0000F000, reg); } } static void _PHY_SaveADDARegisters(struct rtw_adapter *pAdapter, u32 *ADDAReg, u32 *ADDABackup, u32 RegisterNum) { u32 i; for (i = 0 ; i < RegisterNum ; i++) { ADDABackup[i] = rtl8723au_read32(pAdapter, ADDAReg[i]); } } static void _PHY_SaveMACRegisters(struct rtw_adapter *pAdapter, u32 *MACReg, u32 *MACBackup) { u32 i; for (i = 0 ; i < (IQK_MAC_REG_NUM - 1); i++) { MACBackup[i] = rtl8723au_read8(pAdapter, MACReg[i]); } MACBackup[i] = rtl8723au_read32(pAdapter, MACReg[i]); } static void _PHY_ReloadADDARegisters(struct rtw_adapter *pAdapter, u32 *ADDAReg, u32 *ADDABackup, u32 RegiesterNum) { u32 i; for (i = 0 ; i < RegiesterNum ; i++) { rtl8723au_write32(pAdapter, ADDAReg[i], ADDABackup[i]); } } static void _PHY_ReloadMACRegisters(struct rtw_adapter *pAdapter, u32 *MACReg, u32 *MACBackup) { u32 i; for (i = 0 ; i < (IQK_MAC_REG_NUM - 1); i++) rtl8723au_write8(pAdapter, MACReg[i], (u8)MACBackup[i]); rtl8723au_write32(pAdapter, MACReg[i], MACBackup[i]); } static void _PHY_PathADDAOn(struct rtw_adapter *pAdapter, u32 *ADDAReg, bool isPathAOn, bool is2T) { u32 pathOn; u32 i; pathOn = isPathAOn ? 0x04db25a4 : 0x0b1b25a4; if (!is2T) { pathOn = 0x0bdb25a0; rtl8723au_write32(pAdapter, ADDAReg[0], 0x0b1b25a0); } else { rtl8723au_write32(pAdapter, ADDAReg[0], pathOn); } for (i = 1 ; i < IQK_ADDA_REG_NUM ; i++) rtl8723au_write32(pAdapter, ADDAReg[i], pathOn); } static void _PHY_MACSettingCalibration(struct rtw_adapter *pAdapter, u32 *MACReg, u32 *MACBackup) { u32 i = 0; rtl8723au_write8(pAdapter, MACReg[i], 0x3F); for (i = 1 ; i < (IQK_MAC_REG_NUM - 1); i++) { rtl8723au_write8(pAdapter, MACReg[i], (u8)(MACBackup[i] & ~BIT(3))); } rtl8723au_write8(pAdapter, MACReg[i], (u8)(MACBackup[i] & ~BIT(5))); } static void _PHY_PathAStandBy(struct rtw_adapter *pAdapter) { rtl8723au_write32(pAdapter, rFPGA0_IQK, 0x0); rtl8723au_write32(pAdapter, 0x840, 0x00010000); rtl8723au_write32(pAdapter, rFPGA0_IQK, 0x80800000); } static void _PHY_PIModeSwitch(struct rtw_adapter *pAdapter, bool PIMode) { u32 mode; mode = PIMode ? 0x01000100 : 0x01000000; rtl8723au_write32(pAdapter, 0x820, mode); rtl8723au_write32(pAdapter, 0x828, mode); } /* return false => do IQK again */ static bool _PHY_SimularityCompare(struct rtw_adapter *pAdapter, int result[][8], u8 c1, u8 c2) { u32 i, j, diff, SimularityBitMap, bound = 0; struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter); u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */ bool bResult = true; if (pHalData->rf_type == RF_2T2R) bound = 8; else bound = 4; SimularityBitMap = 0; for (i = 0; i < bound; i++) { diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]); if (diff > MAX_TOLERANCE) { if ((i == 2 || i == 6) && !SimularityBitMap) { if (result[c1][i]+result[c1][i+1] == 0) final_candidate[(i/4)] = c2; else if (result[c2][i]+result[c2][i+1] == 0) final_candidate[(i/4)] = c1; else SimularityBitMap = SimularityBitMap|(1<rf_type == RF_2T2R) { /* path B OK */ for (i = 4; i < 8; i++) result[3][i] = result[c1][i]; return false; } else { return false; } } static void _PHY_IQCalibrate(struct rtw_adapter *pAdapter, int result[][8], u8 t, bool is2T) { struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; u32 i; u8 PathAOK, PathBOK; u32 ADDA_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u32 IQK_MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG }; u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD }; const u32 retryCount = 2; /* Note: IQ calibration must be performed after loading */ /* PHY_REG.txt , and radio_a, radio_b.txt */ u32 bbvalue; if (t == 0) { bbvalue = rtl8723au_read32(pAdapter, rFPGA0_RFMOD); /* Save ADDA parameters, turn Path A ADDA on */ _PHY_SaveADDARegisters(pAdapter, ADDA_REG, pdmpriv->ADDA_backup, IQK_ADDA_REG_NUM); _PHY_SaveMACRegisters(pAdapter, IQK_MAC_REG, pdmpriv->IQK_MAC_backup); _PHY_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pdmpriv->IQK_BB_backup, IQK_BB_REG_NUM); } _PHY_PathADDAOn(pAdapter, ADDA_REG, true, is2T); if (t == 0) pdmpriv->bRfPiEnable = (u8) PHY_QueryBBReg(pAdapter, rFPGA0_XA_HSSIParameter1, BIT(8)); if (!pdmpriv->bRfPiEnable) { /* Switch BB to PI mode to do IQ Calibration. */ _PHY_PIModeSwitch(pAdapter, true); } PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, BIT(24), 0x00); rtl8723au_write32(pAdapter, rOFDM0_TRxPathEnable, 0x03a05600); rtl8723au_write32(pAdapter, rOFDM0_TRMuxPar, 0x000800e4); rtl8723au_write32(pAdapter, rFPGA0_XCD_RFInterfaceSW, 0x22204000); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT(10), 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT(26), 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT(10), 0x00); PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT(10), 0x00); if (is2T) { rtl8723au_write32(pAdapter, rFPGA0_XA_LSSIParameter, 0x00010000); rtl8723au_write32(pAdapter, rFPGA0_XB_LSSIParameter, 0x00010000); } /* MAC settings */ _PHY_MACSettingCalibration(pAdapter, IQK_MAC_REG, pdmpriv->IQK_MAC_backup); /* Page B init */ rtl8723au_write32(pAdapter, rConfig_AntA, 0x00080000); if (is2T) rtl8723au_write32(pAdapter, rConfig_AntB, 0x00080000); /* IQ calibration setting */ rtl8723au_write32(pAdapter, rFPGA0_IQK, 0x80800000); rtl8723au_write32(pAdapter, rTx_IQK, 0x01007c00); rtl8723au_write32(pAdapter, rRx_IQK, 0x01004800); for (i = 0 ; i < retryCount ; i++) { PathAOK = _PHY_PathA_IQK(pAdapter, is2T); if (PathAOK == 0x03) { DBG_8723A("Path A IQK Success!!\n"); result[t][0] = (rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_A)&0x3FF0000)>>16; result[t][1] = (rtl8723au_read32(pAdapter, rTx_Power_After_IQK_A)&0x3FF0000)>>16; result[t][2] = (rtl8723au_read32(pAdapter, rRx_Power_Before_IQK_A_2)&0x3FF0000)>>16; result[t][3] = (rtl8723au_read32(pAdapter, rRx_Power_After_IQK_A_2)&0x3FF0000)>>16; break; } else if (i == (retryCount-1) && PathAOK == 0x01) { /* Tx IQK OK */ DBG_8723A("Path A IQK Only Tx Success!!\n"); result[t][0] = (rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_A)&0x3FF0000)>>16; result[t][1] = (rtl8723au_read32(pAdapter, rTx_Power_After_IQK_A)&0x3FF0000)>>16; } } if (0x00 == PathAOK) { DBG_8723A("Path A IQK failed!!\n"); } if (is2T) { _PHY_PathAStandBy(pAdapter); /* Turn Path B ADDA on */ _PHY_PathADDAOn(pAdapter, ADDA_REG, false, is2T); for (i = 0 ; i < retryCount ; i++) { PathBOK = _PHY_PathB_IQK(pAdapter); if (PathBOK == 0x03) { DBG_8723A("Path B IQK Success!!\n"); result[t][4] = (rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_B)&0x3FF0000)>>16; result[t][5] = (rtl8723au_read32(pAdapter, rTx_Power_After_IQK_B)&0x3FF0000)>>16; result[t][6] = (rtl8723au_read32(pAdapter, rRx_Power_Before_IQK_B_2)&0x3FF0000)>>16; result[t][7] = (rtl8723au_read32(pAdapter, rRx_Power_After_IQK_B_2)&0x3FF0000)>>16; break; } else if (i == (retryCount - 1) && PathBOK == 0x01) { /* Tx IQK OK */ DBG_8723A("Path B Only Tx IQK Success!!\n"); result[t][4] = (rtl8723au_read32(pAdapter, rTx_Power_Before_IQK_B)&0x3FF0000)>>16; result[t][5] = (rtl8723au_read32(pAdapter, rTx_Power_After_IQK_B)&0x3FF0000)>>16; } } if (0x00 == PathBOK) { DBG_8723A("Path B IQK failed!!\n"); } } /* Back to BB mode, load original value */ rtl8723au_write32(pAdapter, rFPGA0_IQK, 0); if (t != 0) { if (!pdmpriv->bRfPiEnable) { /* Switch back BB to SI mode after finish IQ Calibration. */ _PHY_PIModeSwitch(pAdapter, false); } /* Reload ADDA power saving parameters */ _PHY_ReloadADDARegisters(pAdapter, ADDA_REG, pdmpriv->ADDA_backup, IQK_ADDA_REG_NUM); /* Reload MAC parameters */ _PHY_ReloadMACRegisters(pAdapter, IQK_MAC_REG, pdmpriv->IQK_MAC_backup); /* Reload BB parameters */ _PHY_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pdmpriv->IQK_BB_backup, IQK_BB_REG_NUM); /* Restore RX initial gain */ rtl8723au_write32(pAdapter, rFPGA0_XA_LSSIParameter, 0x00032ed3); if (is2T) { rtl8723au_write32(pAdapter, rFPGA0_XB_LSSIParameter, 0x00032ed3); } /* load 0xe30 IQC default value */ rtl8723au_write32(pAdapter, rTx_IQK_Tone_A, 0x01008c00); rtl8723au_write32(pAdapter, rRx_IQK_Tone_A, 0x01008c00); } } static void _PHY_LCCalibrate(struct rtw_adapter *pAdapter, bool is2T) { u8 tmpReg; u32 RF_Amode = 0, RF_Bmode = 0, LC_Cal; /* Check continuous TX and Packet TX */ tmpReg = rtl8723au_read8(pAdapter, 0xd03); if ((tmpReg&0x70) != 0) { /* Deal with contisuous TX case */ /* disable all continuous TX */ rtl8723au_write8(pAdapter, 0xd03, tmpReg&0x8F); } else { /* Deal with Packet TX case */ /* block all queues */ rtl8723au_write8(pAdapter, REG_TXPAUSE, 0xFF); } if ((tmpReg&0x70) != 0) { /* 1. Read original RF mode */ /* Path-A */ RF_Amode = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits); /* Path-B */ if (is2T) RF_Bmode = PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits); /* 2. Set RF mode = standby mode */ /* Path-A */ PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode&0x8FFFF)|0x10000); /* Path-B */ if (is2T) PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode&0x8FFFF)|0x10000); } /* 3. Read RF reg18 */ LC_Cal = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits); /* 4. Set LC calibration begin */ PHY_SetRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal|0x08000); msleep(100); /* Restore original situation */ if ((tmpReg&0x70) != 0) { /* Deal with contuous TX case */ /* Path-A */ rtl8723au_write8(pAdapter, 0xd03, tmpReg); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode); /* Path-B */ if (is2T) PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode); } else /* Deal with Packet TX case */ rtl8723au_write8(pAdapter, REG_TXPAUSE, 0x00); } /* Analog Pre-distortion calibration */ #define APK_BB_REG_NUM 8 #define APK_CURVE_REG_NUM 4 #define PATH_NUM 2 void rtl8723a_phy_iq_calibrate(struct rtw_adapter *pAdapter, bool bReCovery) { struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter); struct dm_priv *pdmpriv = &pHalData->dmpriv; s32 result[4][8]; /* last is final result */ u8 i, final_candidate; bool bPathAOK, bPathBOK; s32 RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4; s32 RegECC, RegTmp = 0; bool is12simular, is13simular, is23simular; bool bStartContTx = false, bSingleTone = false; bool bCarrierSuppression = false; u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance, rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable, rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance, rOFDM0_XCTxAFE, rOFDM0_XDTxAFE, rOFDM0_RxIQExtAnta }; /* ignore IQK when continuous Tx */ if (bStartContTx || bSingleTone || bCarrierSuppression) return; if (bReCovery) { _PHY_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pdmpriv->IQK_BB_backup_recover, 9); return; } DBG_8723A("IQK:Start!!!\n"); for (i = 0; i < 8; i++) { result[0][i] = 0; result[1][i] = 0; result[2][i] = 0; result[3][i] = 0; } final_candidate = 0xff; bPathAOK = false; bPathBOK = false; is12simular = false; is23simular = false; is13simular = false; for (i = 0; i < 3; i++) { if (pHalData->rf_type == RF_2T2R) _PHY_IQCalibrate(pAdapter, result, i, true); else /* For 88C 1T1R */ _PHY_IQCalibrate(pAdapter, result, i, false); if (i == 1) { is12simular = _PHY_SimularityCompare(pAdapter, result, 0, 1); if (is12simular) { final_candidate = 0; break; } } if (i == 2) { is13simular = _PHY_SimularityCompare(pAdapter, result, 0, 2); if (is13simular) { final_candidate = 0; break; } is23simular = _PHY_SimularityCompare(pAdapter, result, 1, 2); if (is23simular) { final_candidate = 1; } else { for (i = 0; i < 8; i++) RegTmp += result[3][i]; if (RegTmp != 0) final_candidate = 3; else final_candidate = 0xFF; } } } for (i = 0; i < 4; i++) { RegE94 = result[i][0]; RegE9C = result[i][1]; RegEA4 = result[i][2]; RegEAC = result[i][3]; RegEB4 = result[i][4]; RegEBC = result[i][5]; RegEC4 = result[i][6]; RegECC = result[i][7]; } if (final_candidate != 0xff) { RegE94 = result[final_candidate][0]; pdmpriv->RegE94 = RegE94; RegE9C = result[final_candidate][1]; pdmpriv->RegE9C = RegE9C; RegEA4 = result[final_candidate][2]; RegEAC = result[final_candidate][3]; RegEB4 = result[final_candidate][4]; pdmpriv->RegEB4 = RegEB4; RegEBC = result[final_candidate][5]; pdmpriv->RegEBC = RegEBC; RegEC4 = result[final_candidate][6]; RegECC = result[final_candidate][7]; DBG_8723A("IQK: final_candidate is %x\n", final_candidate); DBG_8723A("IQK: RegE94 =%x RegE9C =%x RegEA4 =%x RegEAC =%x RegEB4 =%x RegEBC =%x RegEC4 =%x RegECC =%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC); bPathAOK = bPathBOK = true; } else { RegE94 = RegEB4 = pdmpriv->RegE94 = pdmpriv->RegEB4 = 0x100; /* X default value */ RegE9C = RegEBC = pdmpriv->RegE9C = pdmpriv->RegEBC = 0x0; /* Y default value */ } if ((RegE94 != 0)/*&&(RegEA4 != 0)*/) _PHY_PathAFillIQKMatrix(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0)); if (pHalData->rf_type == RF_2T2R) { if ((RegEB4 != 0)/*&&(RegEC4 != 0)*/) _PHY_PathBFillIQKMatrix(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0)); } _PHY_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pdmpriv->IQK_BB_backup_recover, 9); } void rtl8723a_phy_lc_calibrate(struct rtw_adapter *pAdapter) { struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter); struct mlme_ext_priv *pmlmeext = &pAdapter->mlmeextpriv; bool bStartContTx = false, bSingleTone = false, bCarrierSuppression = false; /* ignore IQK when continuous Tx */ if (bStartContTx || bSingleTone || bCarrierSuppression) return; if (pmlmeext->sitesurvey_res.state == SCAN_PROCESS) return; if (pHalData->rf_type == RF_2T2R) _PHY_LCCalibrate(pAdapter, true); else /* For 88C 1T1R */ _PHY_LCCalibrate(pAdapter, false); } void rtl8723a_phy_ap_calibrate(struct rtw_adapter *pAdapter, char delta) { }