#ifndef __NVKM_PMU_MEMX_H__ #define __NVKM_PMU_MEMX_H__ #include "priv.h" #include struct nvkm_memx { struct nvkm_pmu *pmu; u32 base; u32 size; struct { u32 mthd; u32 size; u32 data[64]; } c; }; static void memx_out(struct nvkm_memx *memx) { struct nvkm_pmu *pmu = memx->pmu; int i; if (memx->c.mthd) { nv_wr32(pmu, 0x10a1c4, (memx->c.size << 16) | memx->c.mthd); for (i = 0; i < memx->c.size; i++) nv_wr32(pmu, 0x10a1c4, memx->c.data[i]); memx->c.mthd = 0; memx->c.size = 0; } } static void memx_cmd(struct nvkm_memx *memx, u32 mthd, u32 size, u32 data[]) { if ((memx->c.size + size >= ARRAY_SIZE(memx->c.data)) || (memx->c.mthd && memx->c.mthd != mthd)) memx_out(memx); memcpy(&memx->c.data[memx->c.size], data, size * sizeof(data[0])); memx->c.size += size; memx->c.mthd = mthd; } int nvkm_memx_init(struct nvkm_pmu *pmu, struct nvkm_memx **pmemx) { struct nvkm_memx *memx; u32 reply[2]; int ret; ret = pmu->message(pmu, reply, PROC_MEMX, MEMX_MSG_INFO, MEMX_INFO_DATA, 0); if (ret) return ret; memx = *pmemx = kzalloc(sizeof(*memx), GFP_KERNEL); if (!memx) return -ENOMEM; memx->pmu = pmu; memx->base = reply[0]; memx->size = reply[1]; /* acquire data segment access */ do { nv_wr32(pmu, 0x10a580, 0x00000003); } while (nv_rd32(pmu, 0x10a580) != 0x00000003); nv_wr32(pmu, 0x10a1c0, 0x01000000 | memx->base); return 0; } int nvkm_memx_fini(struct nvkm_memx **pmemx, bool exec) { struct nvkm_memx *memx = *pmemx; struct nvkm_pmu *pmu = memx->pmu; u32 finish, reply[2]; /* flush the cache... */ memx_out(memx); /* release data segment access */ finish = nv_rd32(pmu, 0x10a1c0) & 0x00ffffff; nv_wr32(pmu, 0x10a580, 0x00000000); /* call MEMX process to execute the script, and wait for reply */ if (exec) { pmu->message(pmu, reply, PROC_MEMX, MEMX_MSG_EXEC, memx->base, finish); } nv_debug(memx->pmu, "Exec took %uns, PMU_IN %08x\n", reply[0], reply[1]); kfree(memx); return 0; } void nvkm_memx_wr32(struct nvkm_memx *memx, u32 addr, u32 data) { nv_debug(memx->pmu, "R[%06x] = 0x%08x\n", addr, data); memx_cmd(memx, MEMX_WR32, 2, (u32[]){ addr, data }); } void nvkm_memx_wait(struct nvkm_memx *memx, u32 addr, u32 mask, u32 data, u32 nsec) { nv_debug(memx->pmu, "R[%06x] & 0x%08x == 0x%08x, %d us\n", addr, mask, data, nsec); memx_cmd(memx, MEMX_WAIT, 4, (u32[]){ addr, mask, data, nsec }); memx_out(memx); /* fuc can't handle multiple */ } void nvkm_memx_nsec(struct nvkm_memx *memx, u32 nsec) { nv_debug(memx->pmu, " DELAY = %d ns\n", nsec); memx_cmd(memx, MEMX_DELAY, 1, (u32[]){ nsec }); memx_out(memx); /* fuc can't handle multiple */ } void nvkm_memx_wait_vblank(struct nvkm_memx *memx) { struct nvkm_pmu *pmu = memx->pmu; u32 heads, x, y, px = 0; int i, head_sync; if (nv_device(pmu)->chipset < 0xd0) { heads = nv_rd32(pmu, 0x610050); for (i = 0; i < 2; i++) { /* Heuristic: sync to head with biggest resolution */ if (heads & (2 << (i << 3))) { x = nv_rd32(pmu, 0x610b40 + (0x540 * i)); y = (x & 0xffff0000) >> 16; x &= 0x0000ffff; if ((x * y) > px) { px = (x * y); head_sync = i; } } } } if (px == 0) { nv_debug(memx->pmu, "WAIT VBLANK !NO ACTIVE HEAD\n"); return; } nv_debug(memx->pmu, "WAIT VBLANK HEAD%d\n", head_sync); memx_cmd(memx, MEMX_VBLANK, 1, (u32[]){ head_sync }); memx_out(memx); /* fuc can't handle multiple */ } void nvkm_memx_train(struct nvkm_memx *memx) { nv_debug(memx->pmu, " MEM TRAIN\n"); memx_cmd(memx, MEMX_TRAIN, 0, NULL); } int nvkm_memx_train_result(struct nvkm_pmu *pmu, u32 *res, int rsize) { u32 reply[2], base, size, i; int ret; ret = pmu->message(pmu, reply, PROC_MEMX, MEMX_MSG_INFO, MEMX_INFO_TRAIN, 0); if (ret) return ret; base = reply[0]; size = reply[1] >> 2; if (size > rsize) return -ENOMEM; /* read the packet */ nv_wr32(pmu, 0x10a1c0, 0x02000000 | base); for (i = 0; i < size; i++) res[i] = nv_rd32(pmu, 0x10a1c4); return 0; } void nvkm_memx_block(struct nvkm_memx *memx) { nv_debug(memx->pmu, " HOST BLOCKED\n"); memx_cmd(memx, MEMX_ENTER, 0, NULL); } void nvkm_memx_unblock(struct nvkm_memx *memx) { nv_debug(memx->pmu, " HOST UNBLOCKED\n"); memx_cmd(memx, MEMX_LEAVE, 0, NULL); } #endif