/* * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* * GK20A does not have dedicated video memory, and to accurately represent this * fact Nouveau will not create a RAM device for it. Therefore its instmem * implementation must be done directly on top of system memory, while providing * coherent read and write operations. * * Instmem can be allocated through two means: * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory * pages contiguous to the GPU. This is the preferred way. * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically * contiguous memory. * * In both cases CPU read and writes are performed using PRAMIN (i.e. using the * GPU path) to ensure these operations are coherent for the GPU. This allows us * to use more "relaxed" allocation parameters when using the DMA API, since we * never need a kernel mapping. */ #include #include #include #ifdef __KERNEL__ #include #include #include #endif #include "priv.h" struct gk20a_instobj_priv { struct nvkm_instobj base; /* Must be second member here - see nouveau_gpuobj_map_vm() */ struct nvkm_mem *mem; /* Pointed by mem */ struct nvkm_mem _mem; }; /* * Used for objects allocated using the DMA API */ struct gk20a_instobj_dma { struct gk20a_instobj_priv base; void *cpuaddr; dma_addr_t handle; struct nvkm_mm_node r; }; /* * Used for objects flattened using the IOMMU API */ struct gk20a_instobj_iommu { struct gk20a_instobj_priv base; /* array of base.mem->size pages */ struct page *pages[]; }; struct gk20a_instmem_priv { struct nvkm_instmem base; spinlock_t lock; u64 addr; /* Only used if IOMMU if present */ struct mutex *mm_mutex; struct nvkm_mm *mm; struct iommu_domain *domain; unsigned long iommu_pgshift; /* Only used by DMA API */ struct dma_attrs attrs; }; /* * Use PRAMIN to read/write data and avoid coherency issues. * PRAMIN uses the GPU path and ensures data will always be coherent. * * A dynamic mapping based solution would be desirable in the future, but * the issue remains of how to maintain coherency efficiently. On ARM it is * not easy (if possible at all?) to create uncached temporary mappings. */ static u32 gk20a_instobj_rd32(struct nvkm_object *object, u64 offset) { struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object); struct gk20a_instobj_priv *node = (void *)object; unsigned long flags; u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; u32 data; spin_lock_irqsave(&priv->lock, flags); if (unlikely(priv->addr != base)) { nv_wr32(priv, 0x001700, base >> 16); priv->addr = base; } data = nv_rd32(priv, 0x700000 + addr); spin_unlock_irqrestore(&priv->lock, flags); return data; } static void gk20a_instobj_wr32(struct nvkm_object *object, u64 offset, u32 data) { struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object); struct gk20a_instobj_priv *node = (void *)object; unsigned long flags; u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; spin_lock_irqsave(&priv->lock, flags); if (unlikely(priv->addr != base)) { nv_wr32(priv, 0x001700, base >> 16); priv->addr = base; } nv_wr32(priv, 0x700000 + addr, data); spin_unlock_irqrestore(&priv->lock, flags); } static void gk20a_instobj_dtor_dma(struct gk20a_instobj_priv *_node) { struct gk20a_instobj_dma *node = (void *)_node; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); struct device *dev = nv_device_base(nv_device(priv)); if (unlikely(!node->cpuaddr)) return; dma_free_attrs(dev, _node->mem->size << PAGE_SHIFT, node->cpuaddr, node->handle, &priv->attrs); } static void gk20a_instobj_dtor_iommu(struct gk20a_instobj_priv *_node) { struct gk20a_instobj_iommu *node = (void *)_node; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); struct nvkm_mm_node *r; int i; if (unlikely(list_empty(&_node->mem->regions))) return; r = list_first_entry(&_node->mem->regions, struct nvkm_mm_node, rl_entry); /* clear bit 34 to unmap pages */ r->offset &= ~BIT(34 - priv->iommu_pgshift); /* Unmap pages from GPU address space and free them */ for (i = 0; i < _node->mem->size; i++) { iommu_unmap(priv->domain, (r->offset + i) << priv->iommu_pgshift, PAGE_SIZE); __free_page(node->pages[i]); } /* Release area from GPU address space */ mutex_lock(priv->mm_mutex); nvkm_mm_free(priv->mm, &r); mutex_unlock(priv->mm_mutex); } static void gk20a_instobj_dtor(struct nvkm_object *object) { struct gk20a_instobj_priv *node = (void *)object; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); if (priv->domain) gk20a_instobj_dtor_iommu(node); else gk20a_instobj_dtor_dma(node); nvkm_instobj_destroy(&node->base); } static int gk20a_instobj_ctor_dma(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, u32 npages, u32 align, struct gk20a_instobj_priv **_node) { struct gk20a_instobj_dma *node; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); struct device *dev = nv_device_base(nv_device(parent)); int ret; ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node), (void **)&node); *_node = &node->base; if (ret) return ret; node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, &node->handle, GFP_KERNEL, &priv->attrs); if (!node->cpuaddr) { nv_error(priv, "cannot allocate DMA memory\n"); return -ENOMEM; } /* alignment check */ if (unlikely(node->handle & (align - 1))) nv_warn(priv, "memory not aligned as requested: %pad (0x%x)\n", &node->handle, align); /* present memory for being mapped using small pages */ node->r.type = 12; node->r.offset = node->handle >> 12; node->r.length = (npages << PAGE_SHIFT) >> 12; node->base._mem.offset = node->handle; INIT_LIST_HEAD(&node->base._mem.regions); list_add_tail(&node->r.rl_entry, &node->base._mem.regions); return 0; } static int gk20a_instobj_ctor_iommu(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, u32 npages, u32 align, struct gk20a_instobj_priv **_node) { struct gk20a_instobj_iommu *node; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); struct nvkm_mm_node *r; int ret; int i; ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node) + sizeof(node->pages[0]) * npages, (void **)&node); *_node = &node->base; if (ret) return ret; /* Allocate backing memory */ for (i = 0; i < npages; i++) { struct page *p = alloc_page(GFP_KERNEL); if (p == NULL) { ret = -ENOMEM; goto free_pages; } node->pages[i] = p; } mutex_lock(priv->mm_mutex); /* Reserve area from GPU address space */ ret = nvkm_mm_head(priv->mm, 0, 1, npages, npages, align >> priv->iommu_pgshift, &r); mutex_unlock(priv->mm_mutex); if (ret) { nv_error(priv, "virtual space is full!\n"); goto free_pages; } /* Map into GPU address space */ for (i = 0; i < npages; i++) { struct page *p = node->pages[i]; u32 offset = (r->offset + i) << priv->iommu_pgshift; ret = iommu_map(priv->domain, offset, page_to_phys(p), PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); if (ret < 0) { nv_error(priv, "IOMMU mapping failure: %d\n", ret); while (i-- > 0) { offset -= PAGE_SIZE; iommu_unmap(priv->domain, offset, PAGE_SIZE); } goto release_area; } } /* Bit 34 tells that an address is to be resolved through the IOMMU */ r->offset |= BIT(34 - priv->iommu_pgshift); node->base._mem.offset = ((u64)r->offset) << priv->iommu_pgshift; INIT_LIST_HEAD(&node->base._mem.regions); list_add_tail(&r->rl_entry, &node->base._mem.regions); return 0; release_area: mutex_lock(priv->mm_mutex); nvkm_mm_free(priv->mm, &r); mutex_unlock(priv->mm_mutex); free_pages: for (i = 0; i < npages && node->pages[i] != NULL; i++) __free_page(node->pages[i]); return ret; } static int gk20a_instobj_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 _size, struct nvkm_object **pobject) { struct nvkm_instobj_args *args = data; struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); struct gk20a_instobj_priv *node; u32 size, align; int ret; nv_debug(parent, "%s (%s): size: %x align: %x\n", __func__, priv->domain ? "IOMMU" : "DMA", args->size, args->align); /* Round size and align to page bounds */ size = max(roundup(args->size, PAGE_SIZE), PAGE_SIZE); align = max(roundup(args->align, PAGE_SIZE), PAGE_SIZE); if (priv->domain) ret = gk20a_instobj_ctor_iommu(parent, engine, oclass, size >> PAGE_SHIFT, align, &node); else ret = gk20a_instobj_ctor_dma(parent, engine, oclass, size >> PAGE_SHIFT, align, &node); *pobject = nv_object(node); if (ret) return ret; node->mem = &node->_mem; /* present memory for being mapped using small pages */ node->mem->size = size >> 12; node->mem->memtype = 0; node->mem->page_shift = 12; node->base.addr = node->mem->offset; node->base.size = size; nv_debug(parent, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", size, align, node->mem->offset); return 0; } static struct nvkm_instobj_impl gk20a_instobj_oclass = { .base.ofuncs = &(struct nvkm_ofuncs) { .ctor = gk20a_instobj_ctor, .dtor = gk20a_instobj_dtor, .init = _nvkm_instobj_init, .fini = _nvkm_instobj_fini, .rd32 = gk20a_instobj_rd32, .wr32 = gk20a_instobj_wr32, }, }; static int gk20a_instmem_fini(struct nvkm_object *object, bool suspend) { struct gk20a_instmem_priv *priv = (void *)object; priv->addr = ~0ULL; return nvkm_instmem_fini(&priv->base, suspend); } static int gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct gk20a_instmem_priv *priv; struct nouveau_platform_device *plat; int ret; ret = nvkm_instmem_create(parent, engine, oclass, &priv); *pobject = nv_object(priv); if (ret) return ret; spin_lock_init(&priv->lock); plat = nv_device_to_platform(nv_device(parent)); if (plat->gpu->iommu.domain) { priv->domain = plat->gpu->iommu.domain; priv->mm = plat->gpu->iommu.mm; priv->iommu_pgshift = plat->gpu->iommu.pgshift; priv->mm_mutex = &plat->gpu->iommu.mutex; nv_info(priv, "using IOMMU\n"); } else { init_dma_attrs(&priv->attrs); /* * We will access instmem through PRAMIN and thus do not need a * consistent CPU pointer or kernel mapping */ dma_set_attr(DMA_ATTR_NON_CONSISTENT, &priv->attrs); dma_set_attr(DMA_ATTR_WEAK_ORDERING, &priv->attrs); dma_set_attr(DMA_ATTR_WRITE_COMBINE, &priv->attrs); dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &priv->attrs); nv_info(priv, "using DMA API\n"); } return 0; } struct nvkm_oclass * gk20a_instmem_oclass = &(struct nvkm_instmem_impl) { .base.handle = NV_SUBDEV(INSTMEM, 0xea), .base.ofuncs = &(struct nvkm_ofuncs) { .ctor = gk20a_instmem_ctor, .dtor = _nvkm_instmem_dtor, .init = _nvkm_instmem_init, .fini = gk20a_instmem_fini, }, .instobj = &gk20a_instobj_oclass.base, }.base;