/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "nv50.h" #include "ramseq.h" #include #include #include #include #include #include #include struct nv50_ramseq { struct hwsq base; struct hwsq_reg r_0x002504; struct hwsq_reg r_0x004008; struct hwsq_reg r_0x00400c; struct hwsq_reg r_0x00c040; struct hwsq_reg r_0x100210; struct hwsq_reg r_0x1002d0; struct hwsq_reg r_0x1002d4; struct hwsq_reg r_0x1002dc; struct hwsq_reg r_0x100da0[8]; struct hwsq_reg r_0x100e20; struct hwsq_reg r_0x100e24; struct hwsq_reg r_0x611200; struct hwsq_reg r_timing[9]; struct hwsq_reg r_mr[4]; }; struct nv50_ram { struct nvkm_ram base; struct nv50_ramseq hwsq; }; #define QFX5800NVA0 1 static int nv50_ram_calc(struct nvkm_fb *pfb, u32 freq) { struct nvkm_bios *bios = nvkm_bios(pfb); struct nv50_ram *ram = (void *)pfb->ram; struct nv50_ramseq *hwsq = &ram->hwsq; struct nvbios_perfE perfE; struct nvbios_pll mpll; struct { u32 data; u8 size; } ramcfg, timing; u8 ver, hdr, cnt, len, strap; int N1, M1, N2, M2, P; int ret, i; /* lookup closest matching performance table entry for frequency */ i = 0; do { ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt, &ramcfg.size, &perfE); if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) || (ramcfg.size < 2)) { nv_error(pfb, "invalid/missing perftab entry\n"); return -EINVAL; } } while (perfE.memory < freq); /* locate specific data set for the attached memory */ strap = nvbios_ramcfg_index(nv_subdev(pfb)); if (strap >= cnt) { nv_error(pfb, "invalid ramcfg strap\n"); return -EINVAL; } ramcfg.data += hdr + (strap * ramcfg.size); /* lookup memory timings, if bios says they're present */ strap = nv_ro08(bios, ramcfg.data + 0x01); if (strap != 0xff) { timing.data = nvbios_timingEe(bios, strap, &ver, &hdr, &cnt, &len); if (!timing.data || ver != 0x10 || hdr < 0x12) { nv_error(pfb, "invalid/missing timing entry " "%02x %04x %02x %02x\n", strap, timing.data, ver, hdr); return -EINVAL; } } else { timing.data = 0; } ret = ram_init(hwsq, nv_subdev(pfb)); if (ret) return ret; ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */ ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */ ram_wr32(hwsq, 0x611200, 0x00003300); ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */ ram_nsec(hwsq, 8000); ram_setf(hwsq, 0x10, 0x00); /* disable fb */ ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */ ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */ ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */ ret = nvbios_pll_parse(bios, 0x004008, &mpll); mpll.vco2.max_freq = 0; if (ret == 0) { ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq, &N1, &M1, &N2, &M2, &P); if (ret == 0) ret = -EINVAL; } if (ret < 0) return ret; ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000); ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200); ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1); ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) | (P << 22) | (P << 16)); #if QFX5800NVA0 for (i = 0; i < 8; i++) ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/ #endif ram_nsec(hwsq, 96000); /*XXX*/ ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000); ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */ ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */ ram_nsec(hwsq, 12000); switch (ram->base.type) { case NV_MEM_TYPE_DDR2: ram_nuke(hwsq, mr[0]); /* force update */ ram_mask(hwsq, mr[0], 0x000, 0x000); break; case NV_MEM_TYPE_GDDR3: ram_mask(hwsq, mr[2], 0x000, 0x000); ram_nuke(hwsq, mr[0]); /* force update */ ram_mask(hwsq, mr[0], 0x000, 0x000); break; default: break; } ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/ ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/ #if QFX5800NVA0 ram_nuke(hwsq, 0x100e24); ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000); ram_nuke(hwsq, 0x100e20); ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000); #endif ram_mask(hwsq, mr[0], 0x100, 0x100); ram_mask(hwsq, mr[0], 0x100, 0x000); ram_setf(hwsq, 0x10, 0x01); /* enable fb */ ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ ram_wr32(hwsq, 0x611200, 0x00003330); ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */ return 0; } static int nv50_ram_prog(struct nvkm_fb *pfb) { struct nvkm_device *device = nv_device(pfb); struct nv50_ram *ram = (void *)pfb->ram; struct nv50_ramseq *hwsq = &ram->hwsq; ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); return 0; } static void nv50_ram_tidy(struct nvkm_fb *pfb) { struct nv50_ram *ram = (void *)pfb->ram; struct nv50_ramseq *hwsq = &ram->hwsq; ram_exec(hwsq, false); } void __nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem *mem) { struct nvkm_mm_node *this; while (!list_empty(&mem->regions)) { this = list_first_entry(&mem->regions, typeof(*this), rl_entry); list_del(&this->rl_entry); nvkm_mm_free(&pfb->vram, &this); } nvkm_mm_free(&pfb->tags, &mem->tag); } void nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem) { struct nvkm_mem *mem = *pmem; *pmem = NULL; if (unlikely(mem == NULL)) return; mutex_lock(&pfb->base.mutex); __nv50_ram_put(pfb, mem); mutex_unlock(&pfb->base.mutex); kfree(mem); } int nv50_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin, u32 memtype, struct nvkm_mem **pmem) { struct nvkm_mm *heap = &pfb->vram; struct nvkm_mm *tags = &pfb->tags; struct nvkm_mm_node *r; struct nvkm_mem *mem; int comp = (memtype & 0x300) >> 8; int type = (memtype & 0x07f); int back = (memtype & 0x800); int min, max, ret; max = (size >> 12); min = ncmin ? (ncmin >> 12) : max; align >>= 12; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mutex_lock(&pfb->base.mutex); if (comp) { if (align == 16) { int n = (max >> 4) * comp; ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag); if (ret) mem->tag = NULL; } if (unlikely(!mem->tag)) comp = 0; } INIT_LIST_HEAD(&mem->regions); mem->memtype = (comp << 7) | type; mem->size = max; type = nv50_fb_memtype[type]; do { if (back) ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r); else ret = nvkm_mm_head(heap, 0, type, max, min, align, &r); if (ret) { mutex_unlock(&pfb->base.mutex); pfb->ram->put(pfb, &mem); return ret; } list_add_tail(&r->rl_entry, &mem->regions); max -= r->length; } while (max); mutex_unlock(&pfb->base.mutex); r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry); mem->offset = (u64)r->offset << 12; *pmem = mem; return 0; } static u32 nv50_fb_vram_rblock(struct nvkm_fb *pfb, struct nvkm_ram *ram) { int colbits, rowbitsa, rowbitsb, banks; u64 rowsize, predicted; u32 r0, r4, rt, rblock_size; r0 = nv_rd32(pfb, 0x100200); r4 = nv_rd32(pfb, 0x100204); rt = nv_rd32(pfb, 0x100250); nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, nv_rd32(pfb, 0x001540)); colbits = (r4 & 0x0000f000) >> 12; rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; banks = 1 << (((r4 & 0x03000000) >> 24) + 2); rowsize = ram->parts * banks * (1 << colbits) * 8; predicted = rowsize << rowbitsa; if (r0 & 0x00000004) predicted += rowsize << rowbitsb; if (predicted != ram->size) { nv_warn(pfb, "memory controller reports %d MiB VRAM\n", (u32)(ram->size >> 20)); } rblock_size = rowsize; if (rt & 1) rblock_size *= 3; nv_debug(pfb, "rblock %d bytes\n", rblock_size); return rblock_size; } int nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, int length, void **pobject) { const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */ const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */ struct nvkm_bios *bios = nvkm_bios(parent); struct nvkm_fb *pfb = nvkm_fb(parent); struct nvkm_ram *ram; int ret; ret = nvkm_ram_create_(parent, engine, oclass, length, pobject); ram = *pobject; if (ret) return ret; ram->size = nv_rd32(pfb, 0x10020c); ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32); ram->part_mask = (nv_rd32(pfb, 0x001540) & 0x00ff0000) >> 16; ram->parts = hweight8(ram->part_mask); switch (nv_rd32(pfb, 0x100714) & 0x00000007) { case 0: ram->type = NV_MEM_TYPE_DDR1; break; case 1: if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3) ram->type = NV_MEM_TYPE_DDR3; else ram->type = NV_MEM_TYPE_DDR2; break; case 2: ram->type = NV_MEM_TYPE_GDDR3; break; case 3: ram->type = NV_MEM_TYPE_GDDR4; break; case 4: ram->type = NV_MEM_TYPE_GDDR5; break; default: break; } ret = nvkm_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) - (rsvd_head + rsvd_tail), nv50_fb_vram_rblock(pfb, ram) >> 12); if (ret) return ret; ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1; ram->tags = nv_rd32(pfb, 0x100320); ram->get = nv50_ram_get; ram->put = nv50_ram_put; return 0; } static int nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 datasize, struct nvkm_object **pobject) { struct nv50_ram *ram; int ret, i; ret = nv50_ram_create(parent, engine, oclass, &ram); *pobject = nv_object(ram); if (ret) return ret; switch (ram->base.type) { case NV_MEM_TYPE_DDR2: case NV_MEM_TYPE_GDDR3: ram->base.calc = nv50_ram_calc; ram->base.prog = nv50_ram_prog; ram->base.tidy = nv50_ram_tidy; break; default: nv_warn(ram, "reclocking of this ram type unsupported\n"); return 0; } ram->hwsq.r_0x002504 = hwsq_reg(0x002504); ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040); ram->hwsq.r_0x004008 = hwsq_reg(0x004008); ram->hwsq.r_0x00400c = hwsq_reg(0x00400c); ram->hwsq.r_0x100210 = hwsq_reg(0x100210); ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0); ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4); ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc); for (i = 0; i < 8; i++) ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04)); ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20); ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24); ram->hwsq.r_0x611200 = hwsq_reg(0x611200); for (i = 0; i < 9; i++) ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04)); if (ram->base.ranks > 1) { ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8); ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc); ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8); ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec); } else { ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0); ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4); ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0); ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4); } return 0; } struct nvkm_oclass nv50_ram_oclass = { .ofuncs = &(struct nvkm_ofuncs) { .ctor = nv50_ram_ctor, .dtor = _nvkm_ram_dtor, .init = _nvkm_ram_init, .fini = _nvkm_ram_fini, } };