/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #define gk104_clk(p) container_of((p), struct gk104_clk, base) #include "priv.h" #include "pll.h" #include #include #include struct gk104_clk_info { u32 freq; u32 ssel; u32 mdiv; u32 dsrc; u32 ddiv; u32 coef; }; struct gk104_clk { struct nvkm_clk base; struct gk104_clk_info eng[16]; }; static u32 read_div(struct gk104_clk *, int, u32, u32); static u32 read_pll(struct gk104_clk *, u32); static u32 read_vco(struct gk104_clk *clk, u32 dsrc) { struct nvkm_device *device = clk->base.subdev.device; u32 ssrc = nvkm_rd32(device, dsrc); if (!(ssrc & 0x00000100)) return read_pll(clk, 0x00e800); return read_pll(clk, 0x00e820); } static u32 read_pll(struct gk104_clk *clk, u32 pll) { struct nvkm_device *device = clk->base.subdev.device; u32 ctrl = nvkm_rd32(device, pll + 0x00); u32 coef = nvkm_rd32(device, pll + 0x04); u32 P = (coef & 0x003f0000) >> 16; u32 N = (coef & 0x0000ff00) >> 8; u32 M = (coef & 0x000000ff) >> 0; u32 sclk; u16 fN = 0xf000; if (!(ctrl & 0x00000001)) return 0; switch (pll) { case 0x00e800: case 0x00e820: sclk = device->crystal; P = 1; break; case 0x132000: sclk = read_pll(clk, 0x132020); P = (coef & 0x10000000) ? 2 : 1; break; case 0x132020: sclk = read_div(clk, 0, 0x137320, 0x137330); fN = nvkm_rd32(device, pll + 0x10) >> 16; break; case 0x137000: case 0x137020: case 0x137040: case 0x1370e0: sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); break; default: return 0; } if (P == 0) P = 1; sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13); return sclk / (M * P); } static u32 read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl) { struct nvkm_device *device = clk->base.subdev.device; u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4)); u32 sctl = nvkm_rd32(device, dctl + (doff * 4)); switch (ssrc & 0x00000003) { case 0: if ((ssrc & 0x00030000) != 0x00030000) return device->crystal; return 108000; case 2: return 100000; case 3: if (sctl & 0x80000000) { u32 sclk = read_vco(clk, dsrc + (doff * 4)); u32 sdiv = (sctl & 0x0000003f) + 2; return (sclk * 2) / sdiv; } return read_vco(clk, dsrc + (doff * 4)); default: return 0; } } static u32 read_mem(struct gk104_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) { case 1: return read_pll(clk, 0x132020); case 2: return read_pll(clk, 0x132000); default: return 0; } } static u32 read_clk(struct gk104_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4)); u32 sclk, sdiv; if (idx < 7) { u32 ssel = nvkm_rd32(device, 0x137100); if (ssel & (1 << idx)) { sclk = read_pll(clk, 0x137000 + (idx * 0x20)); sdiv = 1; } else { sclk = read_div(clk, idx, 0x137160, 0x1371d0); sdiv = 0; } } else { u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04)); if ((ssrc & 0x00000003) == 0x00000003) { sclk = read_div(clk, idx, 0x137160, 0x1371d0); if (ssrc & 0x00000100) { if (ssrc & 0x40000000) sclk = read_pll(clk, 0x1370e0); sdiv = 1; } else { sdiv = 0; } } else { sclk = read_div(clk, idx, 0x137160, 0x1371d0); sdiv = 0; } } if (sctl & 0x80000000) { if (sdiv) sdiv = ((sctl & 0x00003f00) >> 8) + 2; else sdiv = ((sctl & 0x0000003f) >> 0) + 2; return (sclk * 2) / sdiv; } return sclk; } static int gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src) { struct gk104_clk *clk = gk104_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_href: return 100000; case nv_clk_src_mem: return read_mem(clk); case nv_clk_src_gpc: return read_clk(clk, 0x00); case nv_clk_src_rop: return read_clk(clk, 0x01); case nv_clk_src_hubk07: return read_clk(clk, 0x02); case nv_clk_src_hubk06: return read_clk(clk, 0x07); case nv_clk_src_hubk01: return read_clk(clk, 0x08); case nv_clk_src_daemon: return read_clk(clk, 0x0c); case nv_clk_src_vdec: return read_clk(clk, 0x0e); default: nvkm_error(subdev, "invalid clock source %d\n", src); return -EINVAL; } } static u32 calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) { u32 div = min((ref * 2) / freq, (u32)65); if (div < 2) div = 2; *ddiv = div - 2; return (ref * 2) / div; } static u32 calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) { u32 sclk; /* use one of the fixed frequencies if possible */ *ddiv = 0x00000000; switch (freq) { case 27000: case 108000: *dsrc = 0x00000000; if (freq == 108000) *dsrc |= 0x00030000; return freq; case 100000: *dsrc = 0x00000002; return freq; default: *dsrc = 0x00000003; break; } /* otherwise, calculate the closest divider */ sclk = read_vco(clk, 0x137160 + (idx * 4)); if (idx < 7) sclk = calc_div(clk, idx, sclk, freq, ddiv); return sclk; } static u32 calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvbios_pll limits; int N, M, P, ret; ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); if (ret) return 0; limits.refclk = read_div(clk, idx, 0x137120, 0x137140); if (!limits.refclk) return 0; ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P); if (ret <= 0) return 0; *coef = (P << 16) | (N << 8) | M; return ret; } static int calc_clk(struct gk104_clk *clk, struct nvkm_cstate *cstate, int idx, int dom) { struct gk104_clk_info *info = &clk->eng[idx]; u32 freq = cstate->domain[dom]; u32 src0, div0, div1D, div1P = 0; u32 clk0, clk1 = 0; /* invalid clock domain */ if (!freq) return 0; /* first possible path, using only dividers */ clk0 = calc_src(clk, idx, freq, &src0, &div0); clk0 = calc_div(clk, idx, clk0, freq, &div1D); /* see if we can get any closer using PLLs */ if (clk0 != freq && (0x0000ff87 & (1 << idx))) { if (idx <= 7) clk1 = calc_pll(clk, idx, freq, &info->coef); else clk1 = cstate->domain[nv_clk_src_hubk06]; clk1 = calc_div(clk, idx, clk1, freq, &div1P); } /* select the method which gets closest to target freq */ if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { info->dsrc = src0; if (div0) { info->ddiv |= 0x80000000; info->ddiv |= div0; } if (div1D) { info->mdiv |= 0x80000000; info->mdiv |= div1D; } info->ssel = 0; info->freq = clk0; } else { if (div1P) { info->mdiv |= 0x80000000; info->mdiv |= div1P << 8; } info->ssel = (1 << idx); info->dsrc = 0x40000100; info->freq = clk1; } return 0; } static int gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { struct gk104_clk *clk = gk104_clk(base); int ret; if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) || (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) return ret; return 0; } static void gk104_clk_prog_0(struct gk104_clk *clk, int idx) { struct gk104_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (!info->ssel) { nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv); nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc); } } static void gk104_clk_prog_1_0(struct gk104_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, 0x137100, (1 << idx), 0x00000000); nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x137100) & (1 << idx))) break; ); } static void gk104_clk_prog_1_1(struct gk104_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000); } static void gk104_clk_prog_2(struct gk104_clk *clk, int idx) { struct gk104_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; const u32 addr = 0x137000 + (idx * 0x20); nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000); nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000); if (info->coef) { nvkm_wr32(device, addr + 0x04, info->coef); nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001); nvkm_msec(device, 2000, if (nvkm_rd32(device, addr + 0x00) & 0x00020000) break; ); nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004); } } static void gk104_clk_prog_3(struct gk104_clk *clk, int idx) { struct gk104_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (info->ssel) nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv); else nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv); } static void gk104_clk_prog_4_0(struct gk104_clk *clk, int idx) { struct gk104_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (info->ssel) { nvkm_mask(device, 0x137100, (1 << idx), info->ssel); nvkm_msec(device, 2000, u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx); if (tmp == info->ssel) break; ); } } static void gk104_clk_prog_4_1(struct gk104_clk *clk, int idx) { struct gk104_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (info->ssel) { nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000); nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100); } } static int gk104_clk_prog(struct nvkm_clk *base) { struct gk104_clk *clk = gk104_clk(base); struct { u32 mask; void (*exec)(struct gk104_clk *, int); } stage[] = { { 0x007f, gk104_clk_prog_0 }, /* div programming */ { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */ { 0xff80, gk104_clk_prog_1_1 }, { 0x00ff, gk104_clk_prog_2 }, /* (maybe) program pll */ { 0xff80, gk104_clk_prog_3 }, /* final divider */ { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */ { 0xff80, gk104_clk_prog_4_1 }, }; int i, j; for (i = 0; i < ARRAY_SIZE(stage); i++) { for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { if (!(stage[i].mask & (1 << j))) continue; if (!clk->eng[j].freq) continue; stage[i].exec(clk, j); } } return 0; } static void gk104_clk_tidy(struct nvkm_clk *base) { struct gk104_clk *clk = gk104_clk(base); memset(clk->eng, 0x00, sizeof(clk->eng)); } static const struct nvkm_clk_func gk104_clk = { .read = gk104_clk_read, .calc = gk104_clk_calc, .prog = gk104_clk_prog, .tidy = gk104_clk_tidy, .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_href , 0xff }, { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 }, { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_mem , 0x03, 0, "memory", 500 }, { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_hubk01 , 0x05 }, { nv_clk_src_vdec , 0x06 }, { nv_clk_src_daemon , 0x07 }, { nv_clk_src_max } } }; int gk104_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { struct gk104_clk *clk; if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL))) return -ENOMEM; *pclk = &clk->base; return nvkm_clk_ctor(&gk104_clk, device, index, true, &clk->base); }