/* * linux/arch/cris/arch-v32/kernel/time.c * * Copyright (C) 2003-2010 Axis Communications AB * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CRIS_MACH_ARTPEC3 #include #endif /* Watchdog defines */ #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ /* Number of 763 counts before watchdog bites */ #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) #define CRISV32_TIMER_FREQ (100000000lu) unsigned long timer_regs[NR_CPUS] = { regi_timer0, }; extern int set_rtc_mmss(unsigned long nowtime); #ifdef CONFIG_CPU_FREQ static int cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, void *data); static struct notifier_block cris_time_freq_notifier_block = { .notifier_call = cris_time_freq_notifier, }; #endif unsigned long get_ns_in_jiffie(void) { reg_timer_r_tmr0_data data; unsigned long ns; data = REG_RD(timer, regi_timer0, r_tmr0_data); ns = (TIMER0_DIV - data) * 10; return ns; } /* From timer MDS describing the hardware watchdog: * 4.3.1 Watchdog Operation * The watchdog timer is an 8-bit timer with a configurable start value. * Once started the watchdog counts downwards with a frequency of 763 Hz * (100/131072 MHz). When the watchdog counts down to 1, it generates an * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the * chip. */ /* This gives us 1.3 ms to do something useful when the NMI comes */ /* Right now, starting the watchdog is the same as resetting it */ #define start_watchdog reset_watchdog #if defined(CONFIG_ETRAX_WATCHDOG) static short int watchdog_key = 42; /* arbitrary 7 bit number */ #endif /* Number of pages to consider "out of memory". It is normal that the memory * is used though, so set this really low. */ #define WATCHDOG_MIN_FREE_PAGES 8 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) /* for reliable NICE_DOGGY behaviour */ static int bite_in_progress; #endif void reset_watchdog(void) { #if defined(CONFIG_ETRAX_WATCHDOG) reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) if (unlikely(bite_in_progress)) return; #endif /* Only keep watchdog happy as long as we have memory left! */ if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { /* Reset the watchdog with the inverse of the old key */ /* Invert key, which is 7 bits */ watchdog_key ^= ETRAX_WD_KEY_MASK; wd_ctrl.cnt = ETRAX_WD_CNT; wd_ctrl.cmd = regk_timer_start; wd_ctrl.key = watchdog_key; REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); } #endif } /* stop the watchdog - we still need the correct key */ void stop_watchdog(void) { #if defined(CONFIG_ETRAX_WATCHDOG) reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ wd_ctrl.cnt = ETRAX_WD_CNT; wd_ctrl.cmd = regk_timer_stop; wd_ctrl.key = watchdog_key; REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); #endif } extern void show_registers(struct pt_regs *regs); void handle_watchdog_bite(struct pt_regs *regs) { #if defined(CONFIG_ETRAX_WATCHDOG) extern int cause_of_death; nmi_enter(); oops_in_progress = 1; #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) bite_in_progress = 1; #endif printk(KERN_WARNING "Watchdog bite\n"); /* Check if forced restart or unexpected watchdog */ if (cause_of_death == 0xbedead) { #ifdef CONFIG_CRIS_MACH_ARTPEC3 /* There is a bug in Artpec-3 (voodoo TR 78) that requires * us to go to lower frequency for the reset to be reliable */ reg_clkgen_rw_clk_ctrl ctrl = REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); ctrl.pll = 0; REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); #endif while(1); } /* Unexpected watchdog, stop the watchdog and dump registers. */ stop_watchdog(); printk(KERN_WARNING "Oops: bitten by watchdog\n"); show_registers(regs); oops_in_progress = 0; printk("\n"); /* Flush mtdoops. */ #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY reset_watchdog(); #endif while(1) /* nothing */; #endif } extern void cris_profile_sample(struct pt_regs *regs); static void __iomem *timer_base; static void crisv32_clkevt_mode(enum clock_event_mode mode, struct clock_event_device *dev) { reg_timer_rw_tmr0_ctrl ctrl = { .op = regk_timer_hold, .freq = regk_timer_f100, }; REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); } static int crisv32_clkevt_next_event(unsigned long evt, struct clock_event_device *dev) { reg_timer_rw_tmr0_ctrl ctrl = { .op = regk_timer_ld, .freq = regk_timer_f100, }; REG_WR(timer, timer_base, rw_tmr0_div, evt); REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); ctrl.op = regk_timer_run; REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); return 0; } static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; reg_timer_rw_tmr0_ctrl ctrl = { .op = regk_timer_hold, .freq = regk_timer_f100, }; reg_timer_rw_ack_intr ack = { .tmr0 = 1 }; reg_timer_r_masked_intr intr; intr = REG_RD(timer, timer_base, r_masked_intr); if (!intr.tmr0) return IRQ_NONE; REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); REG_WR(timer, timer_base, rw_ack_intr, ack); reset_watchdog(); #ifdef CONFIG_SYSTEM_PROFILER cris_profile_sample(get_irq_regs()); #endif evt->event_handler(evt); return IRQ_HANDLED; } static struct clock_event_device crisv32_clockevent = { .name = "crisv32-timer", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT, .set_mode = crisv32_clkevt_mode, .set_next_event = crisv32_clkevt_next_event, }; /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */ static struct irqaction irq_timer = { .handler = crisv32_timer_interrupt, .flags = IRQF_TIMER | IRQF_SHARED, .name = "crisv32-timer", .dev_id = &crisv32_clockevent, }; static u64 notrace crisv32_timer_sched_clock(void) { return REG_RD(timer, timer_base, r_time); } static void __init crisv32_timer_init(void) { reg_timer_rw_intr_mask timer_intr_mask; reg_timer_rw_tmr0_ctrl ctrl = { .op = regk_timer_hold, .freq = regk_timer_f100, }; REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask); timer_intr_mask.tmr0 = 1; REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask); } void __init time_init(void) { int irq; int ret; /* Probe for the RTC and read it if it exists. * Before the RTC can be probed the loops_per_usec variable needs * to be initialized to make usleep work. A better value for * loops_per_usec is calculated by the kernel later once the * clock has started. */ loops_per_usec = 50; irq = TIMER0_INTR_VECT; timer_base = (void __iomem *) regi_timer0; crisv32_timer_init(); sched_clock_register(crisv32_timer_sched_clock, 32, CRISV32_TIMER_FREQ); clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time, "crisv32-timer", CRISV32_TIMER_FREQ, 300, 32, clocksource_mmio_readl_up); crisv32_clockevent.cpumask = cpu_possible_mask; crisv32_clockevent.irq = irq; ret = setup_irq(irq, &irq_timer); if (ret) pr_warn("failed to setup irq %d\n", irq); clockevents_config_and_register(&crisv32_clockevent, CRISV32_TIMER_FREQ, 2, 0xffffffff); /* Enable watchdog if we should use one. */ #if defined(CONFIG_ETRAX_WATCHDOG) printk(KERN_INFO "Enabling watchdog...\n"); start_watchdog(); /* If we use the hardware watchdog, we want to trap it as an NMI * and dump registers before it resets us. For this to happen, we * must set the "m" NMI enable flag (which once set, is unset only * when an NMI is taken). */ { unsigned long flags; local_save_flags(flags); flags |= (1<<30); /* NMI M flag is at bit 30 */ local_irq_restore(flags); } #endif #ifdef CONFIG_CPU_FREQ cpufreq_register_notifier(&cris_time_freq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); #endif } #ifdef CONFIG_CPU_FREQ static int cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freqs = data; if (val == CPUFREQ_POSTCHANGE) { reg_timer_r_tmr0_data data; reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; do { data = REG_RD(timer, timer_regs[freqs->cpu], r_tmr0_data); } while (data > 20); REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); } return 0; } #endif