Addition of Configurable Sampling and Configurable Confirmation Retry 97/58297/31
authorDanielMartinBuckley <daniel.m.buckley@intel.com>
Wed, 6 Jun 2018 14:06:01 +0000 (15:06 +0100)
committerDanielMartinBuckley <daniel.m.buckley@intel.com>
Tue, 26 Jun 2018 16:01:46 +0000 (17:01 +0100)
JIRA: YARDSTICK-1221

In order to increase accuracy of result the following are done :-
  - Improve Measurement Accuracy (YARDSTICK-1212)
  - Improve Sampling Interval (YARDSTICK-1219)
  - Allow 4 PROX ports to be read simultaneously (YARDSTICK-1220)

This change does the following :-
  - Stores LINE Rate statistics of Sample
  - Requires a confirmation retry before deciding to increase or
    decrease this is configurable.
  - Allows the user to disable Sampling or specify a sample interval
  - Added Code Coverage of ProxDurationRunner based on YARDSTICK-1199

Change-Id: I27242ac1849c9a2712866385b5fbc05977c71516
Signed-off-by: Daniel Martin Buckley <daniel.m.buckley@intel.com>
samples/vnf_samples/nsut/prox/tc_prox_baremetal_l2fwd-4.yaml
yardstick/benchmark/runners/proxduration.py [new file with mode: 0644]
yardstick/common/constants.py
yardstick/network_services/traffic_profile/prox_binsearch.py
yardstick/tests/unit/benchmark/core/test_task.py
yardstick/tests/unit/benchmark/runner/test_proxduration.py [new file with mode: 0644]
yardstick/tests/unit/network_services/traffic_profile/test_prox_binsearch.py

index ab067a8..84edcd4 100644 (file)
@@ -42,9 +42,15 @@ scenarios:
         "-t": ""
 
   runner:
-    type: Duration
+    type: ProxDuration
+    # sampling interval
+    interval: 1
+    # sampled : yes OR sampled: no (DEFAULT yes)
+    sampled: yes
     # we kill after duration, independent of test duration, so set this high
-    duration: 300
+    duration: 3100
+    # Confirmation attempts
+    confirmation: 1
 
 context:
   type: Node
diff --git a/yardstick/benchmark/runners/proxduration.py b/yardstick/benchmark/runners/proxduration.py
new file mode 100644 (file)
index 0000000..61a468f
--- /dev/null
@@ -0,0 +1,165 @@
+# Copyright 2014: Mirantis Inc.
+# All Rights Reserved.
+#
+#    Licensed under the Apache License, Version 2.0 (the "License"); you may
+#    not use this file except in compliance with the License. You may obtain
+#    a copy of the License at
+#
+#         http://www.apache.org/licenses/LICENSE-2.0
+#
+#    Unless required by applicable law or agreed to in writing, software
+#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+#    License for the specific language governing permissions and limitations
+#    under the License.
+
+# yardstick comment: this is a modified copy of
+# rally/rally/benchmark/runners/constant.py
+
+"""A runner that runs a specific time before it returns
+"""
+
+from __future__ import absolute_import
+
+import os
+import multiprocessing
+import logging
+import traceback
+import time
+
+from yardstick.benchmark.runners import base
+from yardstick.common import exceptions as y_exc
+from yardstick.common import constants
+
+LOG = logging.getLogger(__name__)
+
+def _worker_process(queue, cls, method_name, scenario_cfg,
+                    context_cfg, aborted, output_queue):
+
+    sequence = 1
+
+    runner_cfg = scenario_cfg['runner']
+
+    requested_interval = interval = runner_cfg.get("interval", 1)
+    duration = runner_cfg.get("duration", 60)
+    sampled = runner_cfg.get("sampled", False)
+
+    LOG.info("Worker START, duration is %ds", duration)
+    LOG.debug("class is %s", cls)
+
+    runner_cfg['runner_id'] = os.getpid()
+
+    benchmark = cls(scenario_cfg, context_cfg)
+    benchmark.setup()
+    method = getattr(benchmark, method_name)
+
+    sla_action = None
+    if "sla" in scenario_cfg:
+        sla_action = scenario_cfg["sla"].get("action", "assert")
+
+
+    start = time.time()
+    timeout = start + duration
+    while True:
+
+        LOG.debug("runner=%(runner)s seq=%(sequence)s START",
+                  {"runner": runner_cfg["runner_id"], "sequence": sequence})
+
+        data = {}
+        errors = ""
+
+        benchmark.pre_run_wait_time(interval)
+
+        if sampled:
+            try:
+                pre_adjustment = time.time()
+                result = method(data)
+                post_adjustment = time.time()
+                if requested_interval > post_adjustment - pre_adjustment:
+                    interval = requested_interval - (post_adjustment - pre_adjustment)
+                else:
+                    interval = 0
+
+            except y_exc.SLAValidationError as error:
+                # SLA validation failed in scenario, determine what to do now
+                if sla_action == "assert":
+                    raise
+                elif sla_action == "monitor":
+                    LOG.warning("SLA validation failed: %s", error.args)
+                    errors = error.args
+            # catch all exceptions because with multiprocessing we can have un-picklable exception
+            # problems  https://bugs.python.org/issue9400
+            except Exception:  # pylint: disable=broad-except
+                errors = traceback.format_exc()
+                LOG.exception("")
+            else:
+                if result:
+                    # add timeout for put so we don't block test
+                    # if we do timeout we don't care about dropping individual KPIs
+                    output_queue.put(result, True, constants.QUEUE_PUT_TIMEOUT)
+
+            benchmark_output = {
+                'timestamp': time.time(),
+                'sequence': sequence,
+                'data': data,
+                'errors': errors
+            }
+
+            queue.put(benchmark_output, True, constants.QUEUE_PUT_TIMEOUT)
+        else:
+            LOG.debug("No sample collected ...Sequence %s", sequence)
+
+
+        sequence += 1
+
+        if (errors and sla_action is None) or time.time() > timeout or aborted.is_set():
+            LOG.info("Worker END")
+            break
+
+    try:
+        benchmark.teardown()
+    except Exception:
+        # catch any exception in teardown and convert to simple exception
+        # never pass exceptions back to multiprocessing, because some exceptions can
+        # be unpicklable
+        # https://bugs.python.org/issue9400
+        LOG.exception("")
+        raise SystemExit(1)
+
+    LOG.debug("queue.qsize() = %s", queue.qsize())
+    LOG.debug("output_queue.qsize() = %s", output_queue.qsize())
+    LOG.info("Exiting ProxDuration Runner...")
+
+class ProxDurationRunner(base.Runner):
+    """Run a scenario for a certain amount of time
+
+If the scenario ends before the time has elapsed, it will be started again.
+
+  Parameters
+    duration - amount of time the scenario will be run for
+        type:    int
+        unit:    seconds
+        default: 60 sec
+    interval - time to wait between each scenario invocation
+        type:    int
+        unit:    seconds
+        default: 1 sec
+    sampled - Sample data is required yes/no
+        type:    boolean
+        unit:    True/False
+        default: False
+    confirmation - Number of confirmation retries
+        type:    int
+        unit:    retry attempts
+        default: 0
+    """
+    __execution_type__ = 'ProxDuration'
+
+    def _run_benchmark(self, cls, method, scenario_cfg, context_cfg):
+        name = "{}-{}-{}".format(self.__execution_type__, scenario_cfg.get("type"), os.getpid())
+        self.process = multiprocessing.Process(
+            name=name,
+            target=_worker_process,
+            args=(self.result_queue, cls, method, scenario_cfg,
+                  context_cfg, self.aborted, self.output_queue))
+        self.process.start()
index f6e4ab7..1ebd325 100644 (file)
@@ -119,6 +119,7 @@ INFLUXDB_DB_NAME = get_param('influxdb.db_name', 'yardstick')
 INFLUXDB_IMAGE = get_param('influxdb.image', 'tutum/influxdb')
 INFLUXDB_TAG = get_param('influxdb.tag', '0.13')
 INFLUXDB_DASHBOARD_PORT = 8083
+QUEUE_PUT_TIMEOUT = 10
 
 # grafana
 GRAFANA_IP = get_param('grafana.ip', SERVER_IP)
index 225ee43..af83b8f 100644 (file)
@@ -21,6 +21,7 @@ import time
 
 from yardstick.network_services.traffic_profile.prox_profile import ProxProfile
 from yardstick.network_services import constants
+from yardstick.common import constants as overall_constants
 
 LOG = logging.getLogger(__name__)
 
@@ -84,9 +85,14 @@ class ProxBinSearchProfile(ProxProfile):
         # success, the binary search will complete on an integer multiple
         # of the precision, rather than on a fraction of it.
 
-        theor_max_thruput = 0
+        theor_max_thruput = actual_max_thruput = 0
 
         result_samples = {}
+        rate_samples = {}
+        pos_retry = 0
+        neg_retry = 0
+        total_retry = 0
+        ok_retry = 0
 
         # Store one time only value in influxdb
         single_samples = {
@@ -102,47 +108,85 @@ class ProxBinSearchProfile(ProxProfile):
         successful_pkt_loss = 0.0
         line_speed = traffic_gen.scenario_helper.all_options.get(
             "interface_speed_gbps", constants.NIC_GBPS_DEFAULT) * constants.ONE_GIGABIT_IN_BITS
+
+        ok_retry = traffic_gen.scenario_helper.scenario_cfg["runner"].get("confirmation", 0)
         for test_value in self.bounds_iterator(LOG):
-            result, port_samples = self._profile_helper.run_test(pkt_size, duration,
-                                                                 test_value,
-                                                                 self.tolerated_loss,
-                                                                 line_speed)
-            self.curr_time = time.time()
-            self.prev_time = self.curr_time
-
-            if result.success:
-                LOG.debug("Success! Increasing lower bound")
-                self.current_lower = test_value
-                successful_pkt_loss = result.pkt_loss
-                samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
-
-                # store results with success tag in influxdb
-                success_samples = {'Success_' + key: value for key, value in samples.items()}
-
-                # Store number of packets based statistics (we already have throughput)
-                success_samples["Success_rx_total"] = int(result.rx_total)
-                success_samples["Success_tx_total"] = int(result.tx_total)
-                success_samples["Success_can_be_lost"] = int(result.can_be_lost)
-                success_samples["Success_drop_total"] = int(result.drop_total)
-                self.queue.put(success_samples)
-
-                # Store Actual throughput for result samples
-                result_samples["Result_Actual_throughput"] = \
-                    success_samples["Success_RxThroughput"]
-            else:
-                LOG.debug("Failure... Decreasing upper bound")
-                self.current_upper = test_value
-                samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
-                # samples  contains data such as Latency, Throughput, number of packets
-                # Hence they should not be divided by the time difference
-
-            if theor_max_thruput < samples["RequestedTxThroughput"]:
-                theor_max_thruput = samples['RequestedTxThroughput']
-                self.queue.put({'theor_max_throughput': theor_max_thruput})
-
-            LOG.debug("Collect TG KPIs %s %s", datetime.datetime.now(), samples)
-            self.queue.put(samples)
+            pos_retry = 0
+            neg_retry = 0
+            total_retry = 0
+
+            rate_samples["MAX_Rate"] = self.current_upper
+            rate_samples["MIN_Rate"] = self.current_lower
+            rate_samples["Test_Rate"] = test_value
+            self.queue.put(rate_samples, True, overall_constants.QUEUE_PUT_TIMEOUT)
+            while (pos_retry <= ok_retry) and (neg_retry <= ok_retry):
+
+                total_retry = total_retry + 1
+                result, port_samples = self._profile_helper.run_test(pkt_size, duration,
+                                                                     test_value,
+                                                                     self.tolerated_loss,
+                                                                     line_speed)
+                if (total_retry > (ok_retry * 3)) and (ok_retry is not 0):
+                    LOG.info("Failure.!! .. RETRY EXCEEDED ... decrease lower bound")
+
+                    successful_pkt_loss = result.pkt_loss
+                    samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
+
+                    self.current_upper = test_value
+                    neg_retry = total_retry
+                elif result.success:
+                    if (pos_retry < ok_retry) and (ok_retry is not 0):
+                        neg_retry = 0
+                        LOG.info("Success! ... confirm retry")
+
+                        successful_pkt_loss = result.pkt_loss
+                        samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
+
+                    else:
+                        LOG.info("Success! Increasing lower bound")
+                        self.current_lower = test_value
+
+                        successful_pkt_loss = result.pkt_loss
+                        samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
+
+                        # store results with success tag in influxdb
+                        success_samples = \
+                            {'Success_' + key: value for key, value in samples.items()}
+
+                        success_samples["Success_rx_total"] = int(result.rx_total)
+                        success_samples["Success_tx_total"] = int(result.tx_total)
+                        success_samples["Success_can_be_lost"] = int(result.can_be_lost)
+                        success_samples["Success_drop_total"] = int(result.drop_total)
+                        success_samples["Success_RxThroughput"] = samples["RxThroughput"]
+                        LOG.info(">>>##>>Collect SUCCESS TG KPIs %s %s",
+                                 datetime.datetime.now(), success_samples)
+                        self.queue.put(success_samples, True, overall_constants.QUEUE_PUT_TIMEOUT)
+
+                        # Store Actual throughput for result samples
+                        actual_max_thruput = success_samples["Success_RxThroughput"]
+
+                    pos_retry = pos_retry + 1
+
+                else:
+                    if (neg_retry < ok_retry) and (ok_retry is not 0):
+
+                        pos_retry = 0
+                        LOG.info("failure! ... confirm retry")
+                    else:
+                        LOG.info("Failure... Decreasing upper bound")
+                        self.current_upper = test_value
+
+                    neg_retry = neg_retry + 1
+                    samples = result.get_samples(pkt_size, successful_pkt_loss, port_samples)
+
+                if theor_max_thruput < samples["TxThroughput"]:
+                    theor_max_thruput = samples['TxThroughput']
+                    self.queue.put({'theor_max_throughput': theor_max_thruput})
+
+                LOG.info(">>>##>>Collect TG KPIs %s %s", datetime.datetime.now(), samples)
+                self.queue.put(samples, True, overall_constants.QUEUE_PUT_TIMEOUT)
 
         result_samples["Result_pktSize"] = pkt_size
         result_samples["Result_theor_max_throughput"] = theor_max_thruput
+        result_samples["Result_Actual_throughput"] = actual_max_thruput
         self.queue.put(result_samples)
index 7468368..0424c77 100644 (file)
@@ -156,6 +156,31 @@ class TaskTestCase(unittest.TestCase):
         t._run([scenario], False, "yardstick.out")
         runner.run.assert_called_once()
 
+    @mock.patch.object(task, 'Context')
+    @mock.patch.object(task, 'base_runner')
+    def test_run_ProxDuration(self, mock_base_runner, *args):
+        scenario = {
+            'host': 'athena.demo',
+            'target': 'ares.demo',
+            'runner': {
+                'duration': 60,
+                'interval': 1,
+                'sampled': 'yes',
+                'confirmation': 1,
+                'type': 'ProxDuration'
+            },
+            'type': 'Ping'
+        }
+
+        t = task.Task()
+        runner = mock.Mock()
+        runner.join.return_value = 0
+        runner.get_output.return_value = {}
+        runner.get_result.return_value = []
+        mock_base_runner.Runner.get.return_value = runner
+        t._run([scenario], False, "yardstick.out")
+        runner.run.assert_called_once()
+
     @mock.patch.object(os, 'environ')
     def test_check_precondition(self, mock_os_environ):
         cfg = {
diff --git a/yardstick/tests/unit/benchmark/runner/test_proxduration.py b/yardstick/tests/unit/benchmark/runner/test_proxduration.py
new file mode 100644 (file)
index 0000000..be1715a
--- /dev/null
@@ -0,0 +1,295 @@
+##############################################################################
+# Copyright (c) 2018 Nokia and others.
+#
+# All rights reserved. This program and the accompanying materials
+# are made available under the terms of the Apache License, Version 2.0
+# which accompanies this distribution, and is available at
+# http://www.apache.org/licenses/LICENSE-2.0
+##############################################################################
+
+import mock
+import unittest
+import multiprocessing
+import os
+import time
+
+from yardstick.benchmark.runners import proxduration
+from yardstick.common import exceptions as y_exc
+
+
+class ProxDurationRunnerTest(unittest.TestCase):
+    class MyMethod(object):
+        SLA_VALIDATION_ERROR_SIDE_EFFECT = 1
+        BROAD_EXCEPTION_SIDE_EFFECT = 2
+
+        def __init__(self, side_effect=0):
+            self.count = 101
+            self.side_effect = side_effect
+
+        def __call__(self, data):
+            self.count += 1
+            data['my_key'] = self.count
+            if self.side_effect == self.SLA_VALIDATION_ERROR_SIDE_EFFECT:
+                raise y_exc.SLAValidationError(case_name='My Case',
+                                               error_msg='my error message')
+            elif self.side_effect == self.BROAD_EXCEPTION_SIDE_EFFECT:
+                raise y_exc.YardstickException
+            return self.count
+
+    def setUp(self):
+        self.scenario_cfg = {
+            'runner': {'interval': 0, "duration": 0},
+            'type': 'some_type'
+        }
+
+        self.benchmark = mock.Mock()
+        self.benchmark_cls = mock.Mock(return_value=self.benchmark)
+
+    def _assert_defaults__worker_run_setup_and_teardown(self):
+        self.benchmark_cls.assert_called_once_with(self.scenario_cfg, {})
+        self.benchmark.setup.assert_called_once()
+        self.benchmark.teardown.assert_called_once()
+
+    @mock.patch.object(os, 'getpid')
+    @mock.patch.object(multiprocessing, 'Process')
+    def test__run_benchmark_called_with(self, mock_multiprocessing_process,
+                                        mock_os_getpid):
+        mock_os_getpid.return_value = 101
+
+        runner = proxduration.ProxDurationRunner({})
+        benchmark_cls = mock.Mock()
+        runner._run_benchmark(benchmark_cls, 'my_method', self.scenario_cfg,
+                              {})
+        mock_multiprocessing_process.assert_called_once_with(
+            name='ProxDuration-some_type-101',
+            target=proxduration._worker_process,
+            args=(runner.result_queue, benchmark_cls, 'my_method',
+                  self.scenario_cfg, {}, runner.aborted, runner.output_queue))
+
+    @mock.patch.object(os, 'getpid')
+    def test__worker_process_runner_id(self, mock_os_getpid):
+        mock_os_getpid.return_value = 101
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self.assertEqual(self.scenario_cfg['runner']['runner_id'], 101)
+
+    def test__worker_process_called_with_cfg(self):
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+    def test__worker_process_called_with_cfg_loop(self):
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 0.01}
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+        self.assertGreater(self.benchmark.my_method.call_count, 2)
+
+    def test__worker_process_called_without_cfg(self):
+        scenario_cfg = {'runner': {}}
+
+        aborted = multiprocessing.Event()
+        aborted.set()
+
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 scenario_cfg, {}, aborted, mock.Mock())
+
+        self.benchmark_cls.assert_called_once_with(scenario_cfg, {})
+        self.benchmark.setup.assert_called_once()
+        self.benchmark.teardown.assert_called_once()
+
+    def test__worker_process_output_queue(self):
+        self.benchmark.my_method = mock.Mock(return_value='my_result')
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        output_queue = multiprocessing.Queue()
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), output_queue)
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+        self.assertEquals(output_queue.get(), 'my_result')
+
+    def test__worker_process_output_queue_multiple_iterations(self):
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.benchmark.my_method = self.MyMethod()
+
+        output_queue = multiprocessing.Queue()
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), output_queue)
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+        self.assertGreater(self.benchmark.my_method.count, 103)
+
+        count = 101
+        while not output_queue.empty():
+            count += 1
+            self.assertEquals(output_queue.get(), count)
+
+    def test__worker_process_queue(self):
+        self.benchmark.my_method = self.MyMethod()
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        queue = multiprocessing.Queue()
+        timestamp = time.time()
+        proxduration._worker_process(queue, self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+        result = queue.get()
+        self.assertGreater(result['timestamp'], timestamp)
+        self.assertEqual(result['errors'], '')
+        self.assertEqual(result['data'], {'my_key': 102})
+        self.assertEqual(result['sequence'], 1)
+
+    def test__worker_process_queue_multiple_iterations(self):
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.benchmark.my_method = self.MyMethod()
+
+        queue = multiprocessing.Queue()
+        timestamp = time.time()
+        proxduration._worker_process(queue, self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+        self.assertGreater(self.benchmark.my_method.count, 103)
+
+        count = 0
+        while not queue.empty():
+            count += 1
+            result = queue.get()
+            self.assertGreater(result['timestamp'], timestamp)
+            self.assertEqual(result['errors'], '')
+            self.assertEqual(result['data'], {'my_key': count + 101})
+            self.assertEqual(result['sequence'], count)
+
+    def test__worker_process_except_sla_validation_error_no_sla_cfg(self):
+        self.benchmark.my_method = mock.Mock(
+            side_effect=y_exc.SLAValidationError)
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+    def test__worker_process_except_sla_validation_error_sla_cfg_monitor(self):
+        self.scenario_cfg['sla'] = {'action': 'monitor'}
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.benchmark.my_method = mock.Mock(
+            side_effect=y_exc.SLAValidationError)
+
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+    def test__worker_process_raise_sla_validation_error_sla_cfg_default(self):
+        self.scenario_cfg['sla'] = {}
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.benchmark.my_method = mock.Mock(
+            side_effect=y_exc.SLAValidationError)
+
+        with self.assertRaises(y_exc.SLAValidationError):
+            proxduration._worker_process(mock.Mock(), self.benchmark_cls,
+                                     'my_method', self.scenario_cfg, {},
+                                     multiprocessing.Event(), mock.Mock())
+
+        self.benchmark_cls.assert_called_once_with(self.scenario_cfg, {})
+        self.benchmark.setup.assert_called_once()
+        self.benchmark.my_method.assert_called_once_with({})
+
+    def test__worker_process_raise_sla_validation_error_sla_cfg_assert(self):
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.scenario_cfg['sla'] = {'action': 'assert'}
+        self.benchmark.my_method = mock.Mock(
+            side_effect=y_exc.SLAValidationError)
+
+        with self.assertRaises(y_exc.SLAValidationError):
+            proxduration._worker_process(mock.Mock(), self.benchmark_cls,
+                                     'my_method', self.scenario_cfg, {},
+                                     multiprocessing.Event(), mock.Mock())
+
+        self.benchmark_cls.assert_called_once_with(self.scenario_cfg, {})
+        self.benchmark.setup.assert_called_once()
+        self.benchmark.my_method.assert_called_once_with({})
+
+    def test__worker_process_queue_on_sla_validation_error_monitor(self):
+        self.scenario_cfg['sla'] = {'action': 'monitor'}
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        self.benchmark.my_method = self.MyMethod(
+            side_effect=self.MyMethod.SLA_VALIDATION_ERROR_SIDE_EFFECT)
+
+        queue = multiprocessing.Queue()
+        timestamp = time.time()
+        proxduration._worker_process(queue, self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+        result = queue.get()
+        self.assertGreater(result['timestamp'], timestamp)
+        self.assertEqual(result['errors'], ('My Case SLA validation failed. '
+                                            'Error: my error message',))
+        self.assertEqual(result['data'], {'my_key': 102})
+        self.assertEqual(result['sequence'], 1)
+
+    def test__worker_process_broad_exception(self):
+        self.benchmark.my_method = mock.Mock(
+            side_effect=y_exc.YardstickException)
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        proxduration._worker_process(mock.Mock(), self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+    def test__worker_process_queue_on_broad_exception(self):
+        self.benchmark.my_method = self.MyMethod(
+            side_effect=self.MyMethod.BROAD_EXCEPTION_SIDE_EFFECT)
+
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+        queue = multiprocessing.Queue()
+        timestamp = time.time()
+        proxduration._worker_process(queue, self.benchmark_cls, 'my_method',
+                                 self.scenario_cfg, {},
+                                 multiprocessing.Event(), mock.Mock())
+        time.sleep(0.1)
+
+        self._assert_defaults__worker_run_setup_and_teardown()
+
+        result = queue.get()
+        self.assertGreater(result['timestamp'], timestamp)
+        self.assertNotEqual(result['errors'], '')
+        self.assertEqual(result['data'], {'my_key': 102})
+        self.assertEqual(result['sequence'], 1)
+
+    def test__worker_process_benchmark_teardown_on_broad_exception(self):
+        self.benchmark.teardown = mock.Mock(
+            side_effect=y_exc.YardstickException)
+
+        self.scenario_cfg["runner"] = {"sampled": True, "duration": 1}
+
+        with self.assertRaises(SystemExit) as raised:
+            proxduration._worker_process(mock.Mock(), self.benchmark_cls,
+                                     'my_method', self.scenario_cfg, {},
+                                     multiprocessing.Event(), mock.Mock())
+        self.assertEqual(raised.exception.code, 1)
+        self._assert_defaults__worker_run_setup_and_teardown()
index 7bfd67f..036746e 100644 (file)
@@ -51,6 +51,11 @@ class TestProxBinSearchProfile(unittest.TestCase):
         fail_tuple = ProxTestDataTuple(10.0, 1, 2, 3, 4, [5.6, 5.7, 5.8], 850, 1000, 123.4)
 
         traffic_generator = mock.MagicMock()
+        attrs1 = {'get.return_value' : 10}
+        traffic_generator.scenario_helper.all_options.configure_mock(**attrs1)
+
+        attrs2 = {'__getitem__.return_value' : 10, 'get.return_value': 10}
+        traffic_generator.scenario_helper.scenario_cfg["runner"].configure_mock(**attrs2)
 
         profile_helper = mock.MagicMock()
         profile_helper.run_test = target
@@ -60,13 +65,14 @@ class TestProxBinSearchProfile(unittest.TestCase):
         profile._profile_helper = profile_helper
 
         profile.execute_traffic(traffic_generator)
+
         self.assertEqual(round(profile.current_lower, 2), 74.69)
         self.assertEqual(round(profile.current_upper, 2), 76.09)
-        self.assertEqual(len(runs), 7)
+        self.assertEqual(len(runs), 77)
 
         # Result Samples inc theor_max
         result_tuple = {'Result_Actual_throughput': 5e-07,
-                        'Result_theor_max_throughput': 0.00012340000000000002,
+                        'Result_theor_max_throughput': 7.5e-07,
                         'Result_pktSize': 200}
 
         profile.queue.put.assert_called_with(result_tuple)
@@ -123,6 +129,11 @@ class TestProxBinSearchProfile(unittest.TestCase):
         fail_tuple = ProxTestDataTuple(10.0, 1, 2, 3, 4, [5.6, 5.7, 5.8], 850, 1000, 123.4)
 
         traffic_generator = mock.MagicMock()
+        attrs1 = {'get.return_value': 10}
+        traffic_generator.scenario_helper.all_options.configure_mock(**attrs1)
+
+        attrs2 = {'__getitem__.return_value': 0, 'get.return_value': 0}
+        traffic_generator.scenario_helper.scenario_cfg["runner"].configure_mock(**attrs2)
 
         profile_helper = mock.MagicMock()
         profile_helper.run_test = target
@@ -172,7 +183,8 @@ class TestProxBinSearchProfile(unittest.TestCase):
 
 
         # Result Samples
-        result_tuple = {"Result_theor_max_throughput": 0, "Result_pktSize": 200}
+        result_tuple = {'Result_Actual_throughput': 0, "Result_theor_max_throughput": 0,
+                        "Result_pktSize": 200}
         profile.queue.put.assert_called_with(result_tuple)
 
         # Check for success_ tuple (None expected)
@@ -182,3 +194,81 @@ class TestProxBinSearchProfile(unittest.TestCase):
                 for k in call_detail:
                     if "Success_" in k:
                         self.assertRaises(AttributeError)
+
+    def test_execute_4(self):
+
+        def target(*args, **_):
+            runs.append(args[2])
+            if args[2] < 0 or args[2] > 100:
+                raise RuntimeError(' '.join([str(args), str(runs)]))
+            if args[2] > 75.0:
+                return fail_tuple, {}
+            return success_tuple, {}
+
+        tp_config = {
+            'traffic_profile': {
+                'packet_sizes': [200],
+                'test_precision': 2.0,
+                'tolerated_loss': 0.001,
+            },
+        }
+
+        runs = []
+        success_tuple = ProxTestDataTuple(10.0, 1, 2, 3, 4, [5.1, 5.2, 5.3], 995, 1000, 123.4)
+        fail_tuple = ProxTestDataTuple(10.0, 1, 2, 3, 4, [5.6, 5.7, 5.8], 850, 1000, 123.4)
+
+        traffic_generator = mock.MagicMock()
+        attrs1 = {'get.return_value': 100000}
+        traffic_generator.scenario_helper.all_options.configure_mock(**attrs1)
+
+        attrs2 = {'__getitem__.return_value': 0, 'get.return_value': 0}
+        traffic_generator.scenario_helper.scenario_cfg["runner"].configure_mock(**attrs2)
+
+        profile_helper = mock.MagicMock()
+        profile_helper.run_test = target
+
+        profile = ProxBinSearchProfile(tp_config)
+        profile.init(mock.MagicMock())
+        profile._profile_helper = profile_helper
+
+        profile.execute_traffic(traffic_generator)
+        self.assertEqual(round(profile.current_lower, 2), 74.69)
+        self.assertEqual(round(profile.current_upper, 2), 76.09)
+        self.assertEqual(len(runs), 7)
+
+        # Result Samples inc theor_max
+        result_tuple = {'Result_Actual_throughput': 5e-07,
+                        'Result_theor_max_throughput': 7.5e-07,
+                        'Result_pktSize': 200}
+
+        profile.queue.put.assert_called_with(result_tuple)
+
+        success_result_tuple = {"Success_CurrentDropPackets": 0.5,
+                                "Success_DropPackets": 0.5,
+                                "Success_LatencyAvg": 5.3,
+                                "Success_LatencyMax": 5.2,
+                                "Success_LatencyMin": 5.1,
+                                "Success_PktSize": 200,
+                                "Success_RxThroughput": 7.5e-07,
+                                "Success_Throughput": 7.5e-07,
+                                "Success_TxThroughput": 0.00012340000000000002}
+
+        calls = profile.queue.put(success_result_tuple)
+        profile.queue.put.assert_has_calls(calls)
+
+        success_result_tuple2 = {"Success_CurrentDropPackets": 0.5,
+                                 "Success_DropPackets": 0.5,
+                                 "Success_LatencyAvg": 5.3,
+                                 "Success_LatencyMax": 5.2,
+                                 "Success_LatencyMin": 5.1,
+                                 "Success_PktSize": 200,
+                                 "Success_RxThroughput": 7.5e-07,
+                                 "Success_Throughput": 7.5e-07,
+                                 "Success_TxThroughput": 123.4,
+                                 "Success_can_be_lost": 409600,
+                                 "Success_drop_total": 20480,
+                                 "Success_rx_total": 4075520,
+                                 "Success_tx_total": 4096000}
+
+        calls = profile.queue.put(success_result_tuple2)
+        profile.queue.put.assert_has_calls(calls)