X-Git-Url: https://gerrit.opnfv.org/gerrit/gitweb?a=blobdiff_plain;f=qemu%2Froms%2Fu-boot%2Fboard%2Fesd%2Fcpci750%2Fsdram_init.c;fp=qemu%2Froms%2Fu-boot%2Fboard%2Fesd%2Fcpci750%2Fsdram_init.c;h=89f94aa6aa890057ee8ddcb594ffd698151b6a04;hb=e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb;hp=0000000000000000000000000000000000000000;hpb=9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00;p=kvmfornfv.git diff --git a/qemu/roms/u-boot/board/esd/cpci750/sdram_init.c b/qemu/roms/u-boot/board/esd/cpci750/sdram_init.c new file mode 100644 index 000000000..89f94aa6a --- /dev/null +++ b/qemu/roms/u-boot/board/esd/cpci750/sdram_init.c @@ -0,0 +1,1702 @@ +/* + * (C) Copyright 2001 + * Josh Huber , Mission Critical Linux, Inc. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +/************************************************************************* + * adaption for the Marvell DB64360 Board + * Ingo Assmus (ingo.assmus@keymile.com) + * + * adaption for the cpci750 Board + * Reinhard Arlt (reinhard.arlt@esd-electronics.com) + *************************************************************************/ + + +/* sdram_init.c - automatic memory sizing */ + +#include +#include <74xx_7xx.h> +#include "../../Marvell/include/memory.h" +#include "../../Marvell/include/pci.h" +#include "../../Marvell/include/mv_gen_reg.h" +#include + +#include "eth.h" +#include "mpsc.h" +#include "../../Marvell/common/i2c.h" +#include "64360.h" +#include "mv_regs.h" + +DECLARE_GLOBAL_DATA_PTR; + +int set_dfcdlInit(void); /* setup delay line of Mv64360 */ + +/* ------------------------------------------------------------------------- */ + +int +memory_map_bank(unsigned int bankNo, + unsigned int bankBase, + unsigned int bankLength) +{ +#ifdef MAP_PCI + PCI_HOST host; +#endif + + +#ifdef DEBUG + if (bankLength > 0) { + printf("mapping bank %d at %08x - %08x\n", + bankNo, bankBase, bankBase + bankLength - 1); + } else { + printf("unmapping bank %d\n", bankNo); + } +#endif + + memoryMapBank(bankNo, bankBase, bankLength); + +#ifdef MAP_PCI + for (host=PCI_HOST0;host<=PCI_HOST1;host++) { + const int features= + PREFETCH_ENABLE | + DELAYED_READ_ENABLE | + AGGRESSIVE_PREFETCH | + READ_LINE_AGGRESSIVE_PREFETCH | + READ_MULTI_AGGRESSIVE_PREFETCH | + MAX_BURST_4 | + PCI_NO_SWAP; + + pciMapMemoryBank(host, bankNo, bankBase, bankLength); + + pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase, + bankLength); + + pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength); + } +#endif + return 0; +} + +#define GB (1 << 30) + +/* much of this code is based on (or is) the code in the pip405 port */ +/* thanks go to the authors of said port - Josh */ + +/* structure to store the relevant information about an sdram bank */ +typedef struct sdram_info { + uchar drb_size; + uchar registered, ecc; + uchar tpar; + uchar tras_clocks; + uchar burst_len; + uchar banks, slot; +} sdram_info_t; + +/* Typedefs for 'gtAuxilGetDIMMinfo' function */ + +typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE; + +typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V, + SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN, + } VOLTAGE_INTERFACE; + +typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR; +typedef enum _max_CL_supported_SD {SD_CL_1=1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD; + + +/* SDRAM/DDR information struct */ +typedef struct _gtMemoryDimmInfo { + MEMORY_TYPE memoryType; + unsigned int numOfRowAddresses; + unsigned int numOfColAddresses; + unsigned int numOfModuleBanks; + unsigned int dataWidth; + VOLTAGE_INTERFACE voltageInterface; + unsigned int errorCheckType; /* ECC , PARITY.. */ + unsigned int sdramWidth; /* 4,8,16 or 32 */ ; + unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */ + unsigned int minClkDelay; + unsigned int burstLengthSupported; + unsigned int numOfBanksOnEachDevice; + unsigned int suportedCasLatencies; + unsigned int RefreshInterval; + unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */ + unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */ + MAX_CL_SUPPORTED_DDR maxClSupported_DDR; + MAX_CL_SUPPORTED_SD maxClSupported_SD; + unsigned int moduleBankDensity; + /* module attributes (true for yes) */ + bool bufferedAddrAndControlInputs; + bool registeredAddrAndControlInputs; + bool onCardPLL; + bool bufferedDQMBinputs; + bool registeredDQMBinputs; + bool differentialClockInput; + bool redundantRowAddressing; + + /* module general attributes */ + bool suportedAutoPreCharge; + bool suportedPreChargeAll; + bool suportedEarlyRasPreCharge; + bool suportedWrite1ReadBurst; + bool suported5PercentLowVCC; + bool suported5PercentUpperVCC; + /* module timing parameters */ + unsigned int minRasToCasDelay; + unsigned int minRowActiveRowActiveDelay; + unsigned int minRasPulseWidth; + unsigned int minRowPrechargeTime; /* measured in ns */ + + int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */ + int addrAndCommandSetupTime; /* (measured in ns/100) */ + int dataInputSetupTime; /* LoP left of point (measured in ns) */ + int dataInputHoldTime; /* LoP left of point (measured in ns) */ +/* tAC times for highest 2nd and 3rd highest CAS Latency values */ + unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */ + unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */ + unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */ + unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */ + unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */ + unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */ + + unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */ + unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */ + + unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */ + unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */ + + unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */ + unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */ + + /* Parameters calculated from + the extracted DIMM information */ + unsigned int size; + unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */ + unsigned int numberOfDevices; + uchar drb_size; /* DRAM size in n*64Mbit */ + uchar slot; /* Slot Number this module is inserted in */ + uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */ +#ifdef DEBUG + uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */ + uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */ + uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */ + unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */ + unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */ + unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */ + uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */ + +#endif +} AUX_MEM_DIMM_INFO; + + +/* + * translate ns.ns/10 coding of SPD timing values + * into 10 ps unit values + */ +static inline unsigned short +NS10to10PS(unsigned char spd_byte) +{ + unsigned short ns, ns10; + + /* isolate upper nibble */ + ns = (spd_byte >> 4) & 0x0F; + /* isolate lower nibble */ + ns10 = (spd_byte & 0x0F); + + return(ns*100 + ns10*10); +} + +/* + * translate ns coding of SPD timing values + * into 10 ps unit values + */ +static inline unsigned short +NSto10PS(unsigned char spd_byte) +{ + return(spd_byte*100); +} + +/* This code reads the SPD chip on the sdram and populates + * the array which is passed in with the relevant information */ +/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */ +static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo) +{ + uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; + int ret; + unsigned int i, j, density = 1, devicesForErrCheck = 0; + +#ifdef DEBUG + unsigned int k; +#endif + unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp; + int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint; + uchar supp_cal, cal_val; + ulong memclk, tmemclk; + ulong tmp; + uchar trp_clocks = 0, tras_clocks; + uchar data[128]; + + memclk = gd->bus_clk; + tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */ + + memset (data, 0, sizeof (data)); + + + ret = 0; + + debug("before i2c read\n"); + + ret = i2c_read (addr, 0, 2, data, 128); + + debug("after i2c read\n"); + + if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd') + || (data[67] != '-') || (data[68] != 'g') || (data[69] != 'm') + || (data[70] != 'b') || (data[71] != 'h')) { + ret = -1; + } + + if ((ret != 0) && (slot == 0)) { + memset (data, 0, sizeof (data)); + data[0] = 0x80; + data[1] = 0x08; + data[2] = 0x07; + data[3] = 0x0c; + data[4] = 0x09; + data[5] = 0x01; + data[6] = 0x48; + data[7] = 0x00; + data[8] = 0x04; + data[9] = 0x75; + data[10] = 0x80; + data[11] = 0x02; + data[12] = 0x80; + data[13] = 0x10; + data[14] = 0x08; + data[15] = 0x01; + data[16] = 0x0e; + data[17] = 0x04; + data[18] = 0x0c; + data[19] = 0x01; + data[20] = 0x02; + data[21] = 0x20; + data[22] = 0x00; + data[23] = 0xa0; + data[24] = 0x80; + data[25] = 0x00; + data[26] = 0x00; + data[27] = 0x50; + data[28] = 0x3c; + data[29] = 0x50; + data[30] = 0x32; + data[31] = 0x10; + data[32] = 0xb0; + data[33] = 0xb0; + data[34] = 0x60; + data[35] = 0x60; + data[64] = 'e'; + data[65] = 's'; + data[66] = 'd'; + data[67] = '-'; + data[68] = 'g'; + data[69] = 'm'; + data[70] = 'b'; + data[71] = 'h'; + ret = 0; + } + + /* zero all the values */ + memset (dimmInfo, 0, sizeof (*dimmInfo)); + + /* copy the SPD content 1:1 into the dimmInfo structure */ + for (i = 0; i <= 127; i++) { + dimmInfo->spd_raw_data[i] = data[i]; + } + + if (ret) { + debug("No DIMM in slot %d [err = %x]\n", slot, ret); + return 0; + } else + dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */ + +#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT + + for (i = 0; i <= 127; i++) { + printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], + data[i]); + } + +#endif +#ifdef DEBUG + /* find Manufacturer of Dimm Module */ + for (i = 0; i < sizeof (dimmInfo->manufactura); i++) { + dimmInfo->manufactura[i] = data[64 + i]; + } + printf ("\nThis RAM-Module is produced by: %s\n", + dimmInfo->manufactura); + + /* find Manul-ID of Dimm Module */ + for (i = 0; i < sizeof (dimmInfo->modul_id); i++) { + dimmInfo->modul_id[i] = data[73 + i]; + } + printf ("The Module-ID of this RAM-Module is: %s\n", + dimmInfo->modul_id); + + /* find Vendor-Data of Dimm Module */ + for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) { + dimmInfo->vendor_data[i] = data[99 + i]; + } + printf ("Vendor Data of this RAM-Module is: %s\n", + dimmInfo->vendor_data); + + /* find modul_serial_no of Dimm Module */ + dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95]))); + printf ("Serial No. of this RAM-Module is: %ld (%lx)\n", + dimmInfo->modul_serial_no, dimmInfo->modul_serial_no); + + /* find Manufac-Data of Dimm Module */ + dimmInfo->manufac_date = (*((unsigned int *) (&data[93]))); + printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */ + + /* find modul_revision of Dimm Module */ + dimmInfo->modul_revision = (*((unsigned int *) (&data[91]))); + printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */ + + /* find manufac_place of Dimm Module */ + dimmInfo->manufac_place = (*((unsigned char *) (&data[72]))); + printf ("manufac_place of this RAM-Module is: %d\n", + dimmInfo->manufac_place); + +#endif +/*------------------------------------------------------------------------------------------------------------------------------*/ +/* calculate SPD checksum */ +/*------------------------------------------------------------------------------------------------------------------------------*/ +#if 0 /* test-only */ + spd_checksum = 0; + + for (i = 0; i <= 62; i++) { + spd_checksum += data[i]; + } + + if ((spd_checksum & 0xff) != data[63]) { + printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]); + hang (); + } + + else + printf ("SPD Checksum ok!\n"); +#endif /* test-only */ + +/*------------------------------------------------------------------------------------------------------------------------------*/ + for (i = 2; i <= 35; i++) { + switch (i) { + case 2: /* Memory type (DDR / SDRAM) */ + dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM; +#ifdef DEBUG + if (dimmInfo->memoryType == 0) + debug("Dram_type in slot %d is: SDRAM\n", + dimmInfo->slot); + if (dimmInfo->memoryType == 1) + debug("Dram_type in slot %d is: DDRAM\n", + dimmInfo->slot); +#endif + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 3: /* Number Of Row Addresses */ + dimmInfo->numOfRowAddresses = data[i]; + debug("Module Number of row addresses: %d\n", + dimmInfo->numOfRowAddresses); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 4: /* Number Of Column Addresses */ + dimmInfo->numOfColAddresses = data[i]; + debug("Module Number of col addresses: %d\n", + dimmInfo->numOfColAddresses); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 5: /* Number Of Module Banks */ + dimmInfo->numOfModuleBanks = data[i]; + debug("Number of Banks on Mod. : %d\n", + dimmInfo->numOfModuleBanks); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 6: /* Data Width */ + dimmInfo->dataWidth = data[i]; + debug("Module Data Width: %d\n", + dimmInfo->dataWidth); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 8: /* Voltage Interface */ + switch (data[i]) { + case 0x0: + dimmInfo->voltageInterface = TTL_5V_TOLERANT; + debug("Module is TTL_5V_TOLERANT\n"); + break; + case 0x1: + dimmInfo->voltageInterface = LVTTL; + debug("Module is LVTTL\n"); + break; + case 0x2: + dimmInfo->voltageInterface = HSTL_1_5V; + debug("Module is TTL_5V_TOLERANT\n"); + break; + case 0x3: + dimmInfo->voltageInterface = SSTL_3_3V; + debug("Module is HSTL_1_5V\n"); + break; + case 0x4: + dimmInfo->voltageInterface = SSTL_2_5V; + debug("Module is SSTL_2_5V\n"); + break; + default: + dimmInfo->voltageInterface = VOLTAGE_UNKNOWN; + debug("Module is VOLTAGE_UNKNOWN\n"); + break; + } + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 9: /* Minimum Cycle Time At Max CasLatancy */ + shift = (dimmInfo->memoryType == DDR) ? 4 : 2; + mult = (dimmInfo->memoryType == DDR) ? 10 : 25; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf : 0x03; + leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; + rightOfPoint = (data[i] & maskRightOfPoint) * mult; + dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = + leftOfPoint; + dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = + rightOfPoint; + debug("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n", + leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 10: /* Clock To Data Out */ + div = (dimmInfo->memoryType == DDR) ? 100 : 10; + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / div; + rightOfPoint = time_tmp % div; + dimmInfo->clockToDataOut_LoP = leftOfPoint; + dimmInfo->clockToDataOut_RoP = rightOfPoint; + debug("Clock To Data Out: %d.%2d [ns]\n", + leftOfPoint, rightOfPoint); + /*dimmInfo->clockToDataOut */ + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + +#ifdef CONFIG_MV64360_ECC + case 11: /* Error Check Type */ + dimmInfo->errorCheckType = data[i]; + debug("Error Check Type (0=NONE): %d\n", + dimmInfo->errorCheckType); + break; +#endif /* of ifdef CONFIG_MV64360_ECC */ +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 12: /* Refresh Interval */ + dimmInfo->RefreshInterval = data[i]; + debug("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", + dimmInfo->RefreshInterval); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 13: /* Sdram Width */ + dimmInfo->sdramWidth = data[i]; + debug("Sdram Width: %d\n", + dimmInfo->sdramWidth); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 14: /* Error Check Data Width */ + dimmInfo->errorCheckDataWidth = data[i]; + debug("Error Check Data Width: %d\n", + dimmInfo->errorCheckDataWidth); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 15: /* Minimum Clock Delay */ + dimmInfo->minClkDelay = data[i]; + debug("Minimum Clock Delay: %d\n", + dimmInfo->minClkDelay); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 16: /* Burst Length Supported */ + /******-******-******-******* + * bit3 | bit2 | bit1 | bit0 * + *******-******-******-******* + burst length = * 8 | 4 | 2 | 1 * + ***************************** + + If for example bit0 and bit2 are set, the burst + length supported are 1 and 4. */ + + dimmInfo->burstLengthSupported = data[i]; +#ifdef DEBUG + debug("Burst Length Supported: "); + if (dimmInfo->burstLengthSupported & 0x01) + debug("1, "); + if (dimmInfo->burstLengthSupported & 0x02) + debug("2, "); + if (dimmInfo->burstLengthSupported & 0x04) + debug("4, "); + if (dimmInfo->burstLengthSupported & 0x08) + debug("8, "); + debug(" Bit \n"); +#endif + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 17: /* Number Of Banks On Each Device */ + dimmInfo->numOfBanksOnEachDevice = data[i]; + debug("Number Of Banks On Each Chip: %d\n", + dimmInfo->numOfBanksOnEachDevice); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 18: /* Suported Cas Latencies */ + + /* DDR: + *******-******-******-******-******-******-******-******* + * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * + *******-******-******-******-******-******-******-******* + CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 * + ********************************************************* + SDRAM: + *******-******-******-******-******-******-******-******* + * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * + *******-******-******-******-******-******-******-******* + CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 * + ********************************************************/ + dimmInfo->suportedCasLatencies = data[i]; +#ifdef DEBUG + debug("Suported Cas Latencies: (CL) "); + if (dimmInfo->memoryType == 0) { /* SDRAM */ + for (k = 0; k <= 7; k++) { + if (dimmInfo-> + suportedCasLatencies & (1 << k)) + debug("%d, ", + k + 1); + } + + } else { /* DDR-RAM */ + + if (dimmInfo->suportedCasLatencies & 1) + debug("1, "); + if (dimmInfo->suportedCasLatencies & 2) + debug("1.5, "); + if (dimmInfo->suportedCasLatencies & 4) + debug("2, "); + if (dimmInfo->suportedCasLatencies & 8) + debug("2.5, "); + if (dimmInfo->suportedCasLatencies & 16) + debug("3, "); + if (dimmInfo->suportedCasLatencies & 32) + debug("3.5, "); + + } + debug("\n"); +#endif + /* Calculating MAX CAS latency */ + for (j = 7; j > 0; j--) { + if (((dimmInfo-> + suportedCasLatencies >> j) & 0x1) == + 1) { + switch (dimmInfo->memoryType) { + case DDR: + /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */ + switch (j) { + case 7: + debug("Max. Cas Latencies (DDR): ERROR !!!\n"); + dimmInfo-> + maxClSupported_DDR + = + DDR_CL_FAULT; + hang (); + break; + case 6: + debug("Max. Cas Latencies (DDR): ERROR !!!\n"); + dimmInfo-> + maxClSupported_DDR + = + DDR_CL_FAULT; + hang (); + break; + case 5: + debug("Max. Cas Latencies (DDR): 3.5 clk's\n"); + dimmInfo-> + maxClSupported_DDR + = DDR_CL_3_5; + break; + case 4: + debug("Max. Cas Latencies (DDR): 3 clk's \n"); + dimmInfo-> + maxClSupported_DDR + = DDR_CL_3; + break; + case 3: + debug("Max. Cas Latencies (DDR): 2.5 clk's \n"); + dimmInfo-> + maxClSupported_DDR + = DDR_CL_2_5; + break; + case 2: + debug("Max. Cas Latencies (DDR): 2 clk's \n"); + dimmInfo-> + maxClSupported_DDR + = DDR_CL_2; + break; + case 1: + debug("Max. Cas Latencies (DDR): 1.5 clk's \n"); + dimmInfo-> + maxClSupported_DDR + = DDR_CL_1_5; + break; + } + dimmInfo-> + maxCASlatencySupported_LoP + = + 1 + + (int) (5 * j / 10); + if (((5 * j) % 10) != 0) + dimmInfo-> + maxCASlatencySupported_RoP + = 5; + else + dimmInfo-> + maxCASlatencySupported_RoP + = 0; + debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", + dimmInfo-> + maxCASlatencySupported_LoP, + dimmInfo-> + maxCASlatencySupported_RoP); + break; + case SDRAM: + /* CAS latency 1, 2, 3, 4, 5, 6, 7 */ + dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */ + debug("Max. Cas Latencies (SD): %d\n", + dimmInfo-> + maxClSupported_SD); + dimmInfo-> + maxCASlatencySupported_LoP + = j; + dimmInfo-> + maxCASlatencySupported_RoP + = 0; + debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", + dimmInfo-> + maxCASlatencySupported_LoP, + dimmInfo-> + maxCASlatencySupported_RoP); + break; + } + break; + } + } + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 21: /* Buffered Address And Control Inputs */ + debug("\nModul Attributes (SPD Byte 21): \n"); + dimmInfo->bufferedAddrAndControlInputs = + data[i] & BIT0; + dimmInfo->registeredAddrAndControlInputs = + (data[i] & BIT1) >> 1; + dimmInfo->onCardPLL = (data[i] & BIT2) >> 2; + dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3; + dimmInfo->registeredDQMBinputs = + (data[i] & BIT4) >> 4; + dimmInfo->differentialClockInput = + (data[i] & BIT5) >> 5; + dimmInfo->redundantRowAddressing = + (data[i] & BIT6) >> 6; + + if (dimmInfo->bufferedAddrAndControlInputs == 1) + debug(" - Buffered Address/Control Input: Yes \n"); + else + debug(" - Buffered Address/Control Input: No \n"); + + if (dimmInfo->registeredAddrAndControlInputs == 1) + debug(" - Registered Address/Control Input: Yes \n"); + else + debug(" - Registered Address/Control Input: No \n"); + + if (dimmInfo->onCardPLL == 1) + debug(" - On-Card PLL (clock): Yes \n"); + else + debug(" - On-Card PLL (clock): No \n"); + + if (dimmInfo->bufferedDQMBinputs == 1) + debug(" - Bufferd DQMB Inputs: Yes \n"); + else + debug(" - Bufferd DQMB Inputs: No \n"); + + if (dimmInfo->registeredDQMBinputs == 1) + debug(" - Registered DQMB Inputs: Yes \n"); + else + debug(" - Registered DQMB Inputs: No \n"); + + if (dimmInfo->differentialClockInput == 1) + debug(" - Differential Clock Input: Yes \n"); + else + debug(" - Differential Clock Input: No \n"); + + if (dimmInfo->redundantRowAddressing == 1) + debug(" - redundant Row Addressing: Yes \n"); + else + debug(" - redundant Row Addressing: No \n"); + + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 22: /* Suported AutoPreCharge */ + debug("\nModul Attributes (SPD Byte 22): \n"); + dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0; + dimmInfo->suportedAutoPreCharge = + (data[i] & BIT1) >> 1; + dimmInfo->suportedPreChargeAll = + (data[i] & BIT2) >> 2; + dimmInfo->suportedWrite1ReadBurst = + (data[i] & BIT3) >> 3; + dimmInfo->suported5PercentLowVCC = + (data[i] & BIT4) >> 4; + dimmInfo->suported5PercentUpperVCC = + (data[i] & BIT5) >> 5; + + if (dimmInfo->suportedEarlyRasPreCharge == 1) + debug(" - Early Ras Precharge: Yes \n"); + else + debug(" - Early Ras Precharge: No \n"); + + if (dimmInfo->suportedAutoPreCharge == 1) + debug(" - AutoPreCharge: Yes \n"); + else + debug(" - AutoPreCharge: No \n"); + + if (dimmInfo->suportedPreChargeAll == 1) + debug(" - Precharge All: Yes \n"); + else + debug(" - Precharge All: No \n"); + + if (dimmInfo->suportedWrite1ReadBurst == 1) + debug(" - Write 1/ReadBurst: Yes \n"); + else + debug(" - Write 1/ReadBurst: No \n"); + + if (dimmInfo->suported5PercentLowVCC == 1) + debug(" - lower VCC tolerance: 5 Percent \n"); + else + debug(" - lower VCC tolerance: 10 Percent \n"); + + if (dimmInfo->suported5PercentUpperVCC == 1) + debug(" - upper VCC tolerance: 5 Percent \n"); + else + debug(" - upper VCC tolerance: 10 Percent \n"); + + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */ + shift = (dimmInfo->memoryType == DDR) ? 4 : 2; + mult = (dimmInfo->memoryType == DDR) ? 10 : 25; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf : 0x03; + leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; + rightOfPoint = (data[i] & maskRightOfPoint) * mult; + dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = + leftOfPoint; + dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = + rightOfPoint; + debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", + leftOfPoint, rightOfPoint); + /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 24: /* Clock To Data Out 2nd highest Cas Latency Value */ + div = (dimmInfo->memoryType == DDR) ? 100 : 10; + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / div; + rightOfPoint = time_tmp % div; + dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint; + dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint; + debug("Clock To Data Out (2nd CL value): %d.%2d [ns]\n", + leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */ + shift = (dimmInfo->memoryType == DDR) ? 4 : 2; + mult = (dimmInfo->memoryType == DDR) ? 10 : 25; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0xf : 0x03; + leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; + rightOfPoint = (data[i] & maskRightOfPoint) * mult; + dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = + leftOfPoint; + dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = + rightOfPoint; + debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", + leftOfPoint, rightOfPoint); + /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 26: /* Clock To Data Out 3rd highest Cas Latency Value */ + div = (dimmInfo->memoryType == DDR) ? 100 : 10; + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / div; + rightOfPoint = time_tmp % div; + dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint; + dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint; + debug("Clock To Data Out (3rd CL value): %d.%2d [ns]\n", + leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 27: /* Minimum Row Precharge Time */ + shift = (dimmInfo->memoryType == DDR) ? 2 : 0; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; + leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); + rightOfPoint = (data[i] & maskRightOfPoint) * 25; + + dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */ + trp_clocks = + (dimmInfo->minRowPrechargeTime + + (tmemclk - 1)) / tmemclk; + debug("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n", + tmemclk, tmemclk / 100, tmemclk % 100); + debug("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n", + leftOfPoint, rightOfPoint, trp_clocks); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 28: /* Minimum Row Active to Row Active Time */ + shift = (dimmInfo->memoryType == DDR) ? 2 : 0; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; + leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); + rightOfPoint = (data[i] & maskRightOfPoint) * 25; + + dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ + debug("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n", + leftOfPoint, rightOfPoint, trp_clocks); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 29: /* Minimum Ras-To-Cas Delay */ + shift = (dimmInfo->memoryType == DDR) ? 2 : 0; + maskLeftOfPoint = + (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; + maskRightOfPoint = + (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; + leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); + rightOfPoint = (data[i] & maskRightOfPoint) * 25; + + dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ + debug("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n", + leftOfPoint, rightOfPoint, trp_clocks); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 30: /* Minimum Ras Pulse Width */ + dimmInfo->minRasPulseWidth = data[i]; + tras_clocks = + (NSto10PS (data[i]) + + (tmemclk - 1)) / tmemclk; + debug("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n", + dimmInfo->minRasPulseWidth, tras_clocks); + + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 31: /* Module Bank Density */ + dimmInfo->moduleBankDensity = data[i]; + debug("Module Bank Density: %d\n", + dimmInfo->moduleBankDensity); +#ifdef DEBUG + debug("*** Offered Densities (more than 1 = Multisize-Module): "); + { + if (dimmInfo->moduleBankDensity & 1) + debug("4MB, "); + if (dimmInfo->moduleBankDensity & 2) + debug("8MB, "); + if (dimmInfo->moduleBankDensity & 4) + debug("16MB, "); + if (dimmInfo->moduleBankDensity & 8) + debug("32MB, "); + if (dimmInfo->moduleBankDensity & 16) + debug("64MB, "); + if (dimmInfo->moduleBankDensity & 32) + debug("128MB, "); + if ((dimmInfo->moduleBankDensity & 64) + || (dimmInfo->moduleBankDensity & 128)) { + debug("ERROR, "); + hang (); + } + } + debug("\n"); +#endif + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 32: /* Address And Command Setup Time (measured in ns/1000) */ + sign = 1; + switch (dimmInfo->memoryType) { + case DDR: + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / 100; + rightOfPoint = time_tmp % 100; + break; + case SDRAM: + leftOfPoint = (data[i] & 0xf0) >> 4; + if (leftOfPoint > 7) { + leftOfPoint = data[i] & 0x70 >> 4; + sign = -1; + } + rightOfPoint = (data[i] & 0x0f); + break; + } + dimmInfo->addrAndCommandSetupTime = + (leftOfPoint * 100 + rightOfPoint) * sign; + debug("Address And Command Setup Time [ns]: %d.%d\n", + sign * leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 33: /* Address And Command Hold Time */ + sign = 1; + switch (dimmInfo->memoryType) { + case DDR: + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / 100; + rightOfPoint = time_tmp % 100; + break; + case SDRAM: + leftOfPoint = (data[i] & 0xf0) >> 4; + if (leftOfPoint > 7) { + leftOfPoint = data[i] & 0x70 >> 4; + sign = -1; + } + rightOfPoint = (data[i] & 0x0f); + break; + } + dimmInfo->addrAndCommandHoldTime = + (leftOfPoint * 100 + rightOfPoint) * sign; + debug("Address And Command Hold Time [ns]: %d.%d\n", + sign * leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 34: /* Data Input Setup Time */ + sign = 1; + switch (dimmInfo->memoryType) { + case DDR: + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / 100; + rightOfPoint = time_tmp % 100; + break; + case SDRAM: + leftOfPoint = (data[i] & 0xf0) >> 4; + if (leftOfPoint > 7) { + leftOfPoint = data[i] & 0x70 >> 4; + sign = -1; + } + rightOfPoint = (data[i] & 0x0f); + break; + } + dimmInfo->dataInputSetupTime = + (leftOfPoint * 100 + rightOfPoint) * sign; + debug("Data Input Setup Time [ns]: %d.%d\n", + sign * leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + + case 35: /* Data Input Hold Time */ + sign = 1; + switch (dimmInfo->memoryType) { + case DDR: + time_tmp = + (((data[i] & 0xf0) >> 4) * 10) + + ((data[i] & 0x0f)); + leftOfPoint = time_tmp / 100; + rightOfPoint = time_tmp % 100; + break; + case SDRAM: + leftOfPoint = (data[i] & 0xf0) >> 4; + if (leftOfPoint > 7) { + leftOfPoint = data[i] & 0x70 >> 4; + sign = -1; + } + rightOfPoint = (data[i] & 0x0f); + break; + } + dimmInfo->dataInputHoldTime = + (leftOfPoint * 100 + rightOfPoint) * sign; + debug("Data Input Hold Time [ns]: %d.%d\n\n", + sign * leftOfPoint, rightOfPoint); + break; +/*------------------------------------------------------------------------------------------------------------------------------*/ + } + } + /* calculating the sdram density */ + for (i = 0; + i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses; + i++) { + density = density * 2; + } + dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice * + dimmInfo->sdramWidth; + dimmInfo->numberOfDevices = + (dimmInfo->dataWidth / dimmInfo->sdramWidth) * + dimmInfo->numOfModuleBanks; + devicesForErrCheck = + (dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth; + if ((dimmInfo->errorCheckType == 0x1) + || (dimmInfo->errorCheckType == 0x2) + || (dimmInfo->errorCheckType == 0x3)) { + dimmInfo->size = + (dimmInfo->deviceDensity / 8) * + (dimmInfo->numberOfDevices - devicesForErrCheck); + } else { + dimmInfo->size = + (dimmInfo->deviceDensity / 8) * + dimmInfo->numberOfDevices; + } + + /* compute the module DRB size */ + tmp = (1 << + (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses)); + tmp *= dimmInfo->numOfModuleBanks; + tmp *= dimmInfo->sdramWidth; + tmp = tmp >> 24; /* div by 0x4000000 (64M) */ + dimmInfo->drb_size = (uchar) tmp; + debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size); + + /* try a CAS latency of 3 first... */ + + /* bit 1 is CL2, bit 2 is CL3 */ + supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1; + + cal_val = 0; + if (supp_cal & 8) { + if (NS10to10PS (data[9]) <= tmemclk) + cal_val = 6; + } + if (supp_cal & 4) { + if (NS10to10PS (data[9]) <= tmemclk) + cal_val = 5; + } + + /* then 2... */ + if (supp_cal & 2) { + if (NS10to10PS (data[23]) <= tmemclk) + cal_val = 4; + } + + debug("cal_val = %d\n", cal_val * 5); + + /* bummer, did't work... */ + if (cal_val == 0) { + debug("Couldn't find a good CAS latency\n"); + hang (); + return 0; + } + + return true; +} + +/* sets up the GT properly with information passed in */ +int setup_sdram (AUX_MEM_DIMM_INFO * info) +{ + ulong tmp; + ulong tmp_sdram_mode = 0; /* 0x141c */ + ulong tmp_dunit_control_low = 0; /* 0x1404 */ + uint sdram_config_reg = CONFIG_SYS_SDRAM_CONFIG; + int i; + + /* sanity checking */ + if (!info->numOfModuleBanks) { + printf ("setup_sdram called with 0 banks\n"); + return 1; + } + + /* delay line */ + + /* Program the GT with the discovered data */ + if (info->registeredAddrAndControlInputs == true) + debug("Module is registered, but we do not support registered Modules !!!\n"); + + /* delay line */ + set_dfcdlInit (); /* may be its not needed */ + debug("Delay line set done\n"); + + /* set SDRAM mode NOP */ /* To_do check it */ + GT_REG_WRITE (SDRAM_OPERATION, 0x5); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n"); + } + +#ifdef CONFIG_MV64360_ECC + if ((info->errorCheckType == 0x2) && (CPCI750_ECC_TEST)) { + /* DRAM has ECC, so turn it on */ + sdram_config_reg |= BIT18; + debug("Enabling ECC\n"); + } +#endif /* of ifdef CONFIG_MV64360_ECC */ + + /* SDRAM configuration */ + GT_REG_WRITE(SDRAM_CONFIG, sdram_config_reg); + debug("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG)); + + /* SDRAM open pages controll keep open as much as I can */ + GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0); + debug("sdram_open_pages_controll 0x1414: %08x\n", + GTREGREAD (SDRAM_OPEN_PAGES_CONTROL)); + + + /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ + tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */ + if (tmp == 0) + debug("Core Signals are sync (by HW-Setting)!!!\n"); + else + debug("Core Signals syncs. are bypassed (by HW-Setting)!!!\n"); + + /* SDRAM set CAS Lentency according to SPD information */ + switch (info->memoryType) { + case SDRAM: + debug("### SD-RAM not supported yet !!!\n"); + hang (); + /* ToDo fill SD-RAM if needed !!!!! */ + break; + + case DDR: + debug("### SET-CL for DDR-RAM\n"); + + switch (info->maxClSupported_DDR) { + case DDR_CL_3: + tmp_dunit_control_low = 0x3c000000; /* Read-Data sampled on falling edge of Clk */ + tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */ + debug("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + break; + + case DDR_CL_2_5: + if (tmp == 1) { /* clocks sync */ + tmp_dunit_control_low = 0x24000000; /* Read-Data sampled on falling edge of Clk */ + tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */ + debug("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } else { /* clk sync. bypassed */ + + tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */ + tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */ + debug("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } + break; + + case DDR_CL_2: + if (tmp == 1) { /* Sync */ + tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */ + tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */ + debug("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } else { /* Not sync. */ + + tmp_dunit_control_low = 0x3b000000; /* Read-Data sampled on rising edge of Clk */ + tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */ + debug("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } + break; + + case DDR_CL_1_5: + if (tmp == 1) { /* Sync */ + tmp_dunit_control_low = 0x23000000; /* Read-Data sampled on falling edge of Clk */ + tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */ + debug("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } else { /* not sync */ + + tmp_dunit_control_low = 0x1a000000; /* Read-Data sampled on rising edge of Clk */ + tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */ + debug("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", + tmp_sdram_mode, tmp_dunit_control_low); + } + break; + + default: + printf ("Max. CL is out of range %d\n", + info->maxClSupported_DDR); + hang (); + break; + } + break; + } + + /* Write results of CL detection procedure */ + GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode); + /* set SDRAM mode SetCommand 0x1418 */ + GT_REG_WRITE (SDRAM_OPERATION, 0x3); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); + } + + + /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ + tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */ + if (tmp != 1) { /*clocks are not sync */ + /* asyncmode */ + GT_REG_WRITE (D_UNIT_CONTROL_LOW, + (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | + 0x18110780 | tmp_dunit_control_low); + } else { + /* syncmode */ + GT_REG_WRITE (D_UNIT_CONTROL_LOW, + (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | + 0x00110000 | tmp_dunit_control_low); + } + + /* set SDRAM mode SetCommand 0x1418 */ + GT_REG_WRITE (SDRAM_OPERATION, 0x3); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n"); + } + +/*------------------------------------------------------------------------------ */ + + + /* bank parameters */ + /* SDRAM address decode register */ + /* program this with the default value */ + tmp = 0x02; + + + debug("drb_size (n*64Mbit): %d\n", info->drb_size); + switch (info->drb_size) { + case 1: /* 64 Mbit */ + case 2: /* 128 Mbit */ + debug("RAM-Device_size 64Mbit or 128Mbit)\n"); + tmp |= (0x00 << 4); + break; + case 4: /* 256 Mbit */ + case 8: /* 512 Mbit */ + debug("RAM-Device_size 256Mbit or 512Mbit)\n"); + tmp |= (0x01 << 4); + break; + case 16: /* 1 Gbit */ + case 32: /* 2 Gbit */ + debug("RAM-Device_size 1Gbit or 2Gbit)\n"); + tmp |= (0x02 << 4); + break; + default: + printf ("Error in dram size calculation\n"); + debug("Assume: RAM-Device_size 1Gbit or 2Gbit)\n"); + tmp |= (0x02 << 4); + return 1; + } + + /* SDRAM bank parameters */ + /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ + debug("setting up slot %d config with: %08lx \n", info->slot, tmp); + GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp); + +/* ------------------------------------------------------------------------------ */ + + debug("setting up sdram_timing_control_low with: %08x \n", + 0x11511220); + GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220); + + +/* ------------------------------------------------------------------------------ */ + + /* SDRAM configuration */ + tmp = GTREGREAD (SDRAM_CONFIG); + + if (info->registeredAddrAndControlInputs + || info->registeredDQMBinputs) { + tmp |= (1 << 17); + debug("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n", + info->registeredAddrAndControlInputs, + info->registeredDQMBinputs); + } + + /* Use buffer 1 to return read data to the CPU + * Page 426 MV64360 */ + tmp |= (1 << 26); + debug("Before Buffer assignment - sdram_conf: %08x\n", + GTREGREAD (SDRAM_CONFIG)); + debug("After Buffer assignment - sdram_conf: %08x\n", + GTREGREAD (SDRAM_CONFIG)); + + /* SDRAM timing To_do: */ + + + tmp = GTREGREAD (SDRAM_TIMING_CONTROL_HIGH); + debug("# sdram_timing_control_high is : %08lx \n", tmp); + + /* SDRAM address decode register */ + /* program this with the default value */ + tmp = GTREGREAD (SDRAM_ADDR_CONTROL); + debug("SDRAM address control (before: decode): %08x ", + GTREGREAD (SDRAM_ADDR_CONTROL)); + GT_REG_WRITE (SDRAM_ADDR_CONTROL, (tmp | 0x2)); + debug("SDRAM address control (after: decode): %08x\n", + GTREGREAD (SDRAM_ADDR_CONTROL)); + + /* set the SDRAM configuration for each bank */ + +/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */ + { + int l, l1; + + i = info->slot; + debug("\n*** Running a MRS cycle for bank %d ***\n", i); + + /* map the bank */ + memory_map_bank (i, 0, GB / 4); +#if 1 /* test only */ + + tmp = GTREGREAD (SDRAM_MODE); + GT_REG_WRITE (EXTENDED_DRAM_MODE, 0x0); + GT_REG_WRITE (SDRAM_OPERATION, 0x4); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); + } + + GT_REG_WRITE (SDRAM_MODE, tmp | 0x80); + GT_REG_WRITE (SDRAM_OPERATION, 0x3); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); + } + l1 = 0; + for (l=0;l<200;l++) + l1 += GTREGREAD (SDRAM_OPERATION); + + GT_REG_WRITE (SDRAM_MODE, tmp); + GT_REG_WRITE (SDRAM_OPERATION, 0x3); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); + } + + /* switch back to normal operation mode */ + GT_REG_WRITE (SDRAM_OPERATION, 0x5); + while (GTREGREAD (SDRAM_OPERATION) != 0) { + debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); + } + +#endif /* test only */ + /* unmap the bank */ + memory_map_bank (i, 0, 0); + } + + return 0; +} + +/* + * Check memory range for valid RAM. A simple memory test determines + * the actually available RAM size between addresses `base' and + * `base + maxsize'. Some (not all) hardware errors are detected: + * - short between address lines + * - short between data lines + */ +long int +dram_size(long int *base, long int maxsize) +{ + volatile long int *addr, *b=base; + long int cnt, val, save1, save2; + +#define STARTVAL (1<<20) /* start test at 1M */ + for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) { + addr = base + cnt; /* pointer arith! */ + + save1 = *addr; /* save contents of addr */ + save2 = *b; /* save contents of base */ + + *addr=cnt; /* write cnt to addr */ + *b=0; /* put null at base */ + + /* check at base address */ + if ((*b) != 0) { + *addr=save1; /* restore *addr */ + *b=save2; /* restore *b */ + return (0); + } + val = *addr; /* read *addr */ + val = *addr; /* read *addr */ + + *addr=save1; + *b=save2; + + if (val != cnt) { + debug("Found %08x at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr); + /* fix boundary condition.. STARTVAL means zero */ + if(cnt==STARTVAL/sizeof(long)) cnt=0; + return (cnt * sizeof(long)); + } + } + return maxsize; +} + +#ifdef CONFIG_MV64360_ECC +/* + * mv_dma_is_channel_active: + * Checks if a engine is busy. + */ +int mv_dma_is_channel_active(int engine) +{ + ulong data; + + data = GTREGREAD(MV64360_DMA_CHANNEL0_CONTROL + 4 * engine); + if (data & BIT14) /* activity status */ + return 1; + + return 0; +} + +/* + * mv_dma_set_memory_space: + * Set a DMA memory window for the DMA's address decoding map. + */ +int mv_dma_set_memory_space(ulong mem_space, ulong mem_space_target, + ulong mem_space_attr, ulong base_address, + ulong size) +{ + ulong temp; + + /* The base address must be aligned to the size. */ + if (base_address % size != 0) + return 0; + + if (size >= 0x10000) { + size &= 0xffff0000; + base_address = (base_address & 0xffff0000); + /* Set the new attributes */ + GT_REG_WRITE(MV64360_DMA_BASE_ADDR_REG0 + mem_space * 8, + (base_address | mem_space_target | + mem_space_attr)); + GT_REG_WRITE((MV64360_DMA_SIZE_REG0 + mem_space * 8), + (size - 1) & 0xffff0000); + temp = GTREGREAD(MV64360_DMA_BASE_ADDR_ENABLE_REG); + GT_REG_WRITE(DMA_BASE_ADDR_ENABLE_REG, + (temp & ~(BIT0 << mem_space))); + return 1; + } + + return 0; +} + + +/* + * mv_dma_transfer: + * Transfer data from source_addr to dest_addr on one of the 4 DMA channels. + */ +int mv_dma_transfer(int engine, ulong source_addr, + ulong dest_addr, ulong bytes, ulong command) +{ + ulong eng_off_reg; /* Engine Offset Register */ + + if (bytes > 0xffff) + command = command | BIT31; /* DMA_16M_DESCRIPTOR_MODE */ + + command = command | ((command >> 6) & 0x7); + eng_off_reg = engine * 4; + GT_REG_WRITE(MV64360_DMA_CHANNEL0_BYTE_COUNT + eng_off_reg, + bytes); + GT_REG_WRITE(MV64360_DMA_CHANNEL0_SOURCE_ADDR + eng_off_reg, + source_addr); + GT_REG_WRITE(MV64360_DMA_CHANNEL0_DESTINATION_ADDR + eng_off_reg, + dest_addr); + command |= BIT12 /* DMA_CHANNEL_ENABLE */ + | BIT9; /* DMA_NON_CHAIN_MODE */ + + /* Activate DMA engine By writting to mv_dma_control_register */ + GT_REG_WRITE(MV64360_DMA_CHANNEL0_CONTROL + eng_off_reg, command); + + return 1; +} +#endif /* of ifdef CONFIG_MV64360_ECC */ + +/* ppcboot interface function to SDRAM init - this is where all the + * controlling logic happens */ +phys_size_t +initdram(int board_type) +{ + int checkbank[4] = { [0 ... 3] = 0 }; + ulong realsize, total, check; + AUX_MEM_DIMM_INFO dimmInfo1; + AUX_MEM_DIMM_INFO dimmInfo2; + int bank_no, nhr; +#ifdef CONFIG_MV64360_ECC + ulong dest, mem_space_attr; +#endif /* of ifdef CONFIG_MV64360_ECC */ + + /* first, use the SPD to get info about the SDRAM/ DDRRAM */ + + /* check the NHR bit and skip mem init if it's already done */ + nhr = get_hid0() & (1 << 16); + + if (nhr) { + printf("Skipping SD- DDRRAM setup due to NHR bit being set\n"); + } else { + /* DIMM0 */ + (void)check_dimm(0, &dimmInfo1); + + /* DIMM1 */ + (void)check_dimm(1, &dimmInfo2); + + memory_map_bank(0, 0, 0); + memory_map_bank(1, 0, 0); + memory_map_bank(2, 0, 0); + memory_map_bank(3, 0, 0); + + if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) { + printf("Setup for DIMM1 failed.\n"); + } + + if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) { + printf("Setup for DIMM2 failed.\n"); + } + + /* set the NHR bit */ + set_hid0(get_hid0() | (1 << 16)); + } + /* next, size the SDRAM banks */ + + realsize = total = 0; + check = GB/4; + if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");} + if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");} + if (dimmInfo1.numOfModuleBanks > 2) + printf("Error, SPD claims DIMM1 has >2 banks\n"); + + if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");} + if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");} + if (dimmInfo2.numOfModuleBanks > 2) + printf("Error, SPD claims DIMM2 has >2 banks\n"); + + for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) { + /* skip over banks that are not populated */ + if (! checkbank[bank_no]) + continue; + + if ((total + check) > CONFIG_SYS_GT_REGS) + check = CONFIG_SYS_GT_REGS - total; + + memory_map_bank(bank_no, total, check); + realsize = dram_size((long int *)total, check); + memory_map_bank(bank_no, total, realsize); + +#ifdef CONFIG_MV64360_ECC + if (((dimmInfo1.errorCheckType != 0) && + ((dimmInfo2.errorCheckType != 0) || + (dimmInfo2.numOfModuleBanks == 0))) && + (CPCI750_ECC_TEST)) { + printf("ECC Initialization of Bank %d:", bank_no); + mem_space_attr = ((~(BIT0 << bank_no)) & 0xf) << 8; + mv_dma_set_memory_space(0, 0, mem_space_attr, total, + realsize); + for (dest = total; dest < total + realsize; + dest += _8M) { + mv_dma_transfer(0, total, dest, _8M, + BIT8 | /* DMA_DTL_128BYTES */ + BIT3 | /* DMA_HOLD_SOURCE_ADDR */ + BIT11); /* DMA_BLOCK_TRANSFER_MODE */ + while (mv_dma_is_channel_active(0)) + ; + } + printf(" PASS\n"); + } +#endif /* of ifdef CONFIG_MV64360_ECC */ + + total += realsize; + } + +/* Setup Ethernet DMA Adress window to DRAM Area */ + return(total); +} + +/* *************************************************************************************** +! * SDRAM INIT * +! * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb * +! * This procedure fits only the Atlantis * +! * * +! *************************************************************************************** */ + + +/* *************************************************************************************** +! * DFCDL initialize MV643xx Design Considerations * +! * * +! *************************************************************************************** */ +int set_dfcdlInit (void) +{ + int i; + unsigned int dfcdl_word = 0x0000014f; + + for (i = 0; i < 64; i++) { + GT_REG_WRITE (SRAM_DATA0, dfcdl_word); + } + GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */ + + + return (0); +} + +int do_show_ecc(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) +{ + unsigned int ecc_counter; + unsigned int ecc_addr; + + GT_REG_READ(0x1458, &ecc_counter); + GT_REG_READ(0x1450, &ecc_addr); + GT_REG_WRITE(0x1450, 0); + + printf("Error Counter since Reset: %8d\n", ecc_counter); + printf("Last error address :0x%08x (" , ecc_addr & 0xfffffff8); + if (ecc_addr & 0x01) + printf("double"); + else + printf("single"); + printf(" bit) at DDR-RAM CS#%d\n", ((ecc_addr & 0x6) >> 1)); + + return 0; +} + + +U_BOOT_CMD( + show_ecc, 1, 1, do_show_ecc, + "Show Marvell MV64360 ECC Info", + "Show Marvell MV64360 ECC Counter and last error." +);