X-Git-Url: https://gerrit.opnfv.org/gerrit/gitweb?a=blobdiff_plain;f=kernel%2Fdrivers%2Fstaging%2Frts5208%2Frtsx_transport.c;fp=kernel%2Fdrivers%2Fstaging%2Frts5208%2Frtsx_transport.c;h=f27491e802edeef46587208b6fc747d41c506270;hb=9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00;hp=0000000000000000000000000000000000000000;hpb=98260f3884f4a202f9ca5eabed40b1354c489b29;p=kvmfornfv.git diff --git a/kernel/drivers/staging/rts5208/rtsx_transport.c b/kernel/drivers/staging/rts5208/rtsx_transport.c new file mode 100644 index 000000000..f27491e80 --- /dev/null +++ b/kernel/drivers/staging/rts5208/rtsx_transport.c @@ -0,0 +1,775 @@ +/* Driver for Realtek PCI-Express card reader + * + * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2, or (at your option) any + * later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, see . + * + * Author: + * Wei WANG (wei_wang@realsil.com.cn) + * Micky Ching (micky_ching@realsil.com.cn) + */ + +#include +#include +#include + +#include "rtsx.h" + +/*********************************************************************** + * Scatter-gather transfer buffer access routines + ***********************************************************************/ + +/* Copy a buffer of length buflen to/from the srb's transfer buffer. + * (Note: for scatter-gather transfers (srb->use_sg > 0), srb->request_buffer + * points to a list of s-g entries and we ignore srb->request_bufflen. + * For non-scatter-gather transfers, srb->request_buffer points to the + * transfer buffer itself and srb->request_bufflen is the buffer's length.) + * Update the *index and *offset variables so that the next copy will + * pick up from where this one left off. */ + +unsigned int rtsx_stor_access_xfer_buf(unsigned char *buffer, + unsigned int buflen, struct scsi_cmnd *srb, unsigned int *index, + unsigned int *offset, enum xfer_buf_dir dir) +{ + unsigned int cnt; + + /* If not using scatter-gather, just transfer the data directly. + * Make certain it will fit in the available buffer space. */ + if (scsi_sg_count(srb) == 0) { + if (*offset >= scsi_bufflen(srb)) + return 0; + cnt = min(buflen, scsi_bufflen(srb) - *offset); + if (dir == TO_XFER_BUF) + memcpy((unsigned char *) scsi_sglist(srb) + *offset, + buffer, cnt); + else + memcpy(buffer, (unsigned char *) scsi_sglist(srb) + + *offset, cnt); + *offset += cnt; + + /* Using scatter-gather. We have to go through the list one entry + * at a time. Each s-g entry contains some number of pages, and + * each page has to be kmap()'ed separately. If the page is already + * in kernel-addressable memory then kmap() will return its address. + * If the page is not directly accessible -- such as a user buffer + * located in high memory -- then kmap() will map it to a temporary + * position in the kernel's virtual address space. */ + } else { + struct scatterlist *sg = + (struct scatterlist *) scsi_sglist(srb) + + *index; + + /* This loop handles a single s-g list entry, which may + * include multiple pages. Find the initial page structure + * and the starting offset within the page, and update + * the *offset and *index values for the next loop. */ + cnt = 0; + while (cnt < buflen && *index < scsi_sg_count(srb)) { + struct page *page = sg_page(sg) + + ((sg->offset + *offset) >> PAGE_SHIFT); + unsigned int poff = + (sg->offset + *offset) & (PAGE_SIZE-1); + unsigned int sglen = sg->length - *offset; + + if (sglen > buflen - cnt) { + + /* Transfer ends within this s-g entry */ + sglen = buflen - cnt; + *offset += sglen; + } else { + + /* Transfer continues to next s-g entry */ + *offset = 0; + ++*index; + ++sg; + } + + /* Transfer the data for all the pages in this + * s-g entry. For each page: call kmap(), do the + * transfer, and call kunmap() immediately after. */ + while (sglen > 0) { + unsigned int plen = min(sglen, (unsigned int) + PAGE_SIZE - poff); + unsigned char *ptr = kmap(page); + + if (dir == TO_XFER_BUF) + memcpy(ptr + poff, buffer + cnt, plen); + else + memcpy(buffer + cnt, ptr + poff, plen); + kunmap(page); + + /* Start at the beginning of the next page */ + poff = 0; + ++page; + cnt += plen; + sglen -= plen; + } + } + } + + /* Return the amount actually transferred */ + return cnt; +} + +/* Store the contents of buffer into srb's transfer buffer and set the +* SCSI residue. */ +void rtsx_stor_set_xfer_buf(unsigned char *buffer, + unsigned int buflen, struct scsi_cmnd *srb) +{ + unsigned int index = 0, offset = 0; + + rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset, + TO_XFER_BUF); + if (buflen < scsi_bufflen(srb)) + scsi_set_resid(srb, scsi_bufflen(srb) - buflen); +} + +void rtsx_stor_get_xfer_buf(unsigned char *buffer, + unsigned int buflen, struct scsi_cmnd *srb) +{ + unsigned int index = 0, offset = 0; + + rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset, + FROM_XFER_BUF); + if (buflen < scsi_bufflen(srb)) + scsi_set_resid(srb, scsi_bufflen(srb) - buflen); +} + + +/*********************************************************************** + * Transport routines + ***********************************************************************/ + +/* Invoke the transport and basic error-handling/recovery methods + * + * This is used to send the message to the device and receive the response. + */ +void rtsx_invoke_transport(struct scsi_cmnd *srb, struct rtsx_chip *chip) +{ + int result; + + result = rtsx_scsi_handler(srb, chip); + + /* if the command gets aborted by the higher layers, we need to + * short-circuit all other processing + */ + if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) { + dev_dbg(rtsx_dev(chip), "-- command was aborted\n"); + srb->result = DID_ABORT << 16; + goto Handle_Errors; + } + + /* if there is a transport error, reset and don't auto-sense */ + if (result == TRANSPORT_ERROR) { + dev_dbg(rtsx_dev(chip), "-- transport indicates error, resetting\n"); + srb->result = DID_ERROR << 16; + goto Handle_Errors; + } + + srb->result = SAM_STAT_GOOD; + + /* + * If we have a failure, we're going to do a REQUEST_SENSE + * automatically. Note that we differentiate between a command + * "failure" and an "error" in the transport mechanism. + */ + if (result == TRANSPORT_FAILED) { + /* set the result so the higher layers expect this data */ + srb->result = SAM_STAT_CHECK_CONDITION; + memcpy(srb->sense_buffer, + (unsigned char *)&(chip->sense_buffer[SCSI_LUN(srb)]), + sizeof(struct sense_data_t)); + } + + return; + + /* Error and abort processing: try to resynchronize with the device + * by issuing a port reset. If that fails, try a class-specific + * device reset. */ +Handle_Errors: + return; +} + +void rtsx_add_cmd(struct rtsx_chip *chip, + u8 cmd_type, u16 reg_addr, u8 mask, u8 data) +{ + u32 *cb = (u32 *)(chip->host_cmds_ptr); + u32 val = 0; + + val |= (u32)(cmd_type & 0x03) << 30; + val |= (u32)(reg_addr & 0x3FFF) << 16; + val |= (u32)mask << 8; + val |= (u32)data; + + spin_lock_irq(&chip->rtsx->reg_lock); + if (chip->ci < (HOST_CMDS_BUF_LEN / 4)) + cb[(chip->ci)++] = cpu_to_le32(val); + + spin_unlock_irq(&chip->rtsx->reg_lock); +} + +void rtsx_send_cmd_no_wait(struct rtsx_chip *chip) +{ + u32 val = 1 << 31; + + rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr); + + val |= (u32)(chip->ci * 4) & 0x00FFFFFF; + /* Hardware Auto Response */ + val |= 0x40000000; + rtsx_writel(chip, RTSX_HCBCTLR, val); +} + +int rtsx_send_cmd(struct rtsx_chip *chip, u8 card, int timeout) +{ + struct rtsx_dev *rtsx = chip->rtsx; + struct completion trans_done; + u32 val = 1 << 31; + long timeleft; + int err = 0; + + if (card == SD_CARD) + rtsx->check_card_cd = SD_EXIST; + else if (card == MS_CARD) + rtsx->check_card_cd = MS_EXIST; + else if (card == XD_CARD) + rtsx->check_card_cd = XD_EXIST; + else + rtsx->check_card_cd = 0; + + spin_lock_irq(&rtsx->reg_lock); + + /* set up data structures for the wakeup system */ + rtsx->done = &trans_done; + rtsx->trans_result = TRANS_NOT_READY; + init_completion(&trans_done); + rtsx->trans_state = STATE_TRANS_CMD; + + rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr); + + val |= (u32)(chip->ci * 4) & 0x00FFFFFF; + /* Hardware Auto Response */ + val |= 0x40000000; + rtsx_writel(chip, RTSX_HCBCTLR, val); + + spin_unlock_irq(&rtsx->reg_lock); + + /* Wait for TRANS_OK_INT */ + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + rtsx_trace(chip); + goto finish_send_cmd; + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) + err = -EIO; + else if (rtsx->trans_result == TRANS_RESULT_OK) + err = 0; + + spin_unlock_irq(&rtsx->reg_lock); + +finish_send_cmd: + rtsx->done = NULL; + rtsx->trans_state = STATE_TRANS_NONE; + + if (err < 0) + rtsx_stop_cmd(chip, card); + + return err; +} + +static inline void rtsx_add_sg_tbl( + struct rtsx_chip *chip, u32 addr, u32 len, u8 option) +{ + u64 *sgb = (u64 *)(chip->host_sg_tbl_ptr); + u64 val = 0; + u32 temp_len = 0; + u8 temp_opt = 0; + + do { + if (len > 0x80000) { + temp_len = 0x80000; + temp_opt = option & (~SG_END); + } else { + temp_len = len; + temp_opt = option; + } + val = ((u64)addr << 32) | ((u64)temp_len << 12) | temp_opt; + + if (chip->sgi < (HOST_SG_TBL_BUF_LEN / 8)) + sgb[(chip->sgi)++] = cpu_to_le64(val); + + len -= temp_len; + addr += temp_len; + } while (len); +} + +static int rtsx_transfer_sglist_adma_partial(struct rtsx_chip *chip, u8 card, + struct scatterlist *sg, int num_sg, unsigned int *index, + unsigned int *offset, int size, + enum dma_data_direction dma_dir, int timeout) +{ + struct rtsx_dev *rtsx = chip->rtsx; + struct completion trans_done; + u8 dir; + int sg_cnt, i, resid; + int err = 0; + long timeleft; + struct scatterlist *sg_ptr; + u32 val = TRIG_DMA; + + if ((sg == NULL) || (num_sg <= 0) || !offset || !index) + return -EIO; + + if (dma_dir == DMA_TO_DEVICE) + dir = HOST_TO_DEVICE; + else if (dma_dir == DMA_FROM_DEVICE) + dir = DEVICE_TO_HOST; + else + return -ENXIO; + + if (card == SD_CARD) + rtsx->check_card_cd = SD_EXIST; + else if (card == MS_CARD) + rtsx->check_card_cd = MS_EXIST; + else if (card == XD_CARD) + rtsx->check_card_cd = XD_EXIST; + else + rtsx->check_card_cd = 0; + + spin_lock_irq(&rtsx->reg_lock); + + /* set up data structures for the wakeup system */ + rtsx->done = &trans_done; + + rtsx->trans_state = STATE_TRANS_SG; + rtsx->trans_result = TRANS_NOT_READY; + + spin_unlock_irq(&rtsx->reg_lock); + + sg_cnt = dma_map_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir); + + resid = size; + sg_ptr = sg; + chip->sgi = 0; + /* Usually the next entry will be @sg@ + 1, but if this sg element + * is part of a chained scatterlist, it could jump to the start of + * a new scatterlist array. So here we use sg_next to move to + * the proper sg + */ + for (i = 0; i < *index; i++) + sg_ptr = sg_next(sg_ptr); + for (i = *index; i < sg_cnt; i++) { + dma_addr_t addr; + unsigned int len; + u8 option; + + addr = sg_dma_address(sg_ptr); + len = sg_dma_len(sg_ptr); + + dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n", + (unsigned int)addr, len); + dev_dbg(rtsx_dev(chip), "*index = %d, *offset = %d\n", + *index, *offset); + + addr += *offset; + + if ((len - *offset) > resid) { + *offset += resid; + len = resid; + resid = 0; + } else { + resid -= (len - *offset); + len -= *offset; + *offset = 0; + *index = *index + 1; + } + if ((i == (sg_cnt - 1)) || !resid) + option = SG_VALID | SG_END | SG_TRANS_DATA; + else + option = SG_VALID | SG_TRANS_DATA; + + rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option); + + if (!resid) + break; + + sg_ptr = sg_next(sg_ptr); + } + + dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi); + + val |= (u32)(dir & 0x01) << 29; + val |= ADMA_MODE; + + spin_lock_irq(&rtsx->reg_lock); + + init_completion(&trans_done); + + rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr); + rtsx_writel(chip, RTSX_HDBCTLR, val); + + spin_unlock_irq(&rtsx->reg_lock); + + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n", + __func__, __LINE__); + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + goto out; + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) { + err = -EIO; + spin_unlock_irq(&rtsx->reg_lock); + goto out; + } + spin_unlock_irq(&rtsx->reg_lock); + + /* Wait for TRANS_OK_INT */ + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_NOT_READY) { + init_completion(&trans_done); + spin_unlock_irq(&rtsx->reg_lock); + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n", + __func__, __LINE__); + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + goto out; + } + } else { + spin_unlock_irq(&rtsx->reg_lock); + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) + err = -EIO; + else if (rtsx->trans_result == TRANS_RESULT_OK) + err = 0; + + spin_unlock_irq(&rtsx->reg_lock); + +out: + rtsx->done = NULL; + rtsx->trans_state = STATE_TRANS_NONE; + dma_unmap_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir); + + if (err < 0) + rtsx_stop_cmd(chip, card); + + return err; +} + +static int rtsx_transfer_sglist_adma(struct rtsx_chip *chip, u8 card, + struct scatterlist *sg, int num_sg, + enum dma_data_direction dma_dir, int timeout) +{ + struct rtsx_dev *rtsx = chip->rtsx; + struct completion trans_done; + u8 dir; + int buf_cnt, i; + int err = 0; + long timeleft; + struct scatterlist *sg_ptr; + + if ((sg == NULL) || (num_sg <= 0)) + return -EIO; + + if (dma_dir == DMA_TO_DEVICE) + dir = HOST_TO_DEVICE; + else if (dma_dir == DMA_FROM_DEVICE) + dir = DEVICE_TO_HOST; + else + return -ENXIO; + + if (card == SD_CARD) + rtsx->check_card_cd = SD_EXIST; + else if (card == MS_CARD) + rtsx->check_card_cd = MS_EXIST; + else if (card == XD_CARD) + rtsx->check_card_cd = XD_EXIST; + else + rtsx->check_card_cd = 0; + + spin_lock_irq(&rtsx->reg_lock); + + /* set up data structures for the wakeup system */ + rtsx->done = &trans_done; + + rtsx->trans_state = STATE_TRANS_SG; + rtsx->trans_result = TRANS_NOT_READY; + + spin_unlock_irq(&rtsx->reg_lock); + + buf_cnt = dma_map_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir); + + sg_ptr = sg; + + for (i = 0; i <= buf_cnt / (HOST_SG_TBL_BUF_LEN / 8); i++) { + u32 val = TRIG_DMA; + int sg_cnt, j; + + if (i == buf_cnt / (HOST_SG_TBL_BUF_LEN / 8)) + sg_cnt = buf_cnt % (HOST_SG_TBL_BUF_LEN / 8); + else + sg_cnt = HOST_SG_TBL_BUF_LEN / 8; + + chip->sgi = 0; + for (j = 0; j < sg_cnt; j++) { + dma_addr_t addr = sg_dma_address(sg_ptr); + unsigned int len = sg_dma_len(sg_ptr); + u8 option; + + dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n", + (unsigned int)addr, len); + + if (j == (sg_cnt - 1)) + option = SG_VALID | SG_END | SG_TRANS_DATA; + else + option = SG_VALID | SG_TRANS_DATA; + + rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option); + + sg_ptr = sg_next(sg_ptr); + } + + dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi); + + val |= (u32)(dir & 0x01) << 29; + val |= ADMA_MODE; + + spin_lock_irq(&rtsx->reg_lock); + + init_completion(&trans_done); + + rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr); + rtsx_writel(chip, RTSX_HDBCTLR, val); + + spin_unlock_irq(&rtsx->reg_lock); + + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n", + __func__, __LINE__); + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + goto out; + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) { + err = -EIO; + spin_unlock_irq(&rtsx->reg_lock); + goto out; + } + spin_unlock_irq(&rtsx->reg_lock); + + sg_ptr += sg_cnt; + } + + /* Wait for TRANS_OK_INT */ + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_NOT_READY) { + init_completion(&trans_done); + spin_unlock_irq(&rtsx->reg_lock); + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n", + __func__, __LINE__); + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + goto out; + } + } else { + spin_unlock_irq(&rtsx->reg_lock); + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) + err = -EIO; + else if (rtsx->trans_result == TRANS_RESULT_OK) + err = 0; + + spin_unlock_irq(&rtsx->reg_lock); + +out: + rtsx->done = NULL; + rtsx->trans_state = STATE_TRANS_NONE; + dma_unmap_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir); + + if (err < 0) + rtsx_stop_cmd(chip, card); + + return err; +} + +static int rtsx_transfer_buf(struct rtsx_chip *chip, u8 card, void *buf, + size_t len, enum dma_data_direction dma_dir, int timeout) +{ + struct rtsx_dev *rtsx = chip->rtsx; + struct completion trans_done; + dma_addr_t addr; + u8 dir; + int err = 0; + u32 val = 1 << 31; + long timeleft; + + if ((buf == NULL) || (len <= 0)) + return -EIO; + + if (dma_dir == DMA_TO_DEVICE) + dir = HOST_TO_DEVICE; + else if (dma_dir == DMA_FROM_DEVICE) + dir = DEVICE_TO_HOST; + else + return -ENXIO; + + addr = dma_map_single(&(rtsx->pci->dev), buf, len, dma_dir); + if (!addr) + return -ENOMEM; + + if (card == SD_CARD) + rtsx->check_card_cd = SD_EXIST; + else if (card == MS_CARD) + rtsx->check_card_cd = MS_EXIST; + else if (card == XD_CARD) + rtsx->check_card_cd = XD_EXIST; + else + rtsx->check_card_cd = 0; + + val |= (u32)(dir & 0x01) << 29; + val |= (u32)(len & 0x00FFFFFF); + + spin_lock_irq(&rtsx->reg_lock); + + /* set up data structures for the wakeup system */ + rtsx->done = &trans_done; + + init_completion(&trans_done); + + rtsx->trans_state = STATE_TRANS_BUF; + rtsx->trans_result = TRANS_NOT_READY; + + rtsx_writel(chip, RTSX_HDBAR, addr); + rtsx_writel(chip, RTSX_HDBCTLR, val); + + spin_unlock_irq(&rtsx->reg_lock); + + /* Wait for TRANS_OK_INT */ + timeleft = wait_for_completion_interruptible_timeout( + &trans_done, msecs_to_jiffies(timeout)); + if (timeleft <= 0) { + dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n", + __func__, __LINE__); + dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n", + chip->int_reg); + err = -ETIMEDOUT; + goto out; + } + + spin_lock_irq(&rtsx->reg_lock); + if (rtsx->trans_result == TRANS_RESULT_FAIL) + err = -EIO; + else if (rtsx->trans_result == TRANS_RESULT_OK) + err = 0; + + spin_unlock_irq(&rtsx->reg_lock); + +out: + rtsx->done = NULL; + rtsx->trans_state = STATE_TRANS_NONE; + dma_unmap_single(&(rtsx->pci->dev), addr, len, dma_dir); + + if (err < 0) + rtsx_stop_cmd(chip, card); + + return err; +} + +int rtsx_transfer_data_partial(struct rtsx_chip *chip, u8 card, + void *buf, size_t len, int use_sg, unsigned int *index, + unsigned int *offset, enum dma_data_direction dma_dir, + int timeout) +{ + int err = 0; + + /* don't transfer data during abort processing */ + if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) + return -EIO; + + if (use_sg) + err = rtsx_transfer_sglist_adma_partial(chip, card, + (struct scatterlist *)buf, use_sg, + index, offset, (int)len, dma_dir, timeout); + else + err = rtsx_transfer_buf(chip, card, + buf, len, dma_dir, timeout); + if (err < 0) { + if (RTSX_TST_DELINK(chip)) { + RTSX_CLR_DELINK(chip); + chip->need_reinit = SD_CARD | MS_CARD | XD_CARD; + rtsx_reinit_cards(chip, 1); + } + } + + return err; +} + +int rtsx_transfer_data(struct rtsx_chip *chip, u8 card, void *buf, size_t len, + int use_sg, enum dma_data_direction dma_dir, int timeout) +{ + int err = 0; + + dev_dbg(rtsx_dev(chip), "use_sg = %d\n", use_sg); + + /* don't transfer data during abort processing */ + if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) + return -EIO; + + if (use_sg) { + err = rtsx_transfer_sglist_adma(chip, card, + (struct scatterlist *)buf, + use_sg, dma_dir, timeout); + } else { + err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout); + } + + if (err < 0) { + if (RTSX_TST_DELINK(chip)) { + RTSX_CLR_DELINK(chip); + chip->need_reinit = SD_CARD | MS_CARD | XD_CARD; + rtsx_reinit_cards(chip, 1); + } + } + + return err; +} +