X-Git-Url: https://gerrit.opnfv.org/gerrit/gitweb?a=blobdiff_plain;f=kernel%2Fdrivers%2Fgpu%2Fdrm%2Fnouveau%2Fnvkm%2Fsubdev%2Fclk%2Fgk20a.c;fp=kernel%2Fdrivers%2Fgpu%2Fdrm%2Fnouveau%2Fnvkm%2Fsubdev%2Fclk%2Fgk20a.c;h=254094ab7fb8f9c4d3dce31f581bbb8f76cbb27e;hb=e09b41010ba33a20a87472ee821fa407a5b8da36;hp=65c532742b08d1c63fd62964c3bbc26d48d2da59;hpb=f93b97fd65072de626c074dbe099a1fff05ce060;p=kvmfornfv.git diff --git a/kernel/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c b/kernel/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c index 65c532742..254094ab7 100644 --- a/kernel/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c +++ b/kernel/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c @@ -22,14 +22,11 @@ * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c * */ -#include -#include - -#include +#define gk20a_clk(p) container_of((p), struct gk20a_clk, base) +#include "priv.h" -#ifdef __KERNEL__ -#include -#endif +#include +#include #define MHZ (1000 * 1000) @@ -117,41 +114,42 @@ static const struct gk20a_clk_pllg_params gk20a_pllg_params = { .min_pl = 1, .max_pl = 32, }; -struct gk20a_clk_priv { +struct gk20a_clk { struct nvkm_clk base; const struct gk20a_clk_pllg_params *params; u32 m, n, pl; u32 parent_rate; }; -#define to_gk20a_clk(base) container_of(base, struct gk20a_clk_priv, base) static void -gk20a_pllg_read_mnp(struct gk20a_clk_priv *priv) +gk20a_pllg_read_mnp(struct gk20a_clk *clk) { + struct nvkm_device *device = clk->base.subdev.device; u32 val; - val = nv_rd32(priv, GPCPLL_COEFF); - priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); - priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); - priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); + val = nvkm_rd32(device, GPCPLL_COEFF); + clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); + clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); + clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); } static u32 -gk20a_pllg_calc_rate(struct gk20a_clk_priv *priv) +gk20a_pllg_calc_rate(struct gk20a_clk *clk) { u32 rate; u32 divider; - rate = priv->parent_rate * priv->n; - divider = priv->m * pl_to_div[priv->pl]; + rate = clk->parent_rate * clk->n; + divider = clk->m * pl_to_div[clk->pl]; do_div(rate, divider); return rate / 2; } static int -gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate) +gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate) { + struct nvkm_subdev *subdev = &clk->base.subdev; u32 target_clk_f, ref_clk_f, target_freq; u32 min_vco_f, max_vco_f; u32 low_pl, high_pl, best_pl; @@ -163,13 +161,13 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate) u32 pl; target_clk_f = rate * 2 / MHZ; - ref_clk_f = priv->parent_rate / MHZ; + ref_clk_f = clk->parent_rate / MHZ; - max_vco_f = priv->params->max_vco; - min_vco_f = priv->params->min_vco; - best_m = priv->params->max_m; - best_n = priv->params->min_n; - best_pl = priv->params->min_pl; + max_vco_f = clk->params->max_vco; + min_vco_f = clk->params->min_vco; + best_m = clk->params->max_m; + best_n = clk->params->min_n; + best_pl = clk->params->min_pl; target_vco_f = target_clk_f + target_clk_f / 50; if (max_vco_f < target_vco_f) @@ -177,13 +175,13 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate) /* min_pl <= high_pl <= max_pl */ high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; - high_pl = min(high_pl, priv->params->max_pl); - high_pl = max(high_pl, priv->params->min_pl); + high_pl = min(high_pl, clk->params->max_pl); + high_pl = max(high_pl, clk->params->min_pl); /* min_pl <= low_pl <= max_pl */ low_pl = min_vco_f / target_vco_f; - low_pl = min(low_pl, priv->params->max_pl); - low_pl = max(low_pl, priv->params->min_pl); + low_pl = min(low_pl, clk->params->max_pl); + low_pl = max(low_pl, clk->params->min_pl); /* Find Indices of high_pl and low_pl */ for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) { @@ -199,30 +197,30 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate) } } - nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, - pl_to_div[low_pl], high_pl, pl_to_div[high_pl]); + nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, + pl_to_div[low_pl], high_pl, pl_to_div[high_pl]); /* Select lowest possible VCO */ for (pl = low_pl; pl <= high_pl; pl++) { target_vco_f = target_clk_f * pl_to_div[pl]; - for (m = priv->params->min_m; m <= priv->params->max_m; m++) { + for (m = clk->params->min_m; m <= clk->params->max_m; m++) { u_f = ref_clk_f / m; - if (u_f < priv->params->min_u) + if (u_f < clk->params->min_u) break; - if (u_f > priv->params->max_u) + if (u_f > clk->params->max_u) continue; n = (target_vco_f * m) / ref_clk_f; n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; - if (n > priv->params->max_n) + if (n > clk->params->max_n) break; for (; n <= n2; n++) { - if (n < priv->params->min_n) + if (n < clk->params->min_n) continue; - if (n > priv->params->max_n) + if (n > clk->params->max_n) break; vco_f = ref_clk_f * n / m; @@ -250,71 +248,75 @@ found_match: WARN_ON(best_delta == ~0); if (best_delta != 0) - nv_debug(priv, "no best match for target @ %dMHz on gpc_pll", - target_clk_f); + nvkm_debug(subdev, + "no best match for target @ %dMHz on gpc_pll", + target_clk_f); - priv->m = best_m; - priv->n = best_n; - priv->pl = best_pl; + clk->m = best_m; + clk->n = best_n; + clk->pl = best_pl; - target_freq = gk20a_pllg_calc_rate(priv) / MHZ; + target_freq = gk20a_pllg_calc_rate(clk) / MHZ; - nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", - target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]); + nvkm_debug(subdev, + "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", + target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]); return 0; } static int -gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n) +gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) { + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; u32 val; int ramp_timeout; /* get old coefficients */ - val = nv_rd32(priv, GPCPLL_COEFF); + val = nvkm_rd32(device, GPCPLL_COEFF); /* do nothing if NDIV is the same */ if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH))) return 0; /* setup */ - nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, + nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT); - nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, + nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT); /* pll slowdown mode */ - nv_mask(priv, GPCPLL_NDIV_SLOWDOWN, + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); /* new ndiv ready for ramp */ - val = nv_rd32(priv, GPCPLL_COEFF); + val = nvkm_rd32(device, GPCPLL_COEFF); val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT); val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; udelay(1); - nv_wr32(priv, GPCPLL_COEFF, val); + nvkm_wr32(device, GPCPLL_COEFF, val); /* dynamic ramp to new ndiv */ - val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN); + val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT; udelay(1); - nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val); + nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val); for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) { udelay(1); - val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG); + val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG); if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) break; } /* exit slowdown mode */ - nv_mask(priv, GPCPLL_NDIV_SLOWDOWN, + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); - nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN); + nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); if (ramp_timeout <= 0) { - nv_error(priv, "gpcpll dynamic ramp timeout\n"); + nvkm_error(subdev, "gpcpll dynamic ramp timeout\n"); return -ETIMEDOUT; } @@ -322,149 +324,147 @@ gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n) } static void -_gk20a_pllg_enable(struct gk20a_clk_priv *priv) +_gk20a_pllg_enable(struct gk20a_clk *clk) { - nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); - nv_rd32(priv, GPCPLL_CFG); + struct nvkm_device *device = clk->base.subdev.device; + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); + nvkm_rd32(device, GPCPLL_CFG); } static void -_gk20a_pllg_disable(struct gk20a_clk_priv *priv) +_gk20a_pllg_disable(struct gk20a_clk *clk) { - nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); - nv_rd32(priv, GPCPLL_CFG); + struct nvkm_device *device = clk->base.subdev.device; + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); + nvkm_rd32(device, GPCPLL_CFG); } static int -_gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv, bool allow_slide) +_gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) { + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; u32 val, cfg; u32 m_old, pl_old, n_lo; /* get old coefficients */ - val = nv_rd32(priv, GPCPLL_COEFF); + val = nvkm_rd32(device, GPCPLL_COEFF); m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); /* do NDIV slide if there is no change in M and PL */ - cfg = nv_rd32(priv, GPCPLL_CFG); - if (allow_slide && priv->m == m_old && priv->pl == pl_old && + cfg = nvkm_rd32(device, GPCPLL_CFG); + if (allow_slide && clk->m == m_old && clk->pl == pl_old && (cfg & GPCPLL_CFG_ENABLE)) { - return gk20a_pllg_slide(priv, priv->n); + return gk20a_pllg_slide(clk, clk->n); } /* slide down to NDIV_LO */ - n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco, - priv->parent_rate / MHZ); + n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco, + clk->parent_rate / MHZ); if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { - int ret = gk20a_pllg_slide(priv, n_lo); + int ret = gk20a_pllg_slide(clk, n_lo); if (ret) return ret; } /* split FO-to-bypass jump in halfs by setting out divider 1:2 */ - nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, 0x2 << GPC2CLK_OUT_VCODIV_SHIFT); /* put PLL in bypass before programming it */ - val = nv_rd32(priv, SEL_VCO); + val = nvkm_rd32(device, SEL_VCO); val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); udelay(2); - nv_wr32(priv, SEL_VCO, val); + nvkm_wr32(device, SEL_VCO, val); /* get out from IDDQ */ - val = nv_rd32(priv, GPCPLL_CFG); + val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_IDDQ) { val &= ~GPCPLL_CFG_IDDQ; - nv_wr32(priv, GPCPLL_CFG, val); - nv_rd32(priv, GPCPLL_CFG); + nvkm_wr32(device, GPCPLL_CFG, val); + nvkm_rd32(device, GPCPLL_CFG); udelay(2); } - _gk20a_pllg_disable(priv); + _gk20a_pllg_disable(clk); - nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n, - priv->pl); + nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__, + clk->m, clk->n, clk->pl); - n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco, - priv->parent_rate / MHZ); - val = priv->m << GPCPLL_COEFF_M_SHIFT; - val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT; - val |= priv->pl << GPCPLL_COEFF_P_SHIFT; - nv_wr32(priv, GPCPLL_COEFF, val); + n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco, + clk->parent_rate / MHZ); + val = clk->m << GPCPLL_COEFF_M_SHIFT; + val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT; + val |= clk->pl << GPCPLL_COEFF_P_SHIFT; + nvkm_wr32(device, GPCPLL_COEFF, val); - _gk20a_pllg_enable(priv); + _gk20a_pllg_enable(clk); - val = nv_rd32(priv, GPCPLL_CFG); + val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_LOCK_DET_OFF) { val &= ~GPCPLL_CFG_LOCK_DET_OFF; - nv_wr32(priv, GPCPLL_CFG, val); + nvkm_wr32(device, GPCPLL_CFG, val); } - if (!nvkm_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK, - GPCPLL_CFG_LOCK)) { - nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__); + if (nvkm_usec(device, 300, + if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK) + break; + ) < 0) return -ETIMEDOUT; - } /* switch to VCO mode */ - nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); + nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); /* restore out divider 1:1 */ - val = nv_rd32(priv, GPC2CLK_OUT); + val = nvkm_rd32(device, GPC2CLK_OUT); val &= ~GPC2CLK_OUT_VCODIV_MASK; udelay(2); - nv_wr32(priv, GPC2CLK_OUT, val); + nvkm_wr32(device, GPC2CLK_OUT, val); /* slide up to new NDIV */ - return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0; + return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0; } static int -gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv) +gk20a_pllg_program_mnp(struct gk20a_clk *clk) { int err; - err = _gk20a_pllg_program_mnp(priv, true); + err = _gk20a_pllg_program_mnp(clk, true); if (err) - err = _gk20a_pllg_program_mnp(priv, false); + err = _gk20a_pllg_program_mnp(clk, false); return err; } static void -gk20a_pllg_disable(struct gk20a_clk_priv *priv) +gk20a_pllg_disable(struct gk20a_clk *clk) { + struct nvkm_device *device = clk->base.subdev.device; u32 val; /* slide to VCO min */ - val = nv_rd32(priv, GPCPLL_CFG); + val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_ENABLE) { u32 coeff, m, n_lo; - coeff = nv_rd32(priv, GPCPLL_COEFF); + coeff = nvkm_rd32(device, GPCPLL_COEFF); m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); - n_lo = DIV_ROUND_UP(m * priv->params->min_vco, - priv->parent_rate / MHZ); - gk20a_pllg_slide(priv, n_lo); + n_lo = DIV_ROUND_UP(m * clk->params->min_vco, + clk->parent_rate / MHZ); + gk20a_pllg_slide(clk, n_lo); } /* put PLL in bypass before disabling it */ - nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); + nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); - _gk20a_pllg_disable(priv); + _gk20a_pllg_disable(clk); } #define GK20A_CLK_GPC_MDIV 1000 -static struct nvkm_domain -gk20a_domains[] = { - { nv_clk_src_crystal, 0xff }, - { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, - { nv_clk_src_max } -}; - static struct nvkm_pstate gk20a_pstates[] = { { @@ -560,87 +560,99 @@ gk20a_pstates[] = { }; static int -gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src) +gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) { - struct gk20a_clk_priv *priv = (void *)clk; + struct gk20a_clk *clk = gk20a_clk(base); + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; switch (src) { case nv_clk_src_crystal: - return nv_device(clk)->crystal; + return device->crystal; case nv_clk_src_gpc: - gk20a_pllg_read_mnp(priv); - return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV; + gk20a_pllg_read_mnp(clk); + return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV; default: - nv_error(clk, "invalid clock source %d\n", src); + nvkm_error(subdev, "invalid clock source %d\n", src); return -EINVAL; } } static int -gk20a_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate) +gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { - struct gk20a_clk_priv *priv = (void *)clk; + struct gk20a_clk *clk = gk20a_clk(base); - return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] * + return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * GK20A_CLK_GPC_MDIV); } static int -gk20a_clk_prog(struct nvkm_clk *clk) +gk20a_clk_prog(struct nvkm_clk *base) { - struct gk20a_clk_priv *priv = (void *)clk; + struct gk20a_clk *clk = gk20a_clk(base); - return gk20a_pllg_program_mnp(priv); + return gk20a_pllg_program_mnp(clk); } static void -gk20a_clk_tidy(struct nvkm_clk *clk) +gk20a_clk_tidy(struct nvkm_clk *base) { } -static int -gk20a_clk_fini(struct nvkm_object *object, bool suspend) +static void +gk20a_clk_fini(struct nvkm_clk *base) { - struct gk20a_clk_priv *priv = (void *)object; - int ret; - - ret = nvkm_clk_fini(&priv->base, false); - - gk20a_pllg_disable(priv); - - return ret; + struct gk20a_clk *clk = gk20a_clk(base); + gk20a_pllg_disable(clk); } static int -gk20a_clk_init(struct nvkm_object *object) +gk20a_clk_init(struct nvkm_clk *base) { - struct gk20a_clk_priv *priv = (void *)object; + struct gk20a_clk *clk = gk20a_clk(base); + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; int ret; - nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); - - ret = nvkm_clk_init(&priv->base); - if (ret) - return ret; + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); - ret = gk20a_clk_prog(&priv->base); + ret = gk20a_clk_prog(&clk->base); if (ret) { - nv_error(priv, "cannot initialize clock\n"); + nvkm_error(subdev, "cannot initialize clock\n"); return ret; } return 0; } -static int -gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, - struct nvkm_oclass *oclass, void *data, u32 size, - struct nvkm_object **pobject) +static const struct nvkm_clk_func +gk20a_clk = { + .init = gk20a_clk_init, + .fini = gk20a_clk_fini, + .read = gk20a_clk_read, + .calc = gk20a_clk_calc, + .prog = gk20a_clk_prog, + .tidy = gk20a_clk_tidy, + .pstates = gk20a_pstates, + .nr_pstates = ARRAY_SIZE(gk20a_pstates), + .domains = { + { nv_clk_src_crystal, 0xff }, + { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, + { nv_clk_src_max } + } +}; + +int +gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { - struct gk20a_clk_priv *priv; - struct nouveau_platform_device *plat; - int ret; - int i; + struct nvkm_device_tegra *tdev = device->func->tegra(device); + struct gk20a_clk *clk; + int ret, i; + + if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL))) + return -ENOMEM; + *pclk = &clk->base; /* Finish initializing the pstates */ for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) { @@ -648,33 +660,11 @@ gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, gk20a_pstates[i].pstate = i + 1; } - ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains, - gk20a_pstates, ARRAY_SIZE(gk20a_pstates), - true, &priv); - *pobject = nv_object(priv); - if (ret) - return ret; + clk->params = &gk20a_pllg_params; + clk->parent_rate = clk_get_rate(tdev->clk); - priv->params = &gk20a_pllg_params; - - plat = nv_device_to_platform(nv_device(parent)); - priv->parent_rate = clk_get_rate(plat->gpu->clk); - nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ); - - priv->base.read = gk20a_clk_read; - priv->base.calc = gk20a_clk_calc; - priv->base.prog = gk20a_clk_prog; - priv->base.tidy = gk20a_clk_tidy; - return 0; + ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base); + nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n", + clk->parent_rate / MHZ); + return ret; } - -struct nvkm_oclass -gk20a_clk_oclass = { - .handle = NV_SUBDEV(CLK, 0xea), - .ofuncs = &(struct nvkm_ofuncs) { - .ctor = gk20a_clk_ctor, - .dtor = _nvkm_subdev_dtor, - .init = gk20a_clk_init, - .fini = gk20a_clk_fini, - }, -};