X-Git-Url: https://gerrit.opnfv.org/gerrit/gitweb?a=blobdiff_plain;f=kernel%2Farch%2Farm64%2Flib%2Fstrncmp.S;fp=kernel%2Farch%2Farm64%2Flib%2Fstrncmp.S;h=0224cf5a55334a297c1cc079f08644fc09707156;hb=9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00;hp=0000000000000000000000000000000000000000;hpb=98260f3884f4a202f9ca5eabed40b1354c489b29;p=kvmfornfv.git diff --git a/kernel/arch/arm64/lib/strncmp.S b/kernel/arch/arm64/lib/strncmp.S new file mode 100644 index 000000000..0224cf5a5 --- /dev/null +++ b/kernel/arch/arm64/lib/strncmp.S @@ -0,0 +1,310 @@ +/* + * Copyright (C) 2013 ARM Ltd. + * Copyright (C) 2013 Linaro. + * + * This code is based on glibc cortex strings work originally authored by Linaro + * and re-licensed under GPLv2 for the Linux kernel. The original code can + * be found @ + * + * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ + * files/head:/src/aarch64/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + +#include +#include + +/* + * compare two strings + * + * Parameters: + * x0 - const string 1 pointer + * x1 - const string 2 pointer + * x2 - the maximal length to be compared + * Returns: + * x0 - an integer less than, equal to, or greater than zero if s1 is found, + * respectively, to be less than, to match, or be greater than s2. + */ + +#define REP8_01 0x0101010101010101 +#define REP8_7f 0x7f7f7f7f7f7f7f7f +#define REP8_80 0x8080808080808080 + +/* Parameters and result. */ +src1 .req x0 +src2 .req x1 +limit .req x2 +result .req x0 + +/* Internal variables. */ +data1 .req x3 +data1w .req w3 +data2 .req x4 +data2w .req w4 +has_nul .req x5 +diff .req x6 +syndrome .req x7 +tmp1 .req x8 +tmp2 .req x9 +tmp3 .req x10 +zeroones .req x11 +pos .req x12 +limit_wd .req x13 +mask .req x14 +endloop .req x15 + +ENTRY(strncmp) + cbz limit, .Lret0 + eor tmp1, src1, src2 + mov zeroones, #REP8_01 + tst tmp1, #7 + b.ne .Lmisaligned8 + ands tmp1, src1, #7 + b.ne .Lmutual_align + /* Calculate the number of full and partial words -1. */ + /* + * when limit is mulitply of 8, if not sub 1, + * the judgement of last dword will wrong. + */ + sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ + lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ + + /* + * NUL detection works on the principle that (X - 1) & (~X) & 0x80 + * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and + * can be done in parallel across the entire word. + */ +.Lloop_aligned: + ldr data1, [src1], #8 + ldr data2, [src2], #8 +.Lstart_realigned: + subs limit_wd, limit_wd, #1 + sub tmp1, data1, zeroones + orr tmp2, data1, #REP8_7f + eor diff, data1, data2 /* Non-zero if differences found. */ + csinv endloop, diff, xzr, pl /* Last Dword or differences.*/ + bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ + ccmp endloop, #0, #0, eq + b.eq .Lloop_aligned + + /*Not reached the limit, must have found the end or a diff. */ + tbz limit_wd, #63, .Lnot_limit + + /* Limit % 8 == 0 => all bytes significant. */ + ands limit, limit, #7 + b.eq .Lnot_limit + + lsl limit, limit, #3 /* Bits -> bytes. */ + mov mask, #~0 +CPU_BE( lsr mask, mask, limit ) +CPU_LE( lsl mask, mask, limit ) + bic data1, data1, mask + bic data2, data2, mask + + /* Make sure that the NUL byte is marked in the syndrome. */ + orr has_nul, has_nul, mask + +.Lnot_limit: + orr syndrome, diff, has_nul + b .Lcal_cmpresult + +.Lmutual_align: + /* + * Sources are mutually aligned, but are not currently at an + * alignment boundary. Round down the addresses and then mask off + * the bytes that precede the start point. + * We also need to adjust the limit calculations, but without + * overflowing if the limit is near ULONG_MAX. + */ + bic src1, src1, #7 + bic src2, src2, #7 + ldr data1, [src1], #8 + neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */ + ldr data2, [src2], #8 + mov tmp2, #~0 + sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ + /* Big-endian. Early bytes are at MSB. */ +CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ + /* Little-endian. Early bytes are at LSB. */ +CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ + + and tmp3, limit_wd, #7 + lsr limit_wd, limit_wd, #3 + /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/ + add limit, limit, tmp1 + add tmp3, tmp3, tmp1 + orr data1, data1, tmp2 + orr data2, data2, tmp2 + add limit_wd, limit_wd, tmp3, lsr #3 + b .Lstart_realigned + +/*when src1 offset is not equal to src2 offset...*/ +.Lmisaligned8: + cmp limit, #8 + b.lo .Ltiny8proc /*limit < 8... */ + /* + * Get the align offset length to compare per byte first. + * After this process, one string's address will be aligned.*/ + and tmp1, src1, #7 + neg tmp1, tmp1 + add tmp1, tmp1, #8 + and tmp2, src2, #7 + neg tmp2, tmp2 + add tmp2, tmp2, #8 + subs tmp3, tmp1, tmp2 + csel pos, tmp1, tmp2, hi /*Choose the maximum. */ + /* + * Here, limit is not less than 8, so directly run .Ltinycmp + * without checking the limit.*/ + sub limit, limit, pos +.Ltinycmp: + ldrb data1w, [src1], #1 + ldrb data2w, [src2], #1 + subs pos, pos, #1 + ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ + ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ + b.eq .Ltinycmp + cbnz pos, 1f /*find the null or unequal...*/ + cmp data1w, #1 + ccmp data1w, data2w, #0, cs + b.eq .Lstart_align /*the last bytes are equal....*/ +1: + sub result, data1, data2 + ret + +.Lstart_align: + lsr limit_wd, limit, #3 + cbz limit_wd, .Lremain8 + /*process more leading bytes to make str1 aligned...*/ + ands xzr, src1, #7 + b.eq .Lrecal_offset + add src1, src1, tmp3 /*tmp3 is positive in this branch.*/ + add src2, src2, tmp3 + ldr data1, [src1], #8 + ldr data2, [src2], #8 + + sub limit, limit, tmp3 + lsr limit_wd, limit, #3 + subs limit_wd, limit_wd, #1 + + sub tmp1, data1, zeroones + orr tmp2, data1, #REP8_7f + eor diff, data1, data2 /* Non-zero if differences found. */ + csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ + bics has_nul, tmp1, tmp2 + ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ + b.ne .Lunequal_proc + /*How far is the current str2 from the alignment boundary...*/ + and tmp3, tmp3, #7 +.Lrecal_offset: + neg pos, tmp3 +.Lloopcmp_proc: + /* + * Divide the eight bytes into two parts. First,backwards the src2 + * to an alignment boundary,load eight bytes from the SRC2 alignment + * boundary,then compare with the relative bytes from SRC1. + * If all 8 bytes are equal,then start the second part's comparison. + * Otherwise finish the comparison. + * This special handle can garantee all the accesses are in the + * thread/task space in avoid to overrange access. + */ + ldr data1, [src1,pos] + ldr data2, [src2,pos] + sub tmp1, data1, zeroones + orr tmp2, data1, #REP8_7f + bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ + eor diff, data1, data2 /* Non-zero if differences found. */ + csinv endloop, diff, xzr, eq + cbnz endloop, .Lunequal_proc + + /*The second part process*/ + ldr data1, [src1], #8 + ldr data2, [src2], #8 + subs limit_wd, limit_wd, #1 + sub tmp1, data1, zeroones + orr tmp2, data1, #REP8_7f + eor diff, data1, data2 /* Non-zero if differences found. */ + csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ + bics has_nul, tmp1, tmp2 + ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ + b.eq .Lloopcmp_proc + +.Lunequal_proc: + orr syndrome, diff, has_nul + cbz syndrome, .Lremain8 +.Lcal_cmpresult: + /* + * reversed the byte-order as big-endian,then CLZ can find the most + * significant zero bits. + */ +CPU_LE( rev syndrome, syndrome ) +CPU_LE( rev data1, data1 ) +CPU_LE( rev data2, data2 ) + /* + * For big-endian we cannot use the trick with the syndrome value + * as carry-propagation can corrupt the upper bits if the trailing + * bytes in the string contain 0x01. + * However, if there is no NUL byte in the dword, we can generate + * the result directly. We can't just subtract the bytes as the + * MSB might be significant. + */ +CPU_BE( cbnz has_nul, 1f ) +CPU_BE( cmp data1, data2 ) +CPU_BE( cset result, ne ) +CPU_BE( cneg result, result, lo ) +CPU_BE( ret ) +CPU_BE( 1: ) + /* Re-compute the NUL-byte detection, using a byte-reversed value.*/ +CPU_BE( rev tmp3, data1 ) +CPU_BE( sub tmp1, tmp3, zeroones ) +CPU_BE( orr tmp2, tmp3, #REP8_7f ) +CPU_BE( bic has_nul, tmp1, tmp2 ) +CPU_BE( rev has_nul, has_nul ) +CPU_BE( orr syndrome, diff, has_nul ) + /* + * The MS-non-zero bit of the syndrome marks either the first bit + * that is different, or the top bit of the first zero byte. + * Shifting left now will bring the critical information into the + * top bits. + */ + clz pos, syndrome + lsl data1, data1, pos + lsl data2, data2, pos + /* + * But we need to zero-extend (char is unsigned) the value and then + * perform a signed 32-bit subtraction. + */ + lsr data1, data1, #56 + sub result, data1, data2, lsr #56 + ret + +.Lremain8: + /* Limit % 8 == 0 => all bytes significant. */ + ands limit, limit, #7 + b.eq .Lret0 +.Ltiny8proc: + ldrb data1w, [src1], #1 + ldrb data2w, [src2], #1 + subs limit, limit, #1 + + ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ + ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ + b.eq .Ltiny8proc + sub result, data1, data2 + ret + +.Lret0: + mov result, #0 + ret +ENDPROC(strncmp)