X-Git-Url: https://gerrit.opnfv.org/gerrit/gitweb?a=blobdiff_plain;ds=sidebyside;f=qemu%2Froms%2Fipxe%2Fsrc%2Finclude%2Fipxe%2Fefi%2FLibrary%2FBaseLib.h;fp=qemu%2Froms%2Fipxe%2Fsrc%2Finclude%2Fipxe%2Fefi%2FLibrary%2FBaseLib.h;h=e9c31d13074497042fb4861444d785bdd938e7f0;hb=e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb;hp=0000000000000000000000000000000000000000;hpb=9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00;p=kvmfornfv.git diff --git a/qemu/roms/ipxe/src/include/ipxe/efi/Library/BaseLib.h b/qemu/roms/ipxe/src/include/ipxe/efi/Library/BaseLib.h new file mode 100644 index 000000000..e9c31d130 --- /dev/null +++ b/qemu/roms/ipxe/src/include/ipxe/efi/Library/BaseLib.h @@ -0,0 +1,7283 @@ +/** @file + Provides string functions, linked list functions, math functions, synchronization + functions, and CPU architecture-specific functions. + +Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.
+Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.
+This program and the accompanying materials +are licensed and made available under the terms and conditions of the BSD License +which accompanies this distribution. The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#ifndef __BASE_LIB__ +#define __BASE_LIB__ + +FILE_LICENCE ( BSD3 ); + +// +// Definitions for architecture-specific types +// +#if defined (MDE_CPU_IA32) +/// +/// The IA-32 architecture context buffer used by SetJump() and LongJump(). +/// +typedef struct { + UINT32 Ebx; + UINT32 Esi; + UINT32 Edi; + UINT32 Ebp; + UINT32 Esp; + UINT32 Eip; +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 + +#endif // defined (MDE_CPU_IA32) + +#if defined (MDE_CPU_IPF) + +/// +/// The Itanium architecture context buffer used by SetJump() and LongJump(). +/// +typedef struct { + UINT64 F2[2]; + UINT64 F3[2]; + UINT64 F4[2]; + UINT64 F5[2]; + UINT64 F16[2]; + UINT64 F17[2]; + UINT64 F18[2]; + UINT64 F19[2]; + UINT64 F20[2]; + UINT64 F21[2]; + UINT64 F22[2]; + UINT64 F23[2]; + UINT64 F24[2]; + UINT64 F25[2]; + UINT64 F26[2]; + UINT64 F27[2]; + UINT64 F28[2]; + UINT64 F29[2]; + UINT64 F30[2]; + UINT64 F31[2]; + UINT64 R4; + UINT64 R5; + UINT64 R6; + UINT64 R7; + UINT64 SP; + UINT64 BR0; + UINT64 BR1; + UINT64 BR2; + UINT64 BR3; + UINT64 BR4; + UINT64 BR5; + UINT64 InitialUNAT; + UINT64 AfterSpillUNAT; + UINT64 PFS; + UINT64 BSP; + UINT64 Predicates; + UINT64 LoopCount; + UINT64 FPSR; +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10 + +#endif // defined (MDE_CPU_IPF) + +#if defined (MDE_CPU_X64) +/// +/// The x64 architecture context buffer used by SetJump() and LongJump(). +/// +typedef struct { + UINT64 Rbx; + UINT64 Rsp; + UINT64 Rbp; + UINT64 Rdi; + UINT64 Rsi; + UINT64 R12; + UINT64 R13; + UINT64 R14; + UINT64 R15; + UINT64 Rip; + UINT64 MxCsr; + UINT8 XmmBuffer[160]; ///< XMM6-XMM15. +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8 + +#endif // defined (MDE_CPU_X64) + +#if defined (MDE_CPU_EBC) +/// +/// The EBC context buffer used by SetJump() and LongJump(). +/// +typedef struct { + UINT64 R0; + UINT64 R1; + UINT64 R2; + UINT64 R3; + UINT64 IP; +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8 + +#endif // defined (MDE_CPU_EBC) + +#if defined (MDE_CPU_ARM) + +typedef struct { + UINT32 R3; ///< A copy of R13. + UINT32 R4; + UINT32 R5; + UINT32 R6; + UINT32 R7; + UINT32 R8; + UINT32 R9; + UINT32 R10; + UINT32 R11; + UINT32 R12; + UINT32 R14; +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 + +#endif // defined (MDE_CPU_ARM) + +#if defined (MDE_CPU_AARCH64) +typedef struct { + // GP regs + UINT64 X19; + UINT64 X20; + UINT64 X21; + UINT64 X22; + UINT64 X23; + UINT64 X24; + UINT64 X25; + UINT64 X26; + UINT64 X27; + UINT64 X28; + UINT64 FP; + UINT64 LR; + UINT64 IP0; + + // FP regs + UINT64 D8; + UINT64 D9; + UINT64 D10; + UINT64 D11; + UINT64 D12; + UINT64 D13; + UINT64 D14; + UINT64 D15; +} BASE_LIBRARY_JUMP_BUFFER; + +#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8 + +#endif // defined (MDE_CPU_AARCH64) + + +// +// String Services +// + +/** + Copies one Null-terminated Unicode string to another Null-terminated Unicode + string and returns the new Unicode string. + + This function copies the contents of the Unicode string Source to the Unicode + string Destination, and returns Destination. If Source and Destination + overlap, then the results are undefined. + + If Destination is NULL, then ASSERT(). + If Destination is not aligned on a 16-bit boundary, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source is not aligned on a 16-bit boundary, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Source contains more than + PcdMaximumUnicodeStringLength Unicode characters not including the + Null-terminator, then ASSERT(). + + @param Destination The pointer to a Null-terminated Unicode string. + @param Source The pointer to a Null-terminated Unicode string. + + @return Destination. + +**/ +CHAR16 * +EFIAPI +StrCpy ( + OUT CHAR16 *Destination, + IN CONST CHAR16 *Source + ); + + +/** + Copies up to a specified length from one Null-terminated Unicode string to + another Null-terminated Unicode string and returns the new Unicode string. + + This function copies the contents of the Unicode string Source to the Unicode + string Destination, and returns Destination. At most, Length Unicode + characters are copied from Source to Destination. If Length is 0, then + Destination is returned unmodified. If Length is greater that the number of + Unicode characters in Source, then Destination is padded with Null Unicode + characters. If Source and Destination overlap, then the results are + undefined. + + If Length > 0 and Destination is NULL, then ASSERT(). + If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT(). + If Length > 0 and Source is NULL, then ASSERT(). + If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Length is greater than + PcdMaximumUnicodeStringLength, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Source contains more than + PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, + then ASSERT(). + + @param Destination The pointer to a Null-terminated Unicode string. + @param Source The pointer to a Null-terminated Unicode string. + @param Length The maximum number of Unicode characters to copy. + + @return Destination. + +**/ +CHAR16 * +EFIAPI +StrnCpy ( + OUT CHAR16 *Destination, + IN CONST CHAR16 *Source, + IN UINTN Length + ); + + +/** + Returns the length of a Null-terminated Unicode string. + + This function returns the number of Unicode characters in the Null-terminated + Unicode string specified by String. + + If String is NULL, then ASSERT(). + If String is not aligned on a 16-bit boundary, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and String contains more than + PcdMaximumUnicodeStringLength Unicode characters not including the + Null-terminator, then ASSERT(). + + @param String Pointer to a Null-terminated Unicode string. + + @return The length of String. + +**/ +UINTN +EFIAPI +StrLen ( + IN CONST CHAR16 *String + ); + + +/** + Returns the size of a Null-terminated Unicode string in bytes, including the + Null terminator. + + This function returns the size, in bytes, of the Null-terminated Unicode string + specified by String. + + If String is NULL, then ASSERT(). + If String is not aligned on a 16-bit boundary, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and String contains more than + PcdMaximumUnicodeStringLength Unicode characters not including the + Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + + @return The size of String. + +**/ +UINTN +EFIAPI +StrSize ( + IN CONST CHAR16 *String + ); + + +/** + Compares two Null-terminated Unicode strings, and returns the difference + between the first mismatched Unicode characters. + + This function compares the Null-terminated Unicode string FirstString to the + Null-terminated Unicode string SecondString. If FirstString is identical to + SecondString, then 0 is returned. Otherwise, the value returned is the first + mismatched Unicode character in SecondString subtracted from the first + mismatched Unicode character in FirstString. + + If FirstString is NULL, then ASSERT(). + If FirstString is not aligned on a 16-bit boundary, then ASSERT(). + If SecondString is NULL, then ASSERT(). + If SecondString is not aligned on a 16-bit boundary, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more + than PcdMaximumUnicodeStringLength Unicode characters not including the + Null-terminator, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more + than PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + + @param FirstString The pointer to a Null-terminated Unicode string. + @param SecondString The pointer to a Null-terminated Unicode string. + + @retval 0 FirstString is identical to SecondString. + @return others FirstString is not identical to SecondString. + +**/ +INTN +EFIAPI +StrCmp ( + IN CONST CHAR16 *FirstString, + IN CONST CHAR16 *SecondString + ); + + +/** + Compares up to a specified length the contents of two Null-terminated Unicode strings, + and returns the difference between the first mismatched Unicode characters. + + This function compares the Null-terminated Unicode string FirstString to the + Null-terminated Unicode string SecondString. At most, Length Unicode + characters will be compared. If Length is 0, then 0 is returned. If + FirstString is identical to SecondString, then 0 is returned. Otherwise, the + value returned is the first mismatched Unicode character in SecondString + subtracted from the first mismatched Unicode character in FirstString. + + If Length > 0 and FirstString is NULL, then ASSERT(). + If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT(). + If Length > 0 and SecondString is NULL, then ASSERT(). + If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Length is greater than + PcdMaximumUnicodeStringLength, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than + PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, + then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than + PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, + then ASSERT(). + + @param FirstString The pointer to a Null-terminated Unicode string. + @param SecondString The pointer to a Null-terminated Unicode string. + @param Length The maximum number of Unicode characters to compare. + + @retval 0 FirstString is identical to SecondString. + @return others FirstString is not identical to SecondString. + +**/ +INTN +EFIAPI +StrnCmp ( + IN CONST CHAR16 *FirstString, + IN CONST CHAR16 *SecondString, + IN UINTN Length + ); + + +/** + Concatenates one Null-terminated Unicode string to another Null-terminated + Unicode string, and returns the concatenated Unicode string. + + This function concatenates two Null-terminated Unicode strings. The contents + of Null-terminated Unicode string Source are concatenated to the end of + Null-terminated Unicode string Destination. The Null-terminated concatenated + Unicode String is returned. If Source and Destination overlap, then the + results are undefined. + + If Destination is NULL, then ASSERT(). + If Destination is not aligned on a 16-bit boundary, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source is not aligned on a 16-bit boundary, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Destination contains more + than PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Source contains more than + PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination + and Source results in a Unicode string with more than + PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + + @param Destination The pointer to a Null-terminated Unicode string. + @param Source The pointer to a Null-terminated Unicode string. + + @return Destination. + +**/ +CHAR16 * +EFIAPI +StrCat ( + IN OUT CHAR16 *Destination, + IN CONST CHAR16 *Source + ); + + +/** + Concatenates up to a specified length one Null-terminated Unicode to the end + of another Null-terminated Unicode string, and returns the concatenated + Unicode string. + + This function concatenates two Null-terminated Unicode strings. The contents + of Null-terminated Unicode string Source are concatenated to the end of + Null-terminated Unicode string Destination, and Destination is returned. At + most, Length Unicode characters are concatenated from Source to the end of + Destination, and Destination is always Null-terminated. If Length is 0, then + Destination is returned unmodified. If Source and Destination overlap, then + the results are undefined. + + If Destination is NULL, then ASSERT(). + If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT(). + If Length > 0 and Source is NULL, then ASSERT(). + If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Length is greater than + PcdMaximumUnicodeStringLength, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Destination contains more + than PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Source contains more than + PcdMaximumUnicodeStringLength Unicode characters, not including the + Null-terminator, then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination + and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength + Unicode characters, not including the Null-terminator, then ASSERT(). + + @param Destination The pointer to a Null-terminated Unicode string. + @param Source The pointer to a Null-terminated Unicode string. + @param Length The maximum number of Unicode characters to concatenate from + Source. + + @return Destination. + +**/ +CHAR16 * +EFIAPI +StrnCat ( + IN OUT CHAR16 *Destination, + IN CONST CHAR16 *Source, + IN UINTN Length + ); + +/** + Returns the first occurrence of a Null-terminated Unicode sub-string + in a Null-terminated Unicode string. + + This function scans the contents of the Null-terminated Unicode string + specified by String and returns the first occurrence of SearchString. + If SearchString is not found in String, then NULL is returned. If + the length of SearchString is zero, then String is returned. + + If String is NULL, then ASSERT(). + If String is not aligned on a 16-bit boundary, then ASSERT(). + If SearchString is NULL, then ASSERT(). + If SearchString is not aligned on a 16-bit boundary, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and SearchString + or String contains more than PcdMaximumUnicodeStringLength Unicode + characters, not including the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + @param SearchString The pointer to a Null-terminated Unicode string to search for. + + @retval NULL If the SearchString does not appear in String. + @return others If there is a match. + +**/ +CHAR16 * +EFIAPI +StrStr ( + IN CONST CHAR16 *String, + IN CONST CHAR16 *SearchString + ); + +/** + Convert a Null-terminated Unicode decimal string to a value of + type UINTN. + + This function returns a value of type UINTN by interpreting the contents + of the Unicode string specified by String as a decimal number. The format + of the input Unicode string String is: + + [spaces] [decimal digits]. + + The valid decimal digit character is in the range [0-9]. The + function will ignore the pad space, which includes spaces or + tab characters, before [decimal digits]. The running zero in the + beginning of [decimal digits] will be ignored. Then, the function + stops at the first character that is a not a valid decimal character + or a Null-terminator, whichever one comes first. + + If String is NULL, then ASSERT(). + If String is not aligned in a 16-bit boundary, then ASSERT(). + If String has only pad spaces, then 0 is returned. + If String has no pad spaces or valid decimal digits, + then 0 is returned. + If the number represented by String overflows according + to the range defined by UINTN, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and String contains + more than PcdMaximumUnicodeStringLength Unicode characters not including + the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + + @retval Value translated from String. + +**/ +UINTN +EFIAPI +StrDecimalToUintn ( + IN CONST CHAR16 *String + ); + +/** + Convert a Null-terminated Unicode decimal string to a value of + type UINT64. + + This function returns a value of type UINT64 by interpreting the contents + of the Unicode string specified by String as a decimal number. The format + of the input Unicode string String is: + + [spaces] [decimal digits]. + + The valid decimal digit character is in the range [0-9]. The + function will ignore the pad space, which includes spaces or + tab characters, before [decimal digits]. The running zero in the + beginning of [decimal digits] will be ignored. Then, the function + stops at the first character that is a not a valid decimal character + or a Null-terminator, whichever one comes first. + + If String is NULL, then ASSERT(). + If String is not aligned in a 16-bit boundary, then ASSERT(). + If String has only pad spaces, then 0 is returned. + If String has no pad spaces or valid decimal digits, + then 0 is returned. + If the number represented by String overflows according + to the range defined by UINT64, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and String contains + more than PcdMaximumUnicodeStringLength Unicode characters not including + the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + + @retval Value translated from String. + +**/ +UINT64 +EFIAPI +StrDecimalToUint64 ( + IN CONST CHAR16 *String + ); + + +/** + Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN. + + This function returns a value of type UINTN by interpreting the contents + of the Unicode string specified by String as a hexadecimal number. + The format of the input Unicode string String is: + + [spaces][zeros][x][hexadecimal digits]. + + The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. + The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. + If "x" appears in the input string, it must be prefixed with at least one 0. + The function will ignore the pad space, which includes spaces or tab characters, + before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or + [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the + first valid hexadecimal digit. Then, the function stops at the first character + that is a not a valid hexadecimal character or NULL, whichever one comes first. + + If String is NULL, then ASSERT(). + If String is not aligned in a 16-bit boundary, then ASSERT(). + If String has only pad spaces, then zero is returned. + If String has no leading pad spaces, leading zeros or valid hexadecimal digits, + then zero is returned. + If the number represented by String overflows according to the range defined by + UINTN, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and String contains more than + PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + + @retval Value translated from String. + +**/ +UINTN +EFIAPI +StrHexToUintn ( + IN CONST CHAR16 *String + ); + + +/** + Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64. + + This function returns a value of type UINT64 by interpreting the contents + of the Unicode string specified by String as a hexadecimal number. + The format of the input Unicode string String is + + [spaces][zeros][x][hexadecimal digits]. + + The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. + The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. + If "x" appears in the input string, it must be prefixed with at least one 0. + The function will ignore the pad space, which includes spaces or tab characters, + before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or + [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the + first valid hexadecimal digit. Then, the function stops at the first character that is + a not a valid hexadecimal character or NULL, whichever one comes first. + + If String is NULL, then ASSERT(). + If String is not aligned in a 16-bit boundary, then ASSERT(). + If String has only pad spaces, then zero is returned. + If String has no leading pad spaces, leading zeros or valid hexadecimal digits, + then zero is returned. + If the number represented by String overflows according to the range defined by + UINT64, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and String contains more than + PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated Unicode string. + + @retval Value translated from String. + +**/ +UINT64 +EFIAPI +StrHexToUint64 ( + IN CONST CHAR16 *String + ); + +/** + Convert a Null-terminated Unicode string to a Null-terminated + ASCII string and returns the ASCII string. + + This function converts the content of the Unicode string Source + to the ASCII string Destination by copying the lower 8 bits of + each Unicode character. It returns Destination. + + The caller is responsible to make sure Destination points to a buffer with size + equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes. + + If any Unicode characters in Source contain non-zero value in + the upper 8 bits, then ASSERT(). + + If Destination is NULL, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source is not aligned on a 16-bit boundary, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + + If PcdMaximumUnicodeStringLength is not zero, and Source contains + more than PcdMaximumUnicodeStringLength Unicode characters not including + the Null-terminator, then ASSERT(). + + If PcdMaximumAsciiStringLength is not zero, and Source contains more + than PcdMaximumAsciiStringLength Unicode characters not including the + Null-terminator, then ASSERT(). + + @param Source The pointer to a Null-terminated Unicode string. + @param Destination The pointer to a Null-terminated ASCII string. + + @return Destination. + +**/ +CHAR8 * +EFIAPI +UnicodeStrToAsciiStr ( + IN CONST CHAR16 *Source, + OUT CHAR8 *Destination + ); + + +/** + Copies one Null-terminated ASCII string to another Null-terminated ASCII + string and returns the new ASCII string. + + This function copies the contents of the ASCII string Source to the ASCII + string Destination, and returns Destination. If Source and Destination + overlap, then the results are undefined. + + If Destination is NULL, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and Source contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + + @param Destination The pointer to a Null-terminated ASCII string. + @param Source The pointer to a Null-terminated ASCII string. + + @return Destination + +**/ +CHAR8 * +EFIAPI +AsciiStrCpy ( + OUT CHAR8 *Destination, + IN CONST CHAR8 *Source + ); + + +/** + Copies up to a specified length one Null-terminated ASCII string to another + Null-terminated ASCII string and returns the new ASCII string. + + This function copies the contents of the ASCII string Source to the ASCII + string Destination, and returns Destination. At most, Length ASCII characters + are copied from Source to Destination. If Length is 0, then Destination is + returned unmodified. If Length is greater that the number of ASCII characters + in Source, then Destination is padded with Null ASCII characters. If Source + and Destination overlap, then the results are undefined. + + If Destination is NULL, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Length is greater than + PcdMaximumAsciiStringLength, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Source contains more than + PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, + then ASSERT(). + + @param Destination The pointer to a Null-terminated ASCII string. + @param Source The pointer to a Null-terminated ASCII string. + @param Length The maximum number of ASCII characters to copy. + + @return Destination + +**/ +CHAR8 * +EFIAPI +AsciiStrnCpy ( + OUT CHAR8 *Destination, + IN CONST CHAR8 *Source, + IN UINTN Length + ); + + +/** + Returns the length of a Null-terminated ASCII string. + + This function returns the number of ASCII characters in the Null-terminated + ASCII string specified by String. + + If Length > 0 and Destination is NULL, then ASSERT(). + If Length > 0 and Source is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and String contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @return The length of String. + +**/ +UINTN +EFIAPI +AsciiStrLen ( + IN CONST CHAR8 *String + ); + + +/** + Returns the size of a Null-terminated ASCII string in bytes, including the + Null terminator. + + This function returns the size, in bytes, of the Null-terminated ASCII string + specified by String. + + If String is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and String contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @return The size of String. + +**/ +UINTN +EFIAPI +AsciiStrSize ( + IN CONST CHAR8 *String + ); + + +/** + Compares two Null-terminated ASCII strings, and returns the difference + between the first mismatched ASCII characters. + + This function compares the Null-terminated ASCII string FirstString to the + Null-terminated ASCII string SecondString. If FirstString is identical to + SecondString, then 0 is returned. Otherwise, the value returned is the first + mismatched ASCII character in SecondString subtracted from the first + mismatched ASCII character in FirstString. + + If FirstString is NULL, then ASSERT(). + If SecondString is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and FirstString contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and SecondString contains more + than PcdMaximumAsciiStringLength ASCII characters not including the + Null-terminator, then ASSERT(). + + @param FirstString The pointer to a Null-terminated ASCII string. + @param SecondString The pointer to a Null-terminated ASCII string. + + @retval ==0 FirstString is identical to SecondString. + @retval !=0 FirstString is not identical to SecondString. + +**/ +INTN +EFIAPI +AsciiStrCmp ( + IN CONST CHAR8 *FirstString, + IN CONST CHAR8 *SecondString + ); + + +/** + Performs a case insensitive comparison of two Null-terminated ASCII strings, + and returns the difference between the first mismatched ASCII characters. + + This function performs a case insensitive comparison of the Null-terminated + ASCII string FirstString to the Null-terminated ASCII string SecondString. If + FirstString is identical to SecondString, then 0 is returned. Otherwise, the + value returned is the first mismatched lower case ASCII character in + SecondString subtracted from the first mismatched lower case ASCII character + in FirstString. + + If FirstString is NULL, then ASSERT(). + If SecondString is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and FirstString contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and SecondString contains more + than PcdMaximumAsciiStringLength ASCII characters not including the + Null-terminator, then ASSERT(). + + @param FirstString The pointer to a Null-terminated ASCII string. + @param SecondString The pointer to a Null-terminated ASCII string. + + @retval ==0 FirstString is identical to SecondString using case insensitive + comparisons. + @retval !=0 FirstString is not identical to SecondString using case + insensitive comparisons. + +**/ +INTN +EFIAPI +AsciiStriCmp ( + IN CONST CHAR8 *FirstString, + IN CONST CHAR8 *SecondString + ); + + +/** + Compares two Null-terminated ASCII strings with maximum lengths, and returns + the difference between the first mismatched ASCII characters. + + This function compares the Null-terminated ASCII string FirstString to the + Null-terminated ASCII string SecondString. At most, Length ASCII characters + will be compared. If Length is 0, then 0 is returned. If FirstString is + identical to SecondString, then 0 is returned. Otherwise, the value returned + is the first mismatched ASCII character in SecondString subtracted from the + first mismatched ASCII character in FirstString. + + If Length > 0 and FirstString is NULL, then ASSERT(). + If Length > 0 and SecondString is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Length is greater than + PcdMaximumAsciiStringLength, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than + PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than + PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, + then ASSERT(). + + @param FirstString The pointer to a Null-terminated ASCII string. + @param SecondString The pointer to a Null-terminated ASCII string. + @param Length The maximum number of ASCII characters for compare. + + @retval ==0 FirstString is identical to SecondString. + @retval !=0 FirstString is not identical to SecondString. + +**/ +INTN +EFIAPI +AsciiStrnCmp ( + IN CONST CHAR8 *FirstString, + IN CONST CHAR8 *SecondString, + IN UINTN Length + ); + + +/** + Concatenates one Null-terminated ASCII string to another Null-terminated + ASCII string, and returns the concatenated ASCII string. + + This function concatenates two Null-terminated ASCII strings. The contents of + Null-terminated ASCII string Source are concatenated to the end of Null- + terminated ASCII string Destination. The Null-terminated concatenated ASCII + String is returned. + + If Destination is NULL, then ASSERT(). + If Source is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and Destination contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and Source contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero and concatenating Destination and + Source results in a ASCII string with more than PcdMaximumAsciiStringLength + ASCII characters, then ASSERT(). + + @param Destination The pointer to a Null-terminated ASCII string. + @param Source The pointer to a Null-terminated ASCII string. + + @return Destination + +**/ +CHAR8 * +EFIAPI +AsciiStrCat ( + IN OUT CHAR8 *Destination, + IN CONST CHAR8 *Source + ); + + +/** + Concatenates up to a specified length one Null-terminated ASCII string to + the end of another Null-terminated ASCII string, and returns the + concatenated ASCII string. + + This function concatenates two Null-terminated ASCII strings. The contents + of Null-terminated ASCII string Source are concatenated to the end of Null- + terminated ASCII string Destination, and Destination is returned. At most, + Length ASCII characters are concatenated from Source to the end of + Destination, and Destination is always Null-terminated. If Length is 0, then + Destination is returned unmodified. If Source and Destination overlap, then + the results are undefined. + + If Length > 0 and Destination is NULL, then ASSERT(). + If Length > 0 and Source is NULL, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Length is greater than + PcdMaximumAsciiStringLength, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Destination contains more than + PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Source contains more than + PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, + then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and + Source results in a ASCII string with more than PcdMaximumAsciiStringLength + ASCII characters, not including the Null-terminator, then ASSERT(). + + @param Destination The pointer to a Null-terminated ASCII string. + @param Source The pointer to a Null-terminated ASCII string. + @param Length The maximum number of ASCII characters to concatenate from + Source. + + @return Destination + +**/ +CHAR8 * +EFIAPI +AsciiStrnCat ( + IN OUT CHAR8 *Destination, + IN CONST CHAR8 *Source, + IN UINTN Length + ); + + +/** + Returns the first occurrence of a Null-terminated ASCII sub-string + in a Null-terminated ASCII string. + + This function scans the contents of the ASCII string specified by String + and returns the first occurrence of SearchString. If SearchString is not + found in String, then NULL is returned. If the length of SearchString is zero, + then String is returned. + + If String is NULL, then ASSERT(). + If SearchString is NULL, then ASSERT(). + + If PcdMaximumAsciiStringLength is not zero, and SearchString or + String contains more than PcdMaximumAsciiStringLength Unicode characters + not including the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + @param SearchString The pointer to a Null-terminated ASCII string to search for. + + @retval NULL If the SearchString does not appear in String. + @retval others If there is a match return the first occurrence of SearchingString. + If the length of SearchString is zero,return String. + +**/ +CHAR8 * +EFIAPI +AsciiStrStr ( + IN CONST CHAR8 *String, + IN CONST CHAR8 *SearchString + ); + + +/** + Convert a Null-terminated ASCII decimal string to a value of type + UINTN. + + This function returns a value of type UINTN by interpreting the contents + of the ASCII string String as a decimal number. The format of the input + ASCII string String is: + + [spaces] [decimal digits]. + + The valid decimal digit character is in the range [0-9]. The function will + ignore the pad space, which includes spaces or tab characters, before the digits. + The running zero in the beginning of [decimal digits] will be ignored. Then, the + function stops at the first character that is a not a valid decimal character or + Null-terminator, whichever on comes first. + + If String has only pad spaces, then 0 is returned. + If String has no pad spaces or valid decimal digits, then 0 is returned. + If the number represented by String overflows according to the range defined by + UINTN, then ASSERT(). + If String is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and String contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @retval The value translated from String. + +**/ +UINTN +EFIAPI +AsciiStrDecimalToUintn ( + IN CONST CHAR8 *String + ); + + +/** + Convert a Null-terminated ASCII decimal string to a value of type + UINT64. + + This function returns a value of type UINT64 by interpreting the contents + of the ASCII string String as a decimal number. The format of the input + ASCII string String is: + + [spaces] [decimal digits]. + + The valid decimal digit character is in the range [0-9]. The function will + ignore the pad space, which includes spaces or tab characters, before the digits. + The running zero in the beginning of [decimal digits] will be ignored. Then, the + function stops at the first character that is a not a valid decimal character or + Null-terminator, whichever on comes first. + + If String has only pad spaces, then 0 is returned. + If String has no pad spaces or valid decimal digits, then 0 is returned. + If the number represented by String overflows according to the range defined by + UINT64, then ASSERT(). + If String is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and String contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @retval Value translated from String. + +**/ +UINT64 +EFIAPI +AsciiStrDecimalToUint64 ( + IN CONST CHAR8 *String + ); + + +/** + Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN. + + This function returns a value of type UINTN by interpreting the contents of + the ASCII string String as a hexadecimal number. The format of the input ASCII + string String is: + + [spaces][zeros][x][hexadecimal digits]. + + The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. + The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" + appears in the input string, it must be prefixed with at least one 0. The function + will ignore the pad space, which includes spaces or tab characters, before [zeros], + [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits] + will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal + digit. Then, the function stops at the first character that is a not a valid + hexadecimal character or Null-terminator, whichever on comes first. + + If String has only pad spaces, then 0 is returned. + If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then + 0 is returned. + + If the number represented by String overflows according to the range defined by UINTN, + then ASSERT(). + If String is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, + and String contains more than PcdMaximumAsciiStringLength ASCII characters not including + the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @retval Value translated from String. + +**/ +UINTN +EFIAPI +AsciiStrHexToUintn ( + IN CONST CHAR8 *String + ); + + +/** + Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64. + + This function returns a value of type UINT64 by interpreting the contents of + the ASCII string String as a hexadecimal number. The format of the input ASCII + string String is: + + [spaces][zeros][x][hexadecimal digits]. + + The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. + The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" + appears in the input string, it must be prefixed with at least one 0. The function + will ignore the pad space, which includes spaces or tab characters, before [zeros], + [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits] + will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal + digit. Then, the function stops at the first character that is a not a valid + hexadecimal character or Null-terminator, whichever on comes first. + + If String has only pad spaces, then 0 is returned. + If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then + 0 is returned. + + If the number represented by String overflows according to the range defined by UINT64, + then ASSERT(). + If String is NULL, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, + and String contains more than PcdMaximumAsciiStringLength ASCII characters not including + the Null-terminator, then ASSERT(). + + @param String The pointer to a Null-terminated ASCII string. + + @retval Value translated from String. + +**/ +UINT64 +EFIAPI +AsciiStrHexToUint64 ( + IN CONST CHAR8 *String + ); + + +/** + Convert one Null-terminated ASCII string to a Null-terminated + Unicode string and returns the Unicode string. + + This function converts the contents of the ASCII string Source to the Unicode + string Destination, and returns Destination. The function terminates the + Unicode string Destination by appending a Null-terminator character at the end. + The caller is responsible to make sure Destination points to a buffer with size + equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes. + + If Destination is NULL, then ASSERT(). + If Destination is not aligned on a 16-bit boundary, then ASSERT(). + If Source is NULL, then ASSERT(). + If Source and Destination overlap, then ASSERT(). + If PcdMaximumAsciiStringLength is not zero, and Source contains more than + PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, + then ASSERT(). + If PcdMaximumUnicodeStringLength is not zero, and Source contains more than + PcdMaximumUnicodeStringLength ASCII characters not including the + Null-terminator, then ASSERT(). + + @param Source The pointer to a Null-terminated ASCII string. + @param Destination The pointer to a Null-terminated Unicode string. + + @return Destination. + +**/ +CHAR16 * +EFIAPI +AsciiStrToUnicodeStr ( + IN CONST CHAR8 *Source, + OUT CHAR16 *Destination + ); + + +/** + Converts an 8-bit value to an 8-bit BCD value. + + Converts the 8-bit value specified by Value to BCD. The BCD value is + returned. + + If Value >= 100, then ASSERT(). + + @param Value The 8-bit value to convert to BCD. Range 0..99. + + @return The BCD value. + +**/ +UINT8 +EFIAPI +DecimalToBcd8 ( + IN UINT8 Value + ); + + +/** + Converts an 8-bit BCD value to an 8-bit value. + + Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit + value is returned. + + If Value >= 0xA0, then ASSERT(). + If (Value & 0x0F) >= 0x0A, then ASSERT(). + + @param Value The 8-bit BCD value to convert to an 8-bit value. + + @return The 8-bit value is returned. + +**/ +UINT8 +EFIAPI +BcdToDecimal8 ( + IN UINT8 Value + ); + + +// +// Linked List Functions and Macros +// + +/** + Initializes the head node of a doubly linked list that is declared as a + global variable in a module. + + Initializes the forward and backward links of a new linked list. After + initializing a linked list with this macro, the other linked list functions + may be used to add and remove nodes from the linked list. This macro results + in smaller executables by initializing the linked list in the data section, + instead if calling the InitializeListHead() function to perform the + equivalent operation. + + @param ListHead The head note of a list to initialize. + +**/ +#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)} + + +/** + Initializes the head node of a doubly linked list, and returns the pointer to + the head node of the doubly linked list. + + Initializes the forward and backward links of a new linked list. After + initializing a linked list with this function, the other linked list + functions may be used to add and remove nodes from the linked list. It is up + to the caller of this function to allocate the memory for ListHead. + + If ListHead is NULL, then ASSERT(). + + @param ListHead A pointer to the head node of a new doubly linked list. + + @return ListHead + +**/ +LIST_ENTRY * +EFIAPI +InitializeListHead ( + IN OUT LIST_ENTRY *ListHead + ); + + +/** + Adds a node to the beginning of a doubly linked list, and returns the pointer + to the head node of the doubly linked list. + + Adds the node Entry at the beginning of the doubly linked list denoted by + ListHead, and returns ListHead. + + If ListHead is NULL, then ASSERT(). + If Entry is NULL, then ASSERT(). + If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and prior to insertion the number + of nodes in ListHead, including the ListHead node, is greater than or + equal to PcdMaximumLinkedListLength, then ASSERT(). + + @param ListHead A pointer to the head node of a doubly linked list. + @param Entry A pointer to a node that is to be inserted at the beginning + of a doubly linked list. + + @return ListHead + +**/ +LIST_ENTRY * +EFIAPI +InsertHeadList ( + IN OUT LIST_ENTRY *ListHead, + IN OUT LIST_ENTRY *Entry + ); + + +/** + Adds a node to the end of a doubly linked list, and returns the pointer to + the head node of the doubly linked list. + + Adds the node Entry to the end of the doubly linked list denoted by ListHead, + and returns ListHead. + + If ListHead is NULL, then ASSERT(). + If Entry is NULL, then ASSERT(). + If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and prior to insertion the number + of nodes in ListHead, including the ListHead node, is greater than or + equal to PcdMaximumLinkedListLength, then ASSERT(). + + @param ListHead A pointer to the head node of a doubly linked list. + @param Entry A pointer to a node that is to be added at the end of the + doubly linked list. + + @return ListHead + +**/ +LIST_ENTRY * +EFIAPI +InsertTailList ( + IN OUT LIST_ENTRY *ListHead, + IN OUT LIST_ENTRY *Entry + ); + + +/** + Retrieves the first node of a doubly linked list. + + Returns the first node of a doubly linked list. List must have been + initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). + If List is empty, then List is returned. + + If List is NULL, then ASSERT(). + If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes + in List, including the List node, is greater than or equal to + PcdMaximumLinkedListLength, then ASSERT(). + + @param List A pointer to the head node of a doubly linked list. + + @return The first node of a doubly linked list. + @retval List The list is empty. + +**/ +LIST_ENTRY * +EFIAPI +GetFirstNode ( + IN CONST LIST_ENTRY *List + ); + + +/** + Retrieves the next node of a doubly linked list. + + Returns the node of a doubly linked list that follows Node. + List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() + or InitializeListHead(). If List is empty, then List is returned. + + If List is NULL, then ASSERT(). + If Node is NULL, then ASSERT(). + If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and List contains more than + PcdMaximumLinkedListLength nodes, then ASSERT(). + If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT(). + + @param List A pointer to the head node of a doubly linked list. + @param Node A pointer to a node in the doubly linked list. + + @return The pointer to the next node if one exists. Otherwise List is returned. + +**/ +LIST_ENTRY * +EFIAPI +GetNextNode ( + IN CONST LIST_ENTRY *List, + IN CONST LIST_ENTRY *Node + ); + + +/** + Retrieves the previous node of a doubly linked list. + + Returns the node of a doubly linked list that precedes Node. + List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() + or InitializeListHead(). If List is empty, then List is returned. + + If List is NULL, then ASSERT(). + If Node is NULL, then ASSERT(). + If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and List contains more than + PcdMaximumLinkedListLength nodes, then ASSERT(). + If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT(). + + @param List A pointer to the head node of a doubly linked list. + @param Node A pointer to a node in the doubly linked list. + + @return The pointer to the previous node if one exists. Otherwise List is returned. + +**/ +LIST_ENTRY * +EFIAPI +GetPreviousNode ( + IN CONST LIST_ENTRY *List, + IN CONST LIST_ENTRY *Node + ); + + +/** + Checks to see if a doubly linked list is empty or not. + + Checks to see if the doubly linked list is empty. If the linked list contains + zero nodes, this function returns TRUE. Otherwise, it returns FALSE. + + If ListHead is NULL, then ASSERT(). + If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes + in List, including the List node, is greater than or equal to + PcdMaximumLinkedListLength, then ASSERT(). + + @param ListHead A pointer to the head node of a doubly linked list. + + @retval TRUE The linked list is empty. + @retval FALSE The linked list is not empty. + +**/ +BOOLEAN +EFIAPI +IsListEmpty ( + IN CONST LIST_ENTRY *ListHead + ); + + +/** + Determines if a node in a doubly linked list is the head node of a the same + doubly linked list. This function is typically used to terminate a loop that + traverses all the nodes in a doubly linked list starting with the head node. + + Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the + nodes in the doubly linked list specified by List. List must have been + initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). + + If List is NULL, then ASSERT(). + If Node is NULL, then ASSERT(). + If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), + then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes + in List, including the List node, is greater than or equal to + PcdMaximumLinkedListLength, then ASSERT(). + If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal + to List, then ASSERT(). + + @param List A pointer to the head node of a doubly linked list. + @param Node A pointer to a node in the doubly linked list. + + @retval TRUE Node is the head of the doubly-linked list pointed by List. + @retval FALSE Node is not the head of the doubly-linked list pointed by List. + +**/ +BOOLEAN +EFIAPI +IsNull ( + IN CONST LIST_ENTRY *List, + IN CONST LIST_ENTRY *Node + ); + + +/** + Determines if a node the last node in a doubly linked list. + + Returns TRUE if Node is the last node in the doubly linked list specified by + List. Otherwise, FALSE is returned. List must have been initialized with + INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). + + If List is NULL, then ASSERT(). + If Node is NULL, then ASSERT(). + If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or + InitializeListHead(), then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes + in List, including the List node, is greater than or equal to + PcdMaximumLinkedListLength, then ASSERT(). + If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT(). + + @param List A pointer to the head node of a doubly linked list. + @param Node A pointer to a node in the doubly linked list. + + @retval TRUE Node is the last node in the linked list. + @retval FALSE Node is not the last node in the linked list. + +**/ +BOOLEAN +EFIAPI +IsNodeAtEnd ( + IN CONST LIST_ENTRY *List, + IN CONST LIST_ENTRY *Node + ); + + +/** + Swaps the location of two nodes in a doubly linked list, and returns the + first node after the swap. + + If FirstEntry is identical to SecondEntry, then SecondEntry is returned. + Otherwise, the location of the FirstEntry node is swapped with the location + of the SecondEntry node in a doubly linked list. SecondEntry must be in the + same double linked list as FirstEntry and that double linked list must have + been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). + SecondEntry is returned after the nodes are swapped. + + If FirstEntry is NULL, then ASSERT(). + If SecondEntry is NULL, then ASSERT(). + If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the + same linked list, then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes in the + linked list containing the FirstEntry and SecondEntry nodes, including + the FirstEntry and SecondEntry nodes, is greater than or equal to + PcdMaximumLinkedListLength, then ASSERT(). + + @param FirstEntry A pointer to a node in a linked list. + @param SecondEntry A pointer to another node in the same linked list. + + @return SecondEntry. + +**/ +LIST_ENTRY * +EFIAPI +SwapListEntries ( + IN OUT LIST_ENTRY *FirstEntry, + IN OUT LIST_ENTRY *SecondEntry + ); + + +/** + Removes a node from a doubly linked list, and returns the node that follows + the removed node. + + Removes the node Entry from a doubly linked list. It is up to the caller of + this function to release the memory used by this node if that is required. On + exit, the node following Entry in the doubly linked list is returned. If + Entry is the only node in the linked list, then the head node of the linked + list is returned. + + If Entry is NULL, then ASSERT(). + If Entry is the head node of an empty list, then ASSERT(). + If PcdMaximumLinkedListLength is not zero, and the number of nodes in the + linked list containing Entry, including the Entry node, is greater than + or equal to PcdMaximumLinkedListLength, then ASSERT(). + + @param Entry A pointer to a node in a linked list. + + @return Entry. + +**/ +LIST_ENTRY * +EFIAPI +RemoveEntryList ( + IN CONST LIST_ENTRY *Entry + ); + +// +// Math Services +// + +/** + Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled + with zeros. The shifted value is returned. + + This function shifts the 64-bit value Operand to the left by Count bits. The + low Count bits are set to zero. The shifted value is returned. + + If Count is greater than 63, then ASSERT(). + + @param Operand The 64-bit operand to shift left. + @param Count The number of bits to shift left. + + @return Operand << Count. + +**/ +UINT64 +EFIAPI +LShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + + +/** + Shifts a 64-bit integer right between 0 and 63 bits. This high bits are + filled with zeros. The shifted value is returned. + + This function shifts the 64-bit value Operand to the right by Count bits. The + high Count bits are set to zero. The shifted value is returned. + + If Count is greater than 63, then ASSERT(). + + @param Operand The 64-bit operand to shift right. + @param Count The number of bits to shift right. + + @return Operand >> Count + +**/ +UINT64 +EFIAPI +RShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + + +/** + Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled + with original integer's bit 63. The shifted value is returned. + + This function shifts the 64-bit value Operand to the right by Count bits. The + high Count bits are set to bit 63 of Operand. The shifted value is returned. + + If Count is greater than 63, then ASSERT(). + + @param Operand The 64-bit operand to shift right. + @param Count The number of bits to shift right. + + @return Operand >> Count + +**/ +UINT64 +EFIAPI +ARShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + + +/** + Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits + with the high bits that were rotated. + + This function rotates the 32-bit value Operand to the left by Count bits. The + low Count bits are fill with the high Count bits of Operand. The rotated + value is returned. + + If Count is greater than 31, then ASSERT(). + + @param Operand The 32-bit operand to rotate left. + @param Count The number of bits to rotate left. + + @return Operand << Count + +**/ +UINT32 +EFIAPI +LRotU32 ( + IN UINT32 Operand, + IN UINTN Count + ); + + +/** + Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits + with the low bits that were rotated. + + This function rotates the 32-bit value Operand to the right by Count bits. + The high Count bits are fill with the low Count bits of Operand. The rotated + value is returned. + + If Count is greater than 31, then ASSERT(). + + @param Operand The 32-bit operand to rotate right. + @param Count The number of bits to rotate right. + + @return Operand >> Count + +**/ +UINT32 +EFIAPI +RRotU32 ( + IN UINT32 Operand, + IN UINTN Count + ); + + +/** + Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits + with the high bits that were rotated. + + This function rotates the 64-bit value Operand to the left by Count bits. The + low Count bits are fill with the high Count bits of Operand. The rotated + value is returned. + + If Count is greater than 63, then ASSERT(). + + @param Operand The 64-bit operand to rotate left. + @param Count The number of bits to rotate left. + + @return Operand << Count + +**/ +UINT64 +EFIAPI +LRotU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + + +/** + Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits + with the high low bits that were rotated. + + This function rotates the 64-bit value Operand to the right by Count bits. + The high Count bits are fill with the low Count bits of Operand. The rotated + value is returned. + + If Count is greater than 63, then ASSERT(). + + @param Operand The 64-bit operand to rotate right. + @param Count The number of bits to rotate right. + + @return Operand >> Count + +**/ +UINT64 +EFIAPI +RRotU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + + +/** + Returns the bit position of the lowest bit set in a 32-bit value. + + This function computes the bit position of the lowest bit set in the 32-bit + value specified by Operand. If Operand is zero, then -1 is returned. + Otherwise, a value between 0 and 31 is returned. + + @param Operand The 32-bit operand to evaluate. + + @retval 0..31 The lowest bit set in Operand was found. + @retval -1 Operand is zero. + +**/ +INTN +EFIAPI +LowBitSet32 ( + IN UINT32 Operand + ); + + +/** + Returns the bit position of the lowest bit set in a 64-bit value. + + This function computes the bit position of the lowest bit set in the 64-bit + value specified by Operand. If Operand is zero, then -1 is returned. + Otherwise, a value between 0 and 63 is returned. + + @param Operand The 64-bit operand to evaluate. + + @retval 0..63 The lowest bit set in Operand was found. + @retval -1 Operand is zero. + + +**/ +INTN +EFIAPI +LowBitSet64 ( + IN UINT64 Operand + ); + + +/** + Returns the bit position of the highest bit set in a 32-bit value. Equivalent + to log2(x). + + This function computes the bit position of the highest bit set in the 32-bit + value specified by Operand. If Operand is zero, then -1 is returned. + Otherwise, a value between 0 and 31 is returned. + + @param Operand The 32-bit operand to evaluate. + + @retval 0..31 Position of the highest bit set in Operand if found. + @retval -1 Operand is zero. + +**/ +INTN +EFIAPI +HighBitSet32 ( + IN UINT32 Operand + ); + + +/** + Returns the bit position of the highest bit set in a 64-bit value. Equivalent + to log2(x). + + This function computes the bit position of the highest bit set in the 64-bit + value specified by Operand. If Operand is zero, then -1 is returned. + Otherwise, a value between 0 and 63 is returned. + + @param Operand The 64-bit operand to evaluate. + + @retval 0..63 Position of the highest bit set in Operand if found. + @retval -1 Operand is zero. + +**/ +INTN +EFIAPI +HighBitSet64 ( + IN UINT64 Operand + ); + + +/** + Returns the value of the highest bit set in a 32-bit value. Equivalent to + 1 << log2(x). + + This function computes the value of the highest bit set in the 32-bit value + specified by Operand. If Operand is zero, then zero is returned. + + @param Operand The 32-bit operand to evaluate. + + @return 1 << HighBitSet32(Operand) + @retval 0 Operand is zero. + +**/ +UINT32 +EFIAPI +GetPowerOfTwo32 ( + IN UINT32 Operand + ); + + +/** + Returns the value of the highest bit set in a 64-bit value. Equivalent to + 1 << log2(x). + + This function computes the value of the highest bit set in the 64-bit value + specified by Operand. If Operand is zero, then zero is returned. + + @param Operand The 64-bit operand to evaluate. + + @return 1 << HighBitSet64(Operand) + @retval 0 Operand is zero. + +**/ +UINT64 +EFIAPI +GetPowerOfTwo64 ( + IN UINT64 Operand + ); + + +/** + Switches the endianness of a 16-bit integer. + + This function swaps the bytes in a 16-bit unsigned value to switch the value + from little endian to big endian or vice versa. The byte swapped value is + returned. + + @param Value A 16-bit unsigned value. + + @return The byte swapped Value. + +**/ +UINT16 +EFIAPI +SwapBytes16 ( + IN UINT16 Value + ); + + +/** + Switches the endianness of a 32-bit integer. + + This function swaps the bytes in a 32-bit unsigned value to switch the value + from little endian to big endian or vice versa. The byte swapped value is + returned. + + @param Value A 32-bit unsigned value. + + @return The byte swapped Value. + +**/ +UINT32 +EFIAPI +SwapBytes32 ( + IN UINT32 Value + ); + + +/** + Switches the endianness of a 64-bit integer. + + This function swaps the bytes in a 64-bit unsigned value to switch the value + from little endian to big endian or vice versa. The byte swapped value is + returned. + + @param Value A 64-bit unsigned value. + + @return The byte swapped Value. + +**/ +UINT64 +EFIAPI +SwapBytes64 ( + IN UINT64 Value + ); + + +/** + Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and + generates a 64-bit unsigned result. + + This function multiples the 64-bit unsigned value Multiplicand by the 32-bit + unsigned value Multiplier and generates a 64-bit unsigned result. This 64- + bit unsigned result is returned. + + @param Multiplicand A 64-bit unsigned value. + @param Multiplier A 32-bit unsigned value. + + @return Multiplicand * Multiplier + +**/ +UINT64 +EFIAPI +MultU64x32 ( + IN UINT64 Multiplicand, + IN UINT32 Multiplier + ); + + +/** + Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and + generates a 64-bit unsigned result. + + This function multiples the 64-bit unsigned value Multiplicand by the 64-bit + unsigned value Multiplier and generates a 64-bit unsigned result. This 64- + bit unsigned result is returned. + + @param Multiplicand A 64-bit unsigned value. + @param Multiplier A 64-bit unsigned value. + + @return Multiplicand * Multiplier. + +**/ +UINT64 +EFIAPI +MultU64x64 ( + IN UINT64 Multiplicand, + IN UINT64 Multiplier + ); + + +/** + Multiples a 64-bit signed integer by a 64-bit signed integer and generates a + 64-bit signed result. + + This function multiples the 64-bit signed value Multiplicand by the 64-bit + signed value Multiplier and generates a 64-bit signed result. This 64-bit + signed result is returned. + + @param Multiplicand A 64-bit signed value. + @param Multiplier A 64-bit signed value. + + @return Multiplicand * Multiplier + +**/ +INT64 +EFIAPI +MultS64x64 ( + IN INT64 Multiplicand, + IN INT64 Multiplier + ); + + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates + a 64-bit unsigned result. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. This + function returns the 64-bit unsigned quotient. + + If Divisor is 0, then ASSERT(). + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + + @return Dividend / Divisor. + +**/ +UINT64 +EFIAPI +DivU64x32 ( + IN UINT64 Dividend, + IN UINT32 Divisor + ); + + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates + a 32-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 32-bit remainder. This function + returns the 32-bit unsigned remainder. + + If Divisor is 0, then ASSERT(). + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + + @return Dividend % Divisor. + +**/ +UINT32 +EFIAPI +ModU64x32 ( + IN UINT64 Dividend, + IN UINT32 Divisor + ); + + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates + a 64-bit unsigned result and an optional 32-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder + is not NULL, then the 32-bit unsigned remainder is returned in Remainder. + This function returns the 64-bit unsigned quotient. + + If Divisor is 0, then ASSERT(). + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + @param Remainder A pointer to a 32-bit unsigned value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor. + +**/ +UINT64 +EFIAPI +DivU64x32Remainder ( + IN UINT64 Dividend, + IN UINT32 Divisor, + OUT UINT32 *Remainder OPTIONAL + ); + + +/** + Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates + a 64-bit unsigned result and an optional 64-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 64-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder + is not NULL, then the 64-bit unsigned remainder is returned in Remainder. + This function returns the 64-bit unsigned quotient. + + If Divisor is 0, then ASSERT(). + + @param Dividend A 64-bit unsigned value. + @param Divisor A 64-bit unsigned value. + @param Remainder A pointer to a 64-bit unsigned value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor. + +**/ +UINT64 +EFIAPI +DivU64x64Remainder ( + IN UINT64 Dividend, + IN UINT64 Divisor, + OUT UINT64 *Remainder OPTIONAL + ); + + +/** + Divides a 64-bit signed integer by a 64-bit signed integer and generates a + 64-bit signed result and a optional 64-bit signed remainder. + + This function divides the 64-bit signed value Dividend by the 64-bit signed + value Divisor and generates a 64-bit signed quotient. If Remainder is not + NULL, then the 64-bit signed remainder is returned in Remainder. This + function returns the 64-bit signed quotient. + + It is the caller's responsibility to not call this function with a Divisor of 0. + If Divisor is 0, then the quotient and remainder should be assumed to be + the largest negative integer. + + If Divisor is 0, then ASSERT(). + + @param Dividend A 64-bit signed value. + @param Divisor A 64-bit signed value. + @param Remainder A pointer to a 64-bit signed value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor. + +**/ +INT64 +EFIAPI +DivS64x64Remainder ( + IN INT64 Dividend, + IN INT64 Divisor, + OUT INT64 *Remainder OPTIONAL + ); + + +/** + Reads a 16-bit value from memory that may be unaligned. + + This function returns the 16-bit value pointed to by Buffer. The function + guarantees that the read operation does not produce an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 16-bit value that may be unaligned. + + @return The 16-bit value read from Buffer. + +**/ +UINT16 +EFIAPI +ReadUnaligned16 ( + IN CONST UINT16 *Buffer + ); + + +/** + Writes a 16-bit value to memory that may be unaligned. + + This function writes the 16-bit value specified by Value to Buffer. Value is + returned. The function guarantees that the write operation does not produce + an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 16-bit value that may be unaligned. + @param Value 16-bit value to write to Buffer. + + @return The 16-bit value to write to Buffer. + +**/ +UINT16 +EFIAPI +WriteUnaligned16 ( + OUT UINT16 *Buffer, + IN UINT16 Value + ); + + +/** + Reads a 24-bit value from memory that may be unaligned. + + This function returns the 24-bit value pointed to by Buffer. The function + guarantees that the read operation does not produce an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 24-bit value that may be unaligned. + + @return The 24-bit value read from Buffer. + +**/ +UINT32 +EFIAPI +ReadUnaligned24 ( + IN CONST UINT32 *Buffer + ); + + +/** + Writes a 24-bit value to memory that may be unaligned. + + This function writes the 24-bit value specified by Value to Buffer. Value is + returned. The function guarantees that the write operation does not produce + an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 24-bit value that may be unaligned. + @param Value 24-bit value to write to Buffer. + + @return The 24-bit value to write to Buffer. + +**/ +UINT32 +EFIAPI +WriteUnaligned24 ( + OUT UINT32 *Buffer, + IN UINT32 Value + ); + + +/** + Reads a 32-bit value from memory that may be unaligned. + + This function returns the 32-bit value pointed to by Buffer. The function + guarantees that the read operation does not produce an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 32-bit value that may be unaligned. + + @return The 32-bit value read from Buffer. + +**/ +UINT32 +EFIAPI +ReadUnaligned32 ( + IN CONST UINT32 *Buffer + ); + + +/** + Writes a 32-bit value to memory that may be unaligned. + + This function writes the 32-bit value specified by Value to Buffer. Value is + returned. The function guarantees that the write operation does not produce + an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 32-bit value that may be unaligned. + @param Value 32-bit value to write to Buffer. + + @return The 32-bit value to write to Buffer. + +**/ +UINT32 +EFIAPI +WriteUnaligned32 ( + OUT UINT32 *Buffer, + IN UINT32 Value + ); + + +/** + Reads a 64-bit value from memory that may be unaligned. + + This function returns the 64-bit value pointed to by Buffer. The function + guarantees that the read operation does not produce an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 64-bit value that may be unaligned. + + @return The 64-bit value read from Buffer. + +**/ +UINT64 +EFIAPI +ReadUnaligned64 ( + IN CONST UINT64 *Buffer + ); + + +/** + Writes a 64-bit value to memory that may be unaligned. + + This function writes the 64-bit value specified by Value to Buffer. Value is + returned. The function guarantees that the write operation does not produce + an alignment fault. + + If the Buffer is NULL, then ASSERT(). + + @param Buffer The pointer to a 64-bit value that may be unaligned. + @param Value 64-bit value to write to Buffer. + + @return The 64-bit value to write to Buffer. + +**/ +UINT64 +EFIAPI +WriteUnaligned64 ( + OUT UINT64 *Buffer, + IN UINT64 Value + ); + + +// +// Bit Field Functions +// + +/** + Returns a bit field from an 8-bit value. + + Returns the bitfield specified by the StartBit and the EndBit from Operand. + + If 8-bit operations are not supported, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + + @return The bit field read. + +**/ +UINT8 +EFIAPI +BitFieldRead8 ( + IN UINT8 Operand, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to an 8-bit value, and returns the result. + + Writes Value to the bit field specified by the StartBit and the EndBit in + Operand. All other bits in Operand are preserved. The new 8-bit value is + returned. + + If 8-bit operations are not supported, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param Value New value of the bit field. + + @return The new 8-bit value. + +**/ +UINT8 +EFIAPI +BitFieldWrite8 ( + IN UINT8 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 Value + ); + + +/** + Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the + result. + + Performs a bitwise OR between the bit field specified by StartBit + and EndBit in Operand and the value specified by OrData. All other bits in + Operand are preserved. The new 8-bit value is returned. + + If 8-bit operations are not supported, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param OrData The value to OR with the read value from the value + + @return The new 8-bit value. + +**/ +UINT8 +EFIAPI +BitFieldOr8 ( + IN UINT8 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 OrData + ); + + +/** + Reads a bit field from an 8-bit value, performs a bitwise AND, and returns + the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new 8-bit value is returned. + + If 8-bit operations are not supported, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param AndData The value to AND with the read value from the value. + + @return The new 8-bit value. + +**/ +UINT8 +EFIAPI +BitFieldAnd8 ( + IN UINT8 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 AndData + ); + + +/** + Reads a bit field from an 8-bit value, performs a bitwise AND followed by a + bitwise OR, and returns the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData, followed by a bitwise + OR with value specified by OrData. All other bits in Operand are + preserved. The new 8-bit value is returned. + + If 8-bit operations are not supported, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param AndData The value to AND with the read value from the value. + @param OrData The value to OR with the result of the AND operation. + + @return The new 8-bit value. + +**/ +UINT8 +EFIAPI +BitFieldAndThenOr8 ( + IN UINT8 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 AndData, + IN UINT8 OrData + ); + + +/** + Returns a bit field from a 16-bit value. + + Returns the bitfield specified by the StartBit and the EndBit from Operand. + + If 16-bit operations are not supported, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + + @return The bit field read. + +**/ +UINT16 +EFIAPI +BitFieldRead16 ( + IN UINT16 Operand, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to a 16-bit value, and returns the result. + + Writes Value to the bit field specified by the StartBit and the EndBit in + Operand. All other bits in Operand are preserved. The new 16-bit value is + returned. + + If 16-bit operations are not supported, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param Value New value of the bit field. + + @return The new 16-bit value. + +**/ +UINT16 +EFIAPI +BitFieldWrite16 ( + IN UINT16 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 Value + ); + + +/** + Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the + result. + + Performs a bitwise OR between the bit field specified by StartBit + and EndBit in Operand and the value specified by OrData. All other bits in + Operand are preserved. The new 16-bit value is returned. + + If 16-bit operations are not supported, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param OrData The value to OR with the read value from the value + + @return The new 16-bit value. + +**/ +UINT16 +EFIAPI +BitFieldOr16 ( + IN UINT16 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 OrData + ); + + +/** + Reads a bit field from a 16-bit value, performs a bitwise AND, and returns + the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new 16-bit value is returned. + + If 16-bit operations are not supported, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param AndData The value to AND with the read value from the value + + @return The new 16-bit value. + +**/ +UINT16 +EFIAPI +BitFieldAnd16 ( + IN UINT16 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 AndData + ); + + +/** + Reads a bit field from a 16-bit value, performs a bitwise AND followed by a + bitwise OR, and returns the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData, followed by a bitwise + OR with value specified by OrData. All other bits in Operand are + preserved. The new 16-bit value is returned. + + If 16-bit operations are not supported, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param AndData The value to AND with the read value from the value. + @param OrData The value to OR with the result of the AND operation. + + @return The new 16-bit value. + +**/ +UINT16 +EFIAPI +BitFieldAndThenOr16 ( + IN UINT16 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 AndData, + IN UINT16 OrData + ); + + +/** + Returns a bit field from a 32-bit value. + + Returns the bitfield specified by the StartBit and the EndBit from Operand. + + If 32-bit operations are not supported, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + + @return The bit field read. + +**/ +UINT32 +EFIAPI +BitFieldRead32 ( + IN UINT32 Operand, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to a 32-bit value, and returns the result. + + Writes Value to the bit field specified by the StartBit and the EndBit in + Operand. All other bits in Operand are preserved. The new 32-bit value is + returned. + + If 32-bit operations are not supported, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param Value New value of the bit field. + + @return The new 32-bit value. + +**/ +UINT32 +EFIAPI +BitFieldWrite32 ( + IN UINT32 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 Value + ); + + +/** + Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the + result. + + Performs a bitwise OR between the bit field specified by StartBit + and EndBit in Operand and the value specified by OrData. All other bits in + Operand are preserved. The new 32-bit value is returned. + + If 32-bit operations are not supported, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param OrData The value to OR with the read value from the value. + + @return The new 32-bit value. + +**/ +UINT32 +EFIAPI +BitFieldOr32 ( + IN UINT32 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 OrData + ); + + +/** + Reads a bit field from a 32-bit value, performs a bitwise AND, and returns + the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new 32-bit value is returned. + + If 32-bit operations are not supported, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the read value from the value + + @return The new 32-bit value. + +**/ +UINT32 +EFIAPI +BitFieldAnd32 ( + IN UINT32 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData + ); + + +/** + Reads a bit field from a 32-bit value, performs a bitwise AND followed by a + bitwise OR, and returns the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData, followed by a bitwise + OR with value specified by OrData. All other bits in Operand are + preserved. The new 32-bit value is returned. + + If 32-bit operations are not supported, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the read value from the value. + @param OrData The value to OR with the result of the AND operation. + + @return The new 32-bit value. + +**/ +UINT32 +EFIAPI +BitFieldAndThenOr32 ( + IN UINT32 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData, + IN UINT32 OrData + ); + + +/** + Returns a bit field from a 64-bit value. + + Returns the bitfield specified by the StartBit and the EndBit from Operand. + + If 64-bit operations are not supported, then ASSERT(). + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + + @return The bit field read. + +**/ +UINT64 +EFIAPI +BitFieldRead64 ( + IN UINT64 Operand, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to a 64-bit value, and returns the result. + + Writes Value to the bit field specified by the StartBit and the EndBit in + Operand. All other bits in Operand are preserved. The new 64-bit value is + returned. + + If 64-bit operations are not supported, then ASSERT(). + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param Value New value of the bit field. + + @return The new 64-bit value. + +**/ +UINT64 +EFIAPI +BitFieldWrite64 ( + IN UINT64 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 Value + ); + + +/** + Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the + result. + + Performs a bitwise OR between the bit field specified by StartBit + and EndBit in Operand and the value specified by OrData. All other bits in + Operand are preserved. The new 64-bit value is returned. + + If 64-bit operations are not supported, then ASSERT(). + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param OrData The value to OR with the read value from the value + + @return The new 64-bit value. + +**/ +UINT64 +EFIAPI +BitFieldOr64 ( + IN UINT64 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 OrData + ); + + +/** + Reads a bit field from a 64-bit value, performs a bitwise AND, and returns + the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new 64-bit value is returned. + + If 64-bit operations are not supported, then ASSERT(). + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param AndData The value to AND with the read value from the value + + @return The new 64-bit value. + +**/ +UINT64 +EFIAPI +BitFieldAnd64 ( + IN UINT64 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 AndData + ); + + +/** + Reads a bit field from a 64-bit value, performs a bitwise AND followed by a + bitwise OR, and returns the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData, followed by a bitwise + OR with value specified by OrData. All other bits in Operand are + preserved. The new 64-bit value is returned. + + If 64-bit operations are not supported, then ASSERT(). + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param AndData The value to AND with the read value from the value. + @param OrData The value to OR with the result of the AND operation. + + @return The new 64-bit value. + +**/ +UINT64 +EFIAPI +BitFieldAndThenOr64 ( + IN UINT64 Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 AndData, + IN UINT64 OrData + ); + +// +// Base Library Checksum Functions +// + +/** + Returns the sum of all elements in a buffer in unit of UINT8. + During calculation, the carry bits are dropped. + + This function calculates the sum of all elements in a buffer + in unit of UINT8. The carry bits in result of addition are dropped. + The result is returned as UINT8. If Length is Zero, then Zero is + returned. + + If Buffer is NULL, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the sum operation. + @param Length The size, in bytes, of Buffer. + + @return Sum The sum of Buffer with carry bits dropped during additions. + +**/ +UINT8 +EFIAPI +CalculateSum8 ( + IN CONST UINT8 *Buffer, + IN UINTN Length + ); + + +/** + Returns the two's complement checksum of all elements in a buffer + of 8-bit values. + + This function first calculates the sum of the 8-bit values in the + buffer specified by Buffer and Length. The carry bits in the result + of addition are dropped. Then, the two's complement of the sum is + returned. If Length is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the checksum operation. + @param Length The size, in bytes, of Buffer. + + @return Checksum The two's complement checksum of Buffer. + +**/ +UINT8 +EFIAPI +CalculateCheckSum8 ( + IN CONST UINT8 *Buffer, + IN UINTN Length + ); + + +/** + Returns the sum of all elements in a buffer of 16-bit values. During + calculation, the carry bits are dropped. + + This function calculates the sum of the 16-bit values in the buffer + specified by Buffer and Length. The carry bits in result of addition are dropped. + The 16-bit result is returned. If Length is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 16-bit boundary, then ASSERT(). + If Length is not aligned on a 16-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the sum operation. + @param Length The size, in bytes, of Buffer. + + @return Sum The sum of Buffer with carry bits dropped during additions. + +**/ +UINT16 +EFIAPI +CalculateSum16 ( + IN CONST UINT16 *Buffer, + IN UINTN Length + ); + + +/** + Returns the two's complement checksum of all elements in a buffer of + 16-bit values. + + This function first calculates the sum of the 16-bit values in the buffer + specified by Buffer and Length. The carry bits in the result of addition + are dropped. Then, the two's complement of the sum is returned. If Length + is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 16-bit boundary, then ASSERT(). + If Length is not aligned on a 16-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the checksum operation. + @param Length The size, in bytes, of Buffer. + + @return Checksum The two's complement checksum of Buffer. + +**/ +UINT16 +EFIAPI +CalculateCheckSum16 ( + IN CONST UINT16 *Buffer, + IN UINTN Length + ); + + +/** + Returns the sum of all elements in a buffer of 32-bit values. During + calculation, the carry bits are dropped. + + This function calculates the sum of the 32-bit values in the buffer + specified by Buffer and Length. The carry bits in result of addition are dropped. + The 32-bit result is returned. If Length is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 32-bit boundary, then ASSERT(). + If Length is not aligned on a 32-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the sum operation. + @param Length The size, in bytes, of Buffer. + + @return Sum The sum of Buffer with carry bits dropped during additions. + +**/ +UINT32 +EFIAPI +CalculateSum32 ( + IN CONST UINT32 *Buffer, + IN UINTN Length + ); + + +/** + Returns the two's complement checksum of all elements in a buffer of + 32-bit values. + + This function first calculates the sum of the 32-bit values in the buffer + specified by Buffer and Length. The carry bits in the result of addition + are dropped. Then, the two's complement of the sum is returned. If Length + is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 32-bit boundary, then ASSERT(). + If Length is not aligned on a 32-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the checksum operation. + @param Length The size, in bytes, of Buffer. + + @return Checksum The two's complement checksum of Buffer. + +**/ +UINT32 +EFIAPI +CalculateCheckSum32 ( + IN CONST UINT32 *Buffer, + IN UINTN Length + ); + + +/** + Returns the sum of all elements in a buffer of 64-bit values. During + calculation, the carry bits are dropped. + + This function calculates the sum of the 64-bit values in the buffer + specified by Buffer and Length. The carry bits in result of addition are dropped. + The 64-bit result is returned. If Length is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 64-bit boundary, then ASSERT(). + If Length is not aligned on a 64-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the sum operation. + @param Length The size, in bytes, of Buffer. + + @return Sum The sum of Buffer with carry bits dropped during additions. + +**/ +UINT64 +EFIAPI +CalculateSum64 ( + IN CONST UINT64 *Buffer, + IN UINTN Length + ); + + +/** + Returns the two's complement checksum of all elements in a buffer of + 64-bit values. + + This function first calculates the sum of the 64-bit values in the buffer + specified by Buffer and Length. The carry bits in the result of addition + are dropped. Then, the two's complement of the sum is returned. If Length + is 0, then 0 is returned. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 64-bit boundary, then ASSERT(). + If Length is not aligned on a 64-bit boundary, then ASSERT(). + If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param Buffer The pointer to the buffer to carry out the checksum operation. + @param Length The size, in bytes, of Buffer. + + @return Checksum The two's complement checksum of Buffer. + +**/ +UINT64 +EFIAPI +CalculateCheckSum64 ( + IN CONST UINT64 *Buffer, + IN UINTN Length + ); + + +// +// Base Library CPU Functions +// + +/** + Function entry point used when a stack switch is requested with SwitchStack() + + @param Context1 Context1 parameter passed into SwitchStack(). + @param Context2 Context2 parameter passed into SwitchStack(). + +**/ +typedef +VOID +(EFIAPI *SWITCH_STACK_ENTRY_POINT)( + IN VOID *Context1, OPTIONAL + IN VOID *Context2 OPTIONAL + ); + + +/** + Used to serialize load and store operations. + + All loads and stores that proceed calls to this function are guaranteed to be + globally visible when this function returns. + +**/ +VOID +EFIAPI +MemoryFence ( + VOID + ); + + +/** + Saves the current CPU context that can be restored with a call to LongJump() + and returns 0. + + Saves the current CPU context in the buffer specified by JumpBuffer and + returns 0. The initial call to SetJump() must always return 0. Subsequent + calls to LongJump() cause a non-zero value to be returned by SetJump(). + + If JumpBuffer is NULL, then ASSERT(). + For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT(). + + NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific. + The same structure must never be used for more than one CPU architecture context. + For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. + SetJump()/LongJump() is not currently supported for the EBC processor type. + + @param JumpBuffer A pointer to CPU context buffer. + + @retval 0 Indicates a return from SetJump(). + +**/ +UINTN +EFIAPI +SetJump ( + OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer + ); + + +/** + Restores the CPU context that was saved with SetJump(). + + Restores the CPU context from the buffer specified by JumpBuffer. This + function never returns to the caller. Instead is resumes execution based on + the state of JumpBuffer. + + If JumpBuffer is NULL, then ASSERT(). + For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT(). + If Value is 0, then ASSERT(). + + @param JumpBuffer A pointer to CPU context buffer. + @param Value The value to return when the SetJump() context is + restored and must be non-zero. + +**/ +VOID +EFIAPI +LongJump ( + IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer, + IN UINTN Value + ); + + +/** + Enables CPU interrupts. + +**/ +VOID +EFIAPI +EnableInterrupts ( + VOID + ); + + +/** + Disables CPU interrupts. + +**/ +VOID +EFIAPI +DisableInterrupts ( + VOID + ); + + +/** + Disables CPU interrupts and returns the interrupt state prior to the disable + operation. + + @retval TRUE CPU interrupts were enabled on entry to this call. + @retval FALSE CPU interrupts were disabled on entry to this call. + +**/ +BOOLEAN +EFIAPI +SaveAndDisableInterrupts ( + VOID + ); + + +/** + Enables CPU interrupts for the smallest window required to capture any + pending interrupts. + +**/ +VOID +EFIAPI +EnableDisableInterrupts ( + VOID + ); + + +/** + Retrieves the current CPU interrupt state. + + Returns TRUE if interrupts are currently enabled. Otherwise + returns FALSE. + + @retval TRUE CPU interrupts are enabled. + @retval FALSE CPU interrupts are disabled. + +**/ +BOOLEAN +EFIAPI +GetInterruptState ( + VOID + ); + + +/** + Set the current CPU interrupt state. + + Sets the current CPU interrupt state to the state specified by + InterruptState. If InterruptState is TRUE, then interrupts are enabled. If + InterruptState is FALSE, then interrupts are disabled. InterruptState is + returned. + + @param InterruptState TRUE if interrupts should enabled. FALSE if + interrupts should be disabled. + + @return InterruptState + +**/ +BOOLEAN +EFIAPI +SetInterruptState ( + IN BOOLEAN InterruptState + ); + + +/** + Requests CPU to pause for a short period of time. + + Requests CPU to pause for a short period of time. Typically used in MP + systems to prevent memory starvation while waiting for a spin lock. + +**/ +VOID +EFIAPI +CpuPause ( + VOID + ); + + +/** + Transfers control to a function starting with a new stack. + + Transfers control to the function specified by EntryPoint using the + new stack specified by NewStack and passing in the parameters specified + by Context1 and Context2. Context1 and Context2 are optional and may + be NULL. The function EntryPoint must never return. This function + supports a variable number of arguments following the NewStack parameter. + These additional arguments are ignored on IA-32, x64, and EBC architectures. + Itanium processors expect one additional parameter of type VOID * that specifies + the new backing store pointer. + + If EntryPoint is NULL, then ASSERT(). + If NewStack is NULL, then ASSERT(). + + @param EntryPoint A pointer to function to call with the new stack. + @param Context1 A pointer to the context to pass into the EntryPoint + function. + @param Context2 A pointer to the context to pass into the EntryPoint + function. + @param NewStack A pointer to the new stack to use for the EntryPoint + function. + @param ... This variable argument list is ignored for IA-32, x64, and + EBC architectures. For Itanium processors, this variable + argument list is expected to contain a single parameter of + type VOID * that specifies the new backing store pointer. + + +**/ +VOID +EFIAPI +SwitchStack ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack, + ... + ); + + +/** + Generates a breakpoint on the CPU. + + Generates a breakpoint on the CPU. The breakpoint must be implemented such + that code can resume normal execution after the breakpoint. + +**/ +VOID +EFIAPI +CpuBreakpoint ( + VOID + ); + + +/** + Executes an infinite loop. + + Forces the CPU to execute an infinite loop. A debugger may be used to skip + past the loop and the code that follows the loop must execute properly. This + implies that the infinite loop must not cause the code that follow it to be + optimized away. + +**/ +VOID +EFIAPI +CpuDeadLoop ( + VOID + ); + +#if defined (MDE_CPU_IPF) + +/** + Flush a range of cache lines in the cache coherency domain of the calling + CPU. + + Flushes the cache lines specified by Address and Length. If Address is not aligned + on a cache line boundary, then entire cache line containing Address is flushed. + If Address + Length is not aligned on a cache line boundary, then the entire cache + line containing Address + Length - 1 is flushed. This function may choose to flush + the entire cache if that is more efficient than flushing the specified range. If + Length is 0, the no cache lines are flushed. Address is returned. + This function is only available on Itanium processors. + + If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT(). + + @param Address The base address of the instruction lines to invalidate. If + the CPU is in a physical addressing mode, then Address is a + physical address. If the CPU is in a virtual addressing mode, + then Address is a virtual address. + + @param Length The number of bytes to invalidate from the instruction cache. + + @return Address. + +**/ +VOID * +EFIAPI +AsmFlushCacheRange ( + IN VOID *Address, + IN UINTN Length + ); + + +/** + Executes an FC instruction. + Executes an FC instruction on the cache line specified by Address. + The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary). + An implementation may flush a larger region. This function is only available on Itanium processors. + + @param Address The Address of cache line to be flushed. + + @return The address of FC instruction executed. + +**/ +UINT64 +EFIAPI +AsmFc ( + IN UINT64 Address + ); + + +/** + Executes an FC.I instruction. + Executes an FC.I instruction on the cache line specified by Address. + The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary). + An implementation may flush a larger region. This function is only available on Itanium processors. + + @param Address The Address of cache line to be flushed. + + @return The address of the FC.I instruction executed. + +**/ +UINT64 +EFIAPI +AsmFci ( + IN UINT64 Address + ); + + +/** + Reads the current value of a Processor Identifier Register (CPUID). + + Reads and returns the current value of Processor Identifier Register specified by Index. + The Index of largest implemented CPUID (One less than the number of implemented CPUID + registers) is determined by CPUID [3] bits {7:0}. + No parameter checking is performed on Index. If the Index value is beyond the + implemented CPUID register range, a Reserved Register/Field fault may occur. The caller + must either guarantee that Index is valid, or the caller must set up fault handlers to + catch the faults. This function is only available on Itanium processors. + + @param Index The 8-bit Processor Identifier Register index to read. + + @return The current value of Processor Identifier Register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadCpuid ( + IN UINT8 Index + ); + + +/** + Reads the current value of 64-bit Processor Status Register (PSR). + This function is only available on Itanium processors. + + @return The current value of PSR. + +**/ +UINT64 +EFIAPI +AsmReadPsr ( + VOID + ); + + +/** + Writes the current value of 64-bit Processor Status Register (PSR). + + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to PSR. + + @return The 64-bit value written to the PSR. + +**/ +UINT64 +EFIAPI +AsmWritePsr ( + IN UINT64 Value + ); + + +/** + Reads the current value of 64-bit Kernel Register #0 (KR0). + + Reads and returns the current value of KR0. + This function is only available on Itanium processors. + + @return The current value of KR0. + +**/ +UINT64 +EFIAPI +AsmReadKr0 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #1 (KR1). + + Reads and returns the current value of KR1. + This function is only available on Itanium processors. + + @return The current value of KR1. + +**/ +UINT64 +EFIAPI +AsmReadKr1 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #2 (KR2). + + Reads and returns the current value of KR2. + This function is only available on Itanium processors. + + @return The current value of KR2. + +**/ +UINT64 +EFIAPI +AsmReadKr2 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #3 (KR3). + + Reads and returns the current value of KR3. + This function is only available on Itanium processors. + + @return The current value of KR3. + +**/ +UINT64 +EFIAPI +AsmReadKr3 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #4 (KR4). + + Reads and returns the current value of KR4. + This function is only available on Itanium processors. + + @return The current value of KR4. + +**/ +UINT64 +EFIAPI +AsmReadKr4 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #5 (KR5). + + Reads and returns the current value of KR5. + This function is only available on Itanium processors. + + @return The current value of KR5. + +**/ +UINT64 +EFIAPI +AsmReadKr5 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #6 (KR6). + + Reads and returns the current value of KR6. + This function is only available on Itanium processors. + + @return The current value of KR6. + +**/ +UINT64 +EFIAPI +AsmReadKr6 ( + VOID + ); + + +/** + Reads the current value of 64-bit Kernel Register #7 (KR7). + + Reads and returns the current value of KR7. + This function is only available on Itanium processors. + + @return The current value of KR7. + +**/ +UINT64 +EFIAPI +AsmReadKr7 ( + VOID + ); + + +/** + Write the current value of 64-bit Kernel Register #0 (KR0). + + Writes the current value of KR0. The 64-bit value written to + the KR0 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR0. + + @return The 64-bit value written to the KR0. + +**/ +UINT64 +EFIAPI +AsmWriteKr0 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #1 (KR1). + + Writes the current value of KR1. The 64-bit value written to + the KR1 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR1. + + @return The 64-bit value written to the KR1. + +**/ +UINT64 +EFIAPI +AsmWriteKr1 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #2 (KR2). + + Writes the current value of KR2. The 64-bit value written to + the KR2 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR2. + + @return The 64-bit value written to the KR2. + +**/ +UINT64 +EFIAPI +AsmWriteKr2 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #3 (KR3). + + Writes the current value of KR3. The 64-bit value written to + the KR3 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR3. + + @return The 64-bit value written to the KR3. + +**/ +UINT64 +EFIAPI +AsmWriteKr3 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #4 (KR4). + + Writes the current value of KR4. The 64-bit value written to + the KR4 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR4. + + @return The 64-bit value written to the KR4. + +**/ +UINT64 +EFIAPI +AsmWriteKr4 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #5 (KR5). + + Writes the current value of KR5. The 64-bit value written to + the KR5 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR5. + + @return The 64-bit value written to the KR5. + +**/ +UINT64 +EFIAPI +AsmWriteKr5 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #6 (KR6). + + Writes the current value of KR6. The 64-bit value written to + the KR6 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR6. + + @return The 64-bit value written to the KR6. + +**/ +UINT64 +EFIAPI +AsmWriteKr6 ( + IN UINT64 Value + ); + + +/** + Write the current value of 64-bit Kernel Register #7 (KR7). + + Writes the current value of KR7. The 64-bit value written to + the KR7 is returned. This function is only available on Itanium processors. + + @param Value The 64-bit value to write to KR7. + + @return The 64-bit value written to the KR7. + +**/ +UINT64 +EFIAPI +AsmWriteKr7 ( + IN UINT64 Value + ); + + +/** + Reads the current value of Interval Timer Counter Register (ITC). + + Reads and returns the current value of ITC. + This function is only available on Itanium processors. + + @return The current value of ITC. + +**/ +UINT64 +EFIAPI +AsmReadItc ( + VOID + ); + + +/** + Reads the current value of Interval Timer Vector Register (ITV). + + Reads and returns the current value of ITV. + This function is only available on Itanium processors. + + @return The current value of ITV. + +**/ +UINT64 +EFIAPI +AsmReadItv ( + VOID + ); + + +/** + Reads the current value of Interval Timer Match Register (ITM). + + Reads and returns the current value of ITM. + This function is only available on Itanium processors. + + @return The current value of ITM. +**/ +UINT64 +EFIAPI +AsmReadItm ( + VOID + ); + + +/** + Writes the current value of 64-bit Interval Timer Counter Register (ITC). + + Writes the current value of ITC. The 64-bit value written to the ITC is returned. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to ITC. + + @return The 64-bit value written to the ITC. + +**/ +UINT64 +EFIAPI +AsmWriteItc ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Interval Timer Match Register (ITM). + + Writes the current value of ITM. The 64-bit value written to the ITM is returned. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to ITM. + + @return The 64-bit value written to the ITM. + +**/ +UINT64 +EFIAPI +AsmWriteItm ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Interval Timer Vector Register (ITV). + + Writes the current value of ITV. The 64-bit value written to the ITV is returned. + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to ITV. + + @return The 64-bit value written to the ITV. + +**/ +UINT64 +EFIAPI +AsmWriteItv ( + IN UINT64 Value + ); + + +/** + Reads the current value of Default Control Register (DCR). + + Reads and returns the current value of DCR. This function is only available on Itanium processors. + + @return The current value of DCR. + +**/ +UINT64 +EFIAPI +AsmReadDcr ( + VOID + ); + + +/** + Reads the current value of Interruption Vector Address Register (IVA). + + Reads and returns the current value of IVA. This function is only available on Itanium processors. + + @return The current value of IVA. +**/ +UINT64 +EFIAPI +AsmReadIva ( + VOID + ); + + +/** + Reads the current value of Page Table Address Register (PTA). + + Reads and returns the current value of PTA. This function is only available on Itanium processors. + + @return The current value of PTA. + +**/ +UINT64 +EFIAPI +AsmReadPta ( + VOID + ); + + +/** + Writes the current value of 64-bit Default Control Register (DCR). + + Writes the current value of DCR. The 64-bit value written to the DCR is returned. + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to DCR. + + @return The 64-bit value written to the DCR. + +**/ +UINT64 +EFIAPI +AsmWriteDcr ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Interruption Vector Address Register (IVA). + + Writes the current value of IVA. The 64-bit value written to the IVA is returned. + The size of vector table is 32 K bytes and is 32 K bytes aligned + the low 15 bits of Value is ignored when written. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to IVA. + + @return The 64-bit value written to the IVA. + +**/ +UINT64 +EFIAPI +AsmWriteIva ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Page Table Address Register (PTA). + + Writes the current value of PTA. The 64-bit value written to the PTA is returned. + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to PTA. + + @return The 64-bit value written to the PTA. +**/ +UINT64 +EFIAPI +AsmWritePta ( + IN UINT64 Value + ); + + +/** + Reads the current value of Local Interrupt ID Register (LID). + + Reads and returns the current value of LID. This function is only available on Itanium processors. + + @return The current value of LID. + +**/ +UINT64 +EFIAPI +AsmReadLid ( + VOID + ); + + +/** + Reads the current value of External Interrupt Vector Register (IVR). + + Reads and returns the current value of IVR. This function is only available on Itanium processors. + + @return The current value of IVR. + +**/ +UINT64 +EFIAPI +AsmReadIvr ( + VOID + ); + + +/** + Reads the current value of Task Priority Register (TPR). + + Reads and returns the current value of TPR. This function is only available on Itanium processors. + + @return The current value of TPR. + +**/ +UINT64 +EFIAPI +AsmReadTpr ( + VOID + ); + + +/** + Reads the current value of External Interrupt Request Register #0 (IRR0). + + Reads and returns the current value of IRR0. This function is only available on Itanium processors. + + @return The current value of IRR0. + +**/ +UINT64 +EFIAPI +AsmReadIrr0 ( + VOID + ); + + +/** + Reads the current value of External Interrupt Request Register #1 (IRR1). + + Reads and returns the current value of IRR1. This function is only available on Itanium processors. + + @return The current value of IRR1. + +**/ +UINT64 +EFIAPI +AsmReadIrr1 ( + VOID + ); + + +/** + Reads the current value of External Interrupt Request Register #2 (IRR2). + + Reads and returns the current value of IRR2. This function is only available on Itanium processors. + + @return The current value of IRR2. + +**/ +UINT64 +EFIAPI +AsmReadIrr2 ( + VOID + ); + + +/** + Reads the current value of External Interrupt Request Register #3 (IRR3). + + Reads and returns the current value of IRR3. This function is only available on Itanium processors. + + @return The current value of IRR3. + +**/ +UINT64 +EFIAPI +AsmReadIrr3 ( + VOID + ); + + +/** + Reads the current value of Performance Monitor Vector Register (PMV). + + Reads and returns the current value of PMV. This function is only available on Itanium processors. + + @return The current value of PMV. + +**/ +UINT64 +EFIAPI +AsmReadPmv ( + VOID + ); + + +/** + Reads the current value of Corrected Machine Check Vector Register (CMCV). + + Reads and returns the current value of CMCV. This function is only available on Itanium processors. + + @return The current value of CMCV. + +**/ +UINT64 +EFIAPI +AsmReadCmcv ( + VOID + ); + + +/** + Reads the current value of Local Redirection Register #0 (LRR0). + + Reads and returns the current value of LRR0. This function is only available on Itanium processors. + + @return The current value of LRR0. + +**/ +UINT64 +EFIAPI +AsmReadLrr0 ( + VOID + ); + + +/** + Reads the current value of Local Redirection Register #1 (LRR1). + + Reads and returns the current value of LRR1. This function is only available on Itanium processors. + + @return The current value of LRR1. + +**/ +UINT64 +EFIAPI +AsmReadLrr1 ( + VOID + ); + + +/** + Writes the current value of 64-bit Page Local Interrupt ID Register (LID). + + Writes the current value of LID. The 64-bit value written to the LID is returned. + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of LID must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to LID. + + @return The 64-bit value written to the LID. + +**/ +UINT64 +EFIAPI +AsmWriteLid ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Task Priority Register (TPR). + + Writes the current value of TPR. The 64-bit value written to the TPR is returned. + No parameter checking is performed on Value. All bits of Value corresponding to + reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to TPR. + + @return The 64-bit value written to the TPR. + +**/ +UINT64 +EFIAPI +AsmWriteTpr ( + IN UINT64 Value + ); + + +/** + Performs a write operation on End OF External Interrupt Register (EOI). + + Writes a value of 0 to the EOI Register. This function is only available on Itanium processors. + +**/ +VOID +EFIAPI +AsmWriteEoi ( + VOID + ); + + +/** + Writes the current value of 64-bit Performance Monitor Vector Register (PMV). + + Writes the current value of PMV. The 64-bit value written to the PMV is returned. + No parameter checking is performed on Value. All bits of Value corresponding + to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to PMV. + + @return The 64-bit value written to the PMV. + +**/ +UINT64 +EFIAPI +AsmWritePmv ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV). + + Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. + No parameter checking is performed on Value. All bits of Value corresponding + to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to CMCV. + + @return The 64-bit value written to the CMCV. + +**/ +UINT64 +EFIAPI +AsmWriteCmcv ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Local Redirection Register #0 (LRR0). + + Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. + No parameter checking is performed on Value. All bits of Value corresponding + to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to LRR0. + + @return The 64-bit value written to the LRR0. + +**/ +UINT64 +EFIAPI +AsmWriteLrr0 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Local Redirection Register #1 (LRR1). + + Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. + No parameter checking is performed on Value. All bits of Value corresponding + to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur. + The caller must either guarantee that Value is valid, or the caller must + set up fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to LRR1. + + @return The 64-bit value written to the LRR1. + +**/ +UINT64 +EFIAPI +AsmWriteLrr1 ( + IN UINT64 Value + ); + + +/** + Reads the current value of Instruction Breakpoint Register (IBR). + + The Instruction Breakpoint Registers are used in pairs. The even numbered + registers contain breakpoint addresses, and the odd numbered registers contain + breakpoint mask conditions. At least four instruction registers pairs are implemented + on all processor models. Implemented registers are contiguous starting with + register 0. No parameter checking is performed on Index, and if the Index value + is beyond the implemented IBR register range, a Reserved Register/Field fault may + occur. The caller must either guarantee that Index is valid, or the caller must + set up fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Index The 8-bit Instruction Breakpoint Register index to read. + + @return The current value of Instruction Breakpoint Register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadIbr ( + IN UINT8 Index + ); + + +/** + Reads the current value of Data Breakpoint Register (DBR). + + The Data Breakpoint Registers are used in pairs. The even numbered registers + contain breakpoint addresses, and odd numbered registers contain breakpoint + mask conditions. At least four data registers pairs are implemented on all processor + models. Implemented registers are contiguous starting with register 0. + No parameter checking is performed on Index. If the Index value is beyond + the implemented DBR register range, a Reserved Register/Field fault may occur. + The caller must either guarantee that Index is valid, or the caller must set up + fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Index The 8-bit Data Breakpoint Register index to read. + + @return The current value of Data Breakpoint Register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadDbr ( + IN UINT8 Index + ); + + +/** + Reads the current value of Performance Monitor Configuration Register (PMC). + + All processor implementations provide at least four performance counters + (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow + status registers (PMC [0]... PMC [3]). Processor implementations may provide + additional implementation-dependent PMC and PMD to increase the number of + 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD + register set is implementation dependent. No parameter checking is performed + on Index. If the Index value is beyond the implemented PMC register range, + zero value will be returned. + This function is only available on Itanium processors. + + @param Index The 8-bit Performance Monitor Configuration Register index to read. + + @return The current value of Performance Monitor Configuration Register + specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadPmc ( + IN UINT8 Index + ); + + +/** + Reads the current value of Performance Monitor Data Register (PMD). + + All processor implementations provide at least 4 performance counters + (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter + overflow status registers (PMC [0]... PMC [3]). Processor implementations may + provide additional implementation-dependent PMC and PMD to increase the number + of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD + register set is implementation dependent. No parameter checking is performed + on Index. If the Index value is beyond the implemented PMD register range, + zero value will be returned. + This function is only available on Itanium processors. + + @param Index The 8-bit Performance Monitor Data Register index to read. + + @return The current value of Performance Monitor Data Register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadPmd ( + IN UINT8 Index + ); + + +/** + Writes the current value of 64-bit Instruction Breakpoint Register (IBR). + + Writes current value of Instruction Breakpoint Register specified by Index. + The Instruction Breakpoint Registers are used in pairs. The even numbered + registers contain breakpoint addresses, and odd numbered registers contain + breakpoint mask conditions. At least four instruction registers pairs are implemented + on all processor models. Implemented registers are contiguous starting with + register 0. No parameter checking is performed on Index. If the Index value + is beyond the implemented IBR register range, a Reserved Register/Field fault may + occur. The caller must either guarantee that Index is valid, or the caller must + set up fault handlers to catch the faults. + This function is only available on Itanium processors. + + @param Index The 8-bit Instruction Breakpoint Register index to write. + @param Value The 64-bit value to write to IBR. + + @return The 64-bit value written to the IBR. + +**/ +UINT64 +EFIAPI +AsmWriteIbr ( + IN UINT8 Index, + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Data Breakpoint Register (DBR). + + Writes current value of Data Breakpoint Register specified by Index. + The Data Breakpoint Registers are used in pairs. The even numbered registers + contain breakpoint addresses, and odd numbered registers contain breakpoint + mask conditions. At least four data registers pairs are implemented on all processor + models. Implemented registers are contiguous starting with register 0. No parameter + checking is performed on Index. If the Index value is beyond the implemented + DBR register range, a Reserved Register/Field fault may occur. The caller must + either guarantee that Index is valid, or the caller must set up fault handlers to + catch the faults. + This function is only available on Itanium processors. + + @param Index The 8-bit Data Breakpoint Register index to write. + @param Value The 64-bit value to write to DBR. + + @return The 64-bit value written to the DBR. + +**/ +UINT64 +EFIAPI +AsmWriteDbr ( + IN UINT8 Index, + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Performance Monitor Configuration Register (PMC). + + Writes current value of Performance Monitor Configuration Register specified by Index. + All processor implementations provide at least four performance counters + (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status + registers (PMC [0]... PMC [3]). Processor implementations may provide additional + implementation-dependent PMC and PMD to increase the number of 'generic' performance + counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation + dependent. No parameter checking is performed on Index. If the Index value is + beyond the implemented PMC register range, the write is ignored. + This function is only available on Itanium processors. + + @param Index The 8-bit Performance Monitor Configuration Register index to write. + @param Value The 64-bit value to write to PMC. + + @return The 64-bit value written to the PMC. + +**/ +UINT64 +EFIAPI +AsmWritePmc ( + IN UINT8 Index, + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit Performance Monitor Data Register (PMD). + + Writes current value of Performance Monitor Data Register specified by Index. + All processor implementations provide at least four performance counters + (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow + status registers (PMC [0]... PMC [3]). Processor implementations may provide + additional implementation-dependent PMC and PMD to increase the number of 'generic' + performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set + is implementation dependent. No parameter checking is performed on Index. If the + Index value is beyond the implemented PMD register range, the write is ignored. + This function is only available on Itanium processors. + + @param Index The 8-bit Performance Monitor Data Register index to write. + @param Value The 64-bit value to write to PMD. + + @return The 64-bit value written to the PMD. + +**/ +UINT64 +EFIAPI +AsmWritePmd ( + IN UINT8 Index, + IN UINT64 Value + ); + + +/** + Reads the current value of 64-bit Global Pointer (GP). + + Reads and returns the current value of GP. + This function is only available on Itanium processors. + + @return The current value of GP. + +**/ +UINT64 +EFIAPI +AsmReadGp ( + VOID + ); + + +/** + Write the current value of 64-bit Global Pointer (GP). + + Writes the current value of GP. The 64-bit value written to the GP is returned. + No parameter checking is performed on Value. + This function is only available on Itanium processors. + + @param Value The 64-bit value to write to GP. + + @return The 64-bit value written to the GP. + +**/ +UINT64 +EFIAPI +AsmWriteGp ( + IN UINT64 Value + ); + + +/** + Reads the current value of 64-bit Stack Pointer (SP). + + Reads and returns the current value of SP. + This function is only available on Itanium processors. + + @return The current value of SP. + +**/ +UINT64 +EFIAPI +AsmReadSp ( + VOID + ); + + +/// +/// Valid Index value for AsmReadControlRegister(). +/// +#define IPF_CONTROL_REGISTER_DCR 0 +#define IPF_CONTROL_REGISTER_ITM 1 +#define IPF_CONTROL_REGISTER_IVA 2 +#define IPF_CONTROL_REGISTER_PTA 8 +#define IPF_CONTROL_REGISTER_IPSR 16 +#define IPF_CONTROL_REGISTER_ISR 17 +#define IPF_CONTROL_REGISTER_IIP 19 +#define IPF_CONTROL_REGISTER_IFA 20 +#define IPF_CONTROL_REGISTER_ITIR 21 +#define IPF_CONTROL_REGISTER_IIPA 22 +#define IPF_CONTROL_REGISTER_IFS 23 +#define IPF_CONTROL_REGISTER_IIM 24 +#define IPF_CONTROL_REGISTER_IHA 25 +#define IPF_CONTROL_REGISTER_LID 64 +#define IPF_CONTROL_REGISTER_IVR 65 +#define IPF_CONTROL_REGISTER_TPR 66 +#define IPF_CONTROL_REGISTER_EOI 67 +#define IPF_CONTROL_REGISTER_IRR0 68 +#define IPF_CONTROL_REGISTER_IRR1 69 +#define IPF_CONTROL_REGISTER_IRR2 70 +#define IPF_CONTROL_REGISTER_IRR3 71 +#define IPF_CONTROL_REGISTER_ITV 72 +#define IPF_CONTROL_REGISTER_PMV 73 +#define IPF_CONTROL_REGISTER_CMCV 74 +#define IPF_CONTROL_REGISTER_LRR0 80 +#define IPF_CONTROL_REGISTER_LRR1 81 + +/** + Reads a 64-bit control register. + + Reads and returns the control register specified by Index. The valid Index valued + are defined above in "Related Definitions". + If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only + available on Itanium processors. + + @param Index The index of the control register to read. + + @return The control register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadControlRegister ( + IN UINT64 Index + ); + + +/// +/// Valid Index value for AsmReadApplicationRegister(). +/// +#define IPF_APPLICATION_REGISTER_K0 0 +#define IPF_APPLICATION_REGISTER_K1 1 +#define IPF_APPLICATION_REGISTER_K2 2 +#define IPF_APPLICATION_REGISTER_K3 3 +#define IPF_APPLICATION_REGISTER_K4 4 +#define IPF_APPLICATION_REGISTER_K5 5 +#define IPF_APPLICATION_REGISTER_K6 6 +#define IPF_APPLICATION_REGISTER_K7 7 +#define IPF_APPLICATION_REGISTER_RSC 16 +#define IPF_APPLICATION_REGISTER_BSP 17 +#define IPF_APPLICATION_REGISTER_BSPSTORE 18 +#define IPF_APPLICATION_REGISTER_RNAT 19 +#define IPF_APPLICATION_REGISTER_FCR 21 +#define IPF_APPLICATION_REGISTER_EFLAG 24 +#define IPF_APPLICATION_REGISTER_CSD 25 +#define IPF_APPLICATION_REGISTER_SSD 26 +#define IPF_APPLICATION_REGISTER_CFLG 27 +#define IPF_APPLICATION_REGISTER_FSR 28 +#define IPF_APPLICATION_REGISTER_FIR 29 +#define IPF_APPLICATION_REGISTER_FDR 30 +#define IPF_APPLICATION_REGISTER_CCV 32 +#define IPF_APPLICATION_REGISTER_UNAT 36 +#define IPF_APPLICATION_REGISTER_FPSR 40 +#define IPF_APPLICATION_REGISTER_ITC 44 +#define IPF_APPLICATION_REGISTER_PFS 64 +#define IPF_APPLICATION_REGISTER_LC 65 +#define IPF_APPLICATION_REGISTER_EC 66 + +/** + Reads a 64-bit application register. + + Reads and returns the application register specified by Index. The valid Index + valued are defined above in "Related Definitions". + If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only + available on Itanium processors. + + @param Index The index of the application register to read. + + @return The application register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadApplicationRegister ( + IN UINT64 Index + ); + + +/** + Reads the current value of a Machine Specific Register (MSR). + + Reads and returns the current value of the Machine Specific Register specified by Index. No + parameter checking is performed on Index, and if the Index value is beyond the implemented MSR + register range, a Reserved Register/Field fault may occur. The caller must either guarantee that + Index is valid, or the caller must set up fault handlers to catch the faults. This function is + only available on Itanium processors. + + @param Index The 8-bit Machine Specific Register index to read. + + @return The current value of the Machine Specific Register specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadMsr ( + IN UINT8 Index + ); + + +/** + Writes the current value of a Machine Specific Register (MSR). + + Writes Value to the Machine Specific Register specified by Index. Value is returned. No + parameter checking is performed on Index, and if the Index value is beyond the implemented MSR + register range, a Reserved Register/Field fault may occur. The caller must either guarantee that + Index is valid, or the caller must set up fault handlers to catch the faults. This function is + only available on Itanium processors. + + @param Index The 8-bit Machine Specific Register index to write. + @param Value The 64-bit value to write to the Machine Specific Register. + + @return The 64-bit value to write to the Machine Specific Register. + +**/ +UINT64 +EFIAPI +AsmWriteMsr ( + IN UINT8 Index, + IN UINT64 Value + ); + + +/** + Determines if the CPU is currently executing in virtual, physical, or mixed mode. + + Determines the current execution mode of the CPU. + If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned. + If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned. + If the CPU is not in physical mode or virtual mode, then it is in mixed mode, + and -1 is returned. + This function is only available on Itanium processors. + + @retval 1 The CPU is in virtual mode. + @retval 0 The CPU is in physical mode. + @retval -1 The CPU is in mixed mode. + +**/ +INT64 +EFIAPI +AsmCpuVirtual ( + VOID + ); + + +/** + Makes a PAL procedure call. + + This is a wrapper function to make a PAL procedure call. Based on the Index + value this API will make static or stacked PAL call. The following table + describes the usage of PAL Procedure Index Assignment. Architected procedures + may be designated as required or optional. If a PAL procedure is specified + as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the + Status field of the PAL_CALL_RETURN structure. + This indicates that the procedure is not present in this PAL implementation. + It is the caller's responsibility to check for this return code after calling + any optional PAL procedure. + No parameter checking is performed on the 5 input parameters, but there are + some common rules that the caller should follow when making a PAL call. Any + address passed to PAL as buffers for return parameters must be 8-byte aligned. + Unaligned addresses may cause undefined results. For those parameters defined + as reserved or some fields defined as reserved must be zero filled or the invalid + argument return value may be returned or undefined result may occur during the + execution of the procedure. If the PalEntryPoint does not point to a valid + PAL entry point then the system behavior is undefined. This function is only + available on Itanium processors. + + @param PalEntryPoint The PAL procedure calls entry point. + @param Index The PAL procedure Index number. + @param Arg2 The 2nd parameter for PAL procedure calls. + @param Arg3 The 3rd parameter for PAL procedure calls. + @param Arg4 The 4th parameter for PAL procedure calls. + + @return structure returned from the PAL Call procedure, including the status and return value. + +**/ +PAL_CALL_RETURN +EFIAPI +AsmPalCall ( + IN UINT64 PalEntryPoint, + IN UINT64 Index, + IN UINT64 Arg2, + IN UINT64 Arg3, + IN UINT64 Arg4 + ); +#endif + +#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64) +/// +/// IA32 and x64 Specific Functions. +/// Byte packed structure for 16-bit Real Mode EFLAGS. +/// +typedef union { + struct { + UINT32 CF:1; ///< Carry Flag. + UINT32 Reserved_0:1; ///< Reserved. + UINT32 PF:1; ///< Parity Flag. + UINT32 Reserved_1:1; ///< Reserved. + UINT32 AF:1; ///< Auxiliary Carry Flag. + UINT32 Reserved_2:1; ///< Reserved. + UINT32 ZF:1; ///< Zero Flag. + UINT32 SF:1; ///< Sign Flag. + UINT32 TF:1; ///< Trap Flag. + UINT32 IF:1; ///< Interrupt Enable Flag. + UINT32 DF:1; ///< Direction Flag. + UINT32 OF:1; ///< Overflow Flag. + UINT32 IOPL:2; ///< I/O Privilege Level. + UINT32 NT:1; ///< Nested Task. + UINT32 Reserved_3:1; ///< Reserved. + } Bits; + UINT16 Uint16; +} IA32_FLAGS16; + +/// +/// Byte packed structure for EFLAGS/RFLAGS. +/// 32-bits on IA-32. +/// 64-bits on x64. The upper 32-bits on x64 are reserved. +/// +typedef union { + struct { + UINT32 CF:1; ///< Carry Flag. + UINT32 Reserved_0:1; ///< Reserved. + UINT32 PF:1; ///< Parity Flag. + UINT32 Reserved_1:1; ///< Reserved. + UINT32 AF:1; ///< Auxiliary Carry Flag. + UINT32 Reserved_2:1; ///< Reserved. + UINT32 ZF:1; ///< Zero Flag. + UINT32 SF:1; ///< Sign Flag. + UINT32 TF:1; ///< Trap Flag. + UINT32 IF:1; ///< Interrupt Enable Flag. + UINT32 DF:1; ///< Direction Flag. + UINT32 OF:1; ///< Overflow Flag. + UINT32 IOPL:2; ///< I/O Privilege Level. + UINT32 NT:1; ///< Nested Task. + UINT32 Reserved_3:1; ///< Reserved. + UINT32 RF:1; ///< Resume Flag. + UINT32 VM:1; ///< Virtual 8086 Mode. + UINT32 AC:1; ///< Alignment Check. + UINT32 VIF:1; ///< Virtual Interrupt Flag. + UINT32 VIP:1; ///< Virtual Interrupt Pending. + UINT32 ID:1; ///< ID Flag. + UINT32 Reserved_4:10; ///< Reserved. + } Bits; + UINTN UintN; +} IA32_EFLAGS32; + +/// +/// Byte packed structure for Control Register 0 (CR0). +/// 32-bits on IA-32. +/// 64-bits on x64. The upper 32-bits on x64 are reserved. +/// +typedef union { + struct { + UINT32 PE:1; ///< Protection Enable. + UINT32 MP:1; ///< Monitor Coprocessor. + UINT32 EM:1; ///< Emulation. + UINT32 TS:1; ///< Task Switched. + UINT32 ET:1; ///< Extension Type. + UINT32 NE:1; ///< Numeric Error. + UINT32 Reserved_0:10; ///< Reserved. + UINT32 WP:1; ///< Write Protect. + UINT32 Reserved_1:1; ///< Reserved. + UINT32 AM:1; ///< Alignment Mask. + UINT32 Reserved_2:10; ///< Reserved. + UINT32 NW:1; ///< Mot Write-through. + UINT32 CD:1; ///< Cache Disable. + UINT32 PG:1; ///< Paging. + } Bits; + UINTN UintN; +} IA32_CR0; + +/// +/// Byte packed structure for Control Register 4 (CR4). +/// 32-bits on IA-32. +/// 64-bits on x64. The upper 32-bits on x64 are reserved. +/// +typedef union { + struct { + UINT32 VME:1; ///< Virtual-8086 Mode Extensions. + UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts. + UINT32 TSD:1; ///< Time Stamp Disable. + UINT32 DE:1; ///< Debugging Extensions. + UINT32 PSE:1; ///< Page Size Extensions. + UINT32 PAE:1; ///< Physical Address Extension. + UINT32 MCE:1; ///< Machine Check Enable. + UINT32 PGE:1; ///< Page Global Enable. + UINT32 PCE:1; ///< Performance Monitoring Counter + ///< Enable. + UINT32 OSFXSR:1; ///< Operating System Support for + ///< FXSAVE and FXRSTOR instructions + UINT32 OSXMMEXCPT:1; ///< Operating System Support for + ///< Unmasked SIMD Floating Point + ///< Exceptions. + UINT32 Reserved_0:2; ///< Reserved. + UINT32 VMXE:1; ///< VMX Enable + UINT32 Reserved_1:18; ///< Reserved. + } Bits; + UINTN UintN; +} IA32_CR4; + +/// +/// Byte packed structure for a segment descriptor in a GDT/LDT. +/// +typedef union { + struct { + UINT32 LimitLow:16; + UINT32 BaseLow:16; + UINT32 BaseMid:8; + UINT32 Type:4; + UINT32 S:1; + UINT32 DPL:2; + UINT32 P:1; + UINT32 LimitHigh:4; + UINT32 AVL:1; + UINT32 L:1; + UINT32 DB:1; + UINT32 G:1; + UINT32 BaseHigh:8; + } Bits; + UINT64 Uint64; +} IA32_SEGMENT_DESCRIPTOR; + +/// +/// Byte packed structure for an IDTR, GDTR, LDTR descriptor. +/// +#pragma pack (1) +typedef struct { + UINT16 Limit; + UINTN Base; +} IA32_DESCRIPTOR; +#pragma pack () + +#define IA32_IDT_GATE_TYPE_TASK 0x85 +#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86 +#define IA32_IDT_GATE_TYPE_TRAP_16 0x87 +#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E +#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F + + +#if defined (MDE_CPU_IA32) +/// +/// Byte packed structure for an IA-32 Interrupt Gate Descriptor. +/// +typedef union { + struct { + UINT32 OffsetLow:16; ///< Offset bits 15..0. + UINT32 Selector:16; ///< Selector. + UINT32 Reserved_0:8; ///< Reserved. + UINT32 GateType:8; ///< Gate Type. See #defines above. + UINT32 OffsetHigh:16; ///< Offset bits 31..16. + } Bits; + UINT64 Uint64; +} IA32_IDT_GATE_DESCRIPTOR; + +#endif + +#if defined (MDE_CPU_X64) +/// +/// Byte packed structure for an x64 Interrupt Gate Descriptor. +/// +typedef union { + struct { + UINT32 OffsetLow:16; ///< Offset bits 15..0. + UINT32 Selector:16; ///< Selector. + UINT32 Reserved_0:8; ///< Reserved. + UINT32 GateType:8; ///< Gate Type. See #defines above. + UINT32 OffsetHigh:16; ///< Offset bits 31..16. + UINT32 OffsetUpper:32; ///< Offset bits 63..32. + UINT32 Reserved_1:32; ///< Reserved. + } Bits; + struct { + UINT64 Uint64; + UINT64 Uint64_1; + } Uint128; +} IA32_IDT_GATE_DESCRIPTOR; + +#endif + +/// +/// Byte packed structure for an FP/SSE/SSE2 context. +/// +typedef struct { + UINT8 Buffer[512]; +} IA32_FX_BUFFER; + +/// +/// Structures for the 16-bit real mode thunks. +/// +typedef struct { + UINT32 Reserved1; + UINT32 Reserved2; + UINT32 Reserved3; + UINT32 Reserved4; + UINT8 BL; + UINT8 BH; + UINT16 Reserved5; + UINT8 DL; + UINT8 DH; + UINT16 Reserved6; + UINT8 CL; + UINT8 CH; + UINT16 Reserved7; + UINT8 AL; + UINT8 AH; + UINT16 Reserved8; +} IA32_BYTE_REGS; + +typedef struct { + UINT16 DI; + UINT16 Reserved1; + UINT16 SI; + UINT16 Reserved2; + UINT16 BP; + UINT16 Reserved3; + UINT16 SP; + UINT16 Reserved4; + UINT16 BX; + UINT16 Reserved5; + UINT16 DX; + UINT16 Reserved6; + UINT16 CX; + UINT16 Reserved7; + UINT16 AX; + UINT16 Reserved8; +} IA32_WORD_REGS; + +typedef struct { + UINT32 EDI; + UINT32 ESI; + UINT32 EBP; + UINT32 ESP; + UINT32 EBX; + UINT32 EDX; + UINT32 ECX; + UINT32 EAX; + UINT16 DS; + UINT16 ES; + UINT16 FS; + UINT16 GS; + IA32_EFLAGS32 EFLAGS; + UINT32 Eip; + UINT16 CS; + UINT16 SS; +} IA32_DWORD_REGS; + +typedef union { + IA32_DWORD_REGS E; + IA32_WORD_REGS X; + IA32_BYTE_REGS H; +} IA32_REGISTER_SET; + +/// +/// Byte packed structure for an 16-bit real mode thunks. +/// +typedef struct { + IA32_REGISTER_SET *RealModeState; + VOID *RealModeBuffer; + UINT32 RealModeBufferSize; + UINT32 ThunkAttributes; +} THUNK_CONTEXT; + +#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001 +#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002 +#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004 + +/** + Retrieves CPUID information. + + Executes the CPUID instruction with EAX set to the value specified by Index. + This function always returns Index. + If Eax is not NULL, then the value of EAX after CPUID is returned in Eax. + If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx. + If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx. + If Edx is not NULL, then the value of EDX after CPUID is returned in Edx. + This function is only available on IA-32 and x64. + + @param Index The 32-bit value to load into EAX prior to invoking the CPUID + instruction. + @param Eax The pointer to the 32-bit EAX value returned by the CPUID + instruction. This is an optional parameter that may be NULL. + @param Ebx The pointer to the 32-bit EBX value returned by the CPUID + instruction. This is an optional parameter that may be NULL. + @param Ecx The pointer to the 32-bit ECX value returned by the CPUID + instruction. This is an optional parameter that may be NULL. + @param Edx The pointer to the 32-bit EDX value returned by the CPUID + instruction. This is an optional parameter that may be NULL. + + @return Index. + +**/ +UINT32 +EFIAPI +AsmCpuid ( + IN UINT32 Index, + OUT UINT32 *Eax, OPTIONAL + OUT UINT32 *Ebx, OPTIONAL + OUT UINT32 *Ecx, OPTIONAL + OUT UINT32 *Edx OPTIONAL + ); + + +/** + Retrieves CPUID information using an extended leaf identifier. + + Executes the CPUID instruction with EAX set to the value specified by Index + and ECX set to the value specified by SubIndex. This function always returns + Index. This function is only available on IA-32 and x64. + + If Eax is not NULL, then the value of EAX after CPUID is returned in Eax. + If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx. + If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx. + If Edx is not NULL, then the value of EDX after CPUID is returned in Edx. + + @param Index The 32-bit value to load into EAX prior to invoking the + CPUID instruction. + @param SubIndex The 32-bit value to load into ECX prior to invoking the + CPUID instruction. + @param Eax The pointer to the 32-bit EAX value returned by the CPUID + instruction. This is an optional parameter that may be + NULL. + @param Ebx The pointer to the 32-bit EBX value returned by the CPUID + instruction. This is an optional parameter that may be + NULL. + @param Ecx The pointer to the 32-bit ECX value returned by the CPUID + instruction. This is an optional parameter that may be + NULL. + @param Edx The pointer to the 32-bit EDX value returned by the CPUID + instruction. This is an optional parameter that may be + NULL. + + @return Index. + +**/ +UINT32 +EFIAPI +AsmCpuidEx ( + IN UINT32 Index, + IN UINT32 SubIndex, + OUT UINT32 *Eax, OPTIONAL + OUT UINT32 *Ebx, OPTIONAL + OUT UINT32 *Ecx, OPTIONAL + OUT UINT32 *Edx OPTIONAL + ); + + +/** + Set CD bit and clear NW bit of CR0 followed by a WBINVD. + + Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0, + and executing a WBINVD instruction. This function is only available on IA-32 and x64. + +**/ +VOID +EFIAPI +AsmDisableCache ( + VOID + ); + + +/** + Perform a WBINVD and clear both the CD and NW bits of CR0. + + Enables the caches by executing a WBINVD instruction and then clear both the CD and NW + bits of CR0 to 0. This function is only available on IA-32 and x64. + +**/ +VOID +EFIAPI +AsmEnableCache ( + VOID + ); + + +/** + Returns the lower 32-bits of a Machine Specific Register(MSR). + + Reads and returns the lower 32-bits of the MSR specified by Index. + No parameter checking is performed on Index, and some Index values may cause + CPU exceptions. The caller must either guarantee that Index is valid, or the + caller must set up exception handlers to catch the exceptions. This function + is only available on IA-32 and x64. + + @param Index The 32-bit MSR index to read. + + @return The lower 32 bits of the MSR identified by Index. + +**/ +UINT32 +EFIAPI +AsmReadMsr32 ( + IN UINT32 Index + ); + + +/** + Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value. + The upper 32-bits of the MSR are set to zero. + + Writes the 32-bit value specified by Value to the MSR specified by Index. The + upper 32-bits of the MSR write are set to zero. The 32-bit value written to + the MSR is returned. No parameter checking is performed on Index or Value, + and some of these may cause CPU exceptions. The caller must either guarantee + that Index and Value are valid, or the caller must establish proper exception + handlers. This function is only available on IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param Value The 32-bit value to write to the MSR. + + @return Value + +**/ +UINT32 +EFIAPI +AsmWriteMsr32 ( + IN UINT32 Index, + IN UINT32 Value + ); + + +/** + Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and + writes the result back to the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise OR + between the lower 32-bits of the read result and the value specified by + OrData, and writes the result to the 64-bit MSR specified by Index. The lower + 32-bits of the value written to the MSR is returned. No parameter checking is + performed on Index or OrData, and some of these may cause CPU exceptions. The + caller must either guarantee that Index and OrData are valid, or the caller + must establish proper exception handlers. This function is only available on + IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param OrData The value to OR with the read value from the MSR. + + @return The lower 32-bit value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrOr32 ( + IN UINT32 Index, + IN UINT32 OrData + ); + + +/** + Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes + the result back to the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between the + lower 32-bits of the read result and the value specified by AndData, and + writes the result to the 64-bit MSR specified by Index. The lower 32-bits of + the value written to the MSR is returned. No parameter checking is performed + on Index or AndData, and some of these may cause CPU exceptions. The caller + must either guarantee that Index and AndData are valid, or the caller must + establish proper exception handlers. This function is only available on IA-32 + and x64. + + @param Index The 32-bit MSR index to write. + @param AndData The value to AND with the read value from the MSR. + + @return The lower 32-bit value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrAnd32 ( + IN UINT32 Index, + IN UINT32 AndData + ); + + +/** + Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR + on the lower 32-bits, and writes the result back to the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between the + lower 32-bits of the read result and the value specified by AndData + preserving the upper 32-bits, performs a bitwise OR between the + result of the AND operation and the value specified by OrData, and writes the + result to the 64-bit MSR specified by Address. The lower 32-bits of the value + written to the MSR is returned. No parameter checking is performed on Index, + AndData, or OrData, and some of these may cause CPU exceptions. The caller + must either guarantee that Index, AndData, and OrData are valid, or the + caller must establish proper exception handlers. This function is only + available on IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param AndData The value to AND with the read value from the MSR. + @param OrData The value to OR with the result of the AND operation. + + @return The lower 32-bit value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrAndThenOr32 ( + IN UINT32 Index, + IN UINT32 AndData, + IN UINT32 OrData + ); + + +/** + Reads a bit field of an MSR. + + Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is + specified by the StartBit and the EndBit. The value of the bit field is + returned. The caller must either guarantee that Index is valid, or the caller + must set up exception handlers to catch the exceptions. This function is only + available on IA-32 and x64. + + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Index The 32-bit MSR index to read. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + + @return The bit field read from the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrBitFieldRead32 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to an MSR. + + Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit + field is specified by the StartBit and the EndBit. All other bits in the + destination MSR are preserved. The lower 32-bits of the MSR written is + returned. The caller must either guarantee that Index and the data written + is valid, or the caller must set up exception handlers to catch the exceptions. + This function is only available on IA-32 and x64. + + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param Value New value of the bit field. + + @return The lower 32-bit of the value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrBitFieldWrite32 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 Value + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the + result back to the bit field in the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise OR + between the read result and the value specified by OrData, and writes the + result to the 64-bit MSR specified by Index. The lower 32-bits of the value + written to the MSR are returned. Extra left bits in OrData are stripped. The + caller must either guarantee that Index and the data written is valid, or + the caller must set up exception handlers to catch the exceptions. This + function is only available on IA-32 and x64. + + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param OrData The value to OR with the read value from the MSR. + + @return The lower 32-bit of the value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrBitFieldOr32 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 OrData + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the + result back to the bit field in the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between the + read result and the value specified by AndData, and writes the result to the + 64-bit MSR specified by Index. The lower 32-bits of the value written to the + MSR are returned. Extra left bits in AndData are stripped. The caller must + either guarantee that Index and the data written is valid, or the caller must + set up exception handlers to catch the exceptions. This function is only + available on IA-32 and x64. + + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the read value from the MSR. + + @return The lower 32-bit of the value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrBitFieldAnd32 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a + bitwise OR, and writes the result back to the bit field in the + 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a + bitwise OR between the read result and the value specified by + AndData, and writes the result to the 64-bit MSR specified by Index. The + lower 32-bits of the value written to the MSR are returned. Extra left bits + in both AndData and OrData are stripped. The caller must either guarantee + that Index and the data written is valid, or the caller must set up exception + handlers to catch the exceptions. This function is only available on IA-32 + and x64. + + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the read value from the MSR. + @param OrData The value to OR with the result of the AND operation. + + @return The lower 32-bit of the value written to the MSR. + +**/ +UINT32 +EFIAPI +AsmMsrBitFieldAndThenOr32 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData, + IN UINT32 OrData + ); + + +/** + Returns a 64-bit Machine Specific Register(MSR). + + Reads and returns the 64-bit MSR specified by Index. No parameter checking is + performed on Index, and some Index values may cause CPU exceptions. The + caller must either guarantee that Index is valid, or the caller must set up + exception handlers to catch the exceptions. This function is only available + on IA-32 and x64. + + @param Index The 32-bit MSR index to read. + + @return The value of the MSR identified by Index. + +**/ +UINT64 +EFIAPI +AsmReadMsr64 ( + IN UINT32 Index + ); + + +/** + Writes a 64-bit value to a Machine Specific Register(MSR), and returns the + value. + + Writes the 64-bit value specified by Value to the MSR specified by Index. The + 64-bit value written to the MSR is returned. No parameter checking is + performed on Index or Value, and some of these may cause CPU exceptions. The + caller must either guarantee that Index and Value are valid, or the caller + must establish proper exception handlers. This function is only available on + IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param Value The 64-bit value to write to the MSR. + + @return Value + +**/ +UINT64 +EFIAPI +AsmWriteMsr64 ( + IN UINT32 Index, + IN UINT64 Value + ); + + +/** + Reads a 64-bit MSR, performs a bitwise OR, and writes the result + back to the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise OR + between the read result and the value specified by OrData, and writes the + result to the 64-bit MSR specified by Index. The value written to the MSR is + returned. No parameter checking is performed on Index or OrData, and some of + these may cause CPU exceptions. The caller must either guarantee that Index + and OrData are valid, or the caller must establish proper exception handlers. + This function is only available on IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param OrData The value to OR with the read value from the MSR. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrOr64 ( + IN UINT32 Index, + IN UINT64 OrData + ); + + +/** + Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the + 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between the + read result and the value specified by OrData, and writes the result to the + 64-bit MSR specified by Index. The value written to the MSR is returned. No + parameter checking is performed on Index or OrData, and some of these may + cause CPU exceptions. The caller must either guarantee that Index and OrData + are valid, or the caller must establish proper exception handlers. This + function is only available on IA-32 and x64. + + @param Index The 32-bit MSR index to write. + @param AndData The value to AND with the read value from the MSR. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrAnd64 ( + IN UINT32 Index, + IN UINT64 AndData + ); + + +/** + Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise + OR, and writes the result back to the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between read + result and the value specified by AndData, performs a bitwise OR + between the result of the AND operation and the value specified by OrData, + and writes the result to the 64-bit MSR specified by Index. The value written + to the MSR is returned. No parameter checking is performed on Index, AndData, + or OrData, and some of these may cause CPU exceptions. The caller must either + guarantee that Index, AndData, and OrData are valid, or the caller must + establish proper exception handlers. This function is only available on IA-32 + and x64. + + @param Index The 32-bit MSR index to write. + @param AndData The value to AND with the read value from the MSR. + @param OrData The value to OR with the result of the AND operation. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrAndThenOr64 ( + IN UINT32 Index, + IN UINT64 AndData, + IN UINT64 OrData + ); + + +/** + Reads a bit field of an MSR. + + Reads the bit field in the 64-bit MSR. The bit field is specified by the + StartBit and the EndBit. The value of the bit field is returned. The caller + must either guarantee that Index is valid, or the caller must set up + exception handlers to catch the exceptions. This function is only available + on IA-32 and x64. + + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Index The 32-bit MSR index to read. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + + @return The value read from the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrBitFieldRead64 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Writes a bit field to an MSR. + + Writes Value to a bit field in a 64-bit MSR. The bit field is specified by + the StartBit and the EndBit. All other bits in the destination MSR are + preserved. The MSR written is returned. The caller must either guarantee + that Index and the data written is valid, or the caller must set up exception + handlers to catch the exceptions. This function is only available on IA-32 and x64. + + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param Value New value of the bit field. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrBitFieldWrite64 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 Value + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise OR, and + writes the result back to the bit field in the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise OR + between the read result and the value specified by OrData, and writes the + result to the 64-bit MSR specified by Index. The value written to the MSR is + returned. Extra left bits in OrData are stripped. The caller must either + guarantee that Index and the data written is valid, or the caller must set up + exception handlers to catch the exceptions. This function is only available + on IA-32 and x64. + + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param OrData The value to OR with the read value from the bit field. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrBitFieldOr64 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 OrData + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the + result back to the bit field in the 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND between the + read result and the value specified by AndData, and writes the result to the + 64-bit MSR specified by Index. The value written to the MSR is returned. + Extra left bits in AndData are stripped. The caller must either guarantee + that Index and the data written is valid, or the caller must set up exception + handlers to catch the exceptions. This function is only available on IA-32 + and x64. + + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param AndData The value to AND with the read value from the bit field. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrBitFieldAnd64 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 AndData + ); + + +/** + Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a + bitwise OR, and writes the result back to the bit field in the + 64-bit MSR. + + Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by + a bitwise OR between the read result and the value specified by + AndData, and writes the result to the 64-bit MSR specified by Index. The + value written to the MSR is returned. Extra left bits in both AndData and + OrData are stripped. The caller must either guarantee that Index and the data + written is valid, or the caller must set up exception handlers to catch the + exceptions. This function is only available on IA-32 and x64. + + If StartBit is greater than 63, then ASSERT(). + If EndBit is greater than 63, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Index The 32-bit MSR index to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..63. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..63. + @param AndData The value to AND with the read value from the bit field. + @param OrData The value to OR with the result of the AND operation. + + @return The value written back to the MSR. + +**/ +UINT64 +EFIAPI +AsmMsrBitFieldAndThenOr64 ( + IN UINT32 Index, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT64 AndData, + IN UINT64 OrData + ); + + +/** + Reads the current value of the EFLAGS register. + + Reads and returns the current value of the EFLAGS register. This function is + only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a + 64-bit value on x64. + + @return EFLAGS on IA-32 or RFLAGS on x64. + +**/ +UINTN +EFIAPI +AsmReadEflags ( + VOID + ); + + +/** + Reads the current value of the Control Register 0 (CR0). + + Reads and returns the current value of CR0. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of the Control Register 0 (CR0). + +**/ +UINTN +EFIAPI +AsmReadCr0 ( + VOID + ); + + +/** + Reads the current value of the Control Register 2 (CR2). + + Reads and returns the current value of CR2. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of the Control Register 2 (CR2). + +**/ +UINTN +EFIAPI +AsmReadCr2 ( + VOID + ); + + +/** + Reads the current value of the Control Register 3 (CR3). + + Reads and returns the current value of CR3. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of the Control Register 3 (CR3). + +**/ +UINTN +EFIAPI +AsmReadCr3 ( + VOID + ); + + +/** + Reads the current value of the Control Register 4 (CR4). + + Reads and returns the current value of CR4. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of the Control Register 4 (CR4). + +**/ +UINTN +EFIAPI +AsmReadCr4 ( + VOID + ); + + +/** + Writes a value to Control Register 0 (CR0). + + Writes and returns a new value to CR0. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Cr0 The value to write to CR0. + + @return The value written to CR0. + +**/ +UINTN +EFIAPI +AsmWriteCr0 ( + UINTN Cr0 + ); + + +/** + Writes a value to Control Register 2 (CR2). + + Writes and returns a new value to CR2. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Cr2 The value to write to CR2. + + @return The value written to CR2. + +**/ +UINTN +EFIAPI +AsmWriteCr2 ( + UINTN Cr2 + ); + + +/** + Writes a value to Control Register 3 (CR3). + + Writes and returns a new value to CR3. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Cr3 The value to write to CR3. + + @return The value written to CR3. + +**/ +UINTN +EFIAPI +AsmWriteCr3 ( + UINTN Cr3 + ); + + +/** + Writes a value to Control Register 4 (CR4). + + Writes and returns a new value to CR4. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Cr4 The value to write to CR4. + + @return The value written to CR4. + +**/ +UINTN +EFIAPI +AsmWriteCr4 ( + UINTN Cr4 + ); + + +/** + Reads the current value of Debug Register 0 (DR0). + + Reads and returns the current value of DR0. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 0 (DR0). + +**/ +UINTN +EFIAPI +AsmReadDr0 ( + VOID + ); + + +/** + Reads the current value of Debug Register 1 (DR1). + + Reads and returns the current value of DR1. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 1 (DR1). + +**/ +UINTN +EFIAPI +AsmReadDr1 ( + VOID + ); + + +/** + Reads the current value of Debug Register 2 (DR2). + + Reads and returns the current value of DR2. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 2 (DR2). + +**/ +UINTN +EFIAPI +AsmReadDr2 ( + VOID + ); + + +/** + Reads the current value of Debug Register 3 (DR3). + + Reads and returns the current value of DR3. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 3 (DR3). + +**/ +UINTN +EFIAPI +AsmReadDr3 ( + VOID + ); + + +/** + Reads the current value of Debug Register 4 (DR4). + + Reads and returns the current value of DR4. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 4 (DR4). + +**/ +UINTN +EFIAPI +AsmReadDr4 ( + VOID + ); + + +/** + Reads the current value of Debug Register 5 (DR5). + + Reads and returns the current value of DR5. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 5 (DR5). + +**/ +UINTN +EFIAPI +AsmReadDr5 ( + VOID + ); + + +/** + Reads the current value of Debug Register 6 (DR6). + + Reads and returns the current value of DR6. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 6 (DR6). + +**/ +UINTN +EFIAPI +AsmReadDr6 ( + VOID + ); + + +/** + Reads the current value of Debug Register 7 (DR7). + + Reads and returns the current value of DR7. This function is only available + on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on + x64. + + @return The value of Debug Register 7 (DR7). + +**/ +UINTN +EFIAPI +AsmReadDr7 ( + VOID + ); + + +/** + Writes a value to Debug Register 0 (DR0). + + Writes and returns a new value to DR0. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr0 The value to write to Dr0. + + @return The value written to Debug Register 0 (DR0). + +**/ +UINTN +EFIAPI +AsmWriteDr0 ( + UINTN Dr0 + ); + + +/** + Writes a value to Debug Register 1 (DR1). + + Writes and returns a new value to DR1. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr1 The value to write to Dr1. + + @return The value written to Debug Register 1 (DR1). + +**/ +UINTN +EFIAPI +AsmWriteDr1 ( + UINTN Dr1 + ); + + +/** + Writes a value to Debug Register 2 (DR2). + + Writes and returns a new value to DR2. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr2 The value to write to Dr2. + + @return The value written to Debug Register 2 (DR2). + +**/ +UINTN +EFIAPI +AsmWriteDr2 ( + UINTN Dr2 + ); + + +/** + Writes a value to Debug Register 3 (DR3). + + Writes and returns a new value to DR3. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr3 The value to write to Dr3. + + @return The value written to Debug Register 3 (DR3). + +**/ +UINTN +EFIAPI +AsmWriteDr3 ( + UINTN Dr3 + ); + + +/** + Writes a value to Debug Register 4 (DR4). + + Writes and returns a new value to DR4. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr4 The value to write to Dr4. + + @return The value written to Debug Register 4 (DR4). + +**/ +UINTN +EFIAPI +AsmWriteDr4 ( + UINTN Dr4 + ); + + +/** + Writes a value to Debug Register 5 (DR5). + + Writes and returns a new value to DR5. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr5 The value to write to Dr5. + + @return The value written to Debug Register 5 (DR5). + +**/ +UINTN +EFIAPI +AsmWriteDr5 ( + UINTN Dr5 + ); + + +/** + Writes a value to Debug Register 6 (DR6). + + Writes and returns a new value to DR6. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr6 The value to write to Dr6. + + @return The value written to Debug Register 6 (DR6). + +**/ +UINTN +EFIAPI +AsmWriteDr6 ( + UINTN Dr6 + ); + + +/** + Writes a value to Debug Register 7 (DR7). + + Writes and returns a new value to DR7. This function is only available on + IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64. + + @param Dr7 The value to write to Dr7. + + @return The value written to Debug Register 7 (DR7). + +**/ +UINTN +EFIAPI +AsmWriteDr7 ( + UINTN Dr7 + ); + + +/** + Reads the current value of Code Segment Register (CS). + + Reads and returns the current value of CS. This function is only available on + IA-32 and x64. + + @return The current value of CS. + +**/ +UINT16 +EFIAPI +AsmReadCs ( + VOID + ); + + +/** + Reads the current value of Data Segment Register (DS). + + Reads and returns the current value of DS. This function is only available on + IA-32 and x64. + + @return The current value of DS. + +**/ +UINT16 +EFIAPI +AsmReadDs ( + VOID + ); + + +/** + Reads the current value of Extra Segment Register (ES). + + Reads and returns the current value of ES. This function is only available on + IA-32 and x64. + + @return The current value of ES. + +**/ +UINT16 +EFIAPI +AsmReadEs ( + VOID + ); + + +/** + Reads the current value of FS Data Segment Register (FS). + + Reads and returns the current value of FS. This function is only available on + IA-32 and x64. + + @return The current value of FS. + +**/ +UINT16 +EFIAPI +AsmReadFs ( + VOID + ); + + +/** + Reads the current value of GS Data Segment Register (GS). + + Reads and returns the current value of GS. This function is only available on + IA-32 and x64. + + @return The current value of GS. + +**/ +UINT16 +EFIAPI +AsmReadGs ( + VOID + ); + + +/** + Reads the current value of Stack Segment Register (SS). + + Reads and returns the current value of SS. This function is only available on + IA-32 and x64. + + @return The current value of SS. + +**/ +UINT16 +EFIAPI +AsmReadSs ( + VOID + ); + + +/** + Reads the current value of Task Register (TR). + + Reads and returns the current value of TR. This function is only available on + IA-32 and x64. + + @return The current value of TR. + +**/ +UINT16 +EFIAPI +AsmReadTr ( + VOID + ); + + +/** + Reads the current Global Descriptor Table Register(GDTR) descriptor. + + Reads and returns the current GDTR descriptor and returns it in Gdtr. This + function is only available on IA-32 and x64. + + If Gdtr is NULL, then ASSERT(). + + @param Gdtr The pointer to a GDTR descriptor. + +**/ +VOID +EFIAPI +AsmReadGdtr ( + OUT IA32_DESCRIPTOR *Gdtr + ); + + +/** + Writes the current Global Descriptor Table Register (GDTR) descriptor. + + Writes and the current GDTR descriptor specified by Gdtr. This function is + only available on IA-32 and x64. + + If Gdtr is NULL, then ASSERT(). + + @param Gdtr The pointer to a GDTR descriptor. + +**/ +VOID +EFIAPI +AsmWriteGdtr ( + IN CONST IA32_DESCRIPTOR *Gdtr + ); + + +/** + Reads the current Interrupt Descriptor Table Register(IDTR) descriptor. + + Reads and returns the current IDTR descriptor and returns it in Idtr. This + function is only available on IA-32 and x64. + + If Idtr is NULL, then ASSERT(). + + @param Idtr The pointer to a IDTR descriptor. + +**/ +VOID +EFIAPI +AsmReadIdtr ( + OUT IA32_DESCRIPTOR *Idtr + ); + + +/** + Writes the current Interrupt Descriptor Table Register(IDTR) descriptor. + + Writes the current IDTR descriptor and returns it in Idtr. This function is + only available on IA-32 and x64. + + If Idtr is NULL, then ASSERT(). + + @param Idtr The pointer to a IDTR descriptor. + +**/ +VOID +EFIAPI +AsmWriteIdtr ( + IN CONST IA32_DESCRIPTOR *Idtr + ); + + +/** + Reads the current Local Descriptor Table Register(LDTR) selector. + + Reads and returns the current 16-bit LDTR descriptor value. This function is + only available on IA-32 and x64. + + @return The current selector of LDT. + +**/ +UINT16 +EFIAPI +AsmReadLdtr ( + VOID + ); + + +/** + Writes the current Local Descriptor Table Register (LDTR) selector. + + Writes and the current LDTR descriptor specified by Ldtr. This function is + only available on IA-32 and x64. + + @param Ldtr 16-bit LDTR selector value. + +**/ +VOID +EFIAPI +AsmWriteLdtr ( + IN UINT16 Ldtr + ); + + +/** + Save the current floating point/SSE/SSE2 context to a buffer. + + Saves the current floating point/SSE/SSE2 state to the buffer specified by + Buffer. Buffer must be aligned on a 16-byte boundary. This function is only + available on IA-32 and x64. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 16-byte boundary, then ASSERT(). + + @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. + +**/ +VOID +EFIAPI +AsmFxSave ( + OUT IA32_FX_BUFFER *Buffer + ); + + +/** + Restores the current floating point/SSE/SSE2 context from a buffer. + + Restores the current floating point/SSE/SSE2 state from the buffer specified + by Buffer. Buffer must be aligned on a 16-byte boundary. This function is + only available on IA-32 and x64. + + If Buffer is NULL, then ASSERT(). + If Buffer is not aligned on a 16-byte boundary, then ASSERT(). + If Buffer was not saved with AsmFxSave(), then ASSERT(). + + @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. + +**/ +VOID +EFIAPI +AsmFxRestore ( + IN CONST IA32_FX_BUFFER *Buffer + ); + + +/** + Reads the current value of 64-bit MMX Register #0 (MM0). + + Reads and returns the current value of MM0. This function is only available + on IA-32 and x64. + + @return The current value of MM0. + +**/ +UINT64 +EFIAPI +AsmReadMm0 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #1 (MM1). + + Reads and returns the current value of MM1. This function is only available + on IA-32 and x64. + + @return The current value of MM1. + +**/ +UINT64 +EFIAPI +AsmReadMm1 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #2 (MM2). + + Reads and returns the current value of MM2. This function is only available + on IA-32 and x64. + + @return The current value of MM2. + +**/ +UINT64 +EFIAPI +AsmReadMm2 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #3 (MM3). + + Reads and returns the current value of MM3. This function is only available + on IA-32 and x64. + + @return The current value of MM3. + +**/ +UINT64 +EFIAPI +AsmReadMm3 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #4 (MM4). + + Reads and returns the current value of MM4. This function is only available + on IA-32 and x64. + + @return The current value of MM4. + +**/ +UINT64 +EFIAPI +AsmReadMm4 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #5 (MM5). + + Reads and returns the current value of MM5. This function is only available + on IA-32 and x64. + + @return The current value of MM5. + +**/ +UINT64 +EFIAPI +AsmReadMm5 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #6 (MM6). + + Reads and returns the current value of MM6. This function is only available + on IA-32 and x64. + + @return The current value of MM6. + +**/ +UINT64 +EFIAPI +AsmReadMm6 ( + VOID + ); + + +/** + Reads the current value of 64-bit MMX Register #7 (MM7). + + Reads and returns the current value of MM7. This function is only available + on IA-32 and x64. + + @return The current value of MM7. + +**/ +UINT64 +EFIAPI +AsmReadMm7 ( + VOID + ); + + +/** + Writes the current value of 64-bit MMX Register #0 (MM0). + + Writes the current value of MM0. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM0. + +**/ +VOID +EFIAPI +AsmWriteMm0 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #1 (MM1). + + Writes the current value of MM1. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM1. + +**/ +VOID +EFIAPI +AsmWriteMm1 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #2 (MM2). + + Writes the current value of MM2. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM2. + +**/ +VOID +EFIAPI +AsmWriteMm2 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #3 (MM3). + + Writes the current value of MM3. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM3. + +**/ +VOID +EFIAPI +AsmWriteMm3 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #4 (MM4). + + Writes the current value of MM4. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM4. + +**/ +VOID +EFIAPI +AsmWriteMm4 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #5 (MM5). + + Writes the current value of MM5. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM5. + +**/ +VOID +EFIAPI +AsmWriteMm5 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #6 (MM6). + + Writes the current value of MM6. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM6. + +**/ +VOID +EFIAPI +AsmWriteMm6 ( + IN UINT64 Value + ); + + +/** + Writes the current value of 64-bit MMX Register #7 (MM7). + + Writes the current value of MM7. This function is only available on IA32 and + x64. + + @param Value The 64-bit value to write to MM7. + +**/ +VOID +EFIAPI +AsmWriteMm7 ( + IN UINT64 Value + ); + + +/** + Reads the current value of Time Stamp Counter (TSC). + + Reads and returns the current value of TSC. This function is only available + on IA-32 and x64. + + @return The current value of TSC + +**/ +UINT64 +EFIAPI +AsmReadTsc ( + VOID + ); + + +/** + Reads the current value of a Performance Counter (PMC). + + Reads and returns the current value of performance counter specified by + Index. This function is only available on IA-32 and x64. + + @param Index The 32-bit Performance Counter index to read. + + @return The value of the PMC specified by Index. + +**/ +UINT64 +EFIAPI +AsmReadPmc ( + IN UINT32 Index + ); + + +/** + Sets up a monitor buffer that is used by AsmMwait(). + + Executes a MONITOR instruction with the register state specified by Eax, Ecx + and Edx. Returns Eax. This function is only available on IA-32 and x64. + + @param Eax The value to load into EAX or RAX before executing the MONITOR + instruction. + @param Ecx The value to load into ECX or RCX before executing the MONITOR + instruction. + @param Edx The value to load into EDX or RDX before executing the MONITOR + instruction. + + @return Eax + +**/ +UINTN +EFIAPI +AsmMonitor ( + IN UINTN Eax, + IN UINTN Ecx, + IN UINTN Edx + ); + + +/** + Executes an MWAIT instruction. + + Executes an MWAIT instruction with the register state specified by Eax and + Ecx. Returns Eax. This function is only available on IA-32 and x64. + + @param Eax The value to load into EAX or RAX before executing the MONITOR + instruction. + @param Ecx The value to load into ECX or RCX before executing the MONITOR + instruction. + + @return Eax + +**/ +UINTN +EFIAPI +AsmMwait ( + IN UINTN Eax, + IN UINTN Ecx + ); + + +/** + Executes a WBINVD instruction. + + Executes a WBINVD instruction. This function is only available on IA-32 and + x64. + +**/ +VOID +EFIAPI +AsmWbinvd ( + VOID + ); + + +/** + Executes a INVD instruction. + + Executes a INVD instruction. This function is only available on IA-32 and + x64. + +**/ +VOID +EFIAPI +AsmInvd ( + VOID + ); + + +/** + Flushes a cache line from all the instruction and data caches within the + coherency domain of the CPU. + + Flushed the cache line specified by LinearAddress, and returns LinearAddress. + This function is only available on IA-32 and x64. + + @param LinearAddress The address of the cache line to flush. If the CPU is + in a physical addressing mode, then LinearAddress is a + physical address. If the CPU is in a virtual + addressing mode, then LinearAddress is a virtual + address. + + @return LinearAddress. +**/ +VOID * +EFIAPI +AsmFlushCacheLine ( + IN VOID *LinearAddress + ); + + +/** + Enables the 32-bit paging mode on the CPU. + + Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables + must be properly initialized prior to calling this service. This function + assumes the current execution mode is 32-bit protected mode. This function is + only available on IA-32. After the 32-bit paging mode is enabled, control is + transferred to the function specified by EntryPoint using the new stack + specified by NewStack and passing in the parameters specified by Context1 and + Context2. Context1 and Context2 are optional and may be NULL. The function + EntryPoint must never return. + + If the current execution mode is not 32-bit protected mode, then ASSERT(). + If EntryPoint is NULL, then ASSERT(). + If NewStack is NULL, then ASSERT(). + + There are a number of constraints that must be followed before calling this + function: + 1) Interrupts must be disabled. + 2) The caller must be in 32-bit protected mode with flat descriptors. This + means all descriptors must have a base of 0 and a limit of 4GB. + 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat + descriptors. + 4) CR3 must point to valid page tables that will be used once the transition + is complete, and those page tables must guarantee that the pages for this + function and the stack are identity mapped. + + @param EntryPoint A pointer to function to call with the new stack after + paging is enabled. + @param Context1 A pointer to the context to pass into the EntryPoint + function as the first parameter after paging is enabled. + @param Context2 A pointer to the context to pass into the EntryPoint + function as the second parameter after paging is enabled. + @param NewStack A pointer to the new stack to use for the EntryPoint + function after paging is enabled. + +**/ +VOID +EFIAPI +AsmEnablePaging32 ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack + ); + + +/** + Disables the 32-bit paging mode on the CPU. + + Disables the 32-bit paging mode on the CPU and returns to 32-bit protected + mode. This function assumes the current execution mode is 32-paged protected + mode. This function is only available on IA-32. After the 32-bit paging mode + is disabled, control is transferred to the function specified by EntryPoint + using the new stack specified by NewStack and passing in the parameters + specified by Context1 and Context2. Context1 and Context2 are optional and + may be NULL. The function EntryPoint must never return. + + If the current execution mode is not 32-bit paged mode, then ASSERT(). + If EntryPoint is NULL, then ASSERT(). + If NewStack is NULL, then ASSERT(). + + There are a number of constraints that must be followed before calling this + function: + 1) Interrupts must be disabled. + 2) The caller must be in 32-bit paged mode. + 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode. + 4) CR3 must point to valid page tables that guarantee that the pages for + this function and the stack are identity mapped. + + @param EntryPoint A pointer to function to call with the new stack after + paging is disabled. + @param Context1 A pointer to the context to pass into the EntryPoint + function as the first parameter after paging is disabled. + @param Context2 A pointer to the context to pass into the EntryPoint + function as the second parameter after paging is + disabled. + @param NewStack A pointer to the new stack to use for the EntryPoint + function after paging is disabled. + +**/ +VOID +EFIAPI +AsmDisablePaging32 ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack + ); + + +/** + Enables the 64-bit paging mode on the CPU. + + Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables + must be properly initialized prior to calling this service. This function + assumes the current execution mode is 32-bit protected mode with flat + descriptors. This function is only available on IA-32. After the 64-bit + paging mode is enabled, control is transferred to the function specified by + EntryPoint using the new stack specified by NewStack and passing in the + parameters specified by Context1 and Context2. Context1 and Context2 are + optional and may be 0. The function EntryPoint must never return. + + If the current execution mode is not 32-bit protected mode with flat + descriptors, then ASSERT(). + If EntryPoint is 0, then ASSERT(). + If NewStack is 0, then ASSERT(). + + @param Cs The 16-bit selector to load in the CS before EntryPoint + is called. The descriptor in the GDT that this selector + references must be setup for long mode. + @param EntryPoint The 64-bit virtual address of the function to call with + the new stack after paging is enabled. + @param Context1 The 64-bit virtual address of the context to pass into + the EntryPoint function as the first parameter after + paging is enabled. + @param Context2 The 64-bit virtual address of the context to pass into + the EntryPoint function as the second parameter after + paging is enabled. + @param NewStack The 64-bit virtual address of the new stack to use for + the EntryPoint function after paging is enabled. + +**/ +VOID +EFIAPI +AsmEnablePaging64 ( + IN UINT16 Cs, + IN UINT64 EntryPoint, + IN UINT64 Context1, OPTIONAL + IN UINT64 Context2, OPTIONAL + IN UINT64 NewStack + ); + + +/** + Disables the 64-bit paging mode on the CPU. + + Disables the 64-bit paging mode on the CPU and returns to 32-bit protected + mode. This function assumes the current execution mode is 64-paging mode. + This function is only available on x64. After the 64-bit paging mode is + disabled, control is transferred to the function specified by EntryPoint + using the new stack specified by NewStack and passing in the parameters + specified by Context1 and Context2. Context1 and Context2 are optional and + may be 0. The function EntryPoint must never return. + + If the current execution mode is not 64-bit paged mode, then ASSERT(). + If EntryPoint is 0, then ASSERT(). + If NewStack is 0, then ASSERT(). + + @param Cs The 16-bit selector to load in the CS before EntryPoint + is called. The descriptor in the GDT that this selector + references must be setup for 32-bit protected mode. + @param EntryPoint The 64-bit virtual address of the function to call with + the new stack after paging is disabled. + @param Context1 The 64-bit virtual address of the context to pass into + the EntryPoint function as the first parameter after + paging is disabled. + @param Context2 The 64-bit virtual address of the context to pass into + the EntryPoint function as the second parameter after + paging is disabled. + @param NewStack The 64-bit virtual address of the new stack to use for + the EntryPoint function after paging is disabled. + +**/ +VOID +EFIAPI +AsmDisablePaging64 ( + IN UINT16 Cs, + IN UINT32 EntryPoint, + IN UINT32 Context1, OPTIONAL + IN UINT32 Context2, OPTIONAL + IN UINT32 NewStack + ); + + +// +// 16-bit thunking services +// + +/** + Retrieves the properties for 16-bit thunk functions. + + Computes the size of the buffer and stack below 1MB required to use the + AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This + buffer size is returned in RealModeBufferSize, and the stack size is returned + in ExtraStackSize. If parameters are passed to the 16-bit real mode code, + then the actual minimum stack size is ExtraStackSize plus the maximum number + of bytes that need to be passed to the 16-bit real mode code. + + If RealModeBufferSize is NULL, then ASSERT(). + If ExtraStackSize is NULL, then ASSERT(). + + @param RealModeBufferSize A pointer to the size of the buffer below 1MB + required to use the 16-bit thunk functions. + @param ExtraStackSize A pointer to the extra size of stack below 1MB + that the 16-bit thunk functions require for + temporary storage in the transition to and from + 16-bit real mode. + +**/ +VOID +EFIAPI +AsmGetThunk16Properties ( + OUT UINT32 *RealModeBufferSize, + OUT UINT32 *ExtraStackSize + ); + + +/** + Prepares all structures a code required to use AsmThunk16(). + + Prepares all structures and code required to use AsmThunk16(). + + This interface is limited to be used in either physical mode or virtual modes with paging enabled where the + virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1. + + If ThunkContext is NULL, then ASSERT(). + + @param ThunkContext A pointer to the context structure that describes the + 16-bit real mode code to call. + +**/ +VOID +EFIAPI +AsmPrepareThunk16 ( + IN OUT THUNK_CONTEXT *ThunkContext + ); + + +/** + Transfers control to a 16-bit real mode entry point and returns the results. + + Transfers control to a 16-bit real mode entry point and returns the results. + AsmPrepareThunk16() must be called with ThunkContext before this function is used. + This function must be called with interrupts disabled. + + The register state from the RealModeState field of ThunkContext is restored just prior + to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, + which is used to set the interrupt state when a 16-bit real mode entry point is called. + Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState. + The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to + the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. + The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction, + so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment + and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry + point must exit with a RETF instruction. The register state is captured into RealModeState immediately + after the RETF instruction is executed. + + If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, + or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure + the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. + + If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, + then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. + This includes the base vectors, the interrupt masks, and the edge/level trigger mode. + + If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code + is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits. + + If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in + ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to + disable the A20 mask. + + If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in + ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, + then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports. + + If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in + ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports. + + If ThunkContext is NULL, then ASSERT(). + If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT(). + If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in + ThunkAttributes, then ASSERT(). + + This interface is limited to be used in either physical mode or virtual modes with paging enabled where the + virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1. + + @param ThunkContext A pointer to the context structure that describes the + 16-bit real mode code to call. + +**/ +VOID +EFIAPI +AsmThunk16 ( + IN OUT THUNK_CONTEXT *ThunkContext + ); + + +/** + Prepares all structures and code for a 16-bit real mode thunk, transfers + control to a 16-bit real mode entry point, and returns the results. + + Prepares all structures and code for a 16-bit real mode thunk, transfers + control to a 16-bit real mode entry point, and returns the results. If the + caller only need to perform a single 16-bit real mode thunk, then this + service should be used. If the caller intends to make more than one 16-bit + real mode thunk, then it is more efficient if AsmPrepareThunk16() is called + once and AsmThunk16() can be called for each 16-bit real mode thunk. + + This interface is limited to be used in either physical mode or virtual modes with paging enabled where the + virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1. + + See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions. + + @param ThunkContext A pointer to the context structure that describes the + 16-bit real mode code to call. + +**/ +VOID +EFIAPI +AsmPrepareAndThunk16 ( + IN OUT THUNK_CONTEXT *ThunkContext + ); + +#endif +#endif + +