Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / workingset.c
diff --git a/kernel/mm/workingset.c b/kernel/mm/workingset.c
new file mode 100644 (file)
index 0000000..263d019
--- /dev/null
@@ -0,0 +1,416 @@
+/*
+ * Workingset detection
+ *
+ * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
+ */
+
+#include <linux/memcontrol.h>
+#include <linux/writeback.h>
+#include <linux/pagemap.h>
+#include <linux/atomic.h>
+#include <linux/module.h>
+#include <linux/swap.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+
+/*
+ *             Double CLOCK lists
+ *
+ * Per zone, two clock lists are maintained for file pages: the
+ * inactive and the active list.  Freshly faulted pages start out at
+ * the head of the inactive list and page reclaim scans pages from the
+ * tail.  Pages that are accessed multiple times on the inactive list
+ * are promoted to the active list, to protect them from reclaim,
+ * whereas active pages are demoted to the inactive list when the
+ * active list grows too big.
+ *
+ *   fault ------------------------+
+ *                                 |
+ *              +--------------+   |            +-------------+
+ *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
+ *              +--------------+                +-------------+    |
+ *                     |                                           |
+ *                     +-------------- promotion ------------------+
+ *
+ *
+ *             Access frequency and refault distance
+ *
+ * A workload is thrashing when its pages are frequently used but they
+ * are evicted from the inactive list every time before another access
+ * would have promoted them to the active list.
+ *
+ * In cases where the average access distance between thrashing pages
+ * is bigger than the size of memory there is nothing that can be
+ * done - the thrashing set could never fit into memory under any
+ * circumstance.
+ *
+ * However, the average access distance could be bigger than the
+ * inactive list, yet smaller than the size of memory.  In this case,
+ * the set could fit into memory if it weren't for the currently
+ * active pages - which may be used more, hopefully less frequently:
+ *
+ *      +-memory available to cache-+
+ *      |                           |
+ *      +-inactive------+-active----+
+ *  a b | c d e f g h i | J K L M N |
+ *      +---------------+-----------+
+ *
+ * It is prohibitively expensive to accurately track access frequency
+ * of pages.  But a reasonable approximation can be made to measure
+ * thrashing on the inactive list, after which refaulting pages can be
+ * activated optimistically to compete with the existing active pages.
+ *
+ * Approximating inactive page access frequency - Observations:
+ *
+ * 1. When a page is accessed for the first time, it is added to the
+ *    head of the inactive list, slides every existing inactive page
+ *    towards the tail by one slot, and pushes the current tail page
+ *    out of memory.
+ *
+ * 2. When a page is accessed for the second time, it is promoted to
+ *    the active list, shrinking the inactive list by one slot.  This
+ *    also slides all inactive pages that were faulted into the cache
+ *    more recently than the activated page towards the tail of the
+ *    inactive list.
+ *
+ * Thus:
+ *
+ * 1. The sum of evictions and activations between any two points in
+ *    time indicate the minimum number of inactive pages accessed in
+ *    between.
+ *
+ * 2. Moving one inactive page N page slots towards the tail of the
+ *    list requires at least N inactive page accesses.
+ *
+ * Combining these:
+ *
+ * 1. When a page is finally evicted from memory, the number of
+ *    inactive pages accessed while the page was in cache is at least
+ *    the number of page slots on the inactive list.
+ *
+ * 2. In addition, measuring the sum of evictions and activations (E)
+ *    at the time of a page's eviction, and comparing it to another
+ *    reading (R) at the time the page faults back into memory tells
+ *    the minimum number of accesses while the page was not cached.
+ *    This is called the refault distance.
+ *
+ * Because the first access of the page was the fault and the second
+ * access the refault, we combine the in-cache distance with the
+ * out-of-cache distance to get the complete minimum access distance
+ * of this page:
+ *
+ *      NR_inactive + (R - E)
+ *
+ * And knowing the minimum access distance of a page, we can easily
+ * tell if the page would be able to stay in cache assuming all page
+ * slots in the cache were available:
+ *
+ *   NR_inactive + (R - E) <= NR_inactive + NR_active
+ *
+ * which can be further simplified to
+ *
+ *   (R - E) <= NR_active
+ *
+ * Put into words, the refault distance (out-of-cache) can be seen as
+ * a deficit in inactive list space (in-cache).  If the inactive list
+ * had (R - E) more page slots, the page would not have been evicted
+ * in between accesses, but activated instead.  And on a full system,
+ * the only thing eating into inactive list space is active pages.
+ *
+ *
+ *             Activating refaulting pages
+ *
+ * All that is known about the active list is that the pages have been
+ * accessed more than once in the past.  This means that at any given
+ * time there is actually a good chance that pages on the active list
+ * are no longer in active use.
+ *
+ * So when a refault distance of (R - E) is observed and there are at
+ * least (R - E) active pages, the refaulting page is activated
+ * optimistically in the hope that (R - E) active pages are actually
+ * used less frequently than the refaulting page - or even not used at
+ * all anymore.
+ *
+ * If this is wrong and demotion kicks in, the pages which are truly
+ * used more frequently will be reactivated while the less frequently
+ * used once will be evicted from memory.
+ *
+ * But if this is right, the stale pages will be pushed out of memory
+ * and the used pages get to stay in cache.
+ *
+ *
+ *             Implementation
+ *
+ * For each zone's file LRU lists, a counter for inactive evictions
+ * and activations is maintained (zone->inactive_age).
+ *
+ * On eviction, a snapshot of this counter (along with some bits to
+ * identify the zone) is stored in the now empty page cache radix tree
+ * slot of the evicted page.  This is called a shadow entry.
+ *
+ * On cache misses for which there are shadow entries, an eligible
+ * refault distance will immediately activate the refaulting page.
+ */
+
+static void *pack_shadow(unsigned long eviction, struct zone *zone)
+{
+       eviction = (eviction << NODES_SHIFT) | zone_to_nid(zone);
+       eviction = (eviction << ZONES_SHIFT) | zone_idx(zone);
+       eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
+
+       return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
+}
+
+static void unpack_shadow(void *shadow,
+                         struct zone **zone,
+                         unsigned long *distance)
+{
+       unsigned long entry = (unsigned long)shadow;
+       unsigned long eviction;
+       unsigned long refault;
+       unsigned long mask;
+       int zid, nid;
+
+       entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
+       zid = entry & ((1UL << ZONES_SHIFT) - 1);
+       entry >>= ZONES_SHIFT;
+       nid = entry & ((1UL << NODES_SHIFT) - 1);
+       entry >>= NODES_SHIFT;
+       eviction = entry;
+
+       *zone = NODE_DATA(nid)->node_zones + zid;
+
+       refault = atomic_long_read(&(*zone)->inactive_age);
+       mask = ~0UL >> (NODES_SHIFT + ZONES_SHIFT +
+                       RADIX_TREE_EXCEPTIONAL_SHIFT);
+       /*
+        * The unsigned subtraction here gives an accurate distance
+        * across inactive_age overflows in most cases.
+        *
+        * There is a special case: usually, shadow entries have a
+        * short lifetime and are either refaulted or reclaimed along
+        * with the inode before they get too old.  But it is not
+        * impossible for the inactive_age to lap a shadow entry in
+        * the field, which can then can result in a false small
+        * refault distance, leading to a false activation should this
+        * old entry actually refault again.  However, earlier kernels
+        * used to deactivate unconditionally with *every* reclaim
+        * invocation for the longest time, so the occasional
+        * inappropriate activation leading to pressure on the active
+        * list is not a problem.
+        */
+       *distance = (refault - eviction) & mask;
+}
+
+/**
+ * workingset_eviction - note the eviction of a page from memory
+ * @mapping: address space the page was backing
+ * @page: the page being evicted
+ *
+ * Returns a shadow entry to be stored in @mapping->page_tree in place
+ * of the evicted @page so that a later refault can be detected.
+ */
+void *workingset_eviction(struct address_space *mapping, struct page *page)
+{
+       struct zone *zone = page_zone(page);
+       unsigned long eviction;
+
+       eviction = atomic_long_inc_return(&zone->inactive_age);
+       return pack_shadow(eviction, zone);
+}
+
+/**
+ * workingset_refault - evaluate the refault of a previously evicted page
+ * @shadow: shadow entry of the evicted page
+ *
+ * Calculates and evaluates the refault distance of the previously
+ * evicted page in the context of the zone it was allocated in.
+ *
+ * Returns %true if the page should be activated, %false otherwise.
+ */
+bool workingset_refault(void *shadow)
+{
+       unsigned long refault_distance;
+       struct zone *zone;
+
+       unpack_shadow(shadow, &zone, &refault_distance);
+       inc_zone_state(zone, WORKINGSET_REFAULT);
+
+       if (refault_distance <= zone_page_state(zone, NR_ACTIVE_FILE)) {
+               inc_zone_state(zone, WORKINGSET_ACTIVATE);
+               return true;
+       }
+       return false;
+}
+
+/**
+ * workingset_activation - note a page activation
+ * @page: page that is being activated
+ */
+void workingset_activation(struct page *page)
+{
+       atomic_long_inc(&page_zone(page)->inactive_age);
+}
+
+/*
+ * Shadow entries reflect the share of the working set that does not
+ * fit into memory, so their number depends on the access pattern of
+ * the workload.  In most cases, they will refault or get reclaimed
+ * along with the inode, but a (malicious) workload that streams
+ * through files with a total size several times that of available
+ * memory, while preventing the inodes from being reclaimed, can
+ * create excessive amounts of shadow nodes.  To keep a lid on this,
+ * track shadow nodes and reclaim them when they grow way past the
+ * point where they would still be useful.
+ */
+
+struct list_lru __workingset_shadow_nodes;
+DEFINE_LOCAL_IRQ_LOCK(workingset_shadow_lock);
+
+static unsigned long count_shadow_nodes(struct shrinker *shrinker,
+                                       struct shrink_control *sc)
+{
+       unsigned long shadow_nodes;
+       unsigned long max_nodes;
+       unsigned long pages;
+
+       /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
+       local_lock_irq(workingset_shadow_lock);
+       shadow_nodes = list_lru_shrink_count(&__workingset_shadow_nodes, sc);
+       local_unlock_irq(workingset_shadow_lock);
+
+       pages = node_present_pages(sc->nid);
+       /*
+        * Active cache pages are limited to 50% of memory, and shadow
+        * entries that represent a refault distance bigger than that
+        * do not have any effect.  Limit the number of shadow nodes
+        * such that shadow entries do not exceed the number of active
+        * cache pages, assuming a worst-case node population density
+        * of 1/8th on average.
+        *
+        * On 64-bit with 7 radix_tree_nodes per page and 64 slots
+        * each, this will reclaim shadow entries when they consume
+        * ~2% of available memory:
+        *
+        * PAGE_SIZE / radix_tree_nodes / node_entries / PAGE_SIZE
+        */
+       max_nodes = pages >> (1 + RADIX_TREE_MAP_SHIFT - 3);
+
+       if (shadow_nodes <= max_nodes)
+               return 0;
+
+       return shadow_nodes - max_nodes;
+}
+
+static enum lru_status shadow_lru_isolate(struct list_head *item,
+                                         struct list_lru_one *lru,
+                                         spinlock_t *lru_lock,
+                                         void *arg)
+{
+       struct address_space *mapping;
+       struct radix_tree_node *node;
+       unsigned int i;
+       int ret;
+
+       /*
+        * Page cache insertions and deletions synchroneously maintain
+        * the shadow node LRU under the mapping->tree_lock and the
+        * lru_lock.  Because the page cache tree is emptied before
+        * the inode can be destroyed, holding the lru_lock pins any
+        * address_space that has radix tree nodes on the LRU.
+        *
+        * We can then safely transition to the mapping->tree_lock to
+        * pin only the address_space of the particular node we want
+        * to reclaim, take the node off-LRU, and drop the lru_lock.
+        */
+
+       node = container_of(item, struct radix_tree_node, private_list);
+       mapping = node->private_data;
+
+       /* Coming from the list, invert the lock order */
+       if (!spin_trylock(&mapping->tree_lock)) {
+               spin_unlock(lru_lock);
+               ret = LRU_RETRY;
+               goto out;
+       }
+
+       list_lru_isolate(lru, item);
+       spin_unlock(lru_lock);
+
+       /*
+        * The nodes should only contain one or more shadow entries,
+        * no pages, so we expect to be able to remove them all and
+        * delete and free the empty node afterwards.
+        */
+
+       BUG_ON(!node->count);
+       BUG_ON(node->count & RADIX_TREE_COUNT_MASK);
+
+       for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
+               if (node->slots[i]) {
+                       BUG_ON(!radix_tree_exceptional_entry(node->slots[i]));
+                       node->slots[i] = NULL;
+                       BUG_ON(node->count < (1U << RADIX_TREE_COUNT_SHIFT));
+                       node->count -= 1U << RADIX_TREE_COUNT_SHIFT;
+                       BUG_ON(!mapping->nrshadows);
+                       mapping->nrshadows--;
+               }
+       }
+       BUG_ON(node->count);
+       inc_zone_state(page_zone(virt_to_page(node)), WORKINGSET_NODERECLAIM);
+       if (!__radix_tree_delete_node(&mapping->page_tree, node))
+               BUG();
+
+       spin_unlock(&mapping->tree_lock);
+       ret = LRU_REMOVED_RETRY;
+out:
+       local_unlock_irq(workingset_shadow_lock);
+       cond_resched();
+       local_lock_irq(workingset_shadow_lock);
+       spin_lock(lru_lock);
+       return ret;
+}
+
+static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
+                                      struct shrink_control *sc)
+{
+       unsigned long ret;
+
+       /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
+       local_lock_irq(workingset_shadow_lock);
+       ret =  list_lru_shrink_walk(&__workingset_shadow_nodes, sc,
+                                   shadow_lru_isolate, NULL);
+       local_unlock_irq(workingset_shadow_lock);
+       return ret;
+}
+
+static struct shrinker workingset_shadow_shrinker = {
+       .count_objects = count_shadow_nodes,
+       .scan_objects = scan_shadow_nodes,
+       .seeks = DEFAULT_SEEKS,
+       .flags = SHRINKER_NUMA_AWARE,
+};
+
+/*
+ * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
+ * mapping->tree_lock.
+ */
+static struct lock_class_key shadow_nodes_key;
+
+static int __init workingset_init(void)
+{
+       int ret;
+
+       ret = list_lru_init_key(&__workingset_shadow_nodes, &shadow_nodes_key);
+       if (ret)
+               goto err;
+       ret = register_shrinker(&workingset_shadow_shrinker);
+       if (ret)
+               goto err_list_lru;
+       return 0;
+err_list_lru:
+       list_lru_destroy(&__workingset_shadow_nodes);
+err:
+       return ret;
+}
+module_init(workingset_init);