Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / swapfile.c
diff --git a/kernel/mm/swapfile.c b/kernel/mm/swapfile.c
new file mode 100644 (file)
index 0000000..a7e7210
--- /dev/null
@@ -0,0 +1,2940 @@
+/*
+ *  linux/mm/swapfile.c
+ *
+ *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
+ *  Swap reorganised 29.12.95, Stephen Tweedie
+ */
+
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/mman.h>
+#include <linux/slab.h>
+#include <linux/kernel_stat.h>
+#include <linux/swap.h>
+#include <linux/vmalloc.h>
+#include <linux/pagemap.h>
+#include <linux/namei.h>
+#include <linux/shmem_fs.h>
+#include <linux/blkdev.h>
+#include <linux/random.h>
+#include <linux/writeback.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/init.h>
+#include <linux/ksm.h>
+#include <linux/rmap.h>
+#include <linux/security.h>
+#include <linux/backing-dev.h>
+#include <linux/mutex.h>
+#include <linux/capability.h>
+#include <linux/syscalls.h>
+#include <linux/memcontrol.h>
+#include <linux/poll.h>
+#include <linux/oom.h>
+#include <linux/frontswap.h>
+#include <linux/swapfile.h>
+#include <linux/export.h>
+
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+#include <linux/swapops.h>
+#include <linux/swap_cgroup.h>
+
+static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
+                                unsigned char);
+static void free_swap_count_continuations(struct swap_info_struct *);
+static sector_t map_swap_entry(swp_entry_t, struct block_device**);
+
+DEFINE_SPINLOCK(swap_lock);
+static unsigned int nr_swapfiles;
+atomic_long_t nr_swap_pages;
+/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
+long total_swap_pages;
+static int least_priority;
+
+static const char Bad_file[] = "Bad swap file entry ";
+static const char Unused_file[] = "Unused swap file entry ";
+static const char Bad_offset[] = "Bad swap offset entry ";
+static const char Unused_offset[] = "Unused swap offset entry ";
+
+/*
+ * all active swap_info_structs
+ * protected with swap_lock, and ordered by priority.
+ */
+PLIST_HEAD(swap_active_head);
+
+/*
+ * all available (active, not full) swap_info_structs
+ * protected with swap_avail_lock, ordered by priority.
+ * This is used by get_swap_page() instead of swap_active_head
+ * because swap_active_head includes all swap_info_structs,
+ * but get_swap_page() doesn't need to look at full ones.
+ * This uses its own lock instead of swap_lock because when a
+ * swap_info_struct changes between not-full/full, it needs to
+ * add/remove itself to/from this list, but the swap_info_struct->lock
+ * is held and the locking order requires swap_lock to be taken
+ * before any swap_info_struct->lock.
+ */
+static PLIST_HEAD(swap_avail_head);
+static DEFINE_SPINLOCK(swap_avail_lock);
+
+struct swap_info_struct *swap_info[MAX_SWAPFILES];
+
+static DEFINE_MUTEX(swapon_mutex);
+
+static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
+/* Activity counter to indicate that a swapon or swapoff has occurred */
+static atomic_t proc_poll_event = ATOMIC_INIT(0);
+
+static inline unsigned char swap_count(unsigned char ent)
+{
+       return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
+}
+
+/* returns 1 if swap entry is freed */
+static int
+__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
+{
+       swp_entry_t entry = swp_entry(si->type, offset);
+       struct page *page;
+       int ret = 0;
+
+       page = find_get_page(swap_address_space(entry), entry.val);
+       if (!page)
+               return 0;
+       /*
+        * This function is called from scan_swap_map() and it's called
+        * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
+        * We have to use trylock for avoiding deadlock. This is a special
+        * case and you should use try_to_free_swap() with explicit lock_page()
+        * in usual operations.
+        */
+       if (trylock_page(page)) {
+               ret = try_to_free_swap(page);
+               unlock_page(page);
+       }
+       page_cache_release(page);
+       return ret;
+}
+
+/*
+ * swapon tell device that all the old swap contents can be discarded,
+ * to allow the swap device to optimize its wear-levelling.
+ */
+static int discard_swap(struct swap_info_struct *si)
+{
+       struct swap_extent *se;
+       sector_t start_block;
+       sector_t nr_blocks;
+       int err = 0;
+
+       /* Do not discard the swap header page! */
+       se = &si->first_swap_extent;
+       start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
+       nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
+       if (nr_blocks) {
+               err = blkdev_issue_discard(si->bdev, start_block,
+                               nr_blocks, GFP_KERNEL, 0);
+               if (err)
+                       return err;
+               cond_resched();
+       }
+
+       list_for_each_entry(se, &si->first_swap_extent.list, list) {
+               start_block = se->start_block << (PAGE_SHIFT - 9);
+               nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
+
+               err = blkdev_issue_discard(si->bdev, start_block,
+                               nr_blocks, GFP_KERNEL, 0);
+               if (err)
+                       break;
+
+               cond_resched();
+       }
+       return err;             /* That will often be -EOPNOTSUPP */
+}
+
+/*
+ * swap allocation tell device that a cluster of swap can now be discarded,
+ * to allow the swap device to optimize its wear-levelling.
+ */
+static void discard_swap_cluster(struct swap_info_struct *si,
+                                pgoff_t start_page, pgoff_t nr_pages)
+{
+       struct swap_extent *se = si->curr_swap_extent;
+       int found_extent = 0;
+
+       while (nr_pages) {
+               struct list_head *lh;
+
+               if (se->start_page <= start_page &&
+                   start_page < se->start_page + se->nr_pages) {
+                       pgoff_t offset = start_page - se->start_page;
+                       sector_t start_block = se->start_block + offset;
+                       sector_t nr_blocks = se->nr_pages - offset;
+
+                       if (nr_blocks > nr_pages)
+                               nr_blocks = nr_pages;
+                       start_page += nr_blocks;
+                       nr_pages -= nr_blocks;
+
+                       if (!found_extent++)
+                               si->curr_swap_extent = se;
+
+                       start_block <<= PAGE_SHIFT - 9;
+                       nr_blocks <<= PAGE_SHIFT - 9;
+                       if (blkdev_issue_discard(si->bdev, start_block,
+                                   nr_blocks, GFP_NOIO, 0))
+                               break;
+               }
+
+               lh = se->list.next;
+               se = list_entry(lh, struct swap_extent, list);
+       }
+}
+
+#define SWAPFILE_CLUSTER       256
+#define LATENCY_LIMIT          256
+
+static inline void cluster_set_flag(struct swap_cluster_info *info,
+       unsigned int flag)
+{
+       info->flags = flag;
+}
+
+static inline unsigned int cluster_count(struct swap_cluster_info *info)
+{
+       return info->data;
+}
+
+static inline void cluster_set_count(struct swap_cluster_info *info,
+                                    unsigned int c)
+{
+       info->data = c;
+}
+
+static inline void cluster_set_count_flag(struct swap_cluster_info *info,
+                                        unsigned int c, unsigned int f)
+{
+       info->flags = f;
+       info->data = c;
+}
+
+static inline unsigned int cluster_next(struct swap_cluster_info *info)
+{
+       return info->data;
+}
+
+static inline void cluster_set_next(struct swap_cluster_info *info,
+                                   unsigned int n)
+{
+       info->data = n;
+}
+
+static inline void cluster_set_next_flag(struct swap_cluster_info *info,
+                                        unsigned int n, unsigned int f)
+{
+       info->flags = f;
+       info->data = n;
+}
+
+static inline bool cluster_is_free(struct swap_cluster_info *info)
+{
+       return info->flags & CLUSTER_FLAG_FREE;
+}
+
+static inline bool cluster_is_null(struct swap_cluster_info *info)
+{
+       return info->flags & CLUSTER_FLAG_NEXT_NULL;
+}
+
+static inline void cluster_set_null(struct swap_cluster_info *info)
+{
+       info->flags = CLUSTER_FLAG_NEXT_NULL;
+       info->data = 0;
+}
+
+/* Add a cluster to discard list and schedule it to do discard */
+static void swap_cluster_schedule_discard(struct swap_info_struct *si,
+               unsigned int idx)
+{
+       /*
+        * If scan_swap_map() can't find a free cluster, it will check
+        * si->swap_map directly. To make sure the discarding cluster isn't
+        * taken by scan_swap_map(), mark the swap entries bad (occupied). It
+        * will be cleared after discard
+        */
+       memset(si->swap_map + idx * SWAPFILE_CLUSTER,
+                       SWAP_MAP_BAD, SWAPFILE_CLUSTER);
+
+       if (cluster_is_null(&si->discard_cluster_head)) {
+               cluster_set_next_flag(&si->discard_cluster_head,
+                                               idx, 0);
+               cluster_set_next_flag(&si->discard_cluster_tail,
+                                               idx, 0);
+       } else {
+               unsigned int tail = cluster_next(&si->discard_cluster_tail);
+               cluster_set_next(&si->cluster_info[tail], idx);
+               cluster_set_next_flag(&si->discard_cluster_tail,
+                                               idx, 0);
+       }
+
+       schedule_work(&si->discard_work);
+}
+
+/*
+ * Doing discard actually. After a cluster discard is finished, the cluster
+ * will be added to free cluster list. caller should hold si->lock.
+*/
+static void swap_do_scheduled_discard(struct swap_info_struct *si)
+{
+       struct swap_cluster_info *info;
+       unsigned int idx;
+
+       info = si->cluster_info;
+
+       while (!cluster_is_null(&si->discard_cluster_head)) {
+               idx = cluster_next(&si->discard_cluster_head);
+
+               cluster_set_next_flag(&si->discard_cluster_head,
+                                               cluster_next(&info[idx]), 0);
+               if (cluster_next(&si->discard_cluster_tail) == idx) {
+                       cluster_set_null(&si->discard_cluster_head);
+                       cluster_set_null(&si->discard_cluster_tail);
+               }
+               spin_unlock(&si->lock);
+
+               discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
+                               SWAPFILE_CLUSTER);
+
+               spin_lock(&si->lock);
+               cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
+               if (cluster_is_null(&si->free_cluster_head)) {
+                       cluster_set_next_flag(&si->free_cluster_head,
+                                               idx, 0);
+                       cluster_set_next_flag(&si->free_cluster_tail,
+                                               idx, 0);
+               } else {
+                       unsigned int tail;
+
+                       tail = cluster_next(&si->free_cluster_tail);
+                       cluster_set_next(&info[tail], idx);
+                       cluster_set_next_flag(&si->free_cluster_tail,
+                                               idx, 0);
+               }
+               memset(si->swap_map + idx * SWAPFILE_CLUSTER,
+                               0, SWAPFILE_CLUSTER);
+       }
+}
+
+static void swap_discard_work(struct work_struct *work)
+{
+       struct swap_info_struct *si;
+
+       si = container_of(work, struct swap_info_struct, discard_work);
+
+       spin_lock(&si->lock);
+       swap_do_scheduled_discard(si);
+       spin_unlock(&si->lock);
+}
+
+/*
+ * The cluster corresponding to page_nr will be used. The cluster will be
+ * removed from free cluster list and its usage counter will be increased.
+ */
+static void inc_cluster_info_page(struct swap_info_struct *p,
+       struct swap_cluster_info *cluster_info, unsigned long page_nr)
+{
+       unsigned long idx = page_nr / SWAPFILE_CLUSTER;
+
+       if (!cluster_info)
+               return;
+       if (cluster_is_free(&cluster_info[idx])) {
+               VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
+               cluster_set_next_flag(&p->free_cluster_head,
+                       cluster_next(&cluster_info[idx]), 0);
+               if (cluster_next(&p->free_cluster_tail) == idx) {
+                       cluster_set_null(&p->free_cluster_tail);
+                       cluster_set_null(&p->free_cluster_head);
+               }
+               cluster_set_count_flag(&cluster_info[idx], 0, 0);
+       }
+
+       VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
+       cluster_set_count(&cluster_info[idx],
+               cluster_count(&cluster_info[idx]) + 1);
+}
+
+/*
+ * The cluster corresponding to page_nr decreases one usage. If the usage
+ * counter becomes 0, which means no page in the cluster is in using, we can
+ * optionally discard the cluster and add it to free cluster list.
+ */
+static void dec_cluster_info_page(struct swap_info_struct *p,
+       struct swap_cluster_info *cluster_info, unsigned long page_nr)
+{
+       unsigned long idx = page_nr / SWAPFILE_CLUSTER;
+
+       if (!cluster_info)
+               return;
+
+       VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
+       cluster_set_count(&cluster_info[idx],
+               cluster_count(&cluster_info[idx]) - 1);
+
+       if (cluster_count(&cluster_info[idx]) == 0) {
+               /*
+                * If the swap is discardable, prepare discard the cluster
+                * instead of free it immediately. The cluster will be freed
+                * after discard.
+                */
+               if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
+                                (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
+                       swap_cluster_schedule_discard(p, idx);
+                       return;
+               }
+
+               cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
+               if (cluster_is_null(&p->free_cluster_head)) {
+                       cluster_set_next_flag(&p->free_cluster_head, idx, 0);
+                       cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
+               } else {
+                       unsigned int tail = cluster_next(&p->free_cluster_tail);
+                       cluster_set_next(&cluster_info[tail], idx);
+                       cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
+               }
+       }
+}
+
+/*
+ * It's possible scan_swap_map() uses a free cluster in the middle of free
+ * cluster list. Avoiding such abuse to avoid list corruption.
+ */
+static bool
+scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
+       unsigned long offset)
+{
+       struct percpu_cluster *percpu_cluster;
+       bool conflict;
+
+       offset /= SWAPFILE_CLUSTER;
+       conflict = !cluster_is_null(&si->free_cluster_head) &&
+               offset != cluster_next(&si->free_cluster_head) &&
+               cluster_is_free(&si->cluster_info[offset]);
+
+       if (!conflict)
+               return false;
+
+       percpu_cluster = this_cpu_ptr(si->percpu_cluster);
+       cluster_set_null(&percpu_cluster->index);
+       return true;
+}
+
+/*
+ * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
+ * might involve allocating a new cluster for current CPU too.
+ */
+static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
+       unsigned long *offset, unsigned long *scan_base)
+{
+       struct percpu_cluster *cluster;
+       bool found_free;
+       unsigned long tmp;
+
+new_cluster:
+       cluster = this_cpu_ptr(si->percpu_cluster);
+       if (cluster_is_null(&cluster->index)) {
+               if (!cluster_is_null(&si->free_cluster_head)) {
+                       cluster->index = si->free_cluster_head;
+                       cluster->next = cluster_next(&cluster->index) *
+                                       SWAPFILE_CLUSTER;
+               } else if (!cluster_is_null(&si->discard_cluster_head)) {
+                       /*
+                        * we don't have free cluster but have some clusters in
+                        * discarding, do discard now and reclaim them
+                        */
+                       swap_do_scheduled_discard(si);
+                       *scan_base = *offset = si->cluster_next;
+                       goto new_cluster;
+               } else
+                       return;
+       }
+
+       found_free = false;
+
+       /*
+        * Other CPUs can use our cluster if they can't find a free cluster,
+        * check if there is still free entry in the cluster
+        */
+       tmp = cluster->next;
+       while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
+              SWAPFILE_CLUSTER) {
+               if (!si->swap_map[tmp]) {
+                       found_free = true;
+                       break;
+               }
+               tmp++;
+       }
+       if (!found_free) {
+               cluster_set_null(&cluster->index);
+               goto new_cluster;
+       }
+       cluster->next = tmp + 1;
+       *offset = tmp;
+       *scan_base = tmp;
+}
+
+static unsigned long scan_swap_map(struct swap_info_struct *si,
+                                  unsigned char usage)
+{
+       unsigned long offset;
+       unsigned long scan_base;
+       unsigned long last_in_cluster = 0;
+       int latency_ration = LATENCY_LIMIT;
+
+       /*
+        * We try to cluster swap pages by allocating them sequentially
+        * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
+        * way, however, we resort to first-free allocation, starting
+        * a new cluster.  This prevents us from scattering swap pages
+        * all over the entire swap partition, so that we reduce
+        * overall disk seek times between swap pages.  -- sct
+        * But we do now try to find an empty cluster.  -Andrea
+        * And we let swap pages go all over an SSD partition.  Hugh
+        */
+
+       si->flags += SWP_SCANNING;
+       scan_base = offset = si->cluster_next;
+
+       /* SSD algorithm */
+       if (si->cluster_info) {
+               scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
+               goto checks;
+       }
+
+       if (unlikely(!si->cluster_nr--)) {
+               if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
+                       si->cluster_nr = SWAPFILE_CLUSTER - 1;
+                       goto checks;
+               }
+
+               spin_unlock(&si->lock);
+
+               /*
+                * If seek is expensive, start searching for new cluster from
+                * start of partition, to minimize the span of allocated swap.
+                * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
+                * case, just handled by scan_swap_map_try_ssd_cluster() above.
+                */
+               scan_base = offset = si->lowest_bit;
+               last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
+
+               /* Locate the first empty (unaligned) cluster */
+               for (; last_in_cluster <= si->highest_bit; offset++) {
+                       if (si->swap_map[offset])
+                               last_in_cluster = offset + SWAPFILE_CLUSTER;
+                       else if (offset == last_in_cluster) {
+                               spin_lock(&si->lock);
+                               offset -= SWAPFILE_CLUSTER - 1;
+                               si->cluster_next = offset;
+                               si->cluster_nr = SWAPFILE_CLUSTER - 1;
+                               goto checks;
+                       }
+                       if (unlikely(--latency_ration < 0)) {
+                               cond_resched();
+                               latency_ration = LATENCY_LIMIT;
+                       }
+               }
+
+               offset = scan_base;
+               spin_lock(&si->lock);
+               si->cluster_nr = SWAPFILE_CLUSTER - 1;
+       }
+
+checks:
+       if (si->cluster_info) {
+               while (scan_swap_map_ssd_cluster_conflict(si, offset))
+                       scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
+       }
+       if (!(si->flags & SWP_WRITEOK))
+               goto no_page;
+       if (!si->highest_bit)
+               goto no_page;
+       if (offset > si->highest_bit)
+               scan_base = offset = si->lowest_bit;
+
+       /* reuse swap entry of cache-only swap if not busy. */
+       if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+               int swap_was_freed;
+               spin_unlock(&si->lock);
+               swap_was_freed = __try_to_reclaim_swap(si, offset);
+               spin_lock(&si->lock);
+               /* entry was freed successfully, try to use this again */
+               if (swap_was_freed)
+                       goto checks;
+               goto scan; /* check next one */
+       }
+
+       if (si->swap_map[offset])
+               goto scan;
+
+       if (offset == si->lowest_bit)
+               si->lowest_bit++;
+       if (offset == si->highest_bit)
+               si->highest_bit--;
+       si->inuse_pages++;
+       if (si->inuse_pages == si->pages) {
+               si->lowest_bit = si->max;
+               si->highest_bit = 0;
+               spin_lock(&swap_avail_lock);
+               plist_del(&si->avail_list, &swap_avail_head);
+               spin_unlock(&swap_avail_lock);
+       }
+       si->swap_map[offset] = usage;
+       inc_cluster_info_page(si, si->cluster_info, offset);
+       si->cluster_next = offset + 1;
+       si->flags -= SWP_SCANNING;
+
+       return offset;
+
+scan:
+       spin_unlock(&si->lock);
+       while (++offset <= si->highest_bit) {
+               if (!si->swap_map[offset]) {
+                       spin_lock(&si->lock);
+                       goto checks;
+               }
+               if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+                       spin_lock(&si->lock);
+                       goto checks;
+               }
+               if (unlikely(--latency_ration < 0)) {
+                       cond_resched();
+                       latency_ration = LATENCY_LIMIT;
+               }
+       }
+       offset = si->lowest_bit;
+       while (offset < scan_base) {
+               if (!si->swap_map[offset]) {
+                       spin_lock(&si->lock);
+                       goto checks;
+               }
+               if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+                       spin_lock(&si->lock);
+                       goto checks;
+               }
+               if (unlikely(--latency_ration < 0)) {
+                       cond_resched();
+                       latency_ration = LATENCY_LIMIT;
+               }
+               offset++;
+       }
+       spin_lock(&si->lock);
+
+no_page:
+       si->flags -= SWP_SCANNING;
+       return 0;
+}
+
+swp_entry_t get_swap_page(void)
+{
+       struct swap_info_struct *si, *next;
+       pgoff_t offset;
+
+       if (atomic_long_read(&nr_swap_pages) <= 0)
+               goto noswap;
+       atomic_long_dec(&nr_swap_pages);
+
+       spin_lock(&swap_avail_lock);
+
+start_over:
+       plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
+               /* requeue si to after same-priority siblings */
+               plist_requeue(&si->avail_list, &swap_avail_head);
+               spin_unlock(&swap_avail_lock);
+               spin_lock(&si->lock);
+               if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
+                       spin_lock(&swap_avail_lock);
+                       if (plist_node_empty(&si->avail_list)) {
+                               spin_unlock(&si->lock);
+                               goto nextsi;
+                       }
+                       WARN(!si->highest_bit,
+                            "swap_info %d in list but !highest_bit\n",
+                            si->type);
+                       WARN(!(si->flags & SWP_WRITEOK),
+                            "swap_info %d in list but !SWP_WRITEOK\n",
+                            si->type);
+                       plist_del(&si->avail_list, &swap_avail_head);
+                       spin_unlock(&si->lock);
+                       goto nextsi;
+               }
+
+               /* This is called for allocating swap entry for cache */
+               offset = scan_swap_map(si, SWAP_HAS_CACHE);
+               spin_unlock(&si->lock);
+               if (offset)
+                       return swp_entry(si->type, offset);
+               pr_debug("scan_swap_map of si %d failed to find offset\n",
+                      si->type);
+               spin_lock(&swap_avail_lock);
+nextsi:
+               /*
+                * if we got here, it's likely that si was almost full before,
+                * and since scan_swap_map() can drop the si->lock, multiple
+                * callers probably all tried to get a page from the same si
+                * and it filled up before we could get one; or, the si filled
+                * up between us dropping swap_avail_lock and taking si->lock.
+                * Since we dropped the swap_avail_lock, the swap_avail_head
+                * list may have been modified; so if next is still in the
+                * swap_avail_head list then try it, otherwise start over.
+                */
+               if (plist_node_empty(&next->avail_list))
+                       goto start_over;
+       }
+
+       spin_unlock(&swap_avail_lock);
+
+       atomic_long_inc(&nr_swap_pages);
+noswap:
+       return (swp_entry_t) {0};
+}
+
+/* The only caller of this function is now suspend routine */
+swp_entry_t get_swap_page_of_type(int type)
+{
+       struct swap_info_struct *si;
+       pgoff_t offset;
+
+       si = swap_info[type];
+       spin_lock(&si->lock);
+       if (si && (si->flags & SWP_WRITEOK)) {
+               atomic_long_dec(&nr_swap_pages);
+               /* This is called for allocating swap entry, not cache */
+               offset = scan_swap_map(si, 1);
+               if (offset) {
+                       spin_unlock(&si->lock);
+                       return swp_entry(type, offset);
+               }
+               atomic_long_inc(&nr_swap_pages);
+       }
+       spin_unlock(&si->lock);
+       return (swp_entry_t) {0};
+}
+
+static struct swap_info_struct *swap_info_get(swp_entry_t entry)
+{
+       struct swap_info_struct *p;
+       unsigned long offset, type;
+
+       if (!entry.val)
+               goto out;
+       type = swp_type(entry);
+       if (type >= nr_swapfiles)
+               goto bad_nofile;
+       p = swap_info[type];
+       if (!(p->flags & SWP_USED))
+               goto bad_device;
+       offset = swp_offset(entry);
+       if (offset >= p->max)
+               goto bad_offset;
+       if (!p->swap_map[offset])
+               goto bad_free;
+       spin_lock(&p->lock);
+       return p;
+
+bad_free:
+       pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
+       goto out;
+bad_offset:
+       pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
+       goto out;
+bad_device:
+       pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
+       goto out;
+bad_nofile:
+       pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
+out:
+       return NULL;
+}
+
+static unsigned char swap_entry_free(struct swap_info_struct *p,
+                                    swp_entry_t entry, unsigned char usage)
+{
+       unsigned long offset = swp_offset(entry);
+       unsigned char count;
+       unsigned char has_cache;
+
+       count = p->swap_map[offset];
+       has_cache = count & SWAP_HAS_CACHE;
+       count &= ~SWAP_HAS_CACHE;
+
+       if (usage == SWAP_HAS_CACHE) {
+               VM_BUG_ON(!has_cache);
+               has_cache = 0;
+       } else if (count == SWAP_MAP_SHMEM) {
+               /*
+                * Or we could insist on shmem.c using a special
+                * swap_shmem_free() and free_shmem_swap_and_cache()...
+                */
+               count = 0;
+       } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
+               if (count == COUNT_CONTINUED) {
+                       if (swap_count_continued(p, offset, count))
+                               count = SWAP_MAP_MAX | COUNT_CONTINUED;
+                       else
+                               count = SWAP_MAP_MAX;
+               } else
+                       count--;
+       }
+
+       if (!count)
+               mem_cgroup_uncharge_swap(entry);
+
+       usage = count | has_cache;
+       p->swap_map[offset] = usage;
+
+       /* free if no reference */
+       if (!usage) {
+               dec_cluster_info_page(p, p->cluster_info, offset);
+               if (offset < p->lowest_bit)
+                       p->lowest_bit = offset;
+               if (offset > p->highest_bit) {
+                       bool was_full = !p->highest_bit;
+                       p->highest_bit = offset;
+                       if (was_full && (p->flags & SWP_WRITEOK)) {
+                               spin_lock(&swap_avail_lock);
+                               WARN_ON(!plist_node_empty(&p->avail_list));
+                               if (plist_node_empty(&p->avail_list))
+                                       plist_add(&p->avail_list,
+                                                 &swap_avail_head);
+                               spin_unlock(&swap_avail_lock);
+                       }
+               }
+               atomic_long_inc(&nr_swap_pages);
+               p->inuse_pages--;
+               frontswap_invalidate_page(p->type, offset);
+               if (p->flags & SWP_BLKDEV) {
+                       struct gendisk *disk = p->bdev->bd_disk;
+                       if (disk->fops->swap_slot_free_notify)
+                               disk->fops->swap_slot_free_notify(p->bdev,
+                                                                 offset);
+               }
+       }
+
+       return usage;
+}
+
+/*
+ * Caller has made sure that the swap device corresponding to entry
+ * is still around or has not been recycled.
+ */
+void swap_free(swp_entry_t entry)
+{
+       struct swap_info_struct *p;
+
+       p = swap_info_get(entry);
+       if (p) {
+               swap_entry_free(p, entry, 1);
+               spin_unlock(&p->lock);
+       }
+}
+
+/*
+ * Called after dropping swapcache to decrease refcnt to swap entries.
+ */
+void swapcache_free(swp_entry_t entry)
+{
+       struct swap_info_struct *p;
+
+       p = swap_info_get(entry);
+       if (p) {
+               swap_entry_free(p, entry, SWAP_HAS_CACHE);
+               spin_unlock(&p->lock);
+       }
+}
+
+/*
+ * How many references to page are currently swapped out?
+ * This does not give an exact answer when swap count is continued,
+ * but does include the high COUNT_CONTINUED flag to allow for that.
+ */
+int page_swapcount(struct page *page)
+{
+       int count = 0;
+       struct swap_info_struct *p;
+       swp_entry_t entry;
+
+       entry.val = page_private(page);
+       p = swap_info_get(entry);
+       if (p) {
+               count = swap_count(p->swap_map[swp_offset(entry)]);
+               spin_unlock(&p->lock);
+       }
+       return count;
+}
+
+/*
+ * We can write to an anon page without COW if there are no other references
+ * to it.  And as a side-effect, free up its swap: because the old content
+ * on disk will never be read, and seeking back there to write new content
+ * later would only waste time away from clustering.
+ */
+int reuse_swap_page(struct page *page)
+{
+       int count;
+
+       VM_BUG_ON_PAGE(!PageLocked(page), page);
+       if (unlikely(PageKsm(page)))
+               return 0;
+       count = page_mapcount(page);
+       if (count <= 1 && PageSwapCache(page)) {
+               count += page_swapcount(page);
+               if (count == 1 && !PageWriteback(page)) {
+                       delete_from_swap_cache(page);
+                       SetPageDirty(page);
+               }
+       }
+       return count <= 1;
+}
+
+/*
+ * If swap is getting full, or if there are no more mappings of this page,
+ * then try_to_free_swap is called to free its swap space.
+ */
+int try_to_free_swap(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageLocked(page), page);
+
+       if (!PageSwapCache(page))
+               return 0;
+       if (PageWriteback(page))
+               return 0;
+       if (page_swapcount(page))
+               return 0;
+
+       /*
+        * Once hibernation has begun to create its image of memory,
+        * there's a danger that one of the calls to try_to_free_swap()
+        * - most probably a call from __try_to_reclaim_swap() while
+        * hibernation is allocating its own swap pages for the image,
+        * but conceivably even a call from memory reclaim - will free
+        * the swap from a page which has already been recorded in the
+        * image as a clean swapcache page, and then reuse its swap for
+        * another page of the image.  On waking from hibernation, the
+        * original page might be freed under memory pressure, then
+        * later read back in from swap, now with the wrong data.
+        *
+        * Hibernation suspends storage while it is writing the image
+        * to disk so check that here.
+        */
+       if (pm_suspended_storage())
+               return 0;
+
+       delete_from_swap_cache(page);
+       SetPageDirty(page);
+       return 1;
+}
+
+/*
+ * Free the swap entry like above, but also try to
+ * free the page cache entry if it is the last user.
+ */
+int free_swap_and_cache(swp_entry_t entry)
+{
+       struct swap_info_struct *p;
+       struct page *page = NULL;
+
+       if (non_swap_entry(entry))
+               return 1;
+
+       p = swap_info_get(entry);
+       if (p) {
+               if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
+                       page = find_get_page(swap_address_space(entry),
+                                               entry.val);
+                       if (page && !trylock_page(page)) {
+                               page_cache_release(page);
+                               page = NULL;
+                       }
+               }
+               spin_unlock(&p->lock);
+       }
+       if (page) {
+               /*
+                * Not mapped elsewhere, or swap space full? Free it!
+                * Also recheck PageSwapCache now page is locked (above).
+                */
+               if (PageSwapCache(page) && !PageWriteback(page) &&
+                               (!page_mapped(page) || vm_swap_full())) {
+                       delete_from_swap_cache(page);
+                       SetPageDirty(page);
+               }
+               unlock_page(page);
+               page_cache_release(page);
+       }
+       return p != NULL;
+}
+
+#ifdef CONFIG_HIBERNATION
+/*
+ * Find the swap type that corresponds to given device (if any).
+ *
+ * @offset - number of the PAGE_SIZE-sized block of the device, starting
+ * from 0, in which the swap header is expected to be located.
+ *
+ * This is needed for the suspend to disk (aka swsusp).
+ */
+int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
+{
+       struct block_device *bdev = NULL;
+       int type;
+
+       if (device)
+               bdev = bdget(device);
+
+       spin_lock(&swap_lock);
+       for (type = 0; type < nr_swapfiles; type++) {
+               struct swap_info_struct *sis = swap_info[type];
+
+               if (!(sis->flags & SWP_WRITEOK))
+                       continue;
+
+               if (!bdev) {
+                       if (bdev_p)
+                               *bdev_p = bdgrab(sis->bdev);
+
+                       spin_unlock(&swap_lock);
+                       return type;
+               }
+               if (bdev == sis->bdev) {
+                       struct swap_extent *se = &sis->first_swap_extent;
+
+                       if (se->start_block == offset) {
+                               if (bdev_p)
+                                       *bdev_p = bdgrab(sis->bdev);
+
+                               spin_unlock(&swap_lock);
+                               bdput(bdev);
+                               return type;
+                       }
+               }
+       }
+       spin_unlock(&swap_lock);
+       if (bdev)
+               bdput(bdev);
+
+       return -ENODEV;
+}
+
+/*
+ * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
+ * corresponding to given index in swap_info (swap type).
+ */
+sector_t swapdev_block(int type, pgoff_t offset)
+{
+       struct block_device *bdev;
+
+       if ((unsigned int)type >= nr_swapfiles)
+               return 0;
+       if (!(swap_info[type]->flags & SWP_WRITEOK))
+               return 0;
+       return map_swap_entry(swp_entry(type, offset), &bdev);
+}
+
+/*
+ * Return either the total number of swap pages of given type, or the number
+ * of free pages of that type (depending on @free)
+ *
+ * This is needed for software suspend
+ */
+unsigned int count_swap_pages(int type, int free)
+{
+       unsigned int n = 0;
+
+       spin_lock(&swap_lock);
+       if ((unsigned int)type < nr_swapfiles) {
+               struct swap_info_struct *sis = swap_info[type];
+
+               spin_lock(&sis->lock);
+               if (sis->flags & SWP_WRITEOK) {
+                       n = sis->pages;
+                       if (free)
+                               n -= sis->inuse_pages;
+               }
+               spin_unlock(&sis->lock);
+       }
+       spin_unlock(&swap_lock);
+       return n;
+}
+#endif /* CONFIG_HIBERNATION */
+
+static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
+{
+#ifdef CONFIG_MEM_SOFT_DIRTY
+       /*
+        * When pte keeps soft dirty bit the pte generated
+        * from swap entry does not has it, still it's same
+        * pte from logical point of view.
+        */
+       pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
+       return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
+#else
+       return pte_same(pte, swp_pte);
+#endif
+}
+
+/*
+ * No need to decide whether this PTE shares the swap entry with others,
+ * just let do_wp_page work it out if a write is requested later - to
+ * force COW, vm_page_prot omits write permission from any private vma.
+ */
+static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
+               unsigned long addr, swp_entry_t entry, struct page *page)
+{
+       struct page *swapcache;
+       struct mem_cgroup *memcg;
+       spinlock_t *ptl;
+       pte_t *pte;
+       int ret = 1;
+
+       swapcache = page;
+       page = ksm_might_need_to_copy(page, vma, addr);
+       if (unlikely(!page))
+               return -ENOMEM;
+
+       if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
+               ret = -ENOMEM;
+               goto out_nolock;
+       }
+
+       pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+       if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
+               mem_cgroup_cancel_charge(page, memcg);
+               ret = 0;
+               goto out;
+       }
+
+       dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
+       inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
+       get_page(page);
+       set_pte_at(vma->vm_mm, addr, pte,
+                  pte_mkold(mk_pte(page, vma->vm_page_prot)));
+       if (page == swapcache) {
+               page_add_anon_rmap(page, vma, addr);
+               mem_cgroup_commit_charge(page, memcg, true);
+       } else { /* ksm created a completely new copy */
+               page_add_new_anon_rmap(page, vma, addr);
+               mem_cgroup_commit_charge(page, memcg, false);
+               lru_cache_add_active_or_unevictable(page, vma);
+       }
+       swap_free(entry);
+       /*
+        * Move the page to the active list so it is not
+        * immediately swapped out again after swapon.
+        */
+       activate_page(page);
+out:
+       pte_unmap_unlock(pte, ptl);
+out_nolock:
+       if (page != swapcache) {
+               unlock_page(page);
+               put_page(page);
+       }
+       return ret;
+}
+
+static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
+                               unsigned long addr, unsigned long end,
+                               swp_entry_t entry, struct page *page)
+{
+       pte_t swp_pte = swp_entry_to_pte(entry);
+       pte_t *pte;
+       int ret = 0;
+
+       /*
+        * We don't actually need pte lock while scanning for swp_pte: since
+        * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
+        * page table while we're scanning; though it could get zapped, and on
+        * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
+        * of unmatched parts which look like swp_pte, so unuse_pte must
+        * recheck under pte lock.  Scanning without pte lock lets it be
+        * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
+        */
+       pte = pte_offset_map(pmd, addr);
+       do {
+               /*
+                * swapoff spends a _lot_ of time in this loop!
+                * Test inline before going to call unuse_pte.
+                */
+               if (unlikely(maybe_same_pte(*pte, swp_pte))) {
+                       pte_unmap(pte);
+                       ret = unuse_pte(vma, pmd, addr, entry, page);
+                       if (ret)
+                               goto out;
+                       pte = pte_offset_map(pmd, addr);
+               }
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       pte_unmap(pte - 1);
+out:
+       return ret;
+}
+
+static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
+                               unsigned long addr, unsigned long end,
+                               swp_entry_t entry, struct page *page)
+{
+       pmd_t *pmd;
+       unsigned long next;
+       int ret;
+
+       pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_none_or_trans_huge_or_clear_bad(pmd))
+                       continue;
+               ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
+               if (ret)
+                       return ret;
+       } while (pmd++, addr = next, addr != end);
+       return 0;
+}
+
+static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
+                               unsigned long addr, unsigned long end,
+                               swp_entry_t entry, struct page *page)
+{
+       pud_t *pud;
+       unsigned long next;
+       int ret;
+
+       pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(pud))
+                       continue;
+               ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
+               if (ret)
+                       return ret;
+       } while (pud++, addr = next, addr != end);
+       return 0;
+}
+
+static int unuse_vma(struct vm_area_struct *vma,
+                               swp_entry_t entry, struct page *page)
+{
+       pgd_t *pgd;
+       unsigned long addr, end, next;
+       int ret;
+
+       if (page_anon_vma(page)) {
+               addr = page_address_in_vma(page, vma);
+               if (addr == -EFAULT)
+                       return 0;
+               else
+                       end = addr + PAGE_SIZE;
+       } else {
+               addr = vma->vm_start;
+               end = vma->vm_end;
+       }
+
+       pgd = pgd_offset(vma->vm_mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(pgd))
+                       continue;
+               ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
+               if (ret)
+                       return ret;
+       } while (pgd++, addr = next, addr != end);
+       return 0;
+}
+
+static int unuse_mm(struct mm_struct *mm,
+                               swp_entry_t entry, struct page *page)
+{
+       struct vm_area_struct *vma;
+       int ret = 0;
+
+       if (!down_read_trylock(&mm->mmap_sem)) {
+               /*
+                * Activate page so shrink_inactive_list is unlikely to unmap
+                * its ptes while lock is dropped, so swapoff can make progress.
+                */
+               activate_page(page);
+               unlock_page(page);
+               down_read(&mm->mmap_sem);
+               lock_page(page);
+       }
+       for (vma = mm->mmap; vma; vma = vma->vm_next) {
+               if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
+                       break;
+       }
+       up_read(&mm->mmap_sem);
+       return (ret < 0)? ret: 0;
+}
+
+/*
+ * Scan swap_map (or frontswap_map if frontswap parameter is true)
+ * from current position to next entry still in use.
+ * Recycle to start on reaching the end, returning 0 when empty.
+ */
+static unsigned int find_next_to_unuse(struct swap_info_struct *si,
+                                       unsigned int prev, bool frontswap)
+{
+       unsigned int max = si->max;
+       unsigned int i = prev;
+       unsigned char count;
+
+       /*
+        * No need for swap_lock here: we're just looking
+        * for whether an entry is in use, not modifying it; false
+        * hits are okay, and sys_swapoff() has already prevented new
+        * allocations from this area (while holding swap_lock).
+        */
+       for (;;) {
+               if (++i >= max) {
+                       if (!prev) {
+                               i = 0;
+                               break;
+                       }
+                       /*
+                        * No entries in use at top of swap_map,
+                        * loop back to start and recheck there.
+                        */
+                       max = prev + 1;
+                       prev = 0;
+                       i = 1;
+               }
+               if (frontswap) {
+                       if (frontswap_test(si, i))
+                               break;
+                       else
+                               continue;
+               }
+               count = READ_ONCE(si->swap_map[i]);
+               if (count && swap_count(count) != SWAP_MAP_BAD)
+                       break;
+       }
+       return i;
+}
+
+/*
+ * We completely avoid races by reading each swap page in advance,
+ * and then search for the process using it.  All the necessary
+ * page table adjustments can then be made atomically.
+ *
+ * if the boolean frontswap is true, only unuse pages_to_unuse pages;
+ * pages_to_unuse==0 means all pages; ignored if frontswap is false
+ */
+int try_to_unuse(unsigned int type, bool frontswap,
+                unsigned long pages_to_unuse)
+{
+       struct swap_info_struct *si = swap_info[type];
+       struct mm_struct *start_mm;
+       volatile unsigned char *swap_map; /* swap_map is accessed without
+                                          * locking. Mark it as volatile
+                                          * to prevent compiler doing
+                                          * something odd.
+                                          */
+       unsigned char swcount;
+       struct page *page;
+       swp_entry_t entry;
+       unsigned int i = 0;
+       int retval = 0;
+
+       /*
+        * When searching mms for an entry, a good strategy is to
+        * start at the first mm we freed the previous entry from
+        * (though actually we don't notice whether we or coincidence
+        * freed the entry).  Initialize this start_mm with a hold.
+        *
+        * A simpler strategy would be to start at the last mm we
+        * freed the previous entry from; but that would take less
+        * advantage of mmlist ordering, which clusters forked mms
+        * together, child after parent.  If we race with dup_mmap(), we
+        * prefer to resolve parent before child, lest we miss entries
+        * duplicated after we scanned child: using last mm would invert
+        * that.
+        */
+       start_mm = &init_mm;
+       atomic_inc(&init_mm.mm_users);
+
+       /*
+        * Keep on scanning until all entries have gone.  Usually,
+        * one pass through swap_map is enough, but not necessarily:
+        * there are races when an instance of an entry might be missed.
+        */
+       while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
+               if (signal_pending(current)) {
+                       retval = -EINTR;
+                       break;
+               }
+
+               /*
+                * Get a page for the entry, using the existing swap
+                * cache page if there is one.  Otherwise, get a clean
+                * page and read the swap into it.
+                */
+               swap_map = &si->swap_map[i];
+               entry = swp_entry(type, i);
+               page = read_swap_cache_async(entry,
+                                       GFP_HIGHUSER_MOVABLE, NULL, 0);
+               if (!page) {
+                       /*
+                        * Either swap_duplicate() failed because entry
+                        * has been freed independently, and will not be
+                        * reused since sys_swapoff() already disabled
+                        * allocation from here, or alloc_page() failed.
+                        */
+                       swcount = *swap_map;
+                       /*
+                        * We don't hold lock here, so the swap entry could be
+                        * SWAP_MAP_BAD (when the cluster is discarding).
+                        * Instead of fail out, We can just skip the swap
+                        * entry because swapoff will wait for discarding
+                        * finish anyway.
+                        */
+                       if (!swcount || swcount == SWAP_MAP_BAD)
+                               continue;
+                       retval = -ENOMEM;
+                       break;
+               }
+
+               /*
+                * Don't hold on to start_mm if it looks like exiting.
+                */
+               if (atomic_read(&start_mm->mm_users) == 1) {
+                       mmput(start_mm);
+                       start_mm = &init_mm;
+                       atomic_inc(&init_mm.mm_users);
+               }
+
+               /*
+                * Wait for and lock page.  When do_swap_page races with
+                * try_to_unuse, do_swap_page can handle the fault much
+                * faster than try_to_unuse can locate the entry.  This
+                * apparently redundant "wait_on_page_locked" lets try_to_unuse
+                * defer to do_swap_page in such a case - in some tests,
+                * do_swap_page and try_to_unuse repeatedly compete.
+                */
+               wait_on_page_locked(page);
+               wait_on_page_writeback(page);
+               lock_page(page);
+               wait_on_page_writeback(page);
+
+               /*
+                * Remove all references to entry.
+                */
+               swcount = *swap_map;
+               if (swap_count(swcount) == SWAP_MAP_SHMEM) {
+                       retval = shmem_unuse(entry, page);
+                       /* page has already been unlocked and released */
+                       if (retval < 0)
+                               break;
+                       continue;
+               }
+               if (swap_count(swcount) && start_mm != &init_mm)
+                       retval = unuse_mm(start_mm, entry, page);
+
+               if (swap_count(*swap_map)) {
+                       int set_start_mm = (*swap_map >= swcount);
+                       struct list_head *p = &start_mm->mmlist;
+                       struct mm_struct *new_start_mm = start_mm;
+                       struct mm_struct *prev_mm = start_mm;
+                       struct mm_struct *mm;
+
+                       atomic_inc(&new_start_mm->mm_users);
+                       atomic_inc(&prev_mm->mm_users);
+                       spin_lock(&mmlist_lock);
+                       while (swap_count(*swap_map) && !retval &&
+                                       (p = p->next) != &start_mm->mmlist) {
+                               mm = list_entry(p, struct mm_struct, mmlist);
+                               if (!atomic_inc_not_zero(&mm->mm_users))
+                                       continue;
+                               spin_unlock(&mmlist_lock);
+                               mmput(prev_mm);
+                               prev_mm = mm;
+
+                               cond_resched();
+
+                               swcount = *swap_map;
+                               if (!swap_count(swcount)) /* any usage ? */
+                                       ;
+                               else if (mm == &init_mm)
+                                       set_start_mm = 1;
+                               else
+                                       retval = unuse_mm(mm, entry, page);
+
+                               if (set_start_mm && *swap_map < swcount) {
+                                       mmput(new_start_mm);
+                                       atomic_inc(&mm->mm_users);
+                                       new_start_mm = mm;
+                                       set_start_mm = 0;
+                               }
+                               spin_lock(&mmlist_lock);
+                       }
+                       spin_unlock(&mmlist_lock);
+                       mmput(prev_mm);
+                       mmput(start_mm);
+                       start_mm = new_start_mm;
+               }
+               if (retval) {
+                       unlock_page(page);
+                       page_cache_release(page);
+                       break;
+               }
+
+               /*
+                * If a reference remains (rare), we would like to leave
+                * the page in the swap cache; but try_to_unmap could
+                * then re-duplicate the entry once we drop page lock,
+                * so we might loop indefinitely; also, that page could
+                * not be swapped out to other storage meanwhile.  So:
+                * delete from cache even if there's another reference,
+                * after ensuring that the data has been saved to disk -
+                * since if the reference remains (rarer), it will be
+                * read from disk into another page.  Splitting into two
+                * pages would be incorrect if swap supported "shared
+                * private" pages, but they are handled by tmpfs files.
+                *
+                * Given how unuse_vma() targets one particular offset
+                * in an anon_vma, once the anon_vma has been determined,
+                * this splitting happens to be just what is needed to
+                * handle where KSM pages have been swapped out: re-reading
+                * is unnecessarily slow, but we can fix that later on.
+                */
+               if (swap_count(*swap_map) &&
+                    PageDirty(page) && PageSwapCache(page)) {
+                       struct writeback_control wbc = {
+                               .sync_mode = WB_SYNC_NONE,
+                       };
+
+                       swap_writepage(page, &wbc);
+                       lock_page(page);
+                       wait_on_page_writeback(page);
+               }
+
+               /*
+                * It is conceivable that a racing task removed this page from
+                * swap cache just before we acquired the page lock at the top,
+                * or while we dropped it in unuse_mm().  The page might even
+                * be back in swap cache on another swap area: that we must not
+                * delete, since it may not have been written out to swap yet.
+                */
+               if (PageSwapCache(page) &&
+                   likely(page_private(page) == entry.val))
+                       delete_from_swap_cache(page);
+
+               /*
+                * So we could skip searching mms once swap count went
+                * to 1, we did not mark any present ptes as dirty: must
+                * mark page dirty so shrink_page_list will preserve it.
+                */
+               SetPageDirty(page);
+               unlock_page(page);
+               page_cache_release(page);
+
+               /*
+                * Make sure that we aren't completely killing
+                * interactive performance.
+                */
+               cond_resched();
+               if (frontswap && pages_to_unuse > 0) {
+                       if (!--pages_to_unuse)
+                               break;
+               }
+       }
+
+       mmput(start_mm);
+       return retval;
+}
+
+/*
+ * After a successful try_to_unuse, if no swap is now in use, we know
+ * we can empty the mmlist.  swap_lock must be held on entry and exit.
+ * Note that mmlist_lock nests inside swap_lock, and an mm must be
+ * added to the mmlist just after page_duplicate - before would be racy.
+ */
+static void drain_mmlist(void)
+{
+       struct list_head *p, *next;
+       unsigned int type;
+
+       for (type = 0; type < nr_swapfiles; type++)
+               if (swap_info[type]->inuse_pages)
+                       return;
+       spin_lock(&mmlist_lock);
+       list_for_each_safe(p, next, &init_mm.mmlist)
+               list_del_init(p);
+       spin_unlock(&mmlist_lock);
+}
+
+/*
+ * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
+ * corresponds to page offset for the specified swap entry.
+ * Note that the type of this function is sector_t, but it returns page offset
+ * into the bdev, not sector offset.
+ */
+static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
+{
+       struct swap_info_struct *sis;
+       struct swap_extent *start_se;
+       struct swap_extent *se;
+       pgoff_t offset;
+
+       sis = swap_info[swp_type(entry)];
+       *bdev = sis->bdev;
+
+       offset = swp_offset(entry);
+       start_se = sis->curr_swap_extent;
+       se = start_se;
+
+       for ( ; ; ) {
+               struct list_head *lh;
+
+               if (se->start_page <= offset &&
+                               offset < (se->start_page + se->nr_pages)) {
+                       return se->start_block + (offset - se->start_page);
+               }
+               lh = se->list.next;
+               se = list_entry(lh, struct swap_extent, list);
+               sis->curr_swap_extent = se;
+               BUG_ON(se == start_se);         /* It *must* be present */
+       }
+}
+
+/*
+ * Returns the page offset into bdev for the specified page's swap entry.
+ */
+sector_t map_swap_page(struct page *page, struct block_device **bdev)
+{
+       swp_entry_t entry;
+       entry.val = page_private(page);
+       return map_swap_entry(entry, bdev);
+}
+
+/*
+ * Free all of a swapdev's extent information
+ */
+static void destroy_swap_extents(struct swap_info_struct *sis)
+{
+       while (!list_empty(&sis->first_swap_extent.list)) {
+               struct swap_extent *se;
+
+               se = list_entry(sis->first_swap_extent.list.next,
+                               struct swap_extent, list);
+               list_del(&se->list);
+               kfree(se);
+       }
+
+       if (sis->flags & SWP_FILE) {
+               struct file *swap_file = sis->swap_file;
+               struct address_space *mapping = swap_file->f_mapping;
+
+               sis->flags &= ~SWP_FILE;
+               mapping->a_ops->swap_deactivate(swap_file);
+       }
+}
+
+/*
+ * Add a block range (and the corresponding page range) into this swapdev's
+ * extent list.  The extent list is kept sorted in page order.
+ *
+ * This function rather assumes that it is called in ascending page order.
+ */
+int
+add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
+               unsigned long nr_pages, sector_t start_block)
+{
+       struct swap_extent *se;
+       struct swap_extent *new_se;
+       struct list_head *lh;
+
+       if (start_page == 0) {
+               se = &sis->first_swap_extent;
+               sis->curr_swap_extent = se;
+               se->start_page = 0;
+               se->nr_pages = nr_pages;
+               se->start_block = start_block;
+               return 1;
+       } else {
+               lh = sis->first_swap_extent.list.prev;  /* Highest extent */
+               se = list_entry(lh, struct swap_extent, list);
+               BUG_ON(se->start_page + se->nr_pages != start_page);
+               if (se->start_block + se->nr_pages == start_block) {
+                       /* Merge it */
+                       se->nr_pages += nr_pages;
+                       return 0;
+               }
+       }
+
+       /*
+        * No merge.  Insert a new extent, preserving ordering.
+        */
+       new_se = kmalloc(sizeof(*se), GFP_KERNEL);
+       if (new_se == NULL)
+               return -ENOMEM;
+       new_se->start_page = start_page;
+       new_se->nr_pages = nr_pages;
+       new_se->start_block = start_block;
+
+       list_add_tail(&new_se->list, &sis->first_swap_extent.list);
+       return 1;
+}
+
+/*
+ * A `swap extent' is a simple thing which maps a contiguous range of pages
+ * onto a contiguous range of disk blocks.  An ordered list of swap extents
+ * is built at swapon time and is then used at swap_writepage/swap_readpage
+ * time for locating where on disk a page belongs.
+ *
+ * If the swapfile is an S_ISBLK block device, a single extent is installed.
+ * This is done so that the main operating code can treat S_ISBLK and S_ISREG
+ * swap files identically.
+ *
+ * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
+ * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
+ * swapfiles are handled *identically* after swapon time.
+ *
+ * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
+ * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
+ * some stray blocks are found which do not fall within the PAGE_SIZE alignment
+ * requirements, they are simply tossed out - we will never use those blocks
+ * for swapping.
+ *
+ * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
+ * prevents root from shooting her foot off by ftruncating an in-use swapfile,
+ * which will scribble on the fs.
+ *
+ * The amount of disk space which a single swap extent represents varies.
+ * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
+ * extents in the list.  To avoid much list walking, we cache the previous
+ * search location in `curr_swap_extent', and start new searches from there.
+ * This is extremely effective.  The average number of iterations in
+ * map_swap_page() has been measured at about 0.3 per page.  - akpm.
+ */
+static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
+{
+       struct file *swap_file = sis->swap_file;
+       struct address_space *mapping = swap_file->f_mapping;
+       struct inode *inode = mapping->host;
+       int ret;
+
+       if (S_ISBLK(inode->i_mode)) {
+               ret = add_swap_extent(sis, 0, sis->max, 0);
+               *span = sis->pages;
+               return ret;
+       }
+
+       if (mapping->a_ops->swap_activate) {
+               ret = mapping->a_ops->swap_activate(sis, swap_file, span);
+               if (!ret) {
+                       sis->flags |= SWP_FILE;
+                       ret = add_swap_extent(sis, 0, sis->max, 0);
+                       *span = sis->pages;
+               }
+               return ret;
+       }
+
+       return generic_swapfile_activate(sis, swap_file, span);
+}
+
+static void _enable_swap_info(struct swap_info_struct *p, int prio,
+                               unsigned char *swap_map,
+                               struct swap_cluster_info *cluster_info)
+{
+       if (prio >= 0)
+               p->prio = prio;
+       else
+               p->prio = --least_priority;
+       /*
+        * the plist prio is negated because plist ordering is
+        * low-to-high, while swap ordering is high-to-low
+        */
+       p->list.prio = -p->prio;
+       p->avail_list.prio = -p->prio;
+       p->swap_map = swap_map;
+       p->cluster_info = cluster_info;
+       p->flags |= SWP_WRITEOK;
+       atomic_long_add(p->pages, &nr_swap_pages);
+       total_swap_pages += p->pages;
+
+       assert_spin_locked(&swap_lock);
+       /*
+        * both lists are plists, and thus priority ordered.
+        * swap_active_head needs to be priority ordered for swapoff(),
+        * which on removal of any swap_info_struct with an auto-assigned
+        * (i.e. negative) priority increments the auto-assigned priority
+        * of any lower-priority swap_info_structs.
+        * swap_avail_head needs to be priority ordered for get_swap_page(),
+        * which allocates swap pages from the highest available priority
+        * swap_info_struct.
+        */
+       plist_add(&p->list, &swap_active_head);
+       spin_lock(&swap_avail_lock);
+       plist_add(&p->avail_list, &swap_avail_head);
+       spin_unlock(&swap_avail_lock);
+}
+
+static void enable_swap_info(struct swap_info_struct *p, int prio,
+                               unsigned char *swap_map,
+                               struct swap_cluster_info *cluster_info,
+                               unsigned long *frontswap_map)
+{
+       frontswap_init(p->type, frontswap_map);
+       spin_lock(&swap_lock);
+       spin_lock(&p->lock);
+        _enable_swap_info(p, prio, swap_map, cluster_info);
+       spin_unlock(&p->lock);
+       spin_unlock(&swap_lock);
+}
+
+static void reinsert_swap_info(struct swap_info_struct *p)
+{
+       spin_lock(&swap_lock);
+       spin_lock(&p->lock);
+       _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
+       spin_unlock(&p->lock);
+       spin_unlock(&swap_lock);
+}
+
+SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
+{
+       struct swap_info_struct *p = NULL;
+       unsigned char *swap_map;
+       struct swap_cluster_info *cluster_info;
+       unsigned long *frontswap_map;
+       struct file *swap_file, *victim;
+       struct address_space *mapping;
+       struct inode *inode;
+       struct filename *pathname;
+       int err, found = 0;
+       unsigned int old_block_size;
+
+       if (!capable(CAP_SYS_ADMIN))
+               return -EPERM;
+
+       BUG_ON(!current->mm);
+
+       pathname = getname(specialfile);
+       if (IS_ERR(pathname))
+               return PTR_ERR(pathname);
+
+       victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
+       err = PTR_ERR(victim);
+       if (IS_ERR(victim))
+               goto out;
+
+       mapping = victim->f_mapping;
+       spin_lock(&swap_lock);
+       plist_for_each_entry(p, &swap_active_head, list) {
+               if (p->flags & SWP_WRITEOK) {
+                       if (p->swap_file->f_mapping == mapping) {
+                               found = 1;
+                               break;
+                       }
+               }
+       }
+       if (!found) {
+               err = -EINVAL;
+               spin_unlock(&swap_lock);
+               goto out_dput;
+       }
+       if (!security_vm_enough_memory_mm(current->mm, p->pages))
+               vm_unacct_memory(p->pages);
+       else {
+               err = -ENOMEM;
+               spin_unlock(&swap_lock);
+               goto out_dput;
+       }
+       spin_lock(&swap_avail_lock);
+       plist_del(&p->avail_list, &swap_avail_head);
+       spin_unlock(&swap_avail_lock);
+       spin_lock(&p->lock);
+       if (p->prio < 0) {
+               struct swap_info_struct *si = p;
+
+               plist_for_each_entry_continue(si, &swap_active_head, list) {
+                       si->prio++;
+                       si->list.prio--;
+                       si->avail_list.prio--;
+               }
+               least_priority++;
+       }
+       plist_del(&p->list, &swap_active_head);
+       atomic_long_sub(p->pages, &nr_swap_pages);
+       total_swap_pages -= p->pages;
+       p->flags &= ~SWP_WRITEOK;
+       spin_unlock(&p->lock);
+       spin_unlock(&swap_lock);
+
+       set_current_oom_origin();
+       err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
+       clear_current_oom_origin();
+
+       if (err) {
+               /* re-insert swap space back into swap_list */
+               reinsert_swap_info(p);
+               goto out_dput;
+       }
+
+       flush_work(&p->discard_work);
+
+       destroy_swap_extents(p);
+       if (p->flags & SWP_CONTINUED)
+               free_swap_count_continuations(p);
+
+       mutex_lock(&swapon_mutex);
+       spin_lock(&swap_lock);
+       spin_lock(&p->lock);
+       drain_mmlist();
+
+       /* wait for anyone still in scan_swap_map */
+       p->highest_bit = 0;             /* cuts scans short */
+       while (p->flags >= SWP_SCANNING) {
+               spin_unlock(&p->lock);
+               spin_unlock(&swap_lock);
+               schedule_timeout_uninterruptible(1);
+               spin_lock(&swap_lock);
+               spin_lock(&p->lock);
+       }
+
+       swap_file = p->swap_file;
+       old_block_size = p->old_block_size;
+       p->swap_file = NULL;
+       p->max = 0;
+       swap_map = p->swap_map;
+       p->swap_map = NULL;
+       cluster_info = p->cluster_info;
+       p->cluster_info = NULL;
+       frontswap_map = frontswap_map_get(p);
+       spin_unlock(&p->lock);
+       spin_unlock(&swap_lock);
+       frontswap_invalidate_area(p->type);
+       frontswap_map_set(p, NULL);
+       mutex_unlock(&swapon_mutex);
+       free_percpu(p->percpu_cluster);
+       p->percpu_cluster = NULL;
+       vfree(swap_map);
+       vfree(cluster_info);
+       vfree(frontswap_map);
+       /* Destroy swap account information */
+       swap_cgroup_swapoff(p->type);
+
+       inode = mapping->host;
+       if (S_ISBLK(inode->i_mode)) {
+               struct block_device *bdev = I_BDEV(inode);
+               set_blocksize(bdev, old_block_size);
+               blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
+       } else {
+               mutex_lock(&inode->i_mutex);
+               inode->i_flags &= ~S_SWAPFILE;
+               mutex_unlock(&inode->i_mutex);
+       }
+       filp_close(swap_file, NULL);
+
+       /*
+        * Clear the SWP_USED flag after all resources are freed so that swapon
+        * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
+        * not hold p->lock after we cleared its SWP_WRITEOK.
+        */
+       spin_lock(&swap_lock);
+       p->flags = 0;
+       spin_unlock(&swap_lock);
+
+       err = 0;
+       atomic_inc(&proc_poll_event);
+       wake_up_interruptible(&proc_poll_wait);
+
+out_dput:
+       filp_close(victim, NULL);
+out:
+       putname(pathname);
+       return err;
+}
+
+#ifdef CONFIG_PROC_FS
+static unsigned swaps_poll(struct file *file, poll_table *wait)
+{
+       struct seq_file *seq = file->private_data;
+
+       poll_wait(file, &proc_poll_wait, wait);
+
+       if (seq->poll_event != atomic_read(&proc_poll_event)) {
+               seq->poll_event = atomic_read(&proc_poll_event);
+               return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
+       }
+
+       return POLLIN | POLLRDNORM;
+}
+
+/* iterator */
+static void *swap_start(struct seq_file *swap, loff_t *pos)
+{
+       struct swap_info_struct *si;
+       int type;
+       loff_t l = *pos;
+
+       mutex_lock(&swapon_mutex);
+
+       if (!l)
+               return SEQ_START_TOKEN;
+
+       for (type = 0; type < nr_swapfiles; type++) {
+               smp_rmb();      /* read nr_swapfiles before swap_info[type] */
+               si = swap_info[type];
+               if (!(si->flags & SWP_USED) || !si->swap_map)
+                       continue;
+               if (!--l)
+                       return si;
+       }
+
+       return NULL;
+}
+
+static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
+{
+       struct swap_info_struct *si = v;
+       int type;
+
+       if (v == SEQ_START_TOKEN)
+               type = 0;
+       else
+               type = si->type + 1;
+
+       for (; type < nr_swapfiles; type++) {
+               smp_rmb();      /* read nr_swapfiles before swap_info[type] */
+               si = swap_info[type];
+               if (!(si->flags & SWP_USED) || !si->swap_map)
+                       continue;
+               ++*pos;
+               return si;
+       }
+
+       return NULL;
+}
+
+static void swap_stop(struct seq_file *swap, void *v)
+{
+       mutex_unlock(&swapon_mutex);
+}
+
+static int swap_show(struct seq_file *swap, void *v)
+{
+       struct swap_info_struct *si = v;
+       struct file *file;
+       int len;
+
+       if (si == SEQ_START_TOKEN) {
+               seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
+               return 0;
+       }
+
+       file = si->swap_file;
+       len = seq_path(swap, &file->f_path, " \t\n\\");
+       seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
+                       len < 40 ? 40 - len : 1, " ",
+                       S_ISBLK(file_inode(file)->i_mode) ?
+                               "partition" : "file\t",
+                       si->pages << (PAGE_SHIFT - 10),
+                       si->inuse_pages << (PAGE_SHIFT - 10),
+                       si->prio);
+       return 0;
+}
+
+static const struct seq_operations swaps_op = {
+       .start =        swap_start,
+       .next =         swap_next,
+       .stop =         swap_stop,
+       .show =         swap_show
+};
+
+static int swaps_open(struct inode *inode, struct file *file)
+{
+       struct seq_file *seq;
+       int ret;
+
+       ret = seq_open(file, &swaps_op);
+       if (ret)
+               return ret;
+
+       seq = file->private_data;
+       seq->poll_event = atomic_read(&proc_poll_event);
+       return 0;
+}
+
+static const struct file_operations proc_swaps_operations = {
+       .open           = swaps_open,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = seq_release,
+       .poll           = swaps_poll,
+};
+
+static int __init procswaps_init(void)
+{
+       proc_create("swaps", 0, NULL, &proc_swaps_operations);
+       return 0;
+}
+__initcall(procswaps_init);
+#endif /* CONFIG_PROC_FS */
+
+#ifdef MAX_SWAPFILES_CHECK
+static int __init max_swapfiles_check(void)
+{
+       MAX_SWAPFILES_CHECK();
+       return 0;
+}
+late_initcall(max_swapfiles_check);
+#endif
+
+static struct swap_info_struct *alloc_swap_info(void)
+{
+       struct swap_info_struct *p;
+       unsigned int type;
+
+       p = kzalloc(sizeof(*p), GFP_KERNEL);
+       if (!p)
+               return ERR_PTR(-ENOMEM);
+
+       spin_lock(&swap_lock);
+       for (type = 0; type < nr_swapfiles; type++) {
+               if (!(swap_info[type]->flags & SWP_USED))
+                       break;
+       }
+       if (type >= MAX_SWAPFILES) {
+               spin_unlock(&swap_lock);
+               kfree(p);
+               return ERR_PTR(-EPERM);
+       }
+       if (type >= nr_swapfiles) {
+               p->type = type;
+               swap_info[type] = p;
+               /*
+                * Write swap_info[type] before nr_swapfiles, in case a
+                * racing procfs swap_start() or swap_next() is reading them.
+                * (We never shrink nr_swapfiles, we never free this entry.)
+                */
+               smp_wmb();
+               nr_swapfiles++;
+       } else {
+               kfree(p);
+               p = swap_info[type];
+               /*
+                * Do not memset this entry: a racing procfs swap_next()
+                * would be relying on p->type to remain valid.
+                */
+       }
+       INIT_LIST_HEAD(&p->first_swap_extent.list);
+       plist_node_init(&p->list, 0);
+       plist_node_init(&p->avail_list, 0);
+       p->flags = SWP_USED;
+       spin_unlock(&swap_lock);
+       spin_lock_init(&p->lock);
+
+       return p;
+}
+
+static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
+{
+       int error;
+
+       if (S_ISBLK(inode->i_mode)) {
+               p->bdev = bdgrab(I_BDEV(inode));
+               error = blkdev_get(p->bdev,
+                                  FMODE_READ | FMODE_WRITE | FMODE_EXCL,
+                                  sys_swapon);
+               if (error < 0) {
+                       p->bdev = NULL;
+                       return -EINVAL;
+               }
+               p->old_block_size = block_size(p->bdev);
+               error = set_blocksize(p->bdev, PAGE_SIZE);
+               if (error < 0)
+                       return error;
+               p->flags |= SWP_BLKDEV;
+       } else if (S_ISREG(inode->i_mode)) {
+               p->bdev = inode->i_sb->s_bdev;
+               mutex_lock(&inode->i_mutex);
+               if (IS_SWAPFILE(inode))
+                       return -EBUSY;
+       } else
+               return -EINVAL;
+
+       return 0;
+}
+
+static unsigned long read_swap_header(struct swap_info_struct *p,
+                                       union swap_header *swap_header,
+                                       struct inode *inode)
+{
+       int i;
+       unsigned long maxpages;
+       unsigned long swapfilepages;
+       unsigned long last_page;
+
+       if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
+               pr_err("Unable to find swap-space signature\n");
+               return 0;
+       }
+
+       /* swap partition endianess hack... */
+       if (swab32(swap_header->info.version) == 1) {
+               swab32s(&swap_header->info.version);
+               swab32s(&swap_header->info.last_page);
+               swab32s(&swap_header->info.nr_badpages);
+               for (i = 0; i < swap_header->info.nr_badpages; i++)
+                       swab32s(&swap_header->info.badpages[i]);
+       }
+       /* Check the swap header's sub-version */
+       if (swap_header->info.version != 1) {
+               pr_warn("Unable to handle swap header version %d\n",
+                       swap_header->info.version);
+               return 0;
+       }
+
+       p->lowest_bit  = 1;
+       p->cluster_next = 1;
+       p->cluster_nr = 0;
+
+       /*
+        * Find out how many pages are allowed for a single swap
+        * device. There are two limiting factors: 1) the number
+        * of bits for the swap offset in the swp_entry_t type, and
+        * 2) the number of bits in the swap pte as defined by the
+        * different architectures. In order to find the
+        * largest possible bit mask, a swap entry with swap type 0
+        * and swap offset ~0UL is created, encoded to a swap pte,
+        * decoded to a swp_entry_t again, and finally the swap
+        * offset is extracted. This will mask all the bits from
+        * the initial ~0UL mask that can't be encoded in either
+        * the swp_entry_t or the architecture definition of a
+        * swap pte.
+        */
+       maxpages = swp_offset(pte_to_swp_entry(
+                       swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
+       last_page = swap_header->info.last_page;
+       if (last_page > maxpages) {
+               pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
+                       maxpages << (PAGE_SHIFT - 10),
+                       last_page << (PAGE_SHIFT - 10));
+       }
+       if (maxpages > last_page) {
+               maxpages = last_page + 1;
+               /* p->max is an unsigned int: don't overflow it */
+               if ((unsigned int)maxpages == 0)
+                       maxpages = UINT_MAX;
+       }
+       p->highest_bit = maxpages - 1;
+
+       if (!maxpages)
+               return 0;
+       swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
+       if (swapfilepages && maxpages > swapfilepages) {
+               pr_warn("Swap area shorter than signature indicates\n");
+               return 0;
+       }
+       if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
+               return 0;
+       if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
+               return 0;
+
+       return maxpages;
+}
+
+static int setup_swap_map_and_extents(struct swap_info_struct *p,
+                                       union swap_header *swap_header,
+                                       unsigned char *swap_map,
+                                       struct swap_cluster_info *cluster_info,
+                                       unsigned long maxpages,
+                                       sector_t *span)
+{
+       int i;
+       unsigned int nr_good_pages;
+       int nr_extents;
+       unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
+       unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
+
+       nr_good_pages = maxpages - 1;   /* omit header page */
+
+       cluster_set_null(&p->free_cluster_head);
+       cluster_set_null(&p->free_cluster_tail);
+       cluster_set_null(&p->discard_cluster_head);
+       cluster_set_null(&p->discard_cluster_tail);
+
+       for (i = 0; i < swap_header->info.nr_badpages; i++) {
+               unsigned int page_nr = swap_header->info.badpages[i];
+               if (page_nr == 0 || page_nr > swap_header->info.last_page)
+                       return -EINVAL;
+               if (page_nr < maxpages) {
+                       swap_map[page_nr] = SWAP_MAP_BAD;
+                       nr_good_pages--;
+                       /*
+                        * Haven't marked the cluster free yet, no list
+                        * operation involved
+                        */
+                       inc_cluster_info_page(p, cluster_info, page_nr);
+               }
+       }
+
+       /* Haven't marked the cluster free yet, no list operation involved */
+       for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
+               inc_cluster_info_page(p, cluster_info, i);
+
+       if (nr_good_pages) {
+               swap_map[0] = SWAP_MAP_BAD;
+               /*
+                * Not mark the cluster free yet, no list
+                * operation involved
+                */
+               inc_cluster_info_page(p, cluster_info, 0);
+               p->max = maxpages;
+               p->pages = nr_good_pages;
+               nr_extents = setup_swap_extents(p, span);
+               if (nr_extents < 0)
+                       return nr_extents;
+               nr_good_pages = p->pages;
+       }
+       if (!nr_good_pages) {
+               pr_warn("Empty swap-file\n");
+               return -EINVAL;
+       }
+
+       if (!cluster_info)
+               return nr_extents;
+
+       for (i = 0; i < nr_clusters; i++) {
+               if (!cluster_count(&cluster_info[idx])) {
+                       cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
+                       if (cluster_is_null(&p->free_cluster_head)) {
+                               cluster_set_next_flag(&p->free_cluster_head,
+                                                               idx, 0);
+                               cluster_set_next_flag(&p->free_cluster_tail,
+                                                               idx, 0);
+                       } else {
+                               unsigned int tail;
+
+                               tail = cluster_next(&p->free_cluster_tail);
+                               cluster_set_next(&cluster_info[tail], idx);
+                               cluster_set_next_flag(&p->free_cluster_tail,
+                                                               idx, 0);
+                       }
+               }
+               idx++;
+               if (idx == nr_clusters)
+                       idx = 0;
+       }
+       return nr_extents;
+}
+
+/*
+ * Helper to sys_swapon determining if a given swap
+ * backing device queue supports DISCARD operations.
+ */
+static bool swap_discardable(struct swap_info_struct *si)
+{
+       struct request_queue *q = bdev_get_queue(si->bdev);
+
+       if (!q || !blk_queue_discard(q))
+               return false;
+
+       return true;
+}
+
+SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
+{
+       struct swap_info_struct *p;
+       struct filename *name;
+       struct file *swap_file = NULL;
+       struct address_space *mapping;
+       int i;
+       int prio;
+       int error;
+       union swap_header *swap_header;
+       int nr_extents;
+       sector_t span;
+       unsigned long maxpages;
+       unsigned char *swap_map = NULL;
+       struct swap_cluster_info *cluster_info = NULL;
+       unsigned long *frontswap_map = NULL;
+       struct page *page = NULL;
+       struct inode *inode = NULL;
+
+       if (swap_flags & ~SWAP_FLAGS_VALID)
+               return -EINVAL;
+
+       if (!capable(CAP_SYS_ADMIN))
+               return -EPERM;
+
+       p = alloc_swap_info();
+       if (IS_ERR(p))
+               return PTR_ERR(p);
+
+       INIT_WORK(&p->discard_work, swap_discard_work);
+
+       name = getname(specialfile);
+       if (IS_ERR(name)) {
+               error = PTR_ERR(name);
+               name = NULL;
+               goto bad_swap;
+       }
+       swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
+       if (IS_ERR(swap_file)) {
+               error = PTR_ERR(swap_file);
+               swap_file = NULL;
+               goto bad_swap;
+       }
+
+       p->swap_file = swap_file;
+       mapping = swap_file->f_mapping;
+
+       for (i = 0; i < nr_swapfiles; i++) {
+               struct swap_info_struct *q = swap_info[i];
+
+               if (q == p || !q->swap_file)
+                       continue;
+               if (mapping == q->swap_file->f_mapping) {
+                       error = -EBUSY;
+                       goto bad_swap;
+               }
+       }
+
+       inode = mapping->host;
+       /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
+       error = claim_swapfile(p, inode);
+       if (unlikely(error))
+               goto bad_swap;
+
+       /*
+        * Read the swap header.
+        */
+       if (!mapping->a_ops->readpage) {
+               error = -EINVAL;
+               goto bad_swap;
+       }
+       page = read_mapping_page(mapping, 0, swap_file);
+       if (IS_ERR(page)) {
+               error = PTR_ERR(page);
+               goto bad_swap;
+       }
+       swap_header = kmap(page);
+
+       maxpages = read_swap_header(p, swap_header, inode);
+       if (unlikely(!maxpages)) {
+               error = -EINVAL;
+               goto bad_swap;
+       }
+
+       /* OK, set up the swap map and apply the bad block list */
+       swap_map = vzalloc(maxpages);
+       if (!swap_map) {
+               error = -ENOMEM;
+               goto bad_swap;
+       }
+       if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
+               p->flags |= SWP_SOLIDSTATE;
+               /*
+                * select a random position to start with to help wear leveling
+                * SSD
+                */
+               p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
+
+               cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
+                       SWAPFILE_CLUSTER) * sizeof(*cluster_info));
+               if (!cluster_info) {
+                       error = -ENOMEM;
+                       goto bad_swap;
+               }
+               p->percpu_cluster = alloc_percpu(struct percpu_cluster);
+               if (!p->percpu_cluster) {
+                       error = -ENOMEM;
+                       goto bad_swap;
+               }
+               for_each_possible_cpu(i) {
+                       struct percpu_cluster *cluster;
+                       cluster = per_cpu_ptr(p->percpu_cluster, i);
+                       cluster_set_null(&cluster->index);
+               }
+       }
+
+       error = swap_cgroup_swapon(p->type, maxpages);
+       if (error)
+               goto bad_swap;
+
+       nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
+               cluster_info, maxpages, &span);
+       if (unlikely(nr_extents < 0)) {
+               error = nr_extents;
+               goto bad_swap;
+       }
+       /* frontswap enabled? set up bit-per-page map for frontswap */
+       if (frontswap_enabled)
+               frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
+
+       if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
+               /*
+                * When discard is enabled for swap with no particular
+                * policy flagged, we set all swap discard flags here in
+                * order to sustain backward compatibility with older
+                * swapon(8) releases.
+                */
+               p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
+                            SWP_PAGE_DISCARD);
+
+               /*
+                * By flagging sys_swapon, a sysadmin can tell us to
+                * either do single-time area discards only, or to just
+                * perform discards for released swap page-clusters.
+                * Now it's time to adjust the p->flags accordingly.
+                */
+               if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
+                       p->flags &= ~SWP_PAGE_DISCARD;
+               else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
+                       p->flags &= ~SWP_AREA_DISCARD;
+
+               /* issue a swapon-time discard if it's still required */
+               if (p->flags & SWP_AREA_DISCARD) {
+                       int err = discard_swap(p);
+                       if (unlikely(err))
+                               pr_err("swapon: discard_swap(%p): %d\n",
+                                       p, err);
+               }
+       }
+
+       mutex_lock(&swapon_mutex);
+       prio = -1;
+       if (swap_flags & SWAP_FLAG_PREFER)
+               prio =
+                 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
+       enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
+
+       pr_info("Adding %uk swap on %s.  "
+                       "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
+               p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
+               nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
+               (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
+               (p->flags & SWP_DISCARDABLE) ? "D" : "",
+               (p->flags & SWP_AREA_DISCARD) ? "s" : "",
+               (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
+               (frontswap_map) ? "FS" : "");
+
+       mutex_unlock(&swapon_mutex);
+       atomic_inc(&proc_poll_event);
+       wake_up_interruptible(&proc_poll_wait);
+
+       if (S_ISREG(inode->i_mode))
+               inode->i_flags |= S_SWAPFILE;
+       error = 0;
+       goto out;
+bad_swap:
+       free_percpu(p->percpu_cluster);
+       p->percpu_cluster = NULL;
+       if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
+               set_blocksize(p->bdev, p->old_block_size);
+               blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
+       }
+       destroy_swap_extents(p);
+       swap_cgroup_swapoff(p->type);
+       spin_lock(&swap_lock);
+       p->swap_file = NULL;
+       p->flags = 0;
+       spin_unlock(&swap_lock);
+       vfree(swap_map);
+       vfree(cluster_info);
+       if (swap_file) {
+               if (inode && S_ISREG(inode->i_mode)) {
+                       mutex_unlock(&inode->i_mutex);
+                       inode = NULL;
+               }
+               filp_close(swap_file, NULL);
+       }
+out:
+       if (page && !IS_ERR(page)) {
+               kunmap(page);
+               page_cache_release(page);
+       }
+       if (name)
+               putname(name);
+       if (inode && S_ISREG(inode->i_mode))
+               mutex_unlock(&inode->i_mutex);
+       return error;
+}
+
+void si_swapinfo(struct sysinfo *val)
+{
+       unsigned int type;
+       unsigned long nr_to_be_unused = 0;
+
+       spin_lock(&swap_lock);
+       for (type = 0; type < nr_swapfiles; type++) {
+               struct swap_info_struct *si = swap_info[type];
+
+               if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
+                       nr_to_be_unused += si->inuse_pages;
+       }
+       val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
+       val->totalswap = total_swap_pages + nr_to_be_unused;
+       spin_unlock(&swap_lock);
+}
+
+/*
+ * Verify that a swap entry is valid and increment its swap map count.
+ *
+ * Returns error code in following case.
+ * - success -> 0
+ * - swp_entry is invalid -> EINVAL
+ * - swp_entry is migration entry -> EINVAL
+ * - swap-cache reference is requested but there is already one. -> EEXIST
+ * - swap-cache reference is requested but the entry is not used. -> ENOENT
+ * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
+ */
+static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
+{
+       struct swap_info_struct *p;
+       unsigned long offset, type;
+       unsigned char count;
+       unsigned char has_cache;
+       int err = -EINVAL;
+
+       if (non_swap_entry(entry))
+               goto out;
+
+       type = swp_type(entry);
+       if (type >= nr_swapfiles)
+               goto bad_file;
+       p = swap_info[type];
+       offset = swp_offset(entry);
+
+       spin_lock(&p->lock);
+       if (unlikely(offset >= p->max))
+               goto unlock_out;
+
+       count = p->swap_map[offset];
+
+       /*
+        * swapin_readahead() doesn't check if a swap entry is valid, so the
+        * swap entry could be SWAP_MAP_BAD. Check here with lock held.
+        */
+       if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
+               err = -ENOENT;
+               goto unlock_out;
+       }
+
+       has_cache = count & SWAP_HAS_CACHE;
+       count &= ~SWAP_HAS_CACHE;
+       err = 0;
+
+       if (usage == SWAP_HAS_CACHE) {
+
+               /* set SWAP_HAS_CACHE if there is no cache and entry is used */
+               if (!has_cache && count)
+                       has_cache = SWAP_HAS_CACHE;
+               else if (has_cache)             /* someone else added cache */
+                       err = -EEXIST;
+               else                            /* no users remaining */
+                       err = -ENOENT;
+
+       } else if (count || has_cache) {
+
+               if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
+                       count += usage;
+               else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
+                       err = -EINVAL;
+               else if (swap_count_continued(p, offset, count))
+                       count = COUNT_CONTINUED;
+               else
+                       err = -ENOMEM;
+       } else
+               err = -ENOENT;                  /* unused swap entry */
+
+       p->swap_map[offset] = count | has_cache;
+
+unlock_out:
+       spin_unlock(&p->lock);
+out:
+       return err;
+
+bad_file:
+       pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
+       goto out;
+}
+
+/*
+ * Help swapoff by noting that swap entry belongs to shmem/tmpfs
+ * (in which case its reference count is never incremented).
+ */
+void swap_shmem_alloc(swp_entry_t entry)
+{
+       __swap_duplicate(entry, SWAP_MAP_SHMEM);
+}
+
+/*
+ * Increase reference count of swap entry by 1.
+ * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
+ * but could not be atomically allocated.  Returns 0, just as if it succeeded,
+ * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
+ * might occur if a page table entry has got corrupted.
+ */
+int swap_duplicate(swp_entry_t entry)
+{
+       int err = 0;
+
+       while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
+               err = add_swap_count_continuation(entry, GFP_ATOMIC);
+       return err;
+}
+
+/*
+ * @entry: swap entry for which we allocate swap cache.
+ *
+ * Called when allocating swap cache for existing swap entry,
+ * This can return error codes. Returns 0 at success.
+ * -EBUSY means there is a swap cache.
+ * Note: return code is different from swap_duplicate().
+ */
+int swapcache_prepare(swp_entry_t entry)
+{
+       return __swap_duplicate(entry, SWAP_HAS_CACHE);
+}
+
+struct swap_info_struct *page_swap_info(struct page *page)
+{
+       swp_entry_t swap = { .val = page_private(page) };
+       BUG_ON(!PageSwapCache(page));
+       return swap_info[swp_type(swap)];
+}
+
+/*
+ * out-of-line __page_file_ methods to avoid include hell.
+ */
+struct address_space *__page_file_mapping(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageSwapCache(page), page);
+       return page_swap_info(page)->swap_file->f_mapping;
+}
+EXPORT_SYMBOL_GPL(__page_file_mapping);
+
+pgoff_t __page_file_index(struct page *page)
+{
+       swp_entry_t swap = { .val = page_private(page) };
+       VM_BUG_ON_PAGE(!PageSwapCache(page), page);
+       return swp_offset(swap);
+}
+EXPORT_SYMBOL_GPL(__page_file_index);
+
+/*
+ * add_swap_count_continuation - called when a swap count is duplicated
+ * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
+ * page of the original vmalloc'ed swap_map, to hold the continuation count
+ * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
+ * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
+ *
+ * These continuation pages are seldom referenced: the common paths all work
+ * on the original swap_map, only referring to a continuation page when the
+ * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
+ *
+ * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
+ * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
+ * can be called after dropping locks.
+ */
+int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
+{
+       struct swap_info_struct *si;
+       struct page *head;
+       struct page *page;
+       struct page *list_page;
+       pgoff_t offset;
+       unsigned char count;
+
+       /*
+        * When debugging, it's easier to use __GFP_ZERO here; but it's better
+        * for latency not to zero a page while GFP_ATOMIC and holding locks.
+        */
+       page = alloc_page(gfp_mask | __GFP_HIGHMEM);
+
+       si = swap_info_get(entry);
+       if (!si) {
+               /*
+                * An acceptable race has occurred since the failing
+                * __swap_duplicate(): the swap entry has been freed,
+                * perhaps even the whole swap_map cleared for swapoff.
+                */
+               goto outer;
+       }
+
+       offset = swp_offset(entry);
+       count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
+
+       if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
+               /*
+                * The higher the swap count, the more likely it is that tasks
+                * will race to add swap count continuation: we need to avoid
+                * over-provisioning.
+                */
+               goto out;
+       }
+
+       if (!page) {
+               spin_unlock(&si->lock);
+               return -ENOMEM;
+       }
+
+       /*
+        * We are fortunate that although vmalloc_to_page uses pte_offset_map,
+        * no architecture is using highmem pages for kernel page tables: so it
+        * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
+        */
+       head = vmalloc_to_page(si->swap_map + offset);
+       offset &= ~PAGE_MASK;
+
+       /*
+        * Page allocation does not initialize the page's lru field,
+        * but it does always reset its private field.
+        */
+       if (!page_private(head)) {
+               BUG_ON(count & COUNT_CONTINUED);
+               INIT_LIST_HEAD(&head->lru);
+               set_page_private(head, SWP_CONTINUED);
+               si->flags |= SWP_CONTINUED;
+       }
+
+       list_for_each_entry(list_page, &head->lru, lru) {
+               unsigned char *map;
+
+               /*
+                * If the previous map said no continuation, but we've found
+                * a continuation page, free our allocation and use this one.
+                */
+               if (!(count & COUNT_CONTINUED))
+                       goto out;
+
+               map = kmap_atomic(list_page) + offset;
+               count = *map;
+               kunmap_atomic(map);
+
+               /*
+                * If this continuation count now has some space in it,
+                * free our allocation and use this one.
+                */
+               if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
+                       goto out;
+       }
+
+       list_add_tail(&page->lru, &head->lru);
+       page = NULL;                    /* now it's attached, don't free it */
+out:
+       spin_unlock(&si->lock);
+outer:
+       if (page)
+               __free_page(page);
+       return 0;
+}
+
+/*
+ * swap_count_continued - when the original swap_map count is incremented
+ * from SWAP_MAP_MAX, check if there is already a continuation page to carry
+ * into, carry if so, or else fail until a new continuation page is allocated;
+ * when the original swap_map count is decremented from 0 with continuation,
+ * borrow from the continuation and report whether it still holds more.
+ * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
+ */
+static bool swap_count_continued(struct swap_info_struct *si,
+                                pgoff_t offset, unsigned char count)
+{
+       struct page *head;
+       struct page *page;
+       unsigned char *map;
+
+       head = vmalloc_to_page(si->swap_map + offset);
+       if (page_private(head) != SWP_CONTINUED) {
+               BUG_ON(count & COUNT_CONTINUED);
+               return false;           /* need to add count continuation */
+       }
+
+       offset &= ~PAGE_MASK;
+       page = list_entry(head->lru.next, struct page, lru);
+       map = kmap_atomic(page) + offset;
+
+       if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
+               goto init_map;          /* jump over SWAP_CONT_MAX checks */
+
+       if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
+               /*
+                * Think of how you add 1 to 999
+                */
+               while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
+                       kunmap_atomic(map);
+                       page = list_entry(page->lru.next, struct page, lru);
+                       BUG_ON(page == head);
+                       map = kmap_atomic(page) + offset;
+               }
+               if (*map == SWAP_CONT_MAX) {
+                       kunmap_atomic(map);
+                       page = list_entry(page->lru.next, struct page, lru);
+                       if (page == head)
+                               return false;   /* add count continuation */
+                       map = kmap_atomic(page) + offset;
+init_map:              *map = 0;               /* we didn't zero the page */
+               }
+               *map += 1;
+               kunmap_atomic(map);
+               page = list_entry(page->lru.prev, struct page, lru);
+               while (page != head) {
+                       map = kmap_atomic(page) + offset;
+                       *map = COUNT_CONTINUED;
+                       kunmap_atomic(map);
+                       page = list_entry(page->lru.prev, struct page, lru);
+               }
+               return true;                    /* incremented */
+
+       } else {                                /* decrementing */
+               /*
+                * Think of how you subtract 1 from 1000
+                */
+               BUG_ON(count != COUNT_CONTINUED);
+               while (*map == COUNT_CONTINUED) {
+                       kunmap_atomic(map);
+                       page = list_entry(page->lru.next, struct page, lru);
+                       BUG_ON(page == head);
+                       map = kmap_atomic(page) + offset;
+               }
+               BUG_ON(*map == 0);
+               *map -= 1;
+               if (*map == 0)
+                       count = 0;
+               kunmap_atomic(map);
+               page = list_entry(page->lru.prev, struct page, lru);
+               while (page != head) {
+                       map = kmap_atomic(page) + offset;
+                       *map = SWAP_CONT_MAX | count;
+                       count = COUNT_CONTINUED;
+                       kunmap_atomic(map);
+                       page = list_entry(page->lru.prev, struct page, lru);
+               }
+               return count == COUNT_CONTINUED;
+       }
+}
+
+/*
+ * free_swap_count_continuations - swapoff free all the continuation pages
+ * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
+ */
+static void free_swap_count_continuations(struct swap_info_struct *si)
+{
+       pgoff_t offset;
+
+       for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
+               struct page *head;
+               head = vmalloc_to_page(si->swap_map + offset);
+               if (page_private(head)) {
+                       struct list_head *this, *next;
+                       list_for_each_safe(this, next, &head->lru) {
+                               struct page *page;
+                               page = list_entry(this, struct page, lru);
+                               list_del(this);
+                               __free_page(page);
+                       }
+               }
+       }
+}