Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / slab_common.c
diff --git a/kernel/mm/slab_common.c b/kernel/mm/slab_common.c
new file mode 100644 (file)
index 0000000..999bb34
--- /dev/null
@@ -0,0 +1,1171 @@
+/*
+ * Slab allocator functions that are independent of the allocator strategy
+ *
+ * (C) 2012 Christoph Lameter <cl@linux.com>
+ */
+#include <linux/slab.h>
+
+#include <linux/mm.h>
+#include <linux/poison.h>
+#include <linux/interrupt.h>
+#include <linux/memory.h>
+#include <linux/compiler.h>
+#include <linux/module.h>
+#include <linux/cpu.h>
+#include <linux/uaccess.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/page.h>
+#include <linux/memcontrol.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/kmem.h>
+
+#include "slab.h"
+
+enum slab_state slab_state;
+LIST_HEAD(slab_caches);
+DEFINE_MUTEX(slab_mutex);
+struct kmem_cache *kmem_cache;
+
+/*
+ * Set of flags that will prevent slab merging
+ */
+#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
+               SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
+               SLAB_FAILSLAB)
+
+#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
+               SLAB_CACHE_DMA | SLAB_NOTRACK)
+
+/*
+ * Merge control. If this is set then no merging of slab caches will occur.
+ * (Could be removed. This was introduced to pacify the merge skeptics.)
+ */
+static int slab_nomerge;
+
+static int __init setup_slab_nomerge(char *str)
+{
+       slab_nomerge = 1;
+       return 1;
+}
+
+#ifdef CONFIG_SLUB
+__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
+#endif
+
+__setup("slab_nomerge", setup_slab_nomerge);
+
+/*
+ * Determine the size of a slab object
+ */
+unsigned int kmem_cache_size(struct kmem_cache *s)
+{
+       return s->object_size;
+}
+EXPORT_SYMBOL(kmem_cache_size);
+
+#ifdef CONFIG_DEBUG_VM
+static int kmem_cache_sanity_check(const char *name, size_t size)
+{
+       struct kmem_cache *s = NULL;
+
+       if (!name || in_interrupt() || size < sizeof(void *) ||
+               size > KMALLOC_MAX_SIZE) {
+               pr_err("kmem_cache_create(%s) integrity check failed\n", name);
+               return -EINVAL;
+       }
+
+       list_for_each_entry(s, &slab_caches, list) {
+               char tmp;
+               int res;
+
+               /*
+                * This happens when the module gets unloaded and doesn't
+                * destroy its slab cache and no-one else reuses the vmalloc
+                * area of the module.  Print a warning.
+                */
+               res = probe_kernel_address(s->name, tmp);
+               if (res) {
+                       pr_err("Slab cache with size %d has lost its name\n",
+                              s->object_size);
+                       continue;
+               }
+       }
+
+       WARN_ON(strchr(name, ' '));     /* It confuses parsers */
+       return 0;
+}
+#else
+static inline int kmem_cache_sanity_check(const char *name, size_t size)
+{
+       return 0;
+}
+#endif
+
+#ifdef CONFIG_MEMCG_KMEM
+void slab_init_memcg_params(struct kmem_cache *s)
+{
+       s->memcg_params.is_root_cache = true;
+       INIT_LIST_HEAD(&s->memcg_params.list);
+       RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
+}
+
+static int init_memcg_params(struct kmem_cache *s,
+               struct mem_cgroup *memcg, struct kmem_cache *root_cache)
+{
+       struct memcg_cache_array *arr;
+
+       if (memcg) {
+               s->memcg_params.is_root_cache = false;
+               s->memcg_params.memcg = memcg;
+               s->memcg_params.root_cache = root_cache;
+               return 0;
+       }
+
+       slab_init_memcg_params(s);
+
+       if (!memcg_nr_cache_ids)
+               return 0;
+
+       arr = kzalloc(sizeof(struct memcg_cache_array) +
+                     memcg_nr_cache_ids * sizeof(void *),
+                     GFP_KERNEL);
+       if (!arr)
+               return -ENOMEM;
+
+       RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
+       return 0;
+}
+
+static void destroy_memcg_params(struct kmem_cache *s)
+{
+       if (is_root_cache(s))
+               kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
+}
+
+static int update_memcg_params(struct kmem_cache *s, int new_array_size)
+{
+       struct memcg_cache_array *old, *new;
+
+       if (!is_root_cache(s))
+               return 0;
+
+       new = kzalloc(sizeof(struct memcg_cache_array) +
+                     new_array_size * sizeof(void *), GFP_KERNEL);
+       if (!new)
+               return -ENOMEM;
+
+       old = rcu_dereference_protected(s->memcg_params.memcg_caches,
+                                       lockdep_is_held(&slab_mutex));
+       if (old)
+               memcpy(new->entries, old->entries,
+                      memcg_nr_cache_ids * sizeof(void *));
+
+       rcu_assign_pointer(s->memcg_params.memcg_caches, new);
+       if (old)
+               kfree_rcu(old, rcu);
+       return 0;
+}
+
+int memcg_update_all_caches(int num_memcgs)
+{
+       struct kmem_cache *s;
+       int ret = 0;
+
+       mutex_lock(&slab_mutex);
+       list_for_each_entry(s, &slab_caches, list) {
+               ret = update_memcg_params(s, num_memcgs);
+               /*
+                * Instead of freeing the memory, we'll just leave the caches
+                * up to this point in an updated state.
+                */
+               if (ret)
+                       break;
+       }
+       mutex_unlock(&slab_mutex);
+       return ret;
+}
+#else
+static inline int init_memcg_params(struct kmem_cache *s,
+               struct mem_cgroup *memcg, struct kmem_cache *root_cache)
+{
+       return 0;
+}
+
+static inline void destroy_memcg_params(struct kmem_cache *s)
+{
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+/*
+ * Find a mergeable slab cache
+ */
+int slab_unmergeable(struct kmem_cache *s)
+{
+       if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
+               return 1;
+
+       if (!is_root_cache(s))
+               return 1;
+
+       if (s->ctor)
+               return 1;
+
+       /*
+        * We may have set a slab to be unmergeable during bootstrap.
+        */
+       if (s->refcount < 0)
+               return 1;
+
+       return 0;
+}
+
+struct kmem_cache *find_mergeable(size_t size, size_t align,
+               unsigned long flags, const char *name, void (*ctor)(void *))
+{
+       struct kmem_cache *s;
+
+       if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
+               return NULL;
+
+       if (ctor)
+               return NULL;
+
+       size = ALIGN(size, sizeof(void *));
+       align = calculate_alignment(flags, align, size);
+       size = ALIGN(size, align);
+       flags = kmem_cache_flags(size, flags, name, NULL);
+
+       list_for_each_entry_reverse(s, &slab_caches, list) {
+               if (slab_unmergeable(s))
+                       continue;
+
+               if (size > s->size)
+                       continue;
+
+               if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
+                       continue;
+               /*
+                * Check if alignment is compatible.
+                * Courtesy of Adrian Drzewiecki
+                */
+               if ((s->size & ~(align - 1)) != s->size)
+                       continue;
+
+               if (s->size - size >= sizeof(void *))
+                       continue;
+
+               if (IS_ENABLED(CONFIG_SLAB) && align &&
+                       (align > s->align || s->align % align))
+                       continue;
+
+               return s;
+       }
+       return NULL;
+}
+
+/*
+ * Figure out what the alignment of the objects will be given a set of
+ * flags, a user specified alignment and the size of the objects.
+ */
+unsigned long calculate_alignment(unsigned long flags,
+               unsigned long align, unsigned long size)
+{
+       /*
+        * If the user wants hardware cache aligned objects then follow that
+        * suggestion if the object is sufficiently large.
+        *
+        * The hardware cache alignment cannot override the specified
+        * alignment though. If that is greater then use it.
+        */
+       if (flags & SLAB_HWCACHE_ALIGN) {
+               unsigned long ralign = cache_line_size();
+               while (size <= ralign / 2)
+                       ralign /= 2;
+               align = max(align, ralign);
+       }
+
+       if (align < ARCH_SLAB_MINALIGN)
+               align = ARCH_SLAB_MINALIGN;
+
+       return ALIGN(align, sizeof(void *));
+}
+
+static struct kmem_cache *
+do_kmem_cache_create(const char *name, size_t object_size, size_t size,
+                    size_t align, unsigned long flags, void (*ctor)(void *),
+                    struct mem_cgroup *memcg, struct kmem_cache *root_cache)
+{
+       struct kmem_cache *s;
+       int err;
+
+       err = -ENOMEM;
+       s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
+       if (!s)
+               goto out;
+
+       s->name = name;
+       s->object_size = object_size;
+       s->size = size;
+       s->align = align;
+       s->ctor = ctor;
+
+       err = init_memcg_params(s, memcg, root_cache);
+       if (err)
+               goto out_free_cache;
+
+       err = __kmem_cache_create(s, flags);
+       if (err)
+               goto out_free_cache;
+
+       s->refcount = 1;
+       list_add(&s->list, &slab_caches);
+out:
+       if (err)
+               return ERR_PTR(err);
+       return s;
+
+out_free_cache:
+       destroy_memcg_params(s);
+       kmem_cache_free(kmem_cache, s);
+       goto out;
+}
+
+/*
+ * kmem_cache_create - Create a cache.
+ * @name: A string which is used in /proc/slabinfo to identify this cache.
+ * @size: The size of objects to be created in this cache.
+ * @align: The required alignment for the objects.
+ * @flags: SLAB flags
+ * @ctor: A constructor for the objects.
+ *
+ * Returns a ptr to the cache on success, NULL on failure.
+ * Cannot be called within a interrupt, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache.
+ *
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline.  This can be beneficial if you're counting cycles as closely
+ * as davem.
+ */
+struct kmem_cache *
+kmem_cache_create(const char *name, size_t size, size_t align,
+                 unsigned long flags, void (*ctor)(void *))
+{
+       struct kmem_cache *s;
+       const char *cache_name;
+       int err;
+
+       get_online_cpus();
+       get_online_mems();
+       memcg_get_cache_ids();
+
+       mutex_lock(&slab_mutex);
+
+       err = kmem_cache_sanity_check(name, size);
+       if (err) {
+               s = NULL;       /* suppress uninit var warning */
+               goto out_unlock;
+       }
+
+       /*
+        * Some allocators will constraint the set of valid flags to a subset
+        * of all flags. We expect them to define CACHE_CREATE_MASK in this
+        * case, and we'll just provide them with a sanitized version of the
+        * passed flags.
+        */
+       flags &= CACHE_CREATE_MASK;
+
+       s = __kmem_cache_alias(name, size, align, flags, ctor);
+       if (s)
+               goto out_unlock;
+
+       cache_name = kstrdup_const(name, GFP_KERNEL);
+       if (!cache_name) {
+               err = -ENOMEM;
+               goto out_unlock;
+       }
+
+       s = do_kmem_cache_create(cache_name, size, size,
+                                calculate_alignment(flags, align, size),
+                                flags, ctor, NULL, NULL);
+       if (IS_ERR(s)) {
+               err = PTR_ERR(s);
+               kfree_const(cache_name);
+       }
+
+out_unlock:
+       mutex_unlock(&slab_mutex);
+
+       memcg_put_cache_ids();
+       put_online_mems();
+       put_online_cpus();
+
+       if (err) {
+               if (flags & SLAB_PANIC)
+                       panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
+                               name, err);
+               else {
+                       printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
+                               name, err);
+                       dump_stack();
+               }
+               return NULL;
+       }
+       return s;
+}
+EXPORT_SYMBOL(kmem_cache_create);
+
+static int do_kmem_cache_shutdown(struct kmem_cache *s,
+               struct list_head *release, bool *need_rcu_barrier)
+{
+       if (__kmem_cache_shutdown(s) != 0) {
+               printk(KERN_ERR "kmem_cache_destroy %s: "
+                      "Slab cache still has objects\n", s->name);
+               dump_stack();
+               return -EBUSY;
+       }
+
+       if (s->flags & SLAB_DESTROY_BY_RCU)
+               *need_rcu_barrier = true;
+
+#ifdef CONFIG_MEMCG_KMEM
+       if (!is_root_cache(s))
+               list_del(&s->memcg_params.list);
+#endif
+       list_move(&s->list, release);
+       return 0;
+}
+
+static void do_kmem_cache_release(struct list_head *release,
+                                 bool need_rcu_barrier)
+{
+       struct kmem_cache *s, *s2;
+
+       if (need_rcu_barrier)
+               rcu_barrier();
+
+       list_for_each_entry_safe(s, s2, release, list) {
+#ifdef SLAB_SUPPORTS_SYSFS
+               sysfs_slab_remove(s);
+#else
+               slab_kmem_cache_release(s);
+#endif
+       }
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+/*
+ * memcg_create_kmem_cache - Create a cache for a memory cgroup.
+ * @memcg: The memory cgroup the new cache is for.
+ * @root_cache: The parent of the new cache.
+ *
+ * This function attempts to create a kmem cache that will serve allocation
+ * requests going from @memcg to @root_cache. The new cache inherits properties
+ * from its parent.
+ */
+void memcg_create_kmem_cache(struct mem_cgroup *memcg,
+                            struct kmem_cache *root_cache)
+{
+       static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
+       struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
+       struct memcg_cache_array *arr;
+       struct kmem_cache *s = NULL;
+       char *cache_name;
+       int idx;
+
+       get_online_cpus();
+       get_online_mems();
+
+       mutex_lock(&slab_mutex);
+
+       /*
+        * The memory cgroup could have been deactivated while the cache
+        * creation work was pending.
+        */
+       if (!memcg_kmem_is_active(memcg))
+               goto out_unlock;
+
+       idx = memcg_cache_id(memcg);
+       arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
+                                       lockdep_is_held(&slab_mutex));
+
+       /*
+        * Since per-memcg caches are created asynchronously on first
+        * allocation (see memcg_kmem_get_cache()), several threads can try to
+        * create the same cache, but only one of them may succeed.
+        */
+       if (arr->entries[idx])
+               goto out_unlock;
+
+       cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
+       cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
+                              css->id, memcg_name_buf);
+       if (!cache_name)
+               goto out_unlock;
+
+       s = do_kmem_cache_create(cache_name, root_cache->object_size,
+                                root_cache->size, root_cache->align,
+                                root_cache->flags, root_cache->ctor,
+                                memcg, root_cache);
+       /*
+        * If we could not create a memcg cache, do not complain, because
+        * that's not critical at all as we can always proceed with the root
+        * cache.
+        */
+       if (IS_ERR(s)) {
+               kfree(cache_name);
+               goto out_unlock;
+       }
+
+       list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
+
+       /*
+        * Since readers won't lock (see cache_from_memcg_idx()), we need a
+        * barrier here to ensure nobody will see the kmem_cache partially
+        * initialized.
+        */
+       smp_wmb();
+       arr->entries[idx] = s;
+
+out_unlock:
+       mutex_unlock(&slab_mutex);
+
+       put_online_mems();
+       put_online_cpus();
+}
+
+void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
+{
+       int idx;
+       struct memcg_cache_array *arr;
+       struct kmem_cache *s, *c;
+
+       idx = memcg_cache_id(memcg);
+
+       get_online_cpus();
+       get_online_mems();
+
+       mutex_lock(&slab_mutex);
+       list_for_each_entry(s, &slab_caches, list) {
+               if (!is_root_cache(s))
+                       continue;
+
+               arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
+                                               lockdep_is_held(&slab_mutex));
+               c = arr->entries[idx];
+               if (!c)
+                       continue;
+
+               __kmem_cache_shrink(c, true);
+               arr->entries[idx] = NULL;
+       }
+       mutex_unlock(&slab_mutex);
+
+       put_online_mems();
+       put_online_cpus();
+}
+
+void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
+{
+       LIST_HEAD(release);
+       bool need_rcu_barrier = false;
+       struct kmem_cache *s, *s2;
+
+       get_online_cpus();
+       get_online_mems();
+
+       mutex_lock(&slab_mutex);
+       list_for_each_entry_safe(s, s2, &slab_caches, list) {
+               if (is_root_cache(s) || s->memcg_params.memcg != memcg)
+                       continue;
+               /*
+                * The cgroup is about to be freed and therefore has no charges
+                * left. Hence, all its caches must be empty by now.
+                */
+               BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
+       }
+       mutex_unlock(&slab_mutex);
+
+       put_online_mems();
+       put_online_cpus();
+
+       do_kmem_cache_release(&release, need_rcu_barrier);
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+void slab_kmem_cache_release(struct kmem_cache *s)
+{
+       destroy_memcg_params(s);
+       kfree_const(s->name);
+       kmem_cache_free(kmem_cache, s);
+}
+
+void kmem_cache_destroy(struct kmem_cache *s)
+{
+       struct kmem_cache *c, *c2;
+       LIST_HEAD(release);
+       bool need_rcu_barrier = false;
+       bool busy = false;
+
+       BUG_ON(!is_root_cache(s));
+
+       get_online_cpus();
+       get_online_mems();
+
+       mutex_lock(&slab_mutex);
+
+       s->refcount--;
+       if (s->refcount)
+               goto out_unlock;
+
+       for_each_memcg_cache_safe(c, c2, s) {
+               if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
+                       busy = true;
+       }
+
+       if (!busy)
+               do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
+
+out_unlock:
+       mutex_unlock(&slab_mutex);
+
+       put_online_mems();
+       put_online_cpus();
+
+       do_kmem_cache_release(&release, need_rcu_barrier);
+}
+EXPORT_SYMBOL(kmem_cache_destroy);
+
+/**
+ * kmem_cache_shrink - Shrink a cache.
+ * @cachep: The cache to shrink.
+ *
+ * Releases as many slabs as possible for a cache.
+ * To help debugging, a zero exit status indicates all slabs were released.
+ */
+int kmem_cache_shrink(struct kmem_cache *cachep)
+{
+       int ret;
+
+       get_online_cpus();
+       get_online_mems();
+       ret = __kmem_cache_shrink(cachep, false);
+       put_online_mems();
+       put_online_cpus();
+       return ret;
+}
+EXPORT_SYMBOL(kmem_cache_shrink);
+
+int slab_is_available(void)
+{
+       return slab_state >= UP;
+}
+
+#ifndef CONFIG_SLOB
+/* Create a cache during boot when no slab services are available yet */
+void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
+               unsigned long flags)
+{
+       int err;
+
+       s->name = name;
+       s->size = s->object_size = size;
+       s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
+
+       slab_init_memcg_params(s);
+
+       err = __kmem_cache_create(s, flags);
+
+       if (err)
+               panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
+                                       name, size, err);
+
+       s->refcount = -1;       /* Exempt from merging for now */
+}
+
+struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
+                               unsigned long flags)
+{
+       struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
+
+       if (!s)
+               panic("Out of memory when creating slab %s\n", name);
+
+       create_boot_cache(s, name, size, flags);
+       list_add(&s->list, &slab_caches);
+       s->refcount = 1;
+       return s;
+}
+
+struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
+EXPORT_SYMBOL(kmalloc_caches);
+
+#ifdef CONFIG_ZONE_DMA
+struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
+EXPORT_SYMBOL(kmalloc_dma_caches);
+#endif
+
+/*
+ * Conversion table for small slabs sizes / 8 to the index in the
+ * kmalloc array. This is necessary for slabs < 192 since we have non power
+ * of two cache sizes there. The size of larger slabs can be determined using
+ * fls.
+ */
+static s8 size_index[24] = {
+       3,      /* 8 */
+       4,      /* 16 */
+       5,      /* 24 */
+       5,      /* 32 */
+       6,      /* 40 */
+       6,      /* 48 */
+       6,      /* 56 */
+       6,      /* 64 */
+       1,      /* 72 */
+       1,      /* 80 */
+       1,      /* 88 */
+       1,      /* 96 */
+       7,      /* 104 */
+       7,      /* 112 */
+       7,      /* 120 */
+       7,      /* 128 */
+       2,      /* 136 */
+       2,      /* 144 */
+       2,      /* 152 */
+       2,      /* 160 */
+       2,      /* 168 */
+       2,      /* 176 */
+       2,      /* 184 */
+       2       /* 192 */
+};
+
+static inline int size_index_elem(size_t bytes)
+{
+       return (bytes - 1) / 8;
+}
+
+/*
+ * Find the kmem_cache structure that serves a given size of
+ * allocation
+ */
+struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
+{
+       int index;
+
+       if (unlikely(size > KMALLOC_MAX_SIZE)) {
+               WARN_ON_ONCE(!(flags & __GFP_NOWARN));
+               return NULL;
+       }
+
+       if (size <= 192) {
+               if (!size)
+                       return ZERO_SIZE_PTR;
+
+               index = size_index[size_index_elem(size)];
+       } else
+               index = fls(size - 1);
+
+#ifdef CONFIG_ZONE_DMA
+       if (unlikely((flags & GFP_DMA)))
+               return kmalloc_dma_caches[index];
+
+#endif
+       return kmalloc_caches[index];
+}
+
+/*
+ * Create the kmalloc array. Some of the regular kmalloc arrays
+ * may already have been created because they were needed to
+ * enable allocations for slab creation.
+ */
+void __init create_kmalloc_caches(unsigned long flags)
+{
+       int i;
+
+       /*
+        * Patch up the size_index table if we have strange large alignment
+        * requirements for the kmalloc array. This is only the case for
+        * MIPS it seems. The standard arches will not generate any code here.
+        *
+        * Largest permitted alignment is 256 bytes due to the way we
+        * handle the index determination for the smaller caches.
+        *
+        * Make sure that nothing crazy happens if someone starts tinkering
+        * around with ARCH_KMALLOC_MINALIGN
+        */
+       BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
+               (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
+
+       for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
+               int elem = size_index_elem(i);
+
+               if (elem >= ARRAY_SIZE(size_index))
+                       break;
+               size_index[elem] = KMALLOC_SHIFT_LOW;
+       }
+
+       if (KMALLOC_MIN_SIZE >= 64) {
+               /*
+                * The 96 byte size cache is not used if the alignment
+                * is 64 byte.
+                */
+               for (i = 64 + 8; i <= 96; i += 8)
+                       size_index[size_index_elem(i)] = 7;
+
+       }
+
+       if (KMALLOC_MIN_SIZE >= 128) {
+               /*
+                * The 192 byte sized cache is not used if the alignment
+                * is 128 byte. Redirect kmalloc to use the 256 byte cache
+                * instead.
+                */
+               for (i = 128 + 8; i <= 192; i += 8)
+                       size_index[size_index_elem(i)] = 8;
+       }
+       for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+               if (!kmalloc_caches[i]) {
+                       kmalloc_caches[i] = create_kmalloc_cache(NULL,
+                                                       1 << i, flags);
+               }
+
+               /*
+                * Caches that are not of the two-to-the-power-of size.
+                * These have to be created immediately after the
+                * earlier power of two caches
+                */
+               if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
+                       kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
+
+               if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
+                       kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
+       }
+
+       /* Kmalloc array is now usable */
+       slab_state = UP;
+
+       for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
+               struct kmem_cache *s = kmalloc_caches[i];
+               char *n;
+
+               if (s) {
+                       n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
+
+                       BUG_ON(!n);
+                       s->name = n;
+               }
+       }
+
+#ifdef CONFIG_ZONE_DMA
+       for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
+               struct kmem_cache *s = kmalloc_caches[i];
+
+               if (s) {
+                       int size = kmalloc_size(i);
+                       char *n = kasprintf(GFP_NOWAIT,
+                                "dma-kmalloc-%d", size);
+
+                       BUG_ON(!n);
+                       kmalloc_dma_caches[i] = create_kmalloc_cache(n,
+                               size, SLAB_CACHE_DMA | flags);
+               }
+       }
+#endif
+}
+#endif /* !CONFIG_SLOB */
+
+/*
+ * To avoid unnecessary overhead, we pass through large allocation requests
+ * directly to the page allocator. We use __GFP_COMP, because we will need to
+ * know the allocation order to free the pages properly in kfree.
+ */
+void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
+{
+       void *ret;
+       struct page *page;
+
+       flags |= __GFP_COMP;
+       page = alloc_kmem_pages(flags, order);
+       ret = page ? page_address(page) : NULL;
+       kmemleak_alloc(ret, size, 1, flags);
+       kasan_kmalloc_large(ret, size);
+       return ret;
+}
+EXPORT_SYMBOL(kmalloc_order);
+
+#ifdef CONFIG_TRACING
+void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
+{
+       void *ret = kmalloc_order(size, flags, order);
+       trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
+       return ret;
+}
+EXPORT_SYMBOL(kmalloc_order_trace);
+#endif
+
+#ifdef CONFIG_SLABINFO
+
+#ifdef CONFIG_SLAB
+#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
+#else
+#define SLABINFO_RIGHTS S_IRUSR
+#endif
+
+static void print_slabinfo_header(struct seq_file *m)
+{
+       /*
+        * Output format version, so at least we can change it
+        * without _too_ many complaints.
+        */
+#ifdef CONFIG_DEBUG_SLAB
+       seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
+#else
+       seq_puts(m, "slabinfo - version: 2.1\n");
+#endif
+       seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
+                "<objperslab> <pagesperslab>");
+       seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+       seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+#ifdef CONFIG_DEBUG_SLAB
+       seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
+                "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
+       seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
+#endif
+       seq_putc(m, '\n');
+}
+
+void *slab_start(struct seq_file *m, loff_t *pos)
+{
+       mutex_lock(&slab_mutex);
+       return seq_list_start(&slab_caches, *pos);
+}
+
+void *slab_next(struct seq_file *m, void *p, loff_t *pos)
+{
+       return seq_list_next(p, &slab_caches, pos);
+}
+
+void slab_stop(struct seq_file *m, void *p)
+{
+       mutex_unlock(&slab_mutex);
+}
+
+static void
+memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
+{
+       struct kmem_cache *c;
+       struct slabinfo sinfo;
+
+       if (!is_root_cache(s))
+               return;
+
+       for_each_memcg_cache(c, s) {
+               memset(&sinfo, 0, sizeof(sinfo));
+               get_slabinfo(c, &sinfo);
+
+               info->active_slabs += sinfo.active_slabs;
+               info->num_slabs += sinfo.num_slabs;
+               info->shared_avail += sinfo.shared_avail;
+               info->active_objs += sinfo.active_objs;
+               info->num_objs += sinfo.num_objs;
+       }
+}
+
+static void cache_show(struct kmem_cache *s, struct seq_file *m)
+{
+       struct slabinfo sinfo;
+
+       memset(&sinfo, 0, sizeof(sinfo));
+       get_slabinfo(s, &sinfo);
+
+       memcg_accumulate_slabinfo(s, &sinfo);
+
+       seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
+                  cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
+                  sinfo.objects_per_slab, (1 << sinfo.cache_order));
+
+       seq_printf(m, " : tunables %4u %4u %4u",
+                  sinfo.limit, sinfo.batchcount, sinfo.shared);
+       seq_printf(m, " : slabdata %6lu %6lu %6lu",
+                  sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
+       slabinfo_show_stats(m, s);
+       seq_putc(m, '\n');
+}
+
+static int slab_show(struct seq_file *m, void *p)
+{
+       struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
+
+       if (p == slab_caches.next)
+               print_slabinfo_header(m);
+       if (is_root_cache(s))
+               cache_show(s, m);
+       return 0;
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+int memcg_slab_show(struct seq_file *m, void *p)
+{
+       struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+
+       if (p == slab_caches.next)
+               print_slabinfo_header(m);
+       if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
+               cache_show(s, m);
+       return 0;
+}
+#endif
+
+/*
+ * slabinfo_op - iterator that generates /proc/slabinfo
+ *
+ * Output layout:
+ * cache-name
+ * num-active-objs
+ * total-objs
+ * object size
+ * num-active-slabs
+ * total-slabs
+ * num-pages-per-slab
+ * + further values on SMP and with statistics enabled
+ */
+static const struct seq_operations slabinfo_op = {
+       .start = slab_start,
+       .next = slab_next,
+       .stop = slab_stop,
+       .show = slab_show,
+};
+
+static int slabinfo_open(struct inode *inode, struct file *file)
+{
+       return seq_open(file, &slabinfo_op);
+}
+
+static const struct file_operations proc_slabinfo_operations = {
+       .open           = slabinfo_open,
+       .read           = seq_read,
+       .write          = slabinfo_write,
+       .llseek         = seq_lseek,
+       .release        = seq_release,
+};
+
+static int __init slab_proc_init(void)
+{
+       proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
+                                               &proc_slabinfo_operations);
+       return 0;
+}
+module_init(slab_proc_init);
+#endif /* CONFIG_SLABINFO */
+
+static __always_inline void *__do_krealloc(const void *p, size_t new_size,
+                                          gfp_t flags)
+{
+       void *ret;
+       size_t ks = 0;
+
+       if (p)
+               ks = ksize(p);
+
+       if (ks >= new_size) {
+               kasan_krealloc((void *)p, new_size);
+               return (void *)p;
+       }
+
+       ret = kmalloc_track_caller(new_size, flags);
+       if (ret && p)
+               memcpy(ret, p, ks);
+
+       return ret;
+}
+
+/**
+ * __krealloc - like krealloc() but don't free @p.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * This function is like krealloc() except it never frees the originally
+ * allocated buffer. Use this if you don't want to free the buffer immediately
+ * like, for example, with RCU.
+ */
+void *__krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+       if (unlikely(!new_size))
+               return ZERO_SIZE_PTR;
+
+       return __do_krealloc(p, new_size, flags);
+
+}
+EXPORT_SYMBOL(__krealloc);
+
+/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes.  If @p is %NULL, krealloc()
+ * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
+ * %NULL pointer, the object pointed to is freed.
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+       void *ret;
+
+       if (unlikely(!new_size)) {
+               kfree(p);
+               return ZERO_SIZE_PTR;
+       }
+
+       ret = __do_krealloc(p, new_size, flags);
+       if (ret && p != ret)
+               kfree(p);
+
+       return ret;
+}
+EXPORT_SYMBOL(krealloc);
+
+/**
+ * kzfree - like kfree but zero memory
+ * @p: object to free memory of
+ *
+ * The memory of the object @p points to is zeroed before freed.
+ * If @p is %NULL, kzfree() does nothing.
+ *
+ * Note: this function zeroes the whole allocated buffer which can be a good
+ * deal bigger than the requested buffer size passed to kmalloc(). So be
+ * careful when using this function in performance sensitive code.
+ */
+void kzfree(const void *p)
+{
+       size_t ks;
+       void *mem = (void *)p;
+
+       if (unlikely(ZERO_OR_NULL_PTR(mem)))
+               return;
+       ks = ksize(mem);
+       memset(mem, 0, ks);
+       kfree(mem);
+}
+EXPORT_SYMBOL(kzfree);
+
+/* Tracepoints definitions. */
+EXPORT_TRACEPOINT_SYMBOL(kmalloc);
+EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
+EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
+EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
+EXPORT_TRACEPOINT_SYMBOL(kfree);
+EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);