Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / readahead.c
diff --git a/kernel/mm/readahead.c b/kernel/mm/readahead.c
new file mode 100644 (file)
index 0000000..9356758
--- /dev/null
@@ -0,0 +1,580 @@
+/*
+ * mm/readahead.c - address_space-level file readahead.
+ *
+ * Copyright (C) 2002, Linus Torvalds
+ *
+ * 09Apr2002   Andrew Morton
+ *             Initial version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/export.h>
+#include <linux/blkdev.h>
+#include <linux/backing-dev.h>
+#include <linux/task_io_accounting_ops.h>
+#include <linux/pagevec.h>
+#include <linux/pagemap.h>
+#include <linux/syscalls.h>
+#include <linux/file.h>
+
+#include "internal.h"
+
+/*
+ * Initialise a struct file's readahead state.  Assumes that the caller has
+ * memset *ra to zero.
+ */
+void
+file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
+{
+       ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
+       ra->prev_pos = -1;
+}
+EXPORT_SYMBOL_GPL(file_ra_state_init);
+
+#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
+
+/*
+ * see if a page needs releasing upon read_cache_pages() failure
+ * - the caller of read_cache_pages() may have set PG_private or PG_fscache
+ *   before calling, such as the NFS fs marking pages that are cached locally
+ *   on disk, thus we need to give the fs a chance to clean up in the event of
+ *   an error
+ */
+static void read_cache_pages_invalidate_page(struct address_space *mapping,
+                                            struct page *page)
+{
+       if (page_has_private(page)) {
+               if (!trylock_page(page))
+                       BUG();
+               page->mapping = mapping;
+               do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
+               page->mapping = NULL;
+               unlock_page(page);
+       }
+       page_cache_release(page);
+}
+
+/*
+ * release a list of pages, invalidating them first if need be
+ */
+static void read_cache_pages_invalidate_pages(struct address_space *mapping,
+                                             struct list_head *pages)
+{
+       struct page *victim;
+
+       while (!list_empty(pages)) {
+               victim = list_to_page(pages);
+               list_del(&victim->lru);
+               read_cache_pages_invalidate_page(mapping, victim);
+       }
+}
+
+/**
+ * read_cache_pages - populate an address space with some pages & start reads against them
+ * @mapping: the address_space
+ * @pages: The address of a list_head which contains the target pages.  These
+ *   pages have their ->index populated and are otherwise uninitialised.
+ * @filler: callback routine for filling a single page.
+ * @data: private data for the callback routine.
+ *
+ * Hides the details of the LRU cache etc from the filesystems.
+ */
+int read_cache_pages(struct address_space *mapping, struct list_head *pages,
+                       int (*filler)(void *, struct page *), void *data)
+{
+       struct page *page;
+       int ret = 0;
+
+       while (!list_empty(pages)) {
+               page = list_to_page(pages);
+               list_del(&page->lru);
+               if (add_to_page_cache_lru(page, mapping,
+                                       page->index, GFP_KERNEL)) {
+                       read_cache_pages_invalidate_page(mapping, page);
+                       continue;
+               }
+               page_cache_release(page);
+
+               ret = filler(data, page);
+               if (unlikely(ret)) {
+                       read_cache_pages_invalidate_pages(mapping, pages);
+                       break;
+               }
+               task_io_account_read(PAGE_CACHE_SIZE);
+       }
+       return ret;
+}
+
+EXPORT_SYMBOL(read_cache_pages);
+
+static int read_pages(struct address_space *mapping, struct file *filp,
+               struct list_head *pages, unsigned nr_pages)
+{
+       struct blk_plug plug;
+       unsigned page_idx;
+       int ret;
+
+       blk_start_plug(&plug);
+
+       if (mapping->a_ops->readpages) {
+               ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
+               /* Clean up the remaining pages */
+               put_pages_list(pages);
+               goto out;
+       }
+
+       for (page_idx = 0; page_idx < nr_pages; page_idx++) {
+               struct page *page = list_to_page(pages);
+               list_del(&page->lru);
+               if (!add_to_page_cache_lru(page, mapping,
+                                       page->index, GFP_KERNEL)) {
+                       mapping->a_ops->readpage(filp, page);
+               }
+               page_cache_release(page);
+       }
+       ret = 0;
+
+out:
+       blk_finish_plug(&plug);
+
+       return ret;
+}
+
+/*
+ * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
+ * the pages first, then submits them all for I/O. This avoids the very bad
+ * behaviour which would occur if page allocations are causing VM writeback.
+ * We really don't want to intermingle reads and writes like that.
+ *
+ * Returns the number of pages requested, or the maximum amount of I/O allowed.
+ */
+int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
+                       pgoff_t offset, unsigned long nr_to_read,
+                       unsigned long lookahead_size)
+{
+       struct inode *inode = mapping->host;
+       struct page *page;
+       unsigned long end_index;        /* The last page we want to read */
+       LIST_HEAD(page_pool);
+       int page_idx;
+       int ret = 0;
+       loff_t isize = i_size_read(inode);
+
+       if (isize == 0)
+               goto out;
+
+       end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
+
+       /*
+        * Preallocate as many pages as we will need.
+        */
+       for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
+               pgoff_t page_offset = offset + page_idx;
+
+               if (page_offset > end_index)
+                       break;
+
+               rcu_read_lock();
+               page = radix_tree_lookup(&mapping->page_tree, page_offset);
+               rcu_read_unlock();
+               if (page && !radix_tree_exceptional_entry(page))
+                       continue;
+
+               page = page_cache_alloc_readahead(mapping);
+               if (!page)
+                       break;
+               page->index = page_offset;
+               list_add(&page->lru, &page_pool);
+               if (page_idx == nr_to_read - lookahead_size)
+                       SetPageReadahead(page);
+               ret++;
+       }
+
+       /*
+        * Now start the IO.  We ignore I/O errors - if the page is not
+        * uptodate then the caller will launch readpage again, and
+        * will then handle the error.
+        */
+       if (ret)
+               read_pages(mapping, filp, &page_pool, ret);
+       BUG_ON(!list_empty(&page_pool));
+out:
+       return ret;
+}
+
+/*
+ * Chunk the readahead into 2 megabyte units, so that we don't pin too much
+ * memory at once.
+ */
+int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
+               pgoff_t offset, unsigned long nr_to_read)
+{
+       if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
+               return -EINVAL;
+
+       nr_to_read = max_sane_readahead(nr_to_read);
+       while (nr_to_read) {
+               int err;
+
+               unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
+
+               if (this_chunk > nr_to_read)
+                       this_chunk = nr_to_read;
+               err = __do_page_cache_readahead(mapping, filp,
+                                               offset, this_chunk, 0);
+               if (err < 0)
+                       return err;
+
+               offset += this_chunk;
+               nr_to_read -= this_chunk;
+       }
+       return 0;
+}
+
+#define MAX_READAHEAD   ((512*4096)/PAGE_CACHE_SIZE)
+/*
+ * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
+ * sensible upper limit.
+ */
+unsigned long max_sane_readahead(unsigned long nr)
+{
+       return min(nr, MAX_READAHEAD);
+}
+
+/*
+ * Set the initial window size, round to next power of 2 and square
+ * for small size, x 4 for medium, and x 2 for large
+ * for 128k (32 page) max ra
+ * 1-8 page = 32k initial, > 8 page = 128k initial
+ */
+static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
+{
+       unsigned long newsize = roundup_pow_of_two(size);
+
+       if (newsize <= max / 32)
+               newsize = newsize * 4;
+       else if (newsize <= max / 4)
+               newsize = newsize * 2;
+       else
+               newsize = max;
+
+       return newsize;
+}
+
+/*
+ *  Get the previous window size, ramp it up, and
+ *  return it as the new window size.
+ */
+static unsigned long get_next_ra_size(struct file_ra_state *ra,
+                                               unsigned long max)
+{
+       unsigned long cur = ra->size;
+       unsigned long newsize;
+
+       if (cur < max / 16)
+               newsize = 4 * cur;
+       else
+               newsize = 2 * cur;
+
+       return min(newsize, max);
+}
+
+/*
+ * On-demand readahead design.
+ *
+ * The fields in struct file_ra_state represent the most-recently-executed
+ * readahead attempt:
+ *
+ *                        |<----- async_size ---------|
+ *     |------------------- size -------------------->|
+ *     |==================#===========================|
+ *     ^start             ^page marked with PG_readahead
+ *
+ * To overlap application thinking time and disk I/O time, we do
+ * `readahead pipelining': Do not wait until the application consumed all
+ * readahead pages and stalled on the missing page at readahead_index;
+ * Instead, submit an asynchronous readahead I/O as soon as there are
+ * only async_size pages left in the readahead window. Normally async_size
+ * will be equal to size, for maximum pipelining.
+ *
+ * In interleaved sequential reads, concurrent streams on the same fd can
+ * be invalidating each other's readahead state. So we flag the new readahead
+ * page at (start+size-async_size) with PG_readahead, and use it as readahead
+ * indicator. The flag won't be set on already cached pages, to avoid the
+ * readahead-for-nothing fuss, saving pointless page cache lookups.
+ *
+ * prev_pos tracks the last visited byte in the _previous_ read request.
+ * It should be maintained by the caller, and will be used for detecting
+ * small random reads. Note that the readahead algorithm checks loosely
+ * for sequential patterns. Hence interleaved reads might be served as
+ * sequential ones.
+ *
+ * There is a special-case: if the first page which the application tries to
+ * read happens to be the first page of the file, it is assumed that a linear
+ * read is about to happen and the window is immediately set to the initial size
+ * based on I/O request size and the max_readahead.
+ *
+ * The code ramps up the readahead size aggressively at first, but slow down as
+ * it approaches max_readhead.
+ */
+
+/*
+ * Count contiguously cached pages from @offset-1 to @offset-@max,
+ * this count is a conservative estimation of
+ *     - length of the sequential read sequence, or
+ *     - thrashing threshold in memory tight systems
+ */
+static pgoff_t count_history_pages(struct address_space *mapping,
+                                  pgoff_t offset, unsigned long max)
+{
+       pgoff_t head;
+
+       rcu_read_lock();
+       head = page_cache_prev_hole(mapping, offset - 1, max);
+       rcu_read_unlock();
+
+       return offset - 1 - head;
+}
+
+/*
+ * page cache context based read-ahead
+ */
+static int try_context_readahead(struct address_space *mapping,
+                                struct file_ra_state *ra,
+                                pgoff_t offset,
+                                unsigned long req_size,
+                                unsigned long max)
+{
+       pgoff_t size;
+
+       size = count_history_pages(mapping, offset, max);
+
+       /*
+        * not enough history pages:
+        * it could be a random read
+        */
+       if (size <= req_size)
+               return 0;
+
+       /*
+        * starts from beginning of file:
+        * it is a strong indication of long-run stream (or whole-file-read)
+        */
+       if (size >= offset)
+               size *= 2;
+
+       ra->start = offset;
+       ra->size = min(size + req_size, max);
+       ra->async_size = 1;
+
+       return 1;
+}
+
+/*
+ * A minimal readahead algorithm for trivial sequential/random reads.
+ */
+static unsigned long
+ondemand_readahead(struct address_space *mapping,
+                  struct file_ra_state *ra, struct file *filp,
+                  bool hit_readahead_marker, pgoff_t offset,
+                  unsigned long req_size)
+{
+       unsigned long max = max_sane_readahead(ra->ra_pages);
+       pgoff_t prev_offset;
+
+       /*
+        * start of file
+        */
+       if (!offset)
+               goto initial_readahead;
+
+       /*
+        * It's the expected callback offset, assume sequential access.
+        * Ramp up sizes, and push forward the readahead window.
+        */
+       if ((offset == (ra->start + ra->size - ra->async_size) ||
+            offset == (ra->start + ra->size))) {
+               ra->start += ra->size;
+               ra->size = get_next_ra_size(ra, max);
+               ra->async_size = ra->size;
+               goto readit;
+       }
+
+       /*
+        * Hit a marked page without valid readahead state.
+        * E.g. interleaved reads.
+        * Query the pagecache for async_size, which normally equals to
+        * readahead size. Ramp it up and use it as the new readahead size.
+        */
+       if (hit_readahead_marker) {
+               pgoff_t start;
+
+               rcu_read_lock();
+               start = page_cache_next_hole(mapping, offset + 1, max);
+               rcu_read_unlock();
+
+               if (!start || start - offset > max)
+                       return 0;
+
+               ra->start = start;
+               ra->size = start - offset;      /* old async_size */
+               ra->size += req_size;
+               ra->size = get_next_ra_size(ra, max);
+               ra->async_size = ra->size;
+               goto readit;
+       }
+
+       /*
+        * oversize read
+        */
+       if (req_size > max)
+               goto initial_readahead;
+
+       /*
+        * sequential cache miss
+        * trivial case: (offset - prev_offset) == 1
+        * unaligned reads: (offset - prev_offset) == 0
+        */
+       prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
+       if (offset - prev_offset <= 1UL)
+               goto initial_readahead;
+
+       /*
+        * Query the page cache and look for the traces(cached history pages)
+        * that a sequential stream would leave behind.
+        */
+       if (try_context_readahead(mapping, ra, offset, req_size, max))
+               goto readit;
+
+       /*
+        * standalone, small random read
+        * Read as is, and do not pollute the readahead state.
+        */
+       return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
+
+initial_readahead:
+       ra->start = offset;
+       ra->size = get_init_ra_size(req_size, max);
+       ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
+
+readit:
+       /*
+        * Will this read hit the readahead marker made by itself?
+        * If so, trigger the readahead marker hit now, and merge
+        * the resulted next readahead window into the current one.
+        */
+       if (offset == ra->start && ra->size == ra->async_size) {
+               ra->async_size = get_next_ra_size(ra, max);
+               ra->size += ra->async_size;
+       }
+
+       return ra_submit(ra, mapping, filp);
+}
+
+/**
+ * page_cache_sync_readahead - generic file readahead
+ * @mapping: address_space which holds the pagecache and I/O vectors
+ * @ra: file_ra_state which holds the readahead state
+ * @filp: passed on to ->readpage() and ->readpages()
+ * @offset: start offset into @mapping, in pagecache page-sized units
+ * @req_size: hint: total size of the read which the caller is performing in
+ *            pagecache pages
+ *
+ * page_cache_sync_readahead() should be called when a cache miss happened:
+ * it will submit the read.  The readahead logic may decide to piggyback more
+ * pages onto the read request if access patterns suggest it will improve
+ * performance.
+ */
+void page_cache_sync_readahead(struct address_space *mapping,
+                              struct file_ra_state *ra, struct file *filp,
+                              pgoff_t offset, unsigned long req_size)
+{
+       /* no read-ahead */
+       if (!ra->ra_pages)
+               return;
+
+       /* be dumb */
+       if (filp && (filp->f_mode & FMODE_RANDOM)) {
+               force_page_cache_readahead(mapping, filp, offset, req_size);
+               return;
+       }
+
+       /* do read-ahead */
+       ondemand_readahead(mapping, ra, filp, false, offset, req_size);
+}
+EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
+
+/**
+ * page_cache_async_readahead - file readahead for marked pages
+ * @mapping: address_space which holds the pagecache and I/O vectors
+ * @ra: file_ra_state which holds the readahead state
+ * @filp: passed on to ->readpage() and ->readpages()
+ * @page: the page at @offset which has the PG_readahead flag set
+ * @offset: start offset into @mapping, in pagecache page-sized units
+ * @req_size: hint: total size of the read which the caller is performing in
+ *            pagecache pages
+ *
+ * page_cache_async_readahead() should be called when a page is used which
+ * has the PG_readahead flag; this is a marker to suggest that the application
+ * has used up enough of the readahead window that we should start pulling in
+ * more pages.
+ */
+void
+page_cache_async_readahead(struct address_space *mapping,
+                          struct file_ra_state *ra, struct file *filp,
+                          struct page *page, pgoff_t offset,
+                          unsigned long req_size)
+{
+       /* no read-ahead */
+       if (!ra->ra_pages)
+               return;
+
+       /*
+        * Same bit is used for PG_readahead and PG_reclaim.
+        */
+       if (PageWriteback(page))
+               return;
+
+       ClearPageReadahead(page);
+
+       /*
+        * Defer asynchronous read-ahead on IO congestion.
+        */
+       if (bdi_read_congested(inode_to_bdi(mapping->host)))
+               return;
+
+       /* do read-ahead */
+       ondemand_readahead(mapping, ra, filp, true, offset, req_size);
+}
+EXPORT_SYMBOL_GPL(page_cache_async_readahead);
+
+static ssize_t
+do_readahead(struct address_space *mapping, struct file *filp,
+            pgoff_t index, unsigned long nr)
+{
+       if (!mapping || !mapping->a_ops)
+               return -EINVAL;
+
+       return force_page_cache_readahead(mapping, filp, index, nr);
+}
+
+SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
+{
+       ssize_t ret;
+       struct fd f;
+
+       ret = -EBADF;
+       f = fdget(fd);
+       if (f.file) {
+               if (f.file->f_mode & FMODE_READ) {
+                       struct address_space *mapping = f.file->f_mapping;
+                       pgoff_t start = offset >> PAGE_CACHE_SHIFT;
+                       pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
+                       unsigned long len = end - start + 1;
+                       ret = do_readahead(mapping, f.file, start, len);
+               }
+               fdput(f);
+       }
+       return ret;
+}