Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / mlock.c
diff --git a/kernel/mm/mlock.c b/kernel/mm/mlock.c
new file mode 100644 (file)
index 0000000..6fd2cf1
--- /dev/null
@@ -0,0 +1,758 @@
+/*
+ *     linux/mm/mlock.c
+ *
+ *  (C) Copyright 1995 Linus Torvalds
+ *  (C) Copyright 2002 Christoph Hellwig
+ */
+
+#include <linux/capability.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/pagemap.h>
+#include <linux/pagevec.h>
+#include <linux/mempolicy.h>
+#include <linux/syscalls.h>
+#include <linux/sched.h>
+#include <linux/export.h>
+#include <linux/rmap.h>
+#include <linux/mmzone.h>
+#include <linux/hugetlb.h>
+#include <linux/memcontrol.h>
+#include <linux/mm_inline.h>
+
+#include "internal.h"
+
+int can_do_mlock(void)
+{
+       if (rlimit(RLIMIT_MEMLOCK) != 0)
+               return 1;
+       if (capable(CAP_IPC_LOCK))
+               return 1;
+       return 0;
+}
+EXPORT_SYMBOL(can_do_mlock);
+
+/*
+ * Mlocked pages are marked with PageMlocked() flag for efficient testing
+ * in vmscan and, possibly, the fault path; and to support semi-accurate
+ * statistics.
+ *
+ * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
+ * be placed on the LRU "unevictable" list, rather than the [in]active lists.
+ * The unevictable list is an LRU sibling list to the [in]active lists.
+ * PageUnevictable is set to indicate the unevictable state.
+ *
+ * When lazy mlocking via vmscan, it is important to ensure that the
+ * vma's VM_LOCKED status is not concurrently being modified, otherwise we
+ * may have mlocked a page that is being munlocked. So lazy mlock must take
+ * the mmap_sem for read, and verify that the vma really is locked
+ * (see mm/rmap.c).
+ */
+
+/*
+ *  LRU accounting for clear_page_mlock()
+ */
+void clear_page_mlock(struct page *page)
+{
+       if (!TestClearPageMlocked(page))
+               return;
+
+       mod_zone_page_state(page_zone(page), NR_MLOCK,
+                           -hpage_nr_pages(page));
+       count_vm_event(UNEVICTABLE_PGCLEARED);
+       if (!isolate_lru_page(page)) {
+               putback_lru_page(page);
+       } else {
+               /*
+                * We lost the race. the page already moved to evictable list.
+                */
+               if (PageUnevictable(page))
+                       count_vm_event(UNEVICTABLE_PGSTRANDED);
+       }
+}
+
+/*
+ * Mark page as mlocked if not already.
+ * If page on LRU, isolate and putback to move to unevictable list.
+ */
+void mlock_vma_page(struct page *page)
+{
+       /* Serialize with page migration */
+       BUG_ON(!PageLocked(page));
+
+       if (!TestSetPageMlocked(page)) {
+               mod_zone_page_state(page_zone(page), NR_MLOCK,
+                                   hpage_nr_pages(page));
+               count_vm_event(UNEVICTABLE_PGMLOCKED);
+               if (!isolate_lru_page(page))
+                       putback_lru_page(page);
+       }
+}
+
+/*
+ * Isolate a page from LRU with optional get_page() pin.
+ * Assumes lru_lock already held and page already pinned.
+ */
+static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
+{
+       if (PageLRU(page)) {
+               struct lruvec *lruvec;
+
+               lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
+               if (getpage)
+                       get_page(page);
+               ClearPageLRU(page);
+               del_page_from_lru_list(page, lruvec, page_lru(page));
+               return true;
+       }
+
+       return false;
+}
+
+/*
+ * Finish munlock after successful page isolation
+ *
+ * Page must be locked. This is a wrapper for try_to_munlock()
+ * and putback_lru_page() with munlock accounting.
+ */
+static void __munlock_isolated_page(struct page *page)
+{
+       int ret = SWAP_AGAIN;
+
+       /*
+        * Optimization: if the page was mapped just once, that's our mapping
+        * and we don't need to check all the other vmas.
+        */
+       if (page_mapcount(page) > 1)
+               ret = try_to_munlock(page);
+
+       /* Did try_to_unlock() succeed or punt? */
+       if (ret != SWAP_MLOCK)
+               count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+
+       putback_lru_page(page);
+}
+
+/*
+ * Accounting for page isolation fail during munlock
+ *
+ * Performs accounting when page isolation fails in munlock. There is nothing
+ * else to do because it means some other task has already removed the page
+ * from the LRU. putback_lru_page() will take care of removing the page from
+ * the unevictable list, if necessary. vmscan [page_referenced()] will move
+ * the page back to the unevictable list if some other vma has it mlocked.
+ */
+static void __munlock_isolation_failed(struct page *page)
+{
+       if (PageUnevictable(page))
+               __count_vm_event(UNEVICTABLE_PGSTRANDED);
+       else
+               __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+}
+
+/**
+ * munlock_vma_page - munlock a vma page
+ * @page - page to be unlocked, either a normal page or THP page head
+ *
+ * returns the size of the page as a page mask (0 for normal page,
+ *         HPAGE_PMD_NR - 1 for THP head page)
+ *
+ * called from munlock()/munmap() path with page supposedly on the LRU.
+ * When we munlock a page, because the vma where we found the page is being
+ * munlock()ed or munmap()ed, we want to check whether other vmas hold the
+ * page locked so that we can leave it on the unevictable lru list and not
+ * bother vmscan with it.  However, to walk the page's rmap list in
+ * try_to_munlock() we must isolate the page from the LRU.  If some other
+ * task has removed the page from the LRU, we won't be able to do that.
+ * So we clear the PageMlocked as we might not get another chance.  If we
+ * can't isolate the page, we leave it for putback_lru_page() and vmscan
+ * [page_referenced()/try_to_unmap()] to deal with.
+ */
+unsigned int munlock_vma_page(struct page *page)
+{
+       unsigned int nr_pages;
+       struct zone *zone = page_zone(page);
+
+       /* For try_to_munlock() and to serialize with page migration */
+       BUG_ON(!PageLocked(page));
+
+       /*
+        * Serialize with any parallel __split_huge_page_refcount() which
+        * might otherwise copy PageMlocked to part of the tail pages before
+        * we clear it in the head page. It also stabilizes hpage_nr_pages().
+        */
+       spin_lock_irq(&zone->lru_lock);
+
+       nr_pages = hpage_nr_pages(page);
+       if (!TestClearPageMlocked(page))
+               goto unlock_out;
+
+       __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
+
+       if (__munlock_isolate_lru_page(page, true)) {
+               spin_unlock_irq(&zone->lru_lock);
+               __munlock_isolated_page(page);
+               goto out;
+       }
+       __munlock_isolation_failed(page);
+
+unlock_out:
+       spin_unlock_irq(&zone->lru_lock);
+
+out:
+       return nr_pages - 1;
+}
+
+/*
+ * convert get_user_pages() return value to posix mlock() error
+ */
+static int __mlock_posix_error_return(long retval)
+{
+       if (retval == -EFAULT)
+               retval = -ENOMEM;
+       else if (retval == -ENOMEM)
+               retval = -EAGAIN;
+       return retval;
+}
+
+/*
+ * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
+ *
+ * The fast path is available only for evictable pages with single mapping.
+ * Then we can bypass the per-cpu pvec and get better performance.
+ * when mapcount > 1 we need try_to_munlock() which can fail.
+ * when !page_evictable(), we need the full redo logic of putback_lru_page to
+ * avoid leaving evictable page in unevictable list.
+ *
+ * In case of success, @page is added to @pvec and @pgrescued is incremented
+ * in case that the page was previously unevictable. @page is also unlocked.
+ */
+static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
+               int *pgrescued)
+{
+       VM_BUG_ON_PAGE(PageLRU(page), page);
+       VM_BUG_ON_PAGE(!PageLocked(page), page);
+
+       if (page_mapcount(page) <= 1 && page_evictable(page)) {
+               pagevec_add(pvec, page);
+               if (TestClearPageUnevictable(page))
+                       (*pgrescued)++;
+               unlock_page(page);
+               return true;
+       }
+
+       return false;
+}
+
+/*
+ * Putback multiple evictable pages to the LRU
+ *
+ * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
+ * the pages might have meanwhile become unevictable but that is OK.
+ */
+static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
+{
+       count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
+       /*
+        *__pagevec_lru_add() calls release_pages() so we don't call
+        * put_page() explicitly
+        */
+       __pagevec_lru_add(pvec);
+       count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
+}
+
+/*
+ * Munlock a batch of pages from the same zone
+ *
+ * The work is split to two main phases. First phase clears the Mlocked flag
+ * and attempts to isolate the pages, all under a single zone lru lock.
+ * The second phase finishes the munlock only for pages where isolation
+ * succeeded.
+ *
+ * Note that the pagevec may be modified during the process.
+ */
+static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
+{
+       int i;
+       int nr = pagevec_count(pvec);
+       int delta_munlocked;
+       struct pagevec pvec_putback;
+       int pgrescued = 0;
+
+       pagevec_init(&pvec_putback, 0);
+
+       /* Phase 1: page isolation */
+       spin_lock_irq(&zone->lru_lock);
+       for (i = 0; i < nr; i++) {
+               struct page *page = pvec->pages[i];
+
+               if (TestClearPageMlocked(page)) {
+                       /*
+                        * We already have pin from follow_page_mask()
+                        * so we can spare the get_page() here.
+                        */
+                       if (__munlock_isolate_lru_page(page, false))
+                               continue;
+                       else
+                               __munlock_isolation_failed(page);
+               }
+
+               /*
+                * We won't be munlocking this page in the next phase
+                * but we still need to release the follow_page_mask()
+                * pin. We cannot do it under lru_lock however. If it's
+                * the last pin, __page_cache_release() would deadlock.
+                */
+               pagevec_add(&pvec_putback, pvec->pages[i]);
+               pvec->pages[i] = NULL;
+       }
+       delta_munlocked = -nr + pagevec_count(&pvec_putback);
+       __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
+       spin_unlock_irq(&zone->lru_lock);
+
+       /* Now we can release pins of pages that we are not munlocking */
+       pagevec_release(&pvec_putback);
+
+       /* Phase 2: page munlock */
+       for (i = 0; i < nr; i++) {
+               struct page *page = pvec->pages[i];
+
+               if (page) {
+                       lock_page(page);
+                       if (!__putback_lru_fast_prepare(page, &pvec_putback,
+                                       &pgrescued)) {
+                               /*
+                                * Slow path. We don't want to lose the last
+                                * pin before unlock_page()
+                                */
+                               get_page(page); /* for putback_lru_page() */
+                               __munlock_isolated_page(page);
+                               unlock_page(page);
+                               put_page(page); /* from follow_page_mask() */
+                       }
+               }
+       }
+
+       /*
+        * Phase 3: page putback for pages that qualified for the fast path
+        * This will also call put_page() to return pin from follow_page_mask()
+        */
+       if (pagevec_count(&pvec_putback))
+               __putback_lru_fast(&pvec_putback, pgrescued);
+}
+
+/*
+ * Fill up pagevec for __munlock_pagevec using pte walk
+ *
+ * The function expects that the struct page corresponding to @start address is
+ * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
+ *
+ * The rest of @pvec is filled by subsequent pages within the same pmd and same
+ * zone, as long as the pte's are present and vm_normal_page() succeeds. These
+ * pages also get pinned.
+ *
+ * Returns the address of the next page that should be scanned. This equals
+ * @start + PAGE_SIZE when no page could be added by the pte walk.
+ */
+static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
+               struct vm_area_struct *vma, int zoneid, unsigned long start,
+               unsigned long end)
+{
+       pte_t *pte;
+       spinlock_t *ptl;
+
+       /*
+        * Initialize pte walk starting at the already pinned page where we
+        * are sure that there is a pte, as it was pinned under the same
+        * mmap_sem write op.
+        */
+       pte = get_locked_pte(vma->vm_mm, start, &ptl);
+       /* Make sure we do not cross the page table boundary */
+       end = pgd_addr_end(start, end);
+       end = pud_addr_end(start, end);
+       end = pmd_addr_end(start, end);
+
+       /* The page next to the pinned page is the first we will try to get */
+       start += PAGE_SIZE;
+       while (start < end) {
+               struct page *page = NULL;
+               pte++;
+               if (pte_present(*pte))
+                       page = vm_normal_page(vma, start, *pte);
+               /*
+                * Break if page could not be obtained or the page's node+zone does not
+                * match
+                */
+               if (!page || page_zone_id(page) != zoneid)
+                       break;
+
+               get_page(page);
+               /*
+                * Increase the address that will be returned *before* the
+                * eventual break due to pvec becoming full by adding the page
+                */
+               start += PAGE_SIZE;
+               if (pagevec_add(pvec, page) == 0)
+                       break;
+       }
+       pte_unmap_unlock(pte, ptl);
+       return start;
+}
+
+/*
+ * munlock_vma_pages_range() - munlock all pages in the vma range.'
+ * @vma - vma containing range to be munlock()ed.
+ * @start - start address in @vma of the range
+ * @end - end of range in @vma.
+ *
+ *  For mremap(), munmap() and exit().
+ *
+ * Called with @vma VM_LOCKED.
+ *
+ * Returns with VM_LOCKED cleared.  Callers must be prepared to
+ * deal with this.
+ *
+ * We don't save and restore VM_LOCKED here because pages are
+ * still on lru.  In unmap path, pages might be scanned by reclaim
+ * and re-mlocked by try_to_{munlock|unmap} before we unmap and
+ * free them.  This will result in freeing mlocked pages.
+ */
+void munlock_vma_pages_range(struct vm_area_struct *vma,
+                            unsigned long start, unsigned long end)
+{
+       vma->vm_flags &= ~VM_LOCKED;
+
+       while (start < end) {
+               struct page *page = NULL;
+               unsigned int page_mask;
+               unsigned long page_increm;
+               struct pagevec pvec;
+               struct zone *zone;
+               int zoneid;
+
+               pagevec_init(&pvec, 0);
+               /*
+                * Although FOLL_DUMP is intended for get_dump_page(),
+                * it just so happens that its special treatment of the
+                * ZERO_PAGE (returning an error instead of doing get_page)
+                * suits munlock very well (and if somehow an abnormal page
+                * has sneaked into the range, we won't oops here: great).
+                */
+               page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
+                               &page_mask);
+
+               if (page && !IS_ERR(page)) {
+                       if (PageTransHuge(page)) {
+                               lock_page(page);
+                               /*
+                                * Any THP page found by follow_page_mask() may
+                                * have gotten split before reaching
+                                * munlock_vma_page(), so we need to recompute
+                                * the page_mask here.
+                                */
+                               page_mask = munlock_vma_page(page);
+                               unlock_page(page);
+                               put_page(page); /* follow_page_mask() */
+                       } else {
+                               /*
+                                * Non-huge pages are handled in batches via
+                                * pagevec. The pin from follow_page_mask()
+                                * prevents them from collapsing by THP.
+                                */
+                               pagevec_add(&pvec, page);
+                               zone = page_zone(page);
+                               zoneid = page_zone_id(page);
+
+                               /*
+                                * Try to fill the rest of pagevec using fast
+                                * pte walk. This will also update start to
+                                * the next page to process. Then munlock the
+                                * pagevec.
+                                */
+                               start = __munlock_pagevec_fill(&pvec, vma,
+                                               zoneid, start, end);
+                               __munlock_pagevec(&pvec, zone);
+                               goto next;
+                       }
+               }
+               /* It's a bug to munlock in the middle of a THP page */
+               VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
+               page_increm = 1 + page_mask;
+               start += page_increm * PAGE_SIZE;
+next:
+               cond_resched();
+       }
+}
+
+/*
+ * mlock_fixup  - handle mlock[all]/munlock[all] requests.
+ *
+ * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
+ * munlock is a no-op.  However, for some special vmas, we go ahead and
+ * populate the ptes.
+ *
+ * For vmas that pass the filters, merge/split as appropriate.
+ */
+static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
+       unsigned long start, unsigned long end, vm_flags_t newflags)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       pgoff_t pgoff;
+       int nr_pages;
+       int ret = 0;
+       int lock = !!(newflags & VM_LOCKED);
+
+       if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
+           is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
+               goto out;       /* don't set VM_LOCKED,  don't count */
+
+       pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
+       *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
+                         vma->vm_file, pgoff, vma_policy(vma));
+       if (*prev) {
+               vma = *prev;
+               goto success;
+       }
+
+       if (start != vma->vm_start) {
+               ret = split_vma(mm, vma, start, 1);
+               if (ret)
+                       goto out;
+       }
+
+       if (end != vma->vm_end) {
+               ret = split_vma(mm, vma, end, 0);
+               if (ret)
+                       goto out;
+       }
+
+success:
+       /*
+        * Keep track of amount of locked VM.
+        */
+       nr_pages = (end - start) >> PAGE_SHIFT;
+       if (!lock)
+               nr_pages = -nr_pages;
+       mm->locked_vm += nr_pages;
+
+       /*
+        * vm_flags is protected by the mmap_sem held in write mode.
+        * It's okay if try_to_unmap_one unmaps a page just after we
+        * set VM_LOCKED, populate_vma_page_range will bring it back.
+        */
+
+       if (lock)
+               vma->vm_flags = newflags;
+       else
+               munlock_vma_pages_range(vma, start, end);
+
+out:
+       *prev = vma;
+       return ret;
+}
+
+static int do_mlock(unsigned long start, size_t len, int on)
+{
+       unsigned long nstart, end, tmp;
+       struct vm_area_struct * vma, * prev;
+       int error;
+
+       VM_BUG_ON(start & ~PAGE_MASK);
+       VM_BUG_ON(len != PAGE_ALIGN(len));
+       end = start + len;
+       if (end < start)
+               return -EINVAL;
+       if (end == start)
+               return 0;
+       vma = find_vma(current->mm, start);
+       if (!vma || vma->vm_start > start)
+               return -ENOMEM;
+
+       prev = vma->vm_prev;
+       if (start > vma->vm_start)
+               prev = vma;
+
+       for (nstart = start ; ; ) {
+               vm_flags_t newflags;
+
+               /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
+
+               newflags = vma->vm_flags & ~VM_LOCKED;
+               if (on)
+                       newflags |= VM_LOCKED;
+
+               tmp = vma->vm_end;
+               if (tmp > end)
+                       tmp = end;
+               error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
+               if (error)
+                       break;
+               nstart = tmp;
+               if (nstart < prev->vm_end)
+                       nstart = prev->vm_end;
+               if (nstart >= end)
+                       break;
+
+               vma = prev->vm_next;
+               if (!vma || vma->vm_start != nstart) {
+                       error = -ENOMEM;
+                       break;
+               }
+       }
+       return error;
+}
+
+SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
+{
+       unsigned long locked;
+       unsigned long lock_limit;
+       int error = -ENOMEM;
+
+       if (!can_do_mlock())
+               return -EPERM;
+
+       lru_add_drain_all();    /* flush pagevec */
+
+       len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
+       start &= PAGE_MASK;
+
+       lock_limit = rlimit(RLIMIT_MEMLOCK);
+       lock_limit >>= PAGE_SHIFT;
+       locked = len >> PAGE_SHIFT;
+
+       down_write(&current->mm->mmap_sem);
+
+       locked += current->mm->locked_vm;
+
+       /* check against resource limits */
+       if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
+               error = do_mlock(start, len, 1);
+
+       up_write(&current->mm->mmap_sem);
+       if (error)
+               return error;
+
+       error = __mm_populate(start, len, 0);
+       if (error)
+               return __mlock_posix_error_return(error);
+       return 0;
+}
+
+SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
+{
+       int ret;
+
+       len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
+       start &= PAGE_MASK;
+
+       down_write(&current->mm->mmap_sem);
+       ret = do_mlock(start, len, 0);
+       up_write(&current->mm->mmap_sem);
+
+       return ret;
+}
+
+static int do_mlockall(int flags)
+{
+       struct vm_area_struct * vma, * prev = NULL;
+
+       if (flags & MCL_FUTURE)
+               current->mm->def_flags |= VM_LOCKED;
+       else
+               current->mm->def_flags &= ~VM_LOCKED;
+       if (flags == MCL_FUTURE)
+               goto out;
+
+       for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
+               vm_flags_t newflags;
+
+               newflags = vma->vm_flags & ~VM_LOCKED;
+               if (flags & MCL_CURRENT)
+                       newflags |= VM_LOCKED;
+
+               /* Ignore errors */
+               mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
+               cond_resched_rcu_qs();
+       }
+out:
+       return 0;
+}
+
+SYSCALL_DEFINE1(mlockall, int, flags)
+{
+       unsigned long lock_limit;
+       int ret = -EINVAL;
+
+       if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
+               goto out;
+
+       ret = -EPERM;
+       if (!can_do_mlock())
+               goto out;
+
+       if (flags & MCL_CURRENT)
+               lru_add_drain_all();    /* flush pagevec */
+
+       lock_limit = rlimit(RLIMIT_MEMLOCK);
+       lock_limit >>= PAGE_SHIFT;
+
+       ret = -ENOMEM;
+       down_write(&current->mm->mmap_sem);
+
+       if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
+           capable(CAP_IPC_LOCK))
+               ret = do_mlockall(flags);
+       up_write(&current->mm->mmap_sem);
+       if (!ret && (flags & MCL_CURRENT))
+               mm_populate(0, TASK_SIZE);
+out:
+       return ret;
+}
+
+SYSCALL_DEFINE0(munlockall)
+{
+       int ret;
+
+       down_write(&current->mm->mmap_sem);
+       ret = do_mlockall(0);
+       up_write(&current->mm->mmap_sem);
+       return ret;
+}
+
+/*
+ * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
+ * shm segments) get accounted against the user_struct instead.
+ */
+static DEFINE_SPINLOCK(shmlock_user_lock);
+
+int user_shm_lock(size_t size, struct user_struct *user)
+{
+       unsigned long lock_limit, locked;
+       int allowed = 0;
+
+       locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+       lock_limit = rlimit(RLIMIT_MEMLOCK);
+       if (lock_limit == RLIM_INFINITY)
+               allowed = 1;
+       lock_limit >>= PAGE_SHIFT;
+       spin_lock(&shmlock_user_lock);
+       if (!allowed &&
+           locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
+               goto out;
+       get_uid(user);
+       user->locked_shm += locked;
+       allowed = 1;
+out:
+       spin_unlock(&shmlock_user_lock);
+       return allowed;
+}
+
+void user_shm_unlock(size_t size, struct user_struct *user)
+{
+       spin_lock(&shmlock_user_lock);
+       user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+       spin_unlock(&shmlock_user_lock);
+       free_uid(user);
+}