Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / memory.c
diff --git a/kernel/mm/memory.c b/kernel/mm/memory.c
new file mode 100644 (file)
index 0000000..17734c3
--- /dev/null
@@ -0,0 +1,3857 @@
+/*
+ *  linux/mm/memory.c
+ *
+ *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
+ */
+
+/*
+ * demand-loading started 01.12.91 - seems it is high on the list of
+ * things wanted, and it should be easy to implement. - Linus
+ */
+
+/*
+ * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
+ * pages started 02.12.91, seems to work. - Linus.
+ *
+ * Tested sharing by executing about 30 /bin/sh: under the old kernel it
+ * would have taken more than the 6M I have free, but it worked well as
+ * far as I could see.
+ *
+ * Also corrected some "invalidate()"s - I wasn't doing enough of them.
+ */
+
+/*
+ * Real VM (paging to/from disk) started 18.12.91. Much more work and
+ * thought has to go into this. Oh, well..
+ * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
+ *             Found it. Everything seems to work now.
+ * 20.12.91  -  Ok, making the swap-device changeable like the root.
+ */
+
+/*
+ * 05.04.94  -  Multi-page memory management added for v1.1.
+ *             Idea by Alex Bligh (alex@cconcepts.co.uk)
+ *
+ * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
+ *             (Gerhard.Wichert@pdb.siemens.de)
+ *
+ * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
+ */
+
+#include <linux/kernel_stat.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/mman.h>
+#include <linux/swap.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/ksm.h>
+#include <linux/rmap.h>
+#include <linux/export.h>
+#include <linux/delayacct.h>
+#include <linux/init.h>
+#include <linux/writeback.h>
+#include <linux/memcontrol.h>
+#include <linux/mmu_notifier.h>
+#include <linux/kallsyms.h>
+#include <linux/swapops.h>
+#include <linux/elf.h>
+#include <linux/gfp.h>
+#include <linux/migrate.h>
+#include <linux/string.h>
+#include <linux/dma-debug.h>
+#include <linux/debugfs.h>
+
+#include <asm/io.h>
+#include <asm/pgalloc.h>
+#include <asm/uaccess.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/pgtable.h>
+
+#include "internal.h"
+
+#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
+#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
+#endif
+
+#ifndef CONFIG_NEED_MULTIPLE_NODES
+/* use the per-pgdat data instead for discontigmem - mbligh */
+unsigned long max_mapnr;
+struct page *mem_map;
+
+EXPORT_SYMBOL(max_mapnr);
+EXPORT_SYMBOL(mem_map);
+#endif
+
+/*
+ * A number of key systems in x86 including ioremap() rely on the assumption
+ * that high_memory defines the upper bound on direct map memory, then end
+ * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
+ * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
+ * and ZONE_HIGHMEM.
+ */
+void * high_memory;
+
+EXPORT_SYMBOL(high_memory);
+
+/*
+ * Randomize the address space (stacks, mmaps, brk, etc.).
+ *
+ * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
+ *   as ancient (libc5 based) binaries can segfault. )
+ */
+int randomize_va_space __read_mostly =
+#ifdef CONFIG_COMPAT_BRK
+                                       1;
+#else
+                                       2;
+#endif
+
+static int __init disable_randmaps(char *s)
+{
+       randomize_va_space = 0;
+       return 1;
+}
+__setup("norandmaps", disable_randmaps);
+
+unsigned long zero_pfn __read_mostly;
+unsigned long highest_memmap_pfn __read_mostly;
+
+EXPORT_SYMBOL(zero_pfn);
+
+/*
+ * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
+ */
+static int __init init_zero_pfn(void)
+{
+       zero_pfn = page_to_pfn(ZERO_PAGE(0));
+       return 0;
+}
+core_initcall(init_zero_pfn);
+
+
+#if defined(SPLIT_RSS_COUNTING)
+
+void sync_mm_rss(struct mm_struct *mm)
+{
+       int i;
+
+       for (i = 0; i < NR_MM_COUNTERS; i++) {
+               if (current->rss_stat.count[i]) {
+                       add_mm_counter(mm, i, current->rss_stat.count[i]);
+                       current->rss_stat.count[i] = 0;
+               }
+       }
+       current->rss_stat.events = 0;
+}
+
+static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
+{
+       struct task_struct *task = current;
+
+       if (likely(task->mm == mm))
+               task->rss_stat.count[member] += val;
+       else
+               add_mm_counter(mm, member, val);
+}
+#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
+#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
+
+/* sync counter once per 64 page faults */
+#define TASK_RSS_EVENTS_THRESH (64)
+static void check_sync_rss_stat(struct task_struct *task)
+{
+       if (unlikely(task != current))
+               return;
+       if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
+               sync_mm_rss(task->mm);
+}
+#else /* SPLIT_RSS_COUNTING */
+
+#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
+#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
+
+static void check_sync_rss_stat(struct task_struct *task)
+{
+}
+
+#endif /* SPLIT_RSS_COUNTING */
+
+#ifdef HAVE_GENERIC_MMU_GATHER
+
+static int tlb_next_batch(struct mmu_gather *tlb)
+{
+       struct mmu_gather_batch *batch;
+
+       batch = tlb->active;
+       if (batch->next) {
+               tlb->active = batch->next;
+               return 1;
+       }
+
+       if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
+               return 0;
+
+       batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
+       if (!batch)
+               return 0;
+
+       tlb->batch_count++;
+       batch->next = NULL;
+       batch->nr   = 0;
+       batch->max  = MAX_GATHER_BATCH;
+
+       tlb->active->next = batch;
+       tlb->active = batch;
+
+       return 1;
+}
+
+/* tlb_gather_mmu
+ *     Called to initialize an (on-stack) mmu_gather structure for page-table
+ *     tear-down from @mm. The @fullmm argument is used when @mm is without
+ *     users and we're going to destroy the full address space (exit/execve).
+ */
+void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
+{
+       tlb->mm = mm;
+
+       /* Is it from 0 to ~0? */
+       tlb->fullmm     = !(start | (end+1));
+       tlb->need_flush_all = 0;
+       tlb->local.next = NULL;
+       tlb->local.nr   = 0;
+       tlb->local.max  = ARRAY_SIZE(tlb->__pages);
+       tlb->active     = &tlb->local;
+       tlb->batch_count = 0;
+
+#ifdef CONFIG_HAVE_RCU_TABLE_FREE
+       tlb->batch = NULL;
+#endif
+
+       __tlb_reset_range(tlb);
+}
+
+static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
+{
+       if (!tlb->end)
+               return;
+
+       tlb_flush(tlb);
+       mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
+#ifdef CONFIG_HAVE_RCU_TABLE_FREE
+       tlb_table_flush(tlb);
+#endif
+       __tlb_reset_range(tlb);
+}
+
+static void tlb_flush_mmu_free(struct mmu_gather *tlb)
+{
+       struct mmu_gather_batch *batch;
+
+       for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
+               free_pages_and_swap_cache(batch->pages, batch->nr);
+               batch->nr = 0;
+       }
+       tlb->active = &tlb->local;
+}
+
+void tlb_flush_mmu(struct mmu_gather *tlb)
+{
+       tlb_flush_mmu_tlbonly(tlb);
+       tlb_flush_mmu_free(tlb);
+}
+
+/* tlb_finish_mmu
+ *     Called at the end of the shootdown operation to free up any resources
+ *     that were required.
+ */
+void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
+{
+       struct mmu_gather_batch *batch, *next;
+
+       tlb_flush_mmu(tlb);
+
+       /* keep the page table cache within bounds */
+       check_pgt_cache();
+
+       for (batch = tlb->local.next; batch; batch = next) {
+               next = batch->next;
+               free_pages((unsigned long)batch, 0);
+       }
+       tlb->local.next = NULL;
+}
+
+/* __tlb_remove_page
+ *     Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
+ *     handling the additional races in SMP caused by other CPUs caching valid
+ *     mappings in their TLBs. Returns the number of free page slots left.
+ *     When out of page slots we must call tlb_flush_mmu().
+ */
+int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
+{
+       struct mmu_gather_batch *batch;
+
+       VM_BUG_ON(!tlb->end);
+
+       batch = tlb->active;
+       batch->pages[batch->nr++] = page;
+       if (batch->nr == batch->max) {
+               if (!tlb_next_batch(tlb))
+                       return 0;
+               batch = tlb->active;
+       }
+       VM_BUG_ON_PAGE(batch->nr > batch->max, page);
+
+       return batch->max - batch->nr;
+}
+
+#endif /* HAVE_GENERIC_MMU_GATHER */
+
+#ifdef CONFIG_HAVE_RCU_TABLE_FREE
+
+/*
+ * See the comment near struct mmu_table_batch.
+ */
+
+static void tlb_remove_table_smp_sync(void *arg)
+{
+       /* Simply deliver the interrupt */
+}
+
+static void tlb_remove_table_one(void *table)
+{
+       /*
+        * This isn't an RCU grace period and hence the page-tables cannot be
+        * assumed to be actually RCU-freed.
+        *
+        * It is however sufficient for software page-table walkers that rely on
+        * IRQ disabling. See the comment near struct mmu_table_batch.
+        */
+       smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
+       __tlb_remove_table(table);
+}
+
+static void tlb_remove_table_rcu(struct rcu_head *head)
+{
+       struct mmu_table_batch *batch;
+       int i;
+
+       batch = container_of(head, struct mmu_table_batch, rcu);
+
+       for (i = 0; i < batch->nr; i++)
+               __tlb_remove_table(batch->tables[i]);
+
+       free_page((unsigned long)batch);
+}
+
+void tlb_table_flush(struct mmu_gather *tlb)
+{
+       struct mmu_table_batch **batch = &tlb->batch;
+
+       if (*batch) {
+               call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
+               *batch = NULL;
+       }
+}
+
+void tlb_remove_table(struct mmu_gather *tlb, void *table)
+{
+       struct mmu_table_batch **batch = &tlb->batch;
+
+       /*
+        * When there's less then two users of this mm there cannot be a
+        * concurrent page-table walk.
+        */
+       if (atomic_read(&tlb->mm->mm_users) < 2) {
+               __tlb_remove_table(table);
+               return;
+       }
+
+       if (*batch == NULL) {
+               *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
+               if (*batch == NULL) {
+                       tlb_remove_table_one(table);
+                       return;
+               }
+               (*batch)->nr = 0;
+       }
+       (*batch)->tables[(*batch)->nr++] = table;
+       if ((*batch)->nr == MAX_TABLE_BATCH)
+               tlb_table_flush(tlb);
+}
+
+#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
+
+/*
+ * Note: this doesn't free the actual pages themselves. That
+ * has been handled earlier when unmapping all the memory regions.
+ */
+static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
+                          unsigned long addr)
+{
+       pgtable_t token = pmd_pgtable(*pmd);
+       pmd_clear(pmd);
+       pte_free_tlb(tlb, token, addr);
+       atomic_long_dec(&tlb->mm->nr_ptes);
+}
+
+static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
+                               unsigned long addr, unsigned long end,
+                               unsigned long floor, unsigned long ceiling)
+{
+       pmd_t *pmd;
+       unsigned long next;
+       unsigned long start;
+
+       start = addr;
+       pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_none_or_clear_bad(pmd))
+                       continue;
+               free_pte_range(tlb, pmd, addr);
+       } while (pmd++, addr = next, addr != end);
+
+       start &= PUD_MASK;
+       if (start < floor)
+               return;
+       if (ceiling) {
+               ceiling &= PUD_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               return;
+
+       pmd = pmd_offset(pud, start);
+       pud_clear(pud);
+       pmd_free_tlb(tlb, pmd, start);
+       mm_dec_nr_pmds(tlb->mm);
+}
+
+static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
+                               unsigned long addr, unsigned long end,
+                               unsigned long floor, unsigned long ceiling)
+{
+       pud_t *pud;
+       unsigned long next;
+       unsigned long start;
+
+       start = addr;
+       pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(pud))
+                       continue;
+               free_pmd_range(tlb, pud, addr, next, floor, ceiling);
+       } while (pud++, addr = next, addr != end);
+
+       start &= PGDIR_MASK;
+       if (start < floor)
+               return;
+       if (ceiling) {
+               ceiling &= PGDIR_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               return;
+
+       pud = pud_offset(pgd, start);
+       pgd_clear(pgd);
+       pud_free_tlb(tlb, pud, start);
+}
+
+/*
+ * This function frees user-level page tables of a process.
+ */
+void free_pgd_range(struct mmu_gather *tlb,
+                       unsigned long addr, unsigned long end,
+                       unsigned long floor, unsigned long ceiling)
+{
+       pgd_t *pgd;
+       unsigned long next;
+
+       /*
+        * The next few lines have given us lots of grief...
+        *
+        * Why are we testing PMD* at this top level?  Because often
+        * there will be no work to do at all, and we'd prefer not to
+        * go all the way down to the bottom just to discover that.
+        *
+        * Why all these "- 1"s?  Because 0 represents both the bottom
+        * of the address space and the top of it (using -1 for the
+        * top wouldn't help much: the masks would do the wrong thing).
+        * The rule is that addr 0 and floor 0 refer to the bottom of
+        * the address space, but end 0 and ceiling 0 refer to the top
+        * Comparisons need to use "end - 1" and "ceiling - 1" (though
+        * that end 0 case should be mythical).
+        *
+        * Wherever addr is brought up or ceiling brought down, we must
+        * be careful to reject "the opposite 0" before it confuses the
+        * subsequent tests.  But what about where end is brought down
+        * by PMD_SIZE below? no, end can't go down to 0 there.
+        *
+        * Whereas we round start (addr) and ceiling down, by different
+        * masks at different levels, in order to test whether a table
+        * now has no other vmas using it, so can be freed, we don't
+        * bother to round floor or end up - the tests don't need that.
+        */
+
+       addr &= PMD_MASK;
+       if (addr < floor) {
+               addr += PMD_SIZE;
+               if (!addr)
+                       return;
+       }
+       if (ceiling) {
+               ceiling &= PMD_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               end -= PMD_SIZE;
+       if (addr > end - 1)
+               return;
+
+       pgd = pgd_offset(tlb->mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(pgd))
+                       continue;
+               free_pud_range(tlb, pgd, addr, next, floor, ceiling);
+       } while (pgd++, addr = next, addr != end);
+}
+
+void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
+               unsigned long floor, unsigned long ceiling)
+{
+       while (vma) {
+               struct vm_area_struct *next = vma->vm_next;
+               unsigned long addr = vma->vm_start;
+
+               /*
+                * Hide vma from rmap and truncate_pagecache before freeing
+                * pgtables
+                */
+               unlink_anon_vmas(vma);
+               unlink_file_vma(vma);
+
+               if (is_vm_hugetlb_page(vma)) {
+                       hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
+                               floor, next? next->vm_start: ceiling);
+               } else {
+                       /*
+                        * Optimization: gather nearby vmas into one call down
+                        */
+                       while (next && next->vm_start <= vma->vm_end + PMD_SIZE
+                              && !is_vm_hugetlb_page(next)) {
+                               vma = next;
+                               next = vma->vm_next;
+                               unlink_anon_vmas(vma);
+                               unlink_file_vma(vma);
+                       }
+                       free_pgd_range(tlb, addr, vma->vm_end,
+                               floor, next? next->vm_start: ceiling);
+               }
+               vma = next;
+       }
+}
+
+int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
+               pmd_t *pmd, unsigned long address)
+{
+       spinlock_t *ptl;
+       pgtable_t new = pte_alloc_one(mm, address);
+       int wait_split_huge_page;
+       if (!new)
+               return -ENOMEM;
+
+       /*
+        * Ensure all pte setup (eg. pte page lock and page clearing) are
+        * visible before the pte is made visible to other CPUs by being
+        * put into page tables.
+        *
+        * The other side of the story is the pointer chasing in the page
+        * table walking code (when walking the page table without locking;
+        * ie. most of the time). Fortunately, these data accesses consist
+        * of a chain of data-dependent loads, meaning most CPUs (alpha
+        * being the notable exception) will already guarantee loads are
+        * seen in-order. See the alpha page table accessors for the
+        * smp_read_barrier_depends() barriers in page table walking code.
+        */
+       smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
+
+       ptl = pmd_lock(mm, pmd);
+       wait_split_huge_page = 0;
+       if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
+               atomic_long_inc(&mm->nr_ptes);
+               pmd_populate(mm, pmd, new);
+               new = NULL;
+       } else if (unlikely(pmd_trans_splitting(*pmd)))
+               wait_split_huge_page = 1;
+       spin_unlock(ptl);
+       if (new)
+               pte_free(mm, new);
+       if (wait_split_huge_page)
+               wait_split_huge_page(vma->anon_vma, pmd);
+       return 0;
+}
+
+int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+{
+       pte_t *new = pte_alloc_one_kernel(&init_mm, address);
+       if (!new)
+               return -ENOMEM;
+
+       smp_wmb(); /* See comment in __pte_alloc */
+
+       spin_lock(&init_mm.page_table_lock);
+       if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
+               pmd_populate_kernel(&init_mm, pmd, new);
+               new = NULL;
+       } else
+               VM_BUG_ON(pmd_trans_splitting(*pmd));
+       spin_unlock(&init_mm.page_table_lock);
+       if (new)
+               pte_free_kernel(&init_mm, new);
+       return 0;
+}
+
+static inline void init_rss_vec(int *rss)
+{
+       memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
+}
+
+static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
+{
+       int i;
+
+       if (current->mm == mm)
+               sync_mm_rss(mm);
+       for (i = 0; i < NR_MM_COUNTERS; i++)
+               if (rss[i])
+                       add_mm_counter(mm, i, rss[i]);
+}
+
+/*
+ * This function is called to print an error when a bad pte
+ * is found. For example, we might have a PFN-mapped pte in
+ * a region that doesn't allow it.
+ *
+ * The calling function must still handle the error.
+ */
+static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
+                         pte_t pte, struct page *page)
+{
+       pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
+       pud_t *pud = pud_offset(pgd, addr);
+       pmd_t *pmd = pmd_offset(pud, addr);
+       struct address_space *mapping;
+       pgoff_t index;
+       static unsigned long resume;
+       static unsigned long nr_shown;
+       static unsigned long nr_unshown;
+
+       /*
+        * Allow a burst of 60 reports, then keep quiet for that minute;
+        * or allow a steady drip of one report per second.
+        */
+       if (nr_shown == 60) {
+               if (time_before(jiffies, resume)) {
+                       nr_unshown++;
+                       return;
+               }
+               if (nr_unshown) {
+                       printk(KERN_ALERT
+                               "BUG: Bad page map: %lu messages suppressed\n",
+                               nr_unshown);
+                       nr_unshown = 0;
+               }
+               nr_shown = 0;
+       }
+       if (nr_shown++ == 0)
+               resume = jiffies + 60 * HZ;
+
+       mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
+       index = linear_page_index(vma, addr);
+
+       printk(KERN_ALERT
+               "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
+               current->comm,
+               (long long)pte_val(pte), (long long)pmd_val(*pmd));
+       if (page)
+               dump_page(page, "bad pte");
+       printk(KERN_ALERT
+               "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
+               (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
+       /*
+        * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
+        */
+       pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
+                vma->vm_file,
+                vma->vm_ops ? vma->vm_ops->fault : NULL,
+                vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
+                mapping ? mapping->a_ops->readpage : NULL);
+       dump_stack();
+       add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+}
+
+/*
+ * vm_normal_page -- This function gets the "struct page" associated with a pte.
+ *
+ * "Special" mappings do not wish to be associated with a "struct page" (either
+ * it doesn't exist, or it exists but they don't want to touch it). In this
+ * case, NULL is returned here. "Normal" mappings do have a struct page.
+ *
+ * There are 2 broad cases. Firstly, an architecture may define a pte_special()
+ * pte bit, in which case this function is trivial. Secondly, an architecture
+ * may not have a spare pte bit, which requires a more complicated scheme,
+ * described below.
+ *
+ * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
+ * special mapping (even if there are underlying and valid "struct pages").
+ * COWed pages of a VM_PFNMAP are always normal.
+ *
+ * The way we recognize COWed pages within VM_PFNMAP mappings is through the
+ * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
+ * set, and the vm_pgoff will point to the first PFN mapped: thus every special
+ * mapping will always honor the rule
+ *
+ *     pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
+ *
+ * And for normal mappings this is false.
+ *
+ * This restricts such mappings to be a linear translation from virtual address
+ * to pfn. To get around this restriction, we allow arbitrary mappings so long
+ * as the vma is not a COW mapping; in that case, we know that all ptes are
+ * special (because none can have been COWed).
+ *
+ *
+ * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
+ *
+ * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
+ * page" backing, however the difference is that _all_ pages with a struct
+ * page (that is, those where pfn_valid is true) are refcounted and considered
+ * normal pages by the VM. The disadvantage is that pages are refcounted
+ * (which can be slower and simply not an option for some PFNMAP users). The
+ * advantage is that we don't have to follow the strict linearity rule of
+ * PFNMAP mappings in order to support COWable mappings.
+ *
+ */
+#ifdef __HAVE_ARCH_PTE_SPECIAL
+# define HAVE_PTE_SPECIAL 1
+#else
+# define HAVE_PTE_SPECIAL 0
+#endif
+struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
+                               pte_t pte)
+{
+       unsigned long pfn = pte_pfn(pte);
+
+       if (HAVE_PTE_SPECIAL) {
+               if (likely(!pte_special(pte)))
+                       goto check_pfn;
+               if (vma->vm_ops && vma->vm_ops->find_special_page)
+                       return vma->vm_ops->find_special_page(vma, addr);
+               if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
+                       return NULL;
+               if (!is_zero_pfn(pfn))
+                       print_bad_pte(vma, addr, pte, NULL);
+               return NULL;
+       }
+
+       /* !HAVE_PTE_SPECIAL case follows: */
+
+       if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
+               if (vma->vm_flags & VM_MIXEDMAP) {
+                       if (!pfn_valid(pfn))
+                               return NULL;
+                       goto out;
+               } else {
+                       unsigned long off;
+                       off = (addr - vma->vm_start) >> PAGE_SHIFT;
+                       if (pfn == vma->vm_pgoff + off)
+                               return NULL;
+                       if (!is_cow_mapping(vma->vm_flags))
+                               return NULL;
+               }
+       }
+
+       if (is_zero_pfn(pfn))
+               return NULL;
+check_pfn:
+       if (unlikely(pfn > highest_memmap_pfn)) {
+               print_bad_pte(vma, addr, pte, NULL);
+               return NULL;
+       }
+
+       /*
+        * NOTE! We still have PageReserved() pages in the page tables.
+        * eg. VDSO mappings can cause them to exist.
+        */
+out:
+       return pfn_to_page(pfn);
+}
+
+/*
+ * copy one vm_area from one task to the other. Assumes the page tables
+ * already present in the new task to be cleared in the whole range
+ * covered by this vma.
+ */
+
+static inline unsigned long
+copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
+               unsigned long addr, int *rss)
+{
+       unsigned long vm_flags = vma->vm_flags;
+       pte_t pte = *src_pte;
+       struct page *page;
+
+       /* pte contains position in swap or file, so copy. */
+       if (unlikely(!pte_present(pte))) {
+               swp_entry_t entry = pte_to_swp_entry(pte);
+
+               if (likely(!non_swap_entry(entry))) {
+                       if (swap_duplicate(entry) < 0)
+                               return entry.val;
+
+                       /* make sure dst_mm is on swapoff's mmlist. */
+                       if (unlikely(list_empty(&dst_mm->mmlist))) {
+                               spin_lock(&mmlist_lock);
+                               if (list_empty(&dst_mm->mmlist))
+                                       list_add(&dst_mm->mmlist,
+                                                       &src_mm->mmlist);
+                               spin_unlock(&mmlist_lock);
+                       }
+                       rss[MM_SWAPENTS]++;
+               } else if (is_migration_entry(entry)) {
+                       page = migration_entry_to_page(entry);
+
+                       if (PageAnon(page))
+                               rss[MM_ANONPAGES]++;
+                       else
+                               rss[MM_FILEPAGES]++;
+
+                       if (is_write_migration_entry(entry) &&
+                                       is_cow_mapping(vm_flags)) {
+                               /*
+                                * COW mappings require pages in both
+                                * parent and child to be set to read.
+                                */
+                               make_migration_entry_read(&entry);
+                               pte = swp_entry_to_pte(entry);
+                               if (pte_swp_soft_dirty(*src_pte))
+                                       pte = pte_swp_mksoft_dirty(pte);
+                               set_pte_at(src_mm, addr, src_pte, pte);
+                       }
+               }
+               goto out_set_pte;
+       }
+
+       /*
+        * If it's a COW mapping, write protect it both
+        * in the parent and the child
+        */
+       if (is_cow_mapping(vm_flags)) {
+               ptep_set_wrprotect(src_mm, addr, src_pte);
+               pte = pte_wrprotect(pte);
+       }
+
+       /*
+        * If it's a shared mapping, mark it clean in
+        * the child
+        */
+       if (vm_flags & VM_SHARED)
+               pte = pte_mkclean(pte);
+       pte = pte_mkold(pte);
+
+       page = vm_normal_page(vma, addr, pte);
+       if (page) {
+               get_page(page);
+               page_dup_rmap(page);
+               if (PageAnon(page))
+                       rss[MM_ANONPAGES]++;
+               else
+                       rss[MM_FILEPAGES]++;
+       }
+
+out_set_pte:
+       set_pte_at(dst_mm, addr, dst_pte, pte);
+       return 0;
+}
+
+static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+                  pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
+                  unsigned long addr, unsigned long end)
+{
+       pte_t *orig_src_pte, *orig_dst_pte;
+       pte_t *src_pte, *dst_pte;
+       spinlock_t *src_ptl, *dst_ptl;
+       int progress = 0;
+       int rss[NR_MM_COUNTERS];
+       swp_entry_t entry = (swp_entry_t){0};
+
+again:
+       init_rss_vec(rss);
+
+       dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
+       if (!dst_pte)
+               return -ENOMEM;
+       src_pte = pte_offset_map(src_pmd, addr);
+       src_ptl = pte_lockptr(src_mm, src_pmd);
+       spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+       orig_src_pte = src_pte;
+       orig_dst_pte = dst_pte;
+       arch_enter_lazy_mmu_mode();
+
+       do {
+               /*
+                * We are holding two locks at this point - either of them
+                * could generate latencies in another task on another CPU.
+                */
+               if (progress >= 32) {
+                       progress = 0;
+                       if (need_resched() ||
+                           spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
+                               break;
+               }
+               if (pte_none(*src_pte)) {
+                       progress++;
+                       continue;
+               }
+               entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
+                                                       vma, addr, rss);
+               if (entry.val)
+                       break;
+               progress += 8;
+       } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
+
+       arch_leave_lazy_mmu_mode();
+       spin_unlock(src_ptl);
+       pte_unmap(orig_src_pte);
+       add_mm_rss_vec(dst_mm, rss);
+       pte_unmap_unlock(orig_dst_pte, dst_ptl);
+       cond_resched();
+
+       if (entry.val) {
+               if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
+                       return -ENOMEM;
+               progress = 0;
+       }
+       if (addr != end)
+               goto again;
+       return 0;
+}
+
+static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
+               unsigned long addr, unsigned long end)
+{
+       pmd_t *src_pmd, *dst_pmd;
+       unsigned long next;
+
+       dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
+       if (!dst_pmd)
+               return -ENOMEM;
+       src_pmd = pmd_offset(src_pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_trans_huge(*src_pmd)) {
+                       int err;
+                       VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
+                       err = copy_huge_pmd(dst_mm, src_mm,
+                                           dst_pmd, src_pmd, addr, vma);
+                       if (err == -ENOMEM)
+                               return -ENOMEM;
+                       if (!err)
+                               continue;
+                       /* fall through */
+               }
+               if (pmd_none_or_clear_bad(src_pmd))
+                       continue;
+               if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
+                                               vma, addr, next))
+                       return -ENOMEM;
+       } while (dst_pmd++, src_pmd++, addr = next, addr != end);
+       return 0;
+}
+
+static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
+               unsigned long addr, unsigned long end)
+{
+       pud_t *src_pud, *dst_pud;
+       unsigned long next;
+
+       dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
+       if (!dst_pud)
+               return -ENOMEM;
+       src_pud = pud_offset(src_pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(src_pud))
+                       continue;
+               if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
+                                               vma, addr, next))
+                       return -ENOMEM;
+       } while (dst_pud++, src_pud++, addr = next, addr != end);
+       return 0;
+}
+
+int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               struct vm_area_struct *vma)
+{
+       pgd_t *src_pgd, *dst_pgd;
+       unsigned long next;
+       unsigned long addr = vma->vm_start;
+       unsigned long end = vma->vm_end;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+       bool is_cow;
+       int ret;
+
+       /*
+        * Don't copy ptes where a page fault will fill them correctly.
+        * Fork becomes much lighter when there are big shared or private
+        * readonly mappings. The tradeoff is that copy_page_range is more
+        * efficient than faulting.
+        */
+       if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
+                       !vma->anon_vma)
+               return 0;
+
+       if (is_vm_hugetlb_page(vma))
+               return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+
+       if (unlikely(vma->vm_flags & VM_PFNMAP)) {
+               /*
+                * We do not free on error cases below as remove_vma
+                * gets called on error from higher level routine
+                */
+               ret = track_pfn_copy(vma);
+               if (ret)
+                       return ret;
+       }
+
+       /*
+        * We need to invalidate the secondary MMU mappings only when
+        * there could be a permission downgrade on the ptes of the
+        * parent mm. And a permission downgrade will only happen if
+        * is_cow_mapping() returns true.
+        */
+       is_cow = is_cow_mapping(vma->vm_flags);
+       mmun_start = addr;
+       mmun_end   = end;
+       if (is_cow)
+               mmu_notifier_invalidate_range_start(src_mm, mmun_start,
+                                                   mmun_end);
+
+       ret = 0;
+       dst_pgd = pgd_offset(dst_mm, addr);
+       src_pgd = pgd_offset(src_mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(src_pgd))
+                       continue;
+               if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
+                                           vma, addr, next))) {
+                       ret = -ENOMEM;
+                       break;
+               }
+       } while (dst_pgd++, src_pgd++, addr = next, addr != end);
+
+       if (is_cow)
+               mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
+       return ret;
+}
+
+static unsigned long zap_pte_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pmd_t *pmd,
+                               unsigned long addr, unsigned long end,
+                               struct zap_details *details)
+{
+       struct mm_struct *mm = tlb->mm;
+       int force_flush = 0;
+       int rss[NR_MM_COUNTERS];
+       spinlock_t *ptl;
+       pte_t *start_pte;
+       pte_t *pte;
+       swp_entry_t entry;
+
+again:
+       init_rss_vec(rss);
+       start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+       pte = start_pte;
+       arch_enter_lazy_mmu_mode();
+       do {
+               pte_t ptent = *pte;
+               if (pte_none(ptent)) {
+                       continue;
+               }
+
+               if (pte_present(ptent)) {
+                       struct page *page;
+
+                       page = vm_normal_page(vma, addr, ptent);
+                       if (unlikely(details) && page) {
+                               /*
+                                * unmap_shared_mapping_pages() wants to
+                                * invalidate cache without truncating:
+                                * unmap shared but keep private pages.
+                                */
+                               if (details->check_mapping &&
+                                   details->check_mapping != page->mapping)
+                                       continue;
+                       }
+                       ptent = ptep_get_and_clear_full(mm, addr, pte,
+                                                       tlb->fullmm);
+                       tlb_remove_tlb_entry(tlb, pte, addr);
+                       if (unlikely(!page))
+                               continue;
+                       if (PageAnon(page))
+                               rss[MM_ANONPAGES]--;
+                       else {
+                               if (pte_dirty(ptent)) {
+                                       force_flush = 1;
+                                       set_page_dirty(page);
+                               }
+                               if (pte_young(ptent) &&
+                                   likely(!(vma->vm_flags & VM_SEQ_READ)))
+                                       mark_page_accessed(page);
+                               rss[MM_FILEPAGES]--;
+                       }
+                       page_remove_rmap(page);
+                       if (unlikely(page_mapcount(page) < 0))
+                               print_bad_pte(vma, addr, ptent, page);
+                       if (unlikely(!__tlb_remove_page(tlb, page))) {
+                               force_flush = 1;
+                               addr += PAGE_SIZE;
+                               break;
+                       }
+                       continue;
+               }
+               /* If details->check_mapping, we leave swap entries. */
+               if (unlikely(details))
+                       continue;
+
+               entry = pte_to_swp_entry(ptent);
+               if (!non_swap_entry(entry))
+                       rss[MM_SWAPENTS]--;
+               else if (is_migration_entry(entry)) {
+                       struct page *page;
+
+                       page = migration_entry_to_page(entry);
+
+                       if (PageAnon(page))
+                               rss[MM_ANONPAGES]--;
+                       else
+                               rss[MM_FILEPAGES]--;
+               }
+               if (unlikely(!free_swap_and_cache(entry)))
+                       print_bad_pte(vma, addr, ptent, NULL);
+               pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+
+       add_mm_rss_vec(mm, rss);
+       arch_leave_lazy_mmu_mode();
+
+       /* Do the actual TLB flush before dropping ptl */
+       if (force_flush)
+               tlb_flush_mmu_tlbonly(tlb);
+       pte_unmap_unlock(start_pte, ptl);
+
+       /*
+        * If we forced a TLB flush (either due to running out of
+        * batch buffers or because we needed to flush dirty TLB
+        * entries before releasing the ptl), free the batched
+        * memory too. Restart if we didn't do everything.
+        */
+       if (force_flush) {
+               force_flush = 0;
+               tlb_flush_mmu_free(tlb);
+
+               if (addr != end)
+                       goto again;
+       }
+
+       return addr;
+}
+
+static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pud_t *pud,
+                               unsigned long addr, unsigned long end,
+                               struct zap_details *details)
+{
+       pmd_t *pmd;
+       unsigned long next;
+
+       pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_trans_huge(*pmd)) {
+                       if (next - addr != HPAGE_PMD_SIZE) {
+#ifdef CONFIG_DEBUG_VM
+                               if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
+                                       pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
+                                               __func__, addr, end,
+                                               vma->vm_start,
+                                               vma->vm_end);
+                                       BUG();
+                               }
+#endif
+                               split_huge_page_pmd(vma, addr, pmd);
+                       } else if (zap_huge_pmd(tlb, vma, pmd, addr))
+                               goto next;
+                       /* fall through */
+               }
+               /*
+                * Here there can be other concurrent MADV_DONTNEED or
+                * trans huge page faults running, and if the pmd is
+                * none or trans huge it can change under us. This is
+                * because MADV_DONTNEED holds the mmap_sem in read
+                * mode.
+                */
+               if (pmd_none_or_trans_huge_or_clear_bad(pmd))
+                       goto next;
+               next = zap_pte_range(tlb, vma, pmd, addr, next, details);
+next:
+               cond_resched();
+       } while (pmd++, addr = next, addr != end);
+
+       return addr;
+}
+
+static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pgd_t *pgd,
+                               unsigned long addr, unsigned long end,
+                               struct zap_details *details)
+{
+       pud_t *pud;
+       unsigned long next;
+
+       pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(pud))
+                       continue;
+               next = zap_pmd_range(tlb, vma, pud, addr, next, details);
+       } while (pud++, addr = next, addr != end);
+
+       return addr;
+}
+
+static void unmap_page_range(struct mmu_gather *tlb,
+                            struct vm_area_struct *vma,
+                            unsigned long addr, unsigned long end,
+                            struct zap_details *details)
+{
+       pgd_t *pgd;
+       unsigned long next;
+
+       if (details && !details->check_mapping)
+               details = NULL;
+
+       BUG_ON(addr >= end);
+       tlb_start_vma(tlb, vma);
+       pgd = pgd_offset(vma->vm_mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(pgd))
+                       continue;
+               next = zap_pud_range(tlb, vma, pgd, addr, next, details);
+       } while (pgd++, addr = next, addr != end);
+       tlb_end_vma(tlb, vma);
+}
+
+
+static void unmap_single_vma(struct mmu_gather *tlb,
+               struct vm_area_struct *vma, unsigned long start_addr,
+               unsigned long end_addr,
+               struct zap_details *details)
+{
+       unsigned long start = max(vma->vm_start, start_addr);
+       unsigned long end;
+
+       if (start >= vma->vm_end)
+               return;
+       end = min(vma->vm_end, end_addr);
+       if (end <= vma->vm_start)
+               return;
+
+       if (vma->vm_file)
+               uprobe_munmap(vma, start, end);
+
+       if (unlikely(vma->vm_flags & VM_PFNMAP))
+               untrack_pfn(vma, 0, 0);
+
+       if (start != end) {
+               if (unlikely(is_vm_hugetlb_page(vma))) {
+                       /*
+                        * It is undesirable to test vma->vm_file as it
+                        * should be non-null for valid hugetlb area.
+                        * However, vm_file will be NULL in the error
+                        * cleanup path of mmap_region. When
+                        * hugetlbfs ->mmap method fails,
+                        * mmap_region() nullifies vma->vm_file
+                        * before calling this function to clean up.
+                        * Since no pte has actually been setup, it is
+                        * safe to do nothing in this case.
+                        */
+                       if (vma->vm_file) {
+                               i_mmap_lock_write(vma->vm_file->f_mapping);
+                               __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
+                               i_mmap_unlock_write(vma->vm_file->f_mapping);
+                       }
+               } else
+                       unmap_page_range(tlb, vma, start, end, details);
+       }
+}
+
+/**
+ * unmap_vmas - unmap a range of memory covered by a list of vma's
+ * @tlb: address of the caller's struct mmu_gather
+ * @vma: the starting vma
+ * @start_addr: virtual address at which to start unmapping
+ * @end_addr: virtual address at which to end unmapping
+ *
+ * Unmap all pages in the vma list.
+ *
+ * Only addresses between `start' and `end' will be unmapped.
+ *
+ * The VMA list must be sorted in ascending virtual address order.
+ *
+ * unmap_vmas() assumes that the caller will flush the whole unmapped address
+ * range after unmap_vmas() returns.  So the only responsibility here is to
+ * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
+ * drops the lock and schedules.
+ */
+void unmap_vmas(struct mmu_gather *tlb,
+               struct vm_area_struct *vma, unsigned long start_addr,
+               unsigned long end_addr)
+{
+       struct mm_struct *mm = vma->vm_mm;
+
+       mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
+       for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
+               unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
+       mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
+}
+
+/**
+ * zap_page_range - remove user pages in a given range
+ * @vma: vm_area_struct holding the applicable pages
+ * @start: starting address of pages to zap
+ * @size: number of bytes to zap
+ * @details: details of shared cache invalidation
+ *
+ * Caller must protect the VMA list
+ */
+void zap_page_range(struct vm_area_struct *vma, unsigned long start,
+               unsigned long size, struct zap_details *details)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       struct mmu_gather tlb;
+       unsigned long end = start + size;
+
+       lru_add_drain();
+       tlb_gather_mmu(&tlb, mm, start, end);
+       update_hiwater_rss(mm);
+       mmu_notifier_invalidate_range_start(mm, start, end);
+       for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
+               unmap_single_vma(&tlb, vma, start, end, details);
+       mmu_notifier_invalidate_range_end(mm, start, end);
+       tlb_finish_mmu(&tlb, start, end);
+}
+
+/**
+ * zap_page_range_single - remove user pages in a given range
+ * @vma: vm_area_struct holding the applicable pages
+ * @address: starting address of pages to zap
+ * @size: number of bytes to zap
+ * @details: details of shared cache invalidation
+ *
+ * The range must fit into one VMA.
+ */
+static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
+               unsigned long size, struct zap_details *details)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       struct mmu_gather tlb;
+       unsigned long end = address + size;
+
+       lru_add_drain();
+       tlb_gather_mmu(&tlb, mm, address, end);
+       update_hiwater_rss(mm);
+       mmu_notifier_invalidate_range_start(mm, address, end);
+       unmap_single_vma(&tlb, vma, address, end, details);
+       mmu_notifier_invalidate_range_end(mm, address, end);
+       tlb_finish_mmu(&tlb, address, end);
+}
+
+/**
+ * zap_vma_ptes - remove ptes mapping the vma
+ * @vma: vm_area_struct holding ptes to be zapped
+ * @address: starting address of pages to zap
+ * @size: number of bytes to zap
+ *
+ * This function only unmaps ptes assigned to VM_PFNMAP vmas.
+ *
+ * The entire address range must be fully contained within the vma.
+ *
+ * Returns 0 if successful.
+ */
+int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
+               unsigned long size)
+{
+       if (address < vma->vm_start || address + size > vma->vm_end ||
+                       !(vma->vm_flags & VM_PFNMAP))
+               return -1;
+       zap_page_range_single(vma, address, size, NULL);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(zap_vma_ptes);
+
+pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
+                       spinlock_t **ptl)
+{
+       pgd_t * pgd = pgd_offset(mm, addr);
+       pud_t * pud = pud_alloc(mm, pgd, addr);
+       if (pud) {
+               pmd_t * pmd = pmd_alloc(mm, pud, addr);
+               if (pmd) {
+                       VM_BUG_ON(pmd_trans_huge(*pmd));
+                       return pte_alloc_map_lock(mm, pmd, addr, ptl);
+               }
+       }
+       return NULL;
+}
+
+/*
+ * This is the old fallback for page remapping.
+ *
+ * For historical reasons, it only allows reserved pages. Only
+ * old drivers should use this, and they needed to mark their
+ * pages reserved for the old functions anyway.
+ */
+static int insert_page(struct vm_area_struct *vma, unsigned long addr,
+                       struct page *page, pgprot_t prot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       int retval;
+       pte_t *pte;
+       spinlock_t *ptl;
+
+       retval = -EINVAL;
+       if (PageAnon(page))
+               goto out;
+       retval = -ENOMEM;
+       flush_dcache_page(page);
+       pte = get_locked_pte(mm, addr, &ptl);
+       if (!pte)
+               goto out;
+       retval = -EBUSY;
+       if (!pte_none(*pte))
+               goto out_unlock;
+
+       /* Ok, finally just insert the thing.. */
+       get_page(page);
+       inc_mm_counter_fast(mm, MM_FILEPAGES);
+       page_add_file_rmap(page);
+       set_pte_at(mm, addr, pte, mk_pte(page, prot));
+
+       retval = 0;
+       pte_unmap_unlock(pte, ptl);
+       return retval;
+out_unlock:
+       pte_unmap_unlock(pte, ptl);
+out:
+       return retval;
+}
+
+/**
+ * vm_insert_page - insert single page into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @page: source kernel page
+ *
+ * This allows drivers to insert individual pages they've allocated
+ * into a user vma.
+ *
+ * The page has to be a nice clean _individual_ kernel allocation.
+ * If you allocate a compound page, you need to have marked it as
+ * such (__GFP_COMP), or manually just split the page up yourself
+ * (see split_page()).
+ *
+ * NOTE! Traditionally this was done with "remap_pfn_range()" which
+ * took an arbitrary page protection parameter. This doesn't allow
+ * that. Your vma protection will have to be set up correctly, which
+ * means that if you want a shared writable mapping, you'd better
+ * ask for a shared writable mapping!
+ *
+ * The page does not need to be reserved.
+ *
+ * Usually this function is called from f_op->mmap() handler
+ * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
+ * Caller must set VM_MIXEDMAP on vma if it wants to call this
+ * function from other places, for example from page-fault handler.
+ */
+int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
+                       struct page *page)
+{
+       if (addr < vma->vm_start || addr >= vma->vm_end)
+               return -EFAULT;
+       if (!page_count(page))
+               return -EINVAL;
+       if (!(vma->vm_flags & VM_MIXEDMAP)) {
+               BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
+               BUG_ON(vma->vm_flags & VM_PFNMAP);
+               vma->vm_flags |= VM_MIXEDMAP;
+       }
+       return insert_page(vma, addr, page, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_page);
+
+static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+                       unsigned long pfn, pgprot_t prot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       int retval;
+       pte_t *pte, entry;
+       spinlock_t *ptl;
+
+       retval = -ENOMEM;
+       pte = get_locked_pte(mm, addr, &ptl);
+       if (!pte)
+               goto out;
+       retval = -EBUSY;
+       if (!pte_none(*pte))
+               goto out_unlock;
+
+       /* Ok, finally just insert the thing.. */
+       entry = pte_mkspecial(pfn_pte(pfn, prot));
+       set_pte_at(mm, addr, pte, entry);
+       update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
+
+       retval = 0;
+out_unlock:
+       pte_unmap_unlock(pte, ptl);
+out:
+       return retval;
+}
+
+/**
+ * vm_insert_pfn - insert single pfn into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @pfn: source kernel pfn
+ *
+ * Similar to vm_insert_page, this allows drivers to insert individual pages
+ * they've allocated into a user vma. Same comments apply.
+ *
+ * This function should only be called from a vm_ops->fault handler, and
+ * in that case the handler should return NULL.
+ *
+ * vma cannot be a COW mapping.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ */
+int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+                       unsigned long pfn)
+{
+       int ret;
+       pgprot_t pgprot = vma->vm_page_prot;
+       /*
+        * Technically, architectures with pte_special can avoid all these
+        * restrictions (same for remap_pfn_range).  However we would like
+        * consistency in testing and feature parity among all, so we should
+        * try to keep these invariants in place for everybody.
+        */
+       BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
+       BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
+                                               (VM_PFNMAP|VM_MIXEDMAP));
+       BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
+       BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
+
+       if (addr < vma->vm_start || addr >= vma->vm_end)
+               return -EFAULT;
+       if (track_pfn_insert(vma, &pgprot, pfn))
+               return -EINVAL;
+
+       ret = insert_pfn(vma, addr, pfn, pgprot);
+
+       return ret;
+}
+EXPORT_SYMBOL(vm_insert_pfn);
+
+int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
+                       unsigned long pfn)
+{
+       BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
+
+       if (addr < vma->vm_start || addr >= vma->vm_end)
+               return -EFAULT;
+
+       /*
+        * If we don't have pte special, then we have to use the pfn_valid()
+        * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
+        * refcount the page if pfn_valid is true (hence insert_page rather
+        * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
+        * without pte special, it would there be refcounted as a normal page.
+        */
+       if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
+               struct page *page;
+
+               page = pfn_to_page(pfn);
+               return insert_page(vma, addr, page, vma->vm_page_prot);
+       }
+       return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_mixed);
+
+/*
+ * maps a range of physical memory into the requested pages. the old
+ * mappings are removed. any references to nonexistent pages results
+ * in null mappings (currently treated as "copy-on-access")
+ */
+static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
+{
+       pte_t *pte;
+       spinlock_t *ptl;
+
+       pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
+       if (!pte)
+               return -ENOMEM;
+       arch_enter_lazy_mmu_mode();
+       do {
+               BUG_ON(!pte_none(*pte));
+               set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
+               pfn++;
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       arch_leave_lazy_mmu_mode();
+       pte_unmap_unlock(pte - 1, ptl);
+       return 0;
+}
+
+static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
+{
+       pmd_t *pmd;
+       unsigned long next;
+
+       pfn -= addr >> PAGE_SHIFT;
+       pmd = pmd_alloc(mm, pud, addr);
+       if (!pmd)
+               return -ENOMEM;
+       VM_BUG_ON(pmd_trans_huge(*pmd));
+       do {
+               next = pmd_addr_end(addr, end);
+               if (remap_pte_range(mm, pmd, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot))
+                       return -ENOMEM;
+       } while (pmd++, addr = next, addr != end);
+       return 0;
+}
+
+static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
+{
+       pud_t *pud;
+       unsigned long next;
+
+       pfn -= addr >> PAGE_SHIFT;
+       pud = pud_alloc(mm, pgd, addr);
+       if (!pud)
+               return -ENOMEM;
+       do {
+               next = pud_addr_end(addr, end);
+               if (remap_pmd_range(mm, pud, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot))
+                       return -ENOMEM;
+       } while (pud++, addr = next, addr != end);
+       return 0;
+}
+
+/**
+ * remap_pfn_range - remap kernel memory to userspace
+ * @vma: user vma to map to
+ * @addr: target user address to start at
+ * @pfn: physical address of kernel memory
+ * @size: size of map area
+ * @prot: page protection flags for this mapping
+ *
+ *  Note: this is only safe if the mm semaphore is held when called.
+ */
+int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+                   unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long end = addr + PAGE_ALIGN(size);
+       struct mm_struct *mm = vma->vm_mm;
+       int err;
+
+       /*
+        * Physically remapped pages are special. Tell the
+        * rest of the world about it:
+        *   VM_IO tells people not to look at these pages
+        *      (accesses can have side effects).
+        *   VM_PFNMAP tells the core MM that the base pages are just
+        *      raw PFN mappings, and do not have a "struct page" associated
+        *      with them.
+        *   VM_DONTEXPAND
+        *      Disable vma merging and expanding with mremap().
+        *   VM_DONTDUMP
+        *      Omit vma from core dump, even when VM_IO turned off.
+        *
+        * There's a horrible special case to handle copy-on-write
+        * behaviour that some programs depend on. We mark the "original"
+        * un-COW'ed pages by matching them up with "vma->vm_pgoff".
+        * See vm_normal_page() for details.
+        */
+       if (is_cow_mapping(vma->vm_flags)) {
+               if (addr != vma->vm_start || end != vma->vm_end)
+                       return -EINVAL;
+               vma->vm_pgoff = pfn;
+       }
+
+       err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
+       if (err)
+               return -EINVAL;
+
+       vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
+
+       BUG_ON(addr >= end);
+       pfn -= addr >> PAGE_SHIFT;
+       pgd = pgd_offset(mm, addr);
+       flush_cache_range(vma, addr, end);
+       do {
+               next = pgd_addr_end(addr, end);
+               err = remap_pud_range(mm, pgd, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot);
+               if (err)
+                       break;
+       } while (pgd++, addr = next, addr != end);
+
+       if (err)
+               untrack_pfn(vma, pfn, PAGE_ALIGN(size));
+
+       return err;
+}
+EXPORT_SYMBOL(remap_pfn_range);
+
+/**
+ * vm_iomap_memory - remap memory to userspace
+ * @vma: user vma to map to
+ * @start: start of area
+ * @len: size of area
+ *
+ * This is a simplified io_remap_pfn_range() for common driver use. The
+ * driver just needs to give us the physical memory range to be mapped,
+ * we'll figure out the rest from the vma information.
+ *
+ * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
+ * whatever write-combining details or similar.
+ */
+int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
+{
+       unsigned long vm_len, pfn, pages;
+
+       /* Check that the physical memory area passed in looks valid */
+       if (start + len < start)
+               return -EINVAL;
+       /*
+        * You *really* shouldn't map things that aren't page-aligned,
+        * but we've historically allowed it because IO memory might
+        * just have smaller alignment.
+        */
+       len += start & ~PAGE_MASK;
+       pfn = start >> PAGE_SHIFT;
+       pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
+       if (pfn + pages < pfn)
+               return -EINVAL;
+
+       /* We start the mapping 'vm_pgoff' pages into the area */
+       if (vma->vm_pgoff > pages)
+               return -EINVAL;
+       pfn += vma->vm_pgoff;
+       pages -= vma->vm_pgoff;
+
+       /* Can we fit all of the mapping? */
+       vm_len = vma->vm_end - vma->vm_start;
+       if (vm_len >> PAGE_SHIFT > pages)
+               return -EINVAL;
+
+       /* Ok, let it rip */
+       return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_iomap_memory);
+
+static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pte_t *pte;
+       int err;
+       pgtable_t token;
+       spinlock_t *uninitialized_var(ptl);
+
+       pte = (mm == &init_mm) ?
+               pte_alloc_kernel(pmd, addr) :
+               pte_alloc_map_lock(mm, pmd, addr, &ptl);
+       if (!pte)
+               return -ENOMEM;
+
+       BUG_ON(pmd_huge(*pmd));
+
+       arch_enter_lazy_mmu_mode();
+
+       token = pmd_pgtable(*pmd);
+
+       do {
+               err = fn(pte++, token, addr, data);
+               if (err)
+                       break;
+       } while (addr += PAGE_SIZE, addr != end);
+
+       arch_leave_lazy_mmu_mode();
+
+       if (mm != &init_mm)
+               pte_unmap_unlock(pte-1, ptl);
+       return err;
+}
+
+static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pmd_t *pmd;
+       unsigned long next;
+       int err;
+
+       BUG_ON(pud_huge(*pud));
+
+       pmd = pmd_alloc(mm, pud, addr);
+       if (!pmd)
+               return -ENOMEM;
+       do {
+               next = pmd_addr_end(addr, end);
+               err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
+               if (err)
+                       break;
+       } while (pmd++, addr = next, addr != end);
+       return err;
+}
+
+static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pud_t *pud;
+       unsigned long next;
+       int err;
+
+       pud = pud_alloc(mm, pgd, addr);
+       if (!pud)
+               return -ENOMEM;
+       do {
+               next = pud_addr_end(addr, end);
+               err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
+               if (err)
+                       break;
+       } while (pud++, addr = next, addr != end);
+       return err;
+}
+
+/*
+ * Scan a region of virtual memory, filling in page tables as necessary
+ * and calling a provided function on each leaf page table.
+ */
+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+                       unsigned long size, pte_fn_t fn, void *data)
+{
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long end = addr + size;
+       int err;
+
+       BUG_ON(addr >= end);
+       pgd = pgd_offset(mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
+               if (err)
+                       break;
+       } while (pgd++, addr = next, addr != end);
+
+       return err;
+}
+EXPORT_SYMBOL_GPL(apply_to_page_range);
+
+/*
+ * handle_pte_fault chooses page fault handler according to an entry which was
+ * read non-atomically.  Before making any commitment, on those architectures
+ * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
+ * parts, do_swap_page must check under lock before unmapping the pte and
+ * proceeding (but do_wp_page is only called after already making such a check;
+ * and do_anonymous_page can safely check later on).
+ */
+static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
+                               pte_t *page_table, pte_t orig_pte)
+{
+       int same = 1;
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
+       if (sizeof(pte_t) > sizeof(unsigned long)) {
+               spinlock_t *ptl = pte_lockptr(mm, pmd);
+               spin_lock(ptl);
+               same = pte_same(*page_table, orig_pte);
+               spin_unlock(ptl);
+       }
+#endif
+       pte_unmap(page_table);
+       return same;
+}
+
+static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
+{
+       debug_dma_assert_idle(src);
+
+       /*
+        * If the source page was a PFN mapping, we don't have
+        * a "struct page" for it. We do a best-effort copy by
+        * just copying from the original user address. If that
+        * fails, we just zero-fill it. Live with it.
+        */
+       if (unlikely(!src)) {
+               void *kaddr = kmap_atomic(dst);
+               void __user *uaddr = (void __user *)(va & PAGE_MASK);
+
+               /*
+                * This really shouldn't fail, because the page is there
+                * in the page tables. But it might just be unreadable,
+                * in which case we just give up and fill the result with
+                * zeroes.
+                */
+               if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
+                       clear_page(kaddr);
+               kunmap_atomic(kaddr);
+               flush_dcache_page(dst);
+       } else
+               copy_user_highpage(dst, src, va, vma);
+}
+
+/*
+ * Notify the address space that the page is about to become writable so that
+ * it can prohibit this or wait for the page to get into an appropriate state.
+ *
+ * We do this without the lock held, so that it can sleep if it needs to.
+ */
+static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
+              unsigned long address)
+{
+       struct vm_fault vmf;
+       int ret;
+
+       vmf.virtual_address = (void __user *)(address & PAGE_MASK);
+       vmf.pgoff = page->index;
+       vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
+       vmf.page = page;
+       vmf.cow_page = NULL;
+
+       ret = vma->vm_ops->page_mkwrite(vma, &vmf);
+       if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
+               return ret;
+       if (unlikely(!(ret & VM_FAULT_LOCKED))) {
+               lock_page(page);
+               if (!page->mapping) {
+                       unlock_page(page);
+                       return 0; /* retry */
+               }
+               ret |= VM_FAULT_LOCKED;
+       } else
+               VM_BUG_ON_PAGE(!PageLocked(page), page);
+       return ret;
+}
+
+/*
+ * Handle write page faults for pages that can be reused in the current vma
+ *
+ * This can happen either due to the mapping being with the VM_SHARED flag,
+ * or due to us being the last reference standing to the page. In either
+ * case, all we need to do here is to mark the page as writable and update
+ * any related book-keeping.
+ */
+static inline int wp_page_reuse(struct mm_struct *mm,
+                       struct vm_area_struct *vma, unsigned long address,
+                       pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
+                       struct page *page, int page_mkwrite,
+                       int dirty_shared)
+       __releases(ptl)
+{
+       pte_t entry;
+       /*
+        * Clear the pages cpupid information as the existing
+        * information potentially belongs to a now completely
+        * unrelated process.
+        */
+       if (page)
+               page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
+
+       flush_cache_page(vma, address, pte_pfn(orig_pte));
+       entry = pte_mkyoung(orig_pte);
+       entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+       if (ptep_set_access_flags(vma, address, page_table, entry, 1))
+               update_mmu_cache(vma, address, page_table);
+       pte_unmap_unlock(page_table, ptl);
+
+       if (dirty_shared) {
+               struct address_space *mapping;
+               int dirtied;
+
+               if (!page_mkwrite)
+                       lock_page(page);
+
+               dirtied = set_page_dirty(page);
+               VM_BUG_ON_PAGE(PageAnon(page), page);
+               mapping = page->mapping;
+               unlock_page(page);
+               page_cache_release(page);
+
+               if ((dirtied || page_mkwrite) && mapping) {
+                       /*
+                        * Some device drivers do not set page.mapping
+                        * but still dirty their pages
+                        */
+                       balance_dirty_pages_ratelimited(mapping);
+               }
+
+               if (!page_mkwrite)
+                       file_update_time(vma->vm_file);
+       }
+
+       return VM_FAULT_WRITE;
+}
+
+/*
+ * Handle the case of a page which we actually need to copy to a new page.
+ *
+ * Called with mmap_sem locked and the old page referenced, but
+ * without the ptl held.
+ *
+ * High level logic flow:
+ *
+ * - Allocate a page, copy the content of the old page to the new one.
+ * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
+ * - Take the PTL. If the pte changed, bail out and release the allocated page
+ * - If the pte is still the way we remember it, update the page table and all
+ *   relevant references. This includes dropping the reference the page-table
+ *   held to the old page, as well as updating the rmap.
+ * - In any case, unlock the PTL and drop the reference we took to the old page.
+ */
+static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *page_table, pmd_t *pmd,
+                       pte_t orig_pte, struct page *old_page)
+{
+       struct page *new_page = NULL;
+       spinlock_t *ptl = NULL;
+       pte_t entry;
+       int page_copied = 0;
+       const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
+       const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
+       struct mem_cgroup *memcg;
+
+       if (unlikely(anon_vma_prepare(vma)))
+               goto oom;
+
+       if (is_zero_pfn(pte_pfn(orig_pte))) {
+               new_page = alloc_zeroed_user_highpage_movable(vma, address);
+               if (!new_page)
+                       goto oom;
+       } else {
+               new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
+               if (!new_page)
+                       goto oom;
+               cow_user_page(new_page, old_page, address, vma);
+       }
+       __SetPageUptodate(new_page);
+
+       if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
+               goto oom_free_new;
+
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+
+       /*
+        * Re-check the pte - we dropped the lock
+        */
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (likely(pte_same(*page_table, orig_pte))) {
+               if (old_page) {
+                       if (!PageAnon(old_page)) {
+                               dec_mm_counter_fast(mm, MM_FILEPAGES);
+                               inc_mm_counter_fast(mm, MM_ANONPAGES);
+                       }
+               } else {
+                       inc_mm_counter_fast(mm, MM_ANONPAGES);
+               }
+               flush_cache_page(vma, address, pte_pfn(orig_pte));
+               entry = mk_pte(new_page, vma->vm_page_prot);
+               entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+               /*
+                * Clear the pte entry and flush it first, before updating the
+                * pte with the new entry. This will avoid a race condition
+                * seen in the presence of one thread doing SMC and another
+                * thread doing COW.
+                */
+               ptep_clear_flush_notify(vma, address, page_table);
+               page_add_new_anon_rmap(new_page, vma, address);
+               mem_cgroup_commit_charge(new_page, memcg, false);
+               lru_cache_add_active_or_unevictable(new_page, vma);
+               /*
+                * We call the notify macro here because, when using secondary
+                * mmu page tables (such as kvm shadow page tables), we want the
+                * new page to be mapped directly into the secondary page table.
+                */
+               set_pte_at_notify(mm, address, page_table, entry);
+               update_mmu_cache(vma, address, page_table);
+               if (old_page) {
+                       /*
+                        * Only after switching the pte to the new page may
+                        * we remove the mapcount here. Otherwise another
+                        * process may come and find the rmap count decremented
+                        * before the pte is switched to the new page, and
+                        * "reuse" the old page writing into it while our pte
+                        * here still points into it and can be read by other
+                        * threads.
+                        *
+                        * The critical issue is to order this
+                        * page_remove_rmap with the ptp_clear_flush above.
+                        * Those stores are ordered by (if nothing else,)
+                        * the barrier present in the atomic_add_negative
+                        * in page_remove_rmap.
+                        *
+                        * Then the TLB flush in ptep_clear_flush ensures that
+                        * no process can access the old page before the
+                        * decremented mapcount is visible. And the old page
+                        * cannot be reused until after the decremented
+                        * mapcount is visible. So transitively, TLBs to
+                        * old page will be flushed before it can be reused.
+                        */
+                       page_remove_rmap(old_page);
+               }
+
+               /* Free the old page.. */
+               new_page = old_page;
+               page_copied = 1;
+       } else {
+               mem_cgroup_cancel_charge(new_page, memcg);
+       }
+
+       if (new_page)
+               page_cache_release(new_page);
+
+       pte_unmap_unlock(page_table, ptl);
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+       if (old_page) {
+               /*
+                * Don't let another task, with possibly unlocked vma,
+                * keep the mlocked page.
+                */
+               if (page_copied && (vma->vm_flags & VM_LOCKED)) {
+                       lock_page(old_page);    /* LRU manipulation */
+                       munlock_vma_page(old_page);
+                       unlock_page(old_page);
+               }
+               page_cache_release(old_page);
+       }
+       return page_copied ? VM_FAULT_WRITE : 0;
+oom_free_new:
+       page_cache_release(new_page);
+oom:
+       if (old_page)
+               page_cache_release(old_page);
+       return VM_FAULT_OOM;
+}
+
+/*
+ * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
+ * mapping
+ */
+static int wp_pfn_shared(struct mm_struct *mm,
+                       struct vm_area_struct *vma, unsigned long address,
+                       pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
+                       pmd_t *pmd)
+{
+       if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
+               struct vm_fault vmf = {
+                       .page = NULL,
+                       .pgoff = linear_page_index(vma, address),
+                       .virtual_address = (void __user *)(address & PAGE_MASK),
+                       .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
+               };
+               int ret;
+
+               pte_unmap_unlock(page_table, ptl);
+               ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
+               if (ret & VM_FAULT_ERROR)
+                       return ret;
+               page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+               /*
+                * We might have raced with another page fault while we
+                * released the pte_offset_map_lock.
+                */
+               if (!pte_same(*page_table, orig_pte)) {
+                       pte_unmap_unlock(page_table, ptl);
+                       return 0;
+               }
+       }
+       return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
+                            NULL, 0, 0);
+}
+
+static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
+                         unsigned long address, pte_t *page_table,
+                         pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
+                         struct page *old_page)
+       __releases(ptl)
+{
+       int page_mkwrite = 0;
+
+       page_cache_get(old_page);
+
+       /*
+        * Only catch write-faults on shared writable pages,
+        * read-only shared pages can get COWed by
+        * get_user_pages(.write=1, .force=1).
+        */
+       if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
+               int tmp;
+
+               pte_unmap_unlock(page_table, ptl);
+               tmp = do_page_mkwrite(vma, old_page, address);
+               if (unlikely(!tmp || (tmp &
+                                     (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+                       page_cache_release(old_page);
+                       return tmp;
+               }
+               /*
+                * Since we dropped the lock we need to revalidate
+                * the PTE as someone else may have changed it.  If
+                * they did, we just return, as we can count on the
+                * MMU to tell us if they didn't also make it writable.
+                */
+               page_table = pte_offset_map_lock(mm, pmd, address,
+                                                &ptl);
+               if (!pte_same(*page_table, orig_pte)) {
+                       unlock_page(old_page);
+                       pte_unmap_unlock(page_table, ptl);
+                       page_cache_release(old_page);
+                       return 0;
+               }
+               page_mkwrite = 1;
+       }
+
+       return wp_page_reuse(mm, vma, address, page_table, ptl,
+                            orig_pte, old_page, page_mkwrite, 1);
+}
+
+/*
+ * This routine handles present pages, when users try to write
+ * to a shared page. It is done by copying the page to a new address
+ * and decrementing the shared-page counter for the old page.
+ *
+ * Note that this routine assumes that the protection checks have been
+ * done by the caller (the low-level page fault routine in most cases).
+ * Thus we can safely just mark it writable once we've done any necessary
+ * COW.
+ *
+ * We also mark the page dirty at this point even though the page will
+ * change only once the write actually happens. This avoids a few races,
+ * and potentially makes it more efficient.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), with pte both mapped and locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               spinlock_t *ptl, pte_t orig_pte)
+       __releases(ptl)
+{
+       struct page *old_page;
+
+       old_page = vm_normal_page(vma, address, orig_pte);
+       if (!old_page) {
+               /*
+                * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
+                * VM_PFNMAP VMA.
+                *
+                * We should not cow pages in a shared writeable mapping.
+                * Just mark the pages writable and/or call ops->pfn_mkwrite.
+                */
+               if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+                                    (VM_WRITE|VM_SHARED))
+                       return wp_pfn_shared(mm, vma, address, page_table, ptl,
+                                            orig_pte, pmd);
+
+               pte_unmap_unlock(page_table, ptl);
+               return wp_page_copy(mm, vma, address, page_table, pmd,
+                                   orig_pte, old_page);
+       }
+
+       /*
+        * Take out anonymous pages first, anonymous shared vmas are
+        * not dirty accountable.
+        */
+       if (PageAnon(old_page) && !PageKsm(old_page)) {
+               if (!trylock_page(old_page)) {
+                       page_cache_get(old_page);
+                       pte_unmap_unlock(page_table, ptl);
+                       lock_page(old_page);
+                       page_table = pte_offset_map_lock(mm, pmd, address,
+                                                        &ptl);
+                       if (!pte_same(*page_table, orig_pte)) {
+                               unlock_page(old_page);
+                               pte_unmap_unlock(page_table, ptl);
+                               page_cache_release(old_page);
+                               return 0;
+                       }
+                       page_cache_release(old_page);
+               }
+               if (reuse_swap_page(old_page)) {
+                       /*
+                        * The page is all ours.  Move it to our anon_vma so
+                        * the rmap code will not search our parent or siblings.
+                        * Protected against the rmap code by the page lock.
+                        */
+                       page_move_anon_rmap(old_page, vma, address);
+                       unlock_page(old_page);
+                       return wp_page_reuse(mm, vma, address, page_table, ptl,
+                                            orig_pte, old_page, 0, 0);
+               }
+               unlock_page(old_page);
+       } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+                                       (VM_WRITE|VM_SHARED))) {
+               return wp_page_shared(mm, vma, address, page_table, pmd,
+                                     ptl, orig_pte, old_page);
+       }
+
+       /*
+        * Ok, we need to copy. Oh, well..
+        */
+       page_cache_get(old_page);
+
+       pte_unmap_unlock(page_table, ptl);
+       return wp_page_copy(mm, vma, address, page_table, pmd,
+                           orig_pte, old_page);
+}
+
+static void unmap_mapping_range_vma(struct vm_area_struct *vma,
+               unsigned long start_addr, unsigned long end_addr,
+               struct zap_details *details)
+{
+       zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
+}
+
+static inline void unmap_mapping_range_tree(struct rb_root *root,
+                                           struct zap_details *details)
+{
+       struct vm_area_struct *vma;
+       pgoff_t vba, vea, zba, zea;
+
+       vma_interval_tree_foreach(vma, root,
+                       details->first_index, details->last_index) {
+
+               vba = vma->vm_pgoff;
+               vea = vba + vma_pages(vma) - 1;
+               /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
+               zba = details->first_index;
+               if (zba < vba)
+                       zba = vba;
+               zea = details->last_index;
+               if (zea > vea)
+                       zea = vea;
+
+               unmap_mapping_range_vma(vma,
+                       ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
+                       ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
+                               details);
+       }
+}
+
+/**
+ * unmap_mapping_range - unmap the portion of all mmaps in the specified
+ * address_space corresponding to the specified page range in the underlying
+ * file.
+ *
+ * @mapping: the address space containing mmaps to be unmapped.
+ * @holebegin: byte in first page to unmap, relative to the start of
+ * the underlying file.  This will be rounded down to a PAGE_SIZE
+ * boundary.  Note that this is different from truncate_pagecache(), which
+ * must keep the partial page.  In contrast, we must get rid of
+ * partial pages.
+ * @holelen: size of prospective hole in bytes.  This will be rounded
+ * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
+ * end of the file.
+ * @even_cows: 1 when truncating a file, unmap even private COWed pages;
+ * but 0 when invalidating pagecache, don't throw away private data.
+ */
+void unmap_mapping_range(struct address_space *mapping,
+               loff_t const holebegin, loff_t const holelen, int even_cows)
+{
+       struct zap_details details;
+       pgoff_t hba = holebegin >> PAGE_SHIFT;
+       pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
+
+       /* Check for overflow. */
+       if (sizeof(holelen) > sizeof(hlen)) {
+               long long holeend =
+                       (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
+               if (holeend & ~(long long)ULONG_MAX)
+                       hlen = ULONG_MAX - hba + 1;
+       }
+
+       details.check_mapping = even_cows? NULL: mapping;
+       details.first_index = hba;
+       details.last_index = hba + hlen - 1;
+       if (details.last_index < details.first_index)
+               details.last_index = ULONG_MAX;
+
+
+       /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
+       i_mmap_lock_write(mapping);
+       if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
+               unmap_mapping_range_tree(&mapping->i_mmap, &details);
+       i_mmap_unlock_write(mapping);
+}
+EXPORT_SYMBOL(unmap_mapping_range);
+
+/*
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with pte unmapped and unlocked.
+ *
+ * We return with the mmap_sem locked or unlocked in the same cases
+ * as does filemap_fault().
+ */
+static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               unsigned int flags, pte_t orig_pte)
+{
+       spinlock_t *ptl;
+       struct page *page, *swapcache;
+       struct mem_cgroup *memcg;
+       swp_entry_t entry;
+       pte_t pte;
+       int locked;
+       int exclusive = 0;
+       int ret = 0;
+
+       if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+               goto out;
+
+       entry = pte_to_swp_entry(orig_pte);
+       if (unlikely(non_swap_entry(entry))) {
+               if (is_migration_entry(entry)) {
+                       migration_entry_wait(mm, pmd, address);
+               } else if (is_hwpoison_entry(entry)) {
+                       ret = VM_FAULT_HWPOISON;
+               } else {
+                       print_bad_pte(vma, address, orig_pte, NULL);
+                       ret = VM_FAULT_SIGBUS;
+               }
+               goto out;
+       }
+       delayacct_set_flag(DELAYACCT_PF_SWAPIN);
+       page = lookup_swap_cache(entry);
+       if (!page) {
+               page = swapin_readahead(entry,
+                                       GFP_HIGHUSER_MOVABLE, vma, address);
+               if (!page) {
+                       /*
+                        * Back out if somebody else faulted in this pte
+                        * while we released the pte lock.
+                        */
+                       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+                       if (likely(pte_same(*page_table, orig_pte)))
+                               ret = VM_FAULT_OOM;
+                       delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+                       goto unlock;
+               }
+
+               /* Had to read the page from swap area: Major fault */
+               ret = VM_FAULT_MAJOR;
+               count_vm_event(PGMAJFAULT);
+               mem_cgroup_count_vm_event(mm, PGMAJFAULT);
+       } else if (PageHWPoison(page)) {
+               /*
+                * hwpoisoned dirty swapcache pages are kept for killing
+                * owner processes (which may be unknown at hwpoison time)
+                */
+               ret = VM_FAULT_HWPOISON;
+               delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+               swapcache = page;
+               goto out_release;
+       }
+
+       swapcache = page;
+       locked = lock_page_or_retry(page, mm, flags);
+
+       delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+       if (!locked) {
+               ret |= VM_FAULT_RETRY;
+               goto out_release;
+       }
+
+       /*
+        * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
+        * release the swapcache from under us.  The page pin, and pte_same
+        * test below, are not enough to exclude that.  Even if it is still
+        * swapcache, we need to check that the page's swap has not changed.
+        */
+       if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
+               goto out_page;
+
+       page = ksm_might_need_to_copy(page, vma, address);
+       if (unlikely(!page)) {
+               ret = VM_FAULT_OOM;
+               page = swapcache;
+               goto out_page;
+       }
+
+       if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
+               ret = VM_FAULT_OOM;
+               goto out_page;
+       }
+
+       /*
+        * Back out if somebody else already faulted in this pte.
+        */
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (unlikely(!pte_same(*page_table, orig_pte)))
+               goto out_nomap;
+
+       if (unlikely(!PageUptodate(page))) {
+               ret = VM_FAULT_SIGBUS;
+               goto out_nomap;
+       }
+
+       /*
+        * The page isn't present yet, go ahead with the fault.
+        *
+        * Be careful about the sequence of operations here.
+        * To get its accounting right, reuse_swap_page() must be called
+        * while the page is counted on swap but not yet in mapcount i.e.
+        * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
+        * must be called after the swap_free(), or it will never succeed.
+        */
+
+       inc_mm_counter_fast(mm, MM_ANONPAGES);
+       dec_mm_counter_fast(mm, MM_SWAPENTS);
+       pte = mk_pte(page, vma->vm_page_prot);
+       if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
+               pte = maybe_mkwrite(pte_mkdirty(pte), vma);
+               flags &= ~FAULT_FLAG_WRITE;
+               ret |= VM_FAULT_WRITE;
+               exclusive = 1;
+       }
+       flush_icache_page(vma, page);
+       if (pte_swp_soft_dirty(orig_pte))
+               pte = pte_mksoft_dirty(pte);
+       set_pte_at(mm, address, page_table, pte);
+       if (page == swapcache) {
+               do_page_add_anon_rmap(page, vma, address, exclusive);
+               mem_cgroup_commit_charge(page, memcg, true);
+       } else { /* ksm created a completely new copy */
+               page_add_new_anon_rmap(page, vma, address);
+               mem_cgroup_commit_charge(page, memcg, false);
+               lru_cache_add_active_or_unevictable(page, vma);
+       }
+
+       swap_free(entry);
+       if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
+               try_to_free_swap(page);
+       unlock_page(page);
+       if (page != swapcache) {
+               /*
+                * Hold the lock to avoid the swap entry to be reused
+                * until we take the PT lock for the pte_same() check
+                * (to avoid false positives from pte_same). For
+                * further safety release the lock after the swap_free
+                * so that the swap count won't change under a
+                * parallel locked swapcache.
+                */
+               unlock_page(swapcache);
+               page_cache_release(swapcache);
+       }
+
+       if (flags & FAULT_FLAG_WRITE) {
+               ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
+               if (ret & VM_FAULT_ERROR)
+                       ret &= VM_FAULT_ERROR;
+               goto out;
+       }
+
+       /* No need to invalidate - it was non-present before */
+       update_mmu_cache(vma, address, page_table);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
+out:
+       return ret;
+out_nomap:
+       mem_cgroup_cancel_charge(page, memcg);
+       pte_unmap_unlock(page_table, ptl);
+out_page:
+       unlock_page(page);
+out_release:
+       page_cache_release(page);
+       if (page != swapcache) {
+               unlock_page(swapcache);
+               page_cache_release(swapcache);
+       }
+       return ret;
+}
+
+/*
+ * This is like a special single-page "expand_{down|up}wards()",
+ * except we must first make sure that 'address{-|+}PAGE_SIZE'
+ * doesn't hit another vma.
+ */
+static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
+{
+       address &= PAGE_MASK;
+       if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
+               struct vm_area_struct *prev = vma->vm_prev;
+
+               /*
+                * Is there a mapping abutting this one below?
+                *
+                * That's only ok if it's the same stack mapping
+                * that has gotten split..
+                */
+               if (prev && prev->vm_end == address)
+                       return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
+
+               return expand_downwards(vma, address - PAGE_SIZE);
+       }
+       if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
+               struct vm_area_struct *next = vma->vm_next;
+
+               /* As VM_GROWSDOWN but s/below/above/ */
+               if (next && next->vm_start == address + PAGE_SIZE)
+                       return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
+
+               return expand_upwards(vma, address + PAGE_SIZE);
+       }
+       return 0;
+}
+
+/*
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               unsigned int flags)
+{
+       struct mem_cgroup *memcg;
+       struct page *page;
+       spinlock_t *ptl;
+       pte_t entry;
+
+       pte_unmap(page_table);
+
+       /* Check if we need to add a guard page to the stack */
+       if (check_stack_guard_page(vma, address) < 0)
+               return VM_FAULT_SIGSEGV;
+
+       /* Use the zero-page for reads */
+       if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
+               entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
+                                               vma->vm_page_prot));
+               page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+               if (!pte_none(*page_table))
+                       goto unlock;
+               goto setpte;
+       }
+
+       /* Allocate our own private page. */
+       if (unlikely(anon_vma_prepare(vma)))
+               goto oom;
+       page = alloc_zeroed_user_highpage_movable(vma, address);
+       if (!page)
+               goto oom;
+       /*
+        * The memory barrier inside __SetPageUptodate makes sure that
+        * preceeding stores to the page contents become visible before
+        * the set_pte_at() write.
+        */
+       __SetPageUptodate(page);
+
+       if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
+               goto oom_free_page;
+
+       entry = mk_pte(page, vma->vm_page_prot);
+       if (vma->vm_flags & VM_WRITE)
+               entry = pte_mkwrite(pte_mkdirty(entry));
+
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (!pte_none(*page_table))
+               goto release;
+
+       inc_mm_counter_fast(mm, MM_ANONPAGES);
+       page_add_new_anon_rmap(page, vma, address);
+       mem_cgroup_commit_charge(page, memcg, false);
+       lru_cache_add_active_or_unevictable(page, vma);
+setpte:
+       set_pte_at(mm, address, page_table, entry);
+
+       /* No need to invalidate - it was non-present before */
+       update_mmu_cache(vma, address, page_table);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
+       return 0;
+release:
+       mem_cgroup_cancel_charge(page, memcg);
+       page_cache_release(page);
+       goto unlock;
+oom_free_page:
+       page_cache_release(page);
+oom:
+       return VM_FAULT_OOM;
+}
+
+/*
+ * The mmap_sem must have been held on entry, and may have been
+ * released depending on flags and vma->vm_ops->fault() return value.
+ * See filemap_fault() and __lock_page_retry().
+ */
+static int __do_fault(struct vm_area_struct *vma, unsigned long address,
+                       pgoff_t pgoff, unsigned int flags,
+                       struct page *cow_page, struct page **page)
+{
+       struct vm_fault vmf;
+       int ret;
+
+       vmf.virtual_address = (void __user *)(address & PAGE_MASK);
+       vmf.pgoff = pgoff;
+       vmf.flags = flags;
+       vmf.page = NULL;
+       vmf.cow_page = cow_page;
+
+       ret = vma->vm_ops->fault(vma, &vmf);
+       if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+               return ret;
+       if (!vmf.page)
+               goto out;
+
+       if (unlikely(PageHWPoison(vmf.page))) {
+               if (ret & VM_FAULT_LOCKED)
+                       unlock_page(vmf.page);
+               page_cache_release(vmf.page);
+               return VM_FAULT_HWPOISON;
+       }
+
+       if (unlikely(!(ret & VM_FAULT_LOCKED)))
+               lock_page(vmf.page);
+       else
+               VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
+
+ out:
+       *page = vmf.page;
+       return ret;
+}
+
+/**
+ * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
+ *
+ * @vma: virtual memory area
+ * @address: user virtual address
+ * @page: page to map
+ * @pte: pointer to target page table entry
+ * @write: true, if new entry is writable
+ * @anon: true, if it's anonymous page
+ *
+ * Caller must hold page table lock relevant for @pte.
+ *
+ * Target users are page handler itself and implementations of
+ * vm_ops->map_pages.
+ */
+void do_set_pte(struct vm_area_struct *vma, unsigned long address,
+               struct page *page, pte_t *pte, bool write, bool anon)
+{
+       pte_t entry;
+
+       flush_icache_page(vma, page);
+       entry = mk_pte(page, vma->vm_page_prot);
+       if (write)
+               entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+       if (anon) {
+               inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
+               page_add_new_anon_rmap(page, vma, address);
+       } else {
+               inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
+               page_add_file_rmap(page);
+       }
+       set_pte_at(vma->vm_mm, address, pte, entry);
+
+       /* no need to invalidate: a not-present page won't be cached */
+       update_mmu_cache(vma, address, pte);
+}
+
+static unsigned long fault_around_bytes __read_mostly =
+       rounddown_pow_of_two(65536);
+
+#ifdef CONFIG_DEBUG_FS
+static int fault_around_bytes_get(void *data, u64 *val)
+{
+       *val = fault_around_bytes;
+       return 0;
+}
+
+/*
+ * fault_around_pages() and fault_around_mask() expects fault_around_bytes
+ * rounded down to nearest page order. It's what do_fault_around() expects to
+ * see.
+ */
+static int fault_around_bytes_set(void *data, u64 val)
+{
+       if (val / PAGE_SIZE > PTRS_PER_PTE)
+               return -EINVAL;
+       if (val > PAGE_SIZE)
+               fault_around_bytes = rounddown_pow_of_two(val);
+       else
+               fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
+       return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
+               fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
+
+static int __init fault_around_debugfs(void)
+{
+       void *ret;
+
+       ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
+                       &fault_around_bytes_fops);
+       if (!ret)
+               pr_warn("Failed to create fault_around_bytes in debugfs");
+       return 0;
+}
+late_initcall(fault_around_debugfs);
+#endif
+
+/*
+ * do_fault_around() tries to map few pages around the fault address. The hope
+ * is that the pages will be needed soon and this will lower the number of
+ * faults to handle.
+ *
+ * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
+ * not ready to be mapped: not up-to-date, locked, etc.
+ *
+ * This function is called with the page table lock taken. In the split ptlock
+ * case the page table lock only protects only those entries which belong to
+ * the page table corresponding to the fault address.
+ *
+ * This function doesn't cross the VMA boundaries, in order to call map_pages()
+ * only once.
+ *
+ * fault_around_pages() defines how many pages we'll try to map.
+ * do_fault_around() expects it to return a power of two less than or equal to
+ * PTRS_PER_PTE.
+ *
+ * The virtual address of the area that we map is naturally aligned to the
+ * fault_around_pages() value (and therefore to page order).  This way it's
+ * easier to guarantee that we don't cross page table boundaries.
+ */
+static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
+               pte_t *pte, pgoff_t pgoff, unsigned int flags)
+{
+       unsigned long start_addr, nr_pages, mask;
+       pgoff_t max_pgoff;
+       struct vm_fault vmf;
+       int off;
+
+       nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
+       mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
+
+       start_addr = max(address & mask, vma->vm_start);
+       off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+       pte -= off;
+       pgoff -= off;
+
+       /*
+        *  max_pgoff is either end of page table or end of vma
+        *  or fault_around_pages() from pgoff, depending what is nearest.
+        */
+       max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
+               PTRS_PER_PTE - 1;
+       max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
+                       pgoff + nr_pages - 1);
+
+       /* Check if it makes any sense to call ->map_pages */
+       while (!pte_none(*pte)) {
+               if (++pgoff > max_pgoff)
+                       return;
+               start_addr += PAGE_SIZE;
+               if (start_addr >= vma->vm_end)
+                       return;
+               pte++;
+       }
+
+       vmf.virtual_address = (void __user *) start_addr;
+       vmf.pte = pte;
+       vmf.pgoff = pgoff;
+       vmf.max_pgoff = max_pgoff;
+       vmf.flags = flags;
+       vma->vm_ops->map_pages(vma, &vmf);
+}
+
+static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pmd_t *pmd,
+               pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+       struct page *fault_page;
+       spinlock_t *ptl;
+       pte_t *pte;
+       int ret = 0;
+
+       /*
+        * Let's call ->map_pages() first and use ->fault() as fallback
+        * if page by the offset is not ready to be mapped (cold cache or
+        * something).
+        */
+       if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
+               pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+               do_fault_around(vma, address, pte, pgoff, flags);
+               if (!pte_same(*pte, orig_pte))
+                       goto unlock_out;
+               pte_unmap_unlock(pte, ptl);
+       }
+
+       ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
+       if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+               return ret;
+
+       pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (unlikely(!pte_same(*pte, orig_pte))) {
+               pte_unmap_unlock(pte, ptl);
+               unlock_page(fault_page);
+               page_cache_release(fault_page);
+               return ret;
+       }
+       do_set_pte(vma, address, fault_page, pte, false, false);
+       unlock_page(fault_page);
+unlock_out:
+       pte_unmap_unlock(pte, ptl);
+       return ret;
+}
+
+static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pmd_t *pmd,
+               pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+       struct page *fault_page, *new_page;
+       struct mem_cgroup *memcg;
+       spinlock_t *ptl;
+       pte_t *pte;
+       int ret;
+
+       if (unlikely(anon_vma_prepare(vma)))
+               return VM_FAULT_OOM;
+
+       new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
+       if (!new_page)
+               return VM_FAULT_OOM;
+
+       if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
+               page_cache_release(new_page);
+               return VM_FAULT_OOM;
+       }
+
+       ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
+       if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+               goto uncharge_out;
+
+       if (fault_page)
+               copy_user_highpage(new_page, fault_page, address, vma);
+       __SetPageUptodate(new_page);
+
+       pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (unlikely(!pte_same(*pte, orig_pte))) {
+               pte_unmap_unlock(pte, ptl);
+               if (fault_page) {
+                       unlock_page(fault_page);
+                       page_cache_release(fault_page);
+               } else {
+                       /*
+                        * The fault handler has no page to lock, so it holds
+                        * i_mmap_lock for read to protect against truncate.
+                        */
+                       i_mmap_unlock_read(vma->vm_file->f_mapping);
+               }
+               goto uncharge_out;
+       }
+       do_set_pte(vma, address, new_page, pte, true, true);
+       mem_cgroup_commit_charge(new_page, memcg, false);
+       lru_cache_add_active_or_unevictable(new_page, vma);
+       pte_unmap_unlock(pte, ptl);
+       if (fault_page) {
+               unlock_page(fault_page);
+               page_cache_release(fault_page);
+       } else {
+               /*
+                * The fault handler has no page to lock, so it holds
+                * i_mmap_lock for read to protect against truncate.
+                */
+               i_mmap_unlock_read(vma->vm_file->f_mapping);
+       }
+       return ret;
+uncharge_out:
+       mem_cgroup_cancel_charge(new_page, memcg);
+       page_cache_release(new_page);
+       return ret;
+}
+
+static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pmd_t *pmd,
+               pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+       struct page *fault_page;
+       struct address_space *mapping;
+       spinlock_t *ptl;
+       pte_t *pte;
+       int dirtied = 0;
+       int ret, tmp;
+
+       ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
+       if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+               return ret;
+
+       /*
+        * Check if the backing address space wants to know that the page is
+        * about to become writable
+        */
+       if (vma->vm_ops->page_mkwrite) {
+               unlock_page(fault_page);
+               tmp = do_page_mkwrite(vma, fault_page, address);
+               if (unlikely(!tmp ||
+                               (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+                       page_cache_release(fault_page);
+                       return tmp;
+               }
+       }
+
+       pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (unlikely(!pte_same(*pte, orig_pte))) {
+               pte_unmap_unlock(pte, ptl);
+               unlock_page(fault_page);
+               page_cache_release(fault_page);
+               return ret;
+       }
+       do_set_pte(vma, address, fault_page, pte, true, false);
+       pte_unmap_unlock(pte, ptl);
+
+       if (set_page_dirty(fault_page))
+               dirtied = 1;
+       /*
+        * Take a local copy of the address_space - page.mapping may be zeroed
+        * by truncate after unlock_page().   The address_space itself remains
+        * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
+        * release semantics to prevent the compiler from undoing this copying.
+        */
+       mapping = fault_page->mapping;
+       unlock_page(fault_page);
+       if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
+               /*
+                * Some device drivers do not set page.mapping but still
+                * dirty their pages
+                */
+               balance_dirty_pages_ratelimited(mapping);
+       }
+
+       if (!vma->vm_ops->page_mkwrite)
+               file_update_time(vma->vm_file);
+
+       return ret;
+}
+
+/*
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults).
+ * The mmap_sem may have been released depending on flags and our
+ * return value.  See filemap_fault() and __lock_page_or_retry().
+ */
+static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               unsigned int flags, pte_t orig_pte)
+{
+       pgoff_t pgoff = (((address & PAGE_MASK)
+                       - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
+
+       pte_unmap(page_table);
+       if (!(flags & FAULT_FLAG_WRITE))
+               return do_read_fault(mm, vma, address, pmd, pgoff, flags,
+                               orig_pte);
+       if (!(vma->vm_flags & VM_SHARED))
+               return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
+                               orig_pte);
+       return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+}
+
+static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
+                               unsigned long addr, int page_nid,
+                               int *flags)
+{
+       get_page(page);
+
+       count_vm_numa_event(NUMA_HINT_FAULTS);
+       if (page_nid == numa_node_id()) {
+               count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+               *flags |= TNF_FAULT_LOCAL;
+       }
+
+       return mpol_misplaced(page, vma, addr);
+}
+
+static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                  unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
+{
+       struct page *page = NULL;
+       spinlock_t *ptl;
+       int page_nid = -1;
+       int last_cpupid;
+       int target_nid;
+       bool migrated = false;
+       bool was_writable = pte_write(pte);
+       int flags = 0;
+
+       /* A PROT_NONE fault should not end up here */
+       BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
+
+       /*
+       * The "pte" at this point cannot be used safely without
+       * validation through pte_unmap_same(). It's of NUMA type but
+       * the pfn may be screwed if the read is non atomic.
+       *
+       * We can safely just do a "set_pte_at()", because the old
+       * page table entry is not accessible, so there would be no
+       * concurrent hardware modifications to the PTE.
+       */
+       ptl = pte_lockptr(mm, pmd);
+       spin_lock(ptl);
+       if (unlikely(!pte_same(*ptep, pte))) {
+               pte_unmap_unlock(ptep, ptl);
+               goto out;
+       }
+
+       /* Make it present again */
+       pte = pte_modify(pte, vma->vm_page_prot);
+       pte = pte_mkyoung(pte);
+       if (was_writable)
+               pte = pte_mkwrite(pte);
+       set_pte_at(mm, addr, ptep, pte);
+       update_mmu_cache(vma, addr, ptep);
+
+       page = vm_normal_page(vma, addr, pte);
+       if (!page) {
+               pte_unmap_unlock(ptep, ptl);
+               return 0;
+       }
+
+       /*
+        * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
+        * much anyway since they can be in shared cache state. This misses
+        * the case where a mapping is writable but the process never writes
+        * to it but pte_write gets cleared during protection updates and
+        * pte_dirty has unpredictable behaviour between PTE scan updates,
+        * background writeback, dirty balancing and application behaviour.
+        */
+       if (!(vma->vm_flags & VM_WRITE))
+               flags |= TNF_NO_GROUP;
+
+       /*
+        * Flag if the page is shared between multiple address spaces. This
+        * is later used when determining whether to group tasks together
+        */
+       if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
+               flags |= TNF_SHARED;
+
+       last_cpupid = page_cpupid_last(page);
+       page_nid = page_to_nid(page);
+       target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
+       pte_unmap_unlock(ptep, ptl);
+       if (target_nid == -1) {
+               put_page(page);
+               goto out;
+       }
+
+       /* Migrate to the requested node */
+       migrated = migrate_misplaced_page(page, vma, target_nid);
+       if (migrated) {
+               page_nid = target_nid;
+               flags |= TNF_MIGRATED;
+       } else
+               flags |= TNF_MIGRATE_FAIL;
+
+out:
+       if (page_nid != -1)
+               task_numa_fault(last_cpupid, page_nid, 1, flags);
+       return 0;
+}
+
+/*
+ * These routines also need to handle stuff like marking pages dirty
+ * and/or accessed for architectures that don't do it in hardware (most
+ * RISC architectures).  The early dirtying is also good on the i386.
+ *
+ * There is also a hook called "update_mmu_cache()" that architectures
+ * with external mmu caches can use to update those (ie the Sparc or
+ * PowerPC hashed page tables that act as extended TLBs).
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with pte unmapped and unlocked.
+ *
+ * The mmap_sem may have been released depending on flags and our
+ * return value.  See filemap_fault() and __lock_page_or_retry().
+ */
+static int handle_pte_fault(struct mm_struct *mm,
+                    struct vm_area_struct *vma, unsigned long address,
+                    pte_t *pte, pmd_t *pmd, unsigned int flags)
+{
+       pte_t entry;
+       spinlock_t *ptl;
+
+       /*
+        * some architectures can have larger ptes than wordsize,
+        * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
+        * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
+        * The code below just needs a consistent view for the ifs and
+        * we later double check anyway with the ptl lock held. So here
+        * a barrier will do.
+        */
+       entry = *pte;
+       barrier();
+       if (!pte_present(entry)) {
+               if (pte_none(entry)) {
+                       if (vma->vm_ops) {
+                               if (likely(vma->vm_ops->fault))
+                                       return do_fault(mm, vma, address, pte,
+                                                       pmd, flags, entry);
+                       }
+                       return do_anonymous_page(mm, vma, address,
+                                                pte, pmd, flags);
+               }
+               return do_swap_page(mm, vma, address,
+                                       pte, pmd, flags, entry);
+       }
+
+       if (pte_protnone(entry))
+               return do_numa_page(mm, vma, address, entry, pte, pmd);
+
+       ptl = pte_lockptr(mm, pmd);
+       spin_lock(ptl);
+       if (unlikely(!pte_same(*pte, entry)))
+               goto unlock;
+       if (flags & FAULT_FLAG_WRITE) {
+               if (!pte_write(entry))
+                       return do_wp_page(mm, vma, address,
+                                       pte, pmd, ptl, entry);
+               entry = pte_mkdirty(entry);
+       }
+       entry = pte_mkyoung(entry);
+       if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
+               update_mmu_cache(vma, address, pte);
+       } else {
+               /*
+                * This is needed only for protection faults but the arch code
+                * is not yet telling us if this is a protection fault or not.
+                * This still avoids useless tlb flushes for .text page faults
+                * with threads.
+                */
+               if (flags & FAULT_FLAG_WRITE)
+                       flush_tlb_fix_spurious_fault(vma, address);
+       }
+unlock:
+       pte_unmap_unlock(pte, ptl);
+       return 0;
+}
+
+/*
+ * By the time we get here, we already hold the mm semaphore
+ *
+ * The mmap_sem may have been released depending on flags and our
+ * return value.  See filemap_fault() and __lock_page_or_retry().
+ */
+static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+                            unsigned long address, unsigned int flags)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *pte;
+
+       if (unlikely(is_vm_hugetlb_page(vma)))
+               return hugetlb_fault(mm, vma, address, flags);
+
+       pgd = pgd_offset(mm, address);
+       pud = pud_alloc(mm, pgd, address);
+       if (!pud)
+               return VM_FAULT_OOM;
+       pmd = pmd_alloc(mm, pud, address);
+       if (!pmd)
+               return VM_FAULT_OOM;
+       if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
+               int ret = VM_FAULT_FALLBACK;
+               if (!vma->vm_ops)
+                       ret = do_huge_pmd_anonymous_page(mm, vma, address,
+                                       pmd, flags);
+               if (!(ret & VM_FAULT_FALLBACK))
+                       return ret;
+       } else {
+               pmd_t orig_pmd = *pmd;
+               int ret;
+
+               barrier();
+               if (pmd_trans_huge(orig_pmd)) {
+                       unsigned int dirty = flags & FAULT_FLAG_WRITE;
+
+                       /*
+                        * If the pmd is splitting, return and retry the
+                        * the fault.  Alternative: wait until the split
+                        * is done, and goto retry.
+                        */
+                       if (pmd_trans_splitting(orig_pmd))
+                               return 0;
+
+                       if (pmd_protnone(orig_pmd))
+                               return do_huge_pmd_numa_page(mm, vma, address,
+                                                            orig_pmd, pmd);
+
+                       if (dirty && !pmd_write(orig_pmd)) {
+                               ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
+                                                         orig_pmd);
+                               if (!(ret & VM_FAULT_FALLBACK))
+                                       return ret;
+                       } else {
+                               huge_pmd_set_accessed(mm, vma, address, pmd,
+                                                     orig_pmd, dirty);
+                               return 0;
+                       }
+               }
+       }
+
+       /*
+        * Use __pte_alloc instead of pte_alloc_map, because we can't
+        * run pte_offset_map on the pmd, if an huge pmd could
+        * materialize from under us from a different thread.
+        */
+       if (unlikely(pmd_none(*pmd)) &&
+           unlikely(__pte_alloc(mm, vma, pmd, address)))
+               return VM_FAULT_OOM;
+       /* if an huge pmd materialized from under us just retry later */
+       if (unlikely(pmd_trans_huge(*pmd)))
+               return 0;
+       /*
+        * A regular pmd is established and it can't morph into a huge pmd
+        * from under us anymore at this point because we hold the mmap_sem
+        * read mode and khugepaged takes it in write mode. So now it's
+        * safe to run pte_offset_map().
+        */
+       pte = pte_offset_map(pmd, address);
+
+       return handle_pte_fault(mm, vma, address, pte, pmd, flags);
+}
+
+/*
+ * By the time we get here, we already hold the mm semaphore
+ *
+ * The mmap_sem may have been released depending on flags and our
+ * return value.  See filemap_fault() and __lock_page_or_retry().
+ */
+int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+                   unsigned long address, unsigned int flags)
+{
+       int ret;
+
+       __set_current_state(TASK_RUNNING);
+
+       count_vm_event(PGFAULT);
+       mem_cgroup_count_vm_event(mm, PGFAULT);
+
+       /* do counter updates before entering really critical section. */
+       check_sync_rss_stat(current);
+
+       /*
+        * Enable the memcg OOM handling for faults triggered in user
+        * space.  Kernel faults are handled more gracefully.
+        */
+       if (flags & FAULT_FLAG_USER)
+               mem_cgroup_oom_enable();
+
+       ret = __handle_mm_fault(mm, vma, address, flags);
+
+       if (flags & FAULT_FLAG_USER) {
+               mem_cgroup_oom_disable();
+                /*
+                 * The task may have entered a memcg OOM situation but
+                 * if the allocation error was handled gracefully (no
+                 * VM_FAULT_OOM), there is no need to kill anything.
+                 * Just clean up the OOM state peacefully.
+                 */
+                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
+                        mem_cgroup_oom_synchronize(false);
+       }
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(handle_mm_fault);
+
+#ifndef __PAGETABLE_PUD_FOLDED
+/*
+ * Allocate page upper directory.
+ * We've already handled the fast-path in-line.
+ */
+int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+{
+       pud_t *new = pud_alloc_one(mm, address);
+       if (!new)
+               return -ENOMEM;
+
+       smp_wmb(); /* See comment in __pte_alloc */
+
+       spin_lock(&mm->page_table_lock);
+       if (pgd_present(*pgd))          /* Another has populated it */
+               pud_free(mm, new);
+       else
+               pgd_populate(mm, pgd, new);
+       spin_unlock(&mm->page_table_lock);
+       return 0;
+}
+#endif /* __PAGETABLE_PUD_FOLDED */
+
+#ifndef __PAGETABLE_PMD_FOLDED
+/*
+ * Allocate page middle directory.
+ * We've already handled the fast-path in-line.
+ */
+int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
+{
+       pmd_t *new = pmd_alloc_one(mm, address);
+       if (!new)
+               return -ENOMEM;
+
+       smp_wmb(); /* See comment in __pte_alloc */
+
+       spin_lock(&mm->page_table_lock);
+#ifndef __ARCH_HAS_4LEVEL_HACK
+       if (!pud_present(*pud)) {
+               mm_inc_nr_pmds(mm);
+               pud_populate(mm, pud, new);
+       } else  /* Another has populated it */
+               pmd_free(mm, new);
+#else
+       if (!pgd_present(*pud)) {
+               mm_inc_nr_pmds(mm);
+               pgd_populate(mm, pud, new);
+       } else /* Another has populated it */
+               pmd_free(mm, new);
+#endif /* __ARCH_HAS_4LEVEL_HACK */
+       spin_unlock(&mm->page_table_lock);
+       return 0;
+}
+#endif /* __PAGETABLE_PMD_FOLDED */
+
+static int __follow_pte(struct mm_struct *mm, unsigned long address,
+               pte_t **ptepp, spinlock_t **ptlp)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *ptep;
+
+       pgd = pgd_offset(mm, address);
+       if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+               goto out;
+
+       pud = pud_offset(pgd, address);
+       if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+               goto out;
+
+       pmd = pmd_offset(pud, address);
+       VM_BUG_ON(pmd_trans_huge(*pmd));
+       if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+               goto out;
+
+       /* We cannot handle huge page PFN maps. Luckily they don't exist. */
+       if (pmd_huge(*pmd))
+               goto out;
+
+       ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
+       if (!ptep)
+               goto out;
+       if (!pte_present(*ptep))
+               goto unlock;
+       *ptepp = ptep;
+       return 0;
+unlock:
+       pte_unmap_unlock(ptep, *ptlp);
+out:
+       return -EINVAL;
+}
+
+static inline int follow_pte(struct mm_struct *mm, unsigned long address,
+                            pte_t **ptepp, spinlock_t **ptlp)
+{
+       int res;
+
+       /* (void) is needed to make gcc happy */
+       (void) __cond_lock(*ptlp,
+                          !(res = __follow_pte(mm, address, ptepp, ptlp)));
+       return res;
+}
+
+/**
+ * follow_pfn - look up PFN at a user virtual address
+ * @vma: memory mapping
+ * @address: user virtual address
+ * @pfn: location to store found PFN
+ *
+ * Only IO mappings and raw PFN mappings are allowed.
+ *
+ * Returns zero and the pfn at @pfn on success, -ve otherwise.
+ */
+int follow_pfn(struct vm_area_struct *vma, unsigned long address,
+       unsigned long *pfn)
+{
+       int ret = -EINVAL;
+       spinlock_t *ptl;
+       pte_t *ptep;
+
+       if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+               return ret;
+
+       ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
+       if (ret)
+               return ret;
+       *pfn = pte_pfn(*ptep);
+       pte_unmap_unlock(ptep, ptl);
+       return 0;
+}
+EXPORT_SYMBOL(follow_pfn);
+
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+int follow_phys(struct vm_area_struct *vma,
+               unsigned long address, unsigned int flags,
+               unsigned long *prot, resource_size_t *phys)
+{
+       int ret = -EINVAL;
+       pte_t *ptep, pte;
+       spinlock_t *ptl;
+
+       if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+               goto out;
+
+       if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
+               goto out;
+       pte = *ptep;
+
+       if ((flags & FOLL_WRITE) && !pte_write(pte))
+               goto unlock;
+
+       *prot = pgprot_val(pte_pgprot(pte));
+       *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
+
+       ret = 0;
+unlock:
+       pte_unmap_unlock(ptep, ptl);
+out:
+       return ret;
+}
+
+int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
+                       void *buf, int len, int write)
+{
+       resource_size_t phys_addr;
+       unsigned long prot = 0;
+       void __iomem *maddr;
+       int offset = addr & (PAGE_SIZE-1);
+
+       if (follow_phys(vma, addr, write, &prot, &phys_addr))
+               return -EINVAL;
+
+       maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
+       if (write)
+               memcpy_toio(maddr + offset, buf, len);
+       else
+               memcpy_fromio(buf, maddr + offset, len);
+       iounmap(maddr);
+
+       return len;
+}
+EXPORT_SYMBOL_GPL(generic_access_phys);
+#endif
+
+/*
+ * Access another process' address space as given in mm.  If non-NULL, use the
+ * given task for page fault accounting.
+ */
+static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
+               unsigned long addr, void *buf, int len, int write)
+{
+       struct vm_area_struct *vma;
+       void *old_buf = buf;
+
+       down_read(&mm->mmap_sem);
+       /* ignore errors, just check how much was successfully transferred */
+       while (len) {
+               int bytes, ret, offset;
+               void *maddr;
+               struct page *page = NULL;
+
+               ret = get_user_pages(tsk, mm, addr, 1,
+                               write, 1, &page, &vma);
+               if (ret <= 0) {
+#ifndef CONFIG_HAVE_IOREMAP_PROT
+                       break;
+#else
+                       /*
+                        * Check if this is a VM_IO | VM_PFNMAP VMA, which
+                        * we can access using slightly different code.
+                        */
+                       vma = find_vma(mm, addr);
+                       if (!vma || vma->vm_start > addr)
+                               break;
+                       if (vma->vm_ops && vma->vm_ops->access)
+                               ret = vma->vm_ops->access(vma, addr, buf,
+                                                         len, write);
+                       if (ret <= 0)
+                               break;
+                       bytes = ret;
+#endif
+               } else {
+                       bytes = len;
+                       offset = addr & (PAGE_SIZE-1);
+                       if (bytes > PAGE_SIZE-offset)
+                               bytes = PAGE_SIZE-offset;
+
+                       maddr = kmap(page);
+                       if (write) {
+                               copy_to_user_page(vma, page, addr,
+                                                 maddr + offset, buf, bytes);
+                               set_page_dirty_lock(page);
+                       } else {
+                               copy_from_user_page(vma, page, addr,
+                                                   buf, maddr + offset, bytes);
+                       }
+                       kunmap(page);
+                       page_cache_release(page);
+               }
+               len -= bytes;
+               buf += bytes;
+               addr += bytes;
+       }
+       up_read(&mm->mmap_sem);
+
+       return buf - old_buf;
+}
+
+/**
+ * access_remote_vm - access another process' address space
+ * @mm:                the mm_struct of the target address space
+ * @addr:      start address to access
+ * @buf:       source or destination buffer
+ * @len:       number of bytes to transfer
+ * @write:     whether the access is a write
+ *
+ * The caller must hold a reference on @mm.
+ */
+int access_remote_vm(struct mm_struct *mm, unsigned long addr,
+               void *buf, int len, int write)
+{
+       return __access_remote_vm(NULL, mm, addr, buf, len, write);
+}
+
+/*
+ * Access another process' address space.
+ * Source/target buffer must be kernel space,
+ * Do not walk the page table directly, use get_user_pages
+ */
+int access_process_vm(struct task_struct *tsk, unsigned long addr,
+               void *buf, int len, int write)
+{
+       struct mm_struct *mm;
+       int ret;
+
+       mm = get_task_mm(tsk);
+       if (!mm)
+               return 0;
+
+       ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
+       mmput(mm);
+
+       return ret;
+}
+
+/*
+ * Print the name of a VMA.
+ */
+void print_vma_addr(char *prefix, unsigned long ip)
+{
+       struct mm_struct *mm = current->mm;
+       struct vm_area_struct *vma;
+
+       /*
+        * Do not print if we are in atomic
+        * contexts (in exception stacks, etc.):
+        */
+       if (preempt_count())
+               return;
+
+       down_read(&mm->mmap_sem);
+       vma = find_vma(mm, ip);
+       if (vma && vma->vm_file) {
+               struct file *f = vma->vm_file;
+               char *buf = (char *)__get_free_page(GFP_KERNEL);
+               if (buf) {
+                       char *p;
+
+                       p = d_path(&f->f_path, buf, PAGE_SIZE);
+                       if (IS_ERR(p))
+                               p = "?";
+                       printk("%s%s[%lx+%lx]", prefix, kbasename(p),
+                                       vma->vm_start,
+                                       vma->vm_end - vma->vm_start);
+                       free_page((unsigned long)buf);
+               }
+       }
+       up_read(&mm->mmap_sem);
+}
+
+#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
+void __might_fault(const char *file, int line)
+{
+       /*
+        * Some code (nfs/sunrpc) uses socket ops on kernel memory while
+        * holding the mmap_sem, this is safe because kernel memory doesn't
+        * get paged out, therefore we'll never actually fault, and the
+        * below annotations will generate false positives.
+        */
+       if (segment_eq(get_fs(), KERNEL_DS))
+               return;
+       if (pagefault_disabled())
+               return;
+       __might_sleep(file, line, 0);
+#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
+       if (current->mm)
+               might_lock_read(&current->mm->mmap_sem);
+#endif
+}
+EXPORT_SYMBOL(__might_fault);
+#endif
+
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
+static void clear_gigantic_page(struct page *page,
+                               unsigned long addr,
+                               unsigned int pages_per_huge_page)
+{
+       int i;
+       struct page *p = page;
+
+       might_sleep();
+       for (i = 0; i < pages_per_huge_page;
+            i++, p = mem_map_next(p, page, i)) {
+               cond_resched();
+               clear_user_highpage(p, addr + i * PAGE_SIZE);
+       }
+}
+void clear_huge_page(struct page *page,
+                    unsigned long addr, unsigned int pages_per_huge_page)
+{
+       int i;
+
+       if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
+               clear_gigantic_page(page, addr, pages_per_huge_page);
+               return;
+       }
+
+       might_sleep();
+       for (i = 0; i < pages_per_huge_page; i++) {
+               cond_resched();
+               clear_user_highpage(page + i, addr + i * PAGE_SIZE);
+       }
+}
+
+static void copy_user_gigantic_page(struct page *dst, struct page *src,
+                                   unsigned long addr,
+                                   struct vm_area_struct *vma,
+                                   unsigned int pages_per_huge_page)
+{
+       int i;
+       struct page *dst_base = dst;
+       struct page *src_base = src;
+
+       for (i = 0; i < pages_per_huge_page; ) {
+               cond_resched();
+               copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
+
+               i++;
+               dst = mem_map_next(dst, dst_base, i);
+               src = mem_map_next(src, src_base, i);
+       }
+}
+
+void copy_user_huge_page(struct page *dst, struct page *src,
+                        unsigned long addr, struct vm_area_struct *vma,
+                        unsigned int pages_per_huge_page)
+{
+       int i;
+
+       if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
+               copy_user_gigantic_page(dst, src, addr, vma,
+                                       pages_per_huge_page);
+               return;
+       }
+
+       might_sleep();
+       for (i = 0; i < pages_per_huge_page; i++) {
+               cond_resched();
+               copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
+       }
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
+
+#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
+
+static struct kmem_cache *page_ptl_cachep;
+
+void __init ptlock_cache_init(void)
+{
+       page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
+                       SLAB_PANIC, NULL);
+}
+
+bool ptlock_alloc(struct page *page)
+{
+       spinlock_t *ptl;
+
+       ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
+       if (!ptl)
+               return false;
+       page->ptl = ptl;
+       return true;
+}
+
+void ptlock_free(struct page *page)
+{
+       kmem_cache_free(page_ptl_cachep, page->ptl);
+}
+#endif