Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / memcontrol.c
diff --git a/kernel/mm/memcontrol.c b/kernel/mm/memcontrol.c
new file mode 100644 (file)
index 0000000..8bd68b5
--- /dev/null
@@ -0,0 +1,5933 @@
+/* memcontrol.c - Memory Controller
+ *
+ * Copyright IBM Corporation, 2007
+ * Author Balbir Singh <balbir@linux.vnet.ibm.com>
+ *
+ * Copyright 2007 OpenVZ SWsoft Inc
+ * Author: Pavel Emelianov <xemul@openvz.org>
+ *
+ * Memory thresholds
+ * Copyright (C) 2009 Nokia Corporation
+ * Author: Kirill A. Shutemov
+ *
+ * Kernel Memory Controller
+ * Copyright (C) 2012 Parallels Inc. and Google Inc.
+ * Authors: Glauber Costa and Suleiman Souhlal
+ *
+ * Native page reclaim
+ * Charge lifetime sanitation
+ * Lockless page tracking & accounting
+ * Unified hierarchy configuration model
+ * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/page_counter.h>
+#include <linux/memcontrol.h>
+#include <linux/cgroup.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
+#include <linux/smp.h>
+#include <linux/page-flags.h>
+#include <linux/backing-dev.h>
+#include <linux/bit_spinlock.h>
+#include <linux/rcupdate.h>
+#include <linux/limits.h>
+#include <linux/export.h>
+#include <linux/mutex.h>
+#include <linux/rbtree.h>
+#include <linux/slab.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/spinlock.h>
+#include <linux/eventfd.h>
+#include <linux/poll.h>
+#include <linux/sort.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/vmpressure.h>
+#include <linux/mm_inline.h>
+#include <linux/swap_cgroup.h>
+#include <linux/cpu.h>
+#include <linux/oom.h>
+#include <linux/lockdep.h>
+#include <linux/file.h>
+#include "internal.h"
+#include <net/sock.h>
+#include <net/ip.h>
+#include <net/tcp_memcontrol.h>
+#include <linux/locallock.h>
+
+#include "slab.h"
+
+#include <asm/uaccess.h>
+
+#include <trace/events/vmscan.h>
+
+struct cgroup_subsys memory_cgrp_subsys __read_mostly;
+EXPORT_SYMBOL(memory_cgrp_subsys);
+
+#define MEM_CGROUP_RECLAIM_RETRIES     5
+static struct mem_cgroup *root_mem_cgroup __read_mostly;
+
+/* Whether the swap controller is active */
+#ifdef CONFIG_MEMCG_SWAP
+int do_swap_account __read_mostly;
+#else
+#define do_swap_account                0
+#endif
+
+static DEFINE_LOCAL_IRQ_LOCK(event_lock);
+static const char * const mem_cgroup_stat_names[] = {
+       "cache",
+       "rss",
+       "rss_huge",
+       "mapped_file",
+       "writeback",
+       "swap",
+};
+
+static const char * const mem_cgroup_events_names[] = {
+       "pgpgin",
+       "pgpgout",
+       "pgfault",
+       "pgmajfault",
+};
+
+static const char * const mem_cgroup_lru_names[] = {
+       "inactive_anon",
+       "active_anon",
+       "inactive_file",
+       "active_file",
+       "unevictable",
+};
+
+/*
+ * Per memcg event counter is incremented at every pagein/pageout. With THP,
+ * it will be incremated by the number of pages. This counter is used for
+ * for trigger some periodic events. This is straightforward and better
+ * than using jiffies etc. to handle periodic memcg event.
+ */
+enum mem_cgroup_events_target {
+       MEM_CGROUP_TARGET_THRESH,
+       MEM_CGROUP_TARGET_SOFTLIMIT,
+       MEM_CGROUP_TARGET_NUMAINFO,
+       MEM_CGROUP_NTARGETS,
+};
+#define THRESHOLDS_EVENTS_TARGET 128
+#define SOFTLIMIT_EVENTS_TARGET 1024
+#define NUMAINFO_EVENTS_TARGET 1024
+
+struct mem_cgroup_stat_cpu {
+       long count[MEM_CGROUP_STAT_NSTATS];
+       unsigned long events[MEMCG_NR_EVENTS];
+       unsigned long nr_page_events;
+       unsigned long targets[MEM_CGROUP_NTARGETS];
+};
+
+struct reclaim_iter {
+       struct mem_cgroup *position;
+       /* scan generation, increased every round-trip */
+       unsigned int generation;
+};
+
+/*
+ * per-zone information in memory controller.
+ */
+struct mem_cgroup_per_zone {
+       struct lruvec           lruvec;
+       unsigned long           lru_size[NR_LRU_LISTS];
+
+       struct reclaim_iter     iter[DEF_PRIORITY + 1];
+
+       struct rb_node          tree_node;      /* RB tree node */
+       unsigned long           usage_in_excess;/* Set to the value by which */
+                                               /* the soft limit is exceeded*/
+       bool                    on_tree;
+       struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
+                                               /* use container_of        */
+};
+
+struct mem_cgroup_per_node {
+       struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
+};
+
+/*
+ * Cgroups above their limits are maintained in a RB-Tree, independent of
+ * their hierarchy representation
+ */
+
+struct mem_cgroup_tree_per_zone {
+       struct rb_root rb_root;
+       spinlock_t lock;
+};
+
+struct mem_cgroup_tree_per_node {
+       struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
+};
+
+struct mem_cgroup_tree {
+       struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
+};
+
+static struct mem_cgroup_tree soft_limit_tree __read_mostly;
+
+struct mem_cgroup_threshold {
+       struct eventfd_ctx *eventfd;
+       unsigned long threshold;
+};
+
+/* For threshold */
+struct mem_cgroup_threshold_ary {
+       /* An array index points to threshold just below or equal to usage. */
+       int current_threshold;
+       /* Size of entries[] */
+       unsigned int size;
+       /* Array of thresholds */
+       struct mem_cgroup_threshold entries[0];
+};
+
+struct mem_cgroup_thresholds {
+       /* Primary thresholds array */
+       struct mem_cgroup_threshold_ary *primary;
+       /*
+        * Spare threshold array.
+        * This is needed to make mem_cgroup_unregister_event() "never fail".
+        * It must be able to store at least primary->size - 1 entries.
+        */
+       struct mem_cgroup_threshold_ary *spare;
+};
+
+/* for OOM */
+struct mem_cgroup_eventfd_list {
+       struct list_head list;
+       struct eventfd_ctx *eventfd;
+};
+
+/*
+ * cgroup_event represents events which userspace want to receive.
+ */
+struct mem_cgroup_event {
+       /*
+        * memcg which the event belongs to.
+        */
+       struct mem_cgroup *memcg;
+       /*
+        * eventfd to signal userspace about the event.
+        */
+       struct eventfd_ctx *eventfd;
+       /*
+        * Each of these stored in a list by the cgroup.
+        */
+       struct list_head list;
+       /*
+        * register_event() callback will be used to add new userspace
+        * waiter for changes related to this event.  Use eventfd_signal()
+        * on eventfd to send notification to userspace.
+        */
+       int (*register_event)(struct mem_cgroup *memcg,
+                             struct eventfd_ctx *eventfd, const char *args);
+       /*
+        * unregister_event() callback will be called when userspace closes
+        * the eventfd or on cgroup removing.  This callback must be set,
+        * if you want provide notification functionality.
+        */
+       void (*unregister_event)(struct mem_cgroup *memcg,
+                                struct eventfd_ctx *eventfd);
+       /*
+        * All fields below needed to unregister event when
+        * userspace closes eventfd.
+        */
+       poll_table pt;
+       wait_queue_head_t *wqh;
+       wait_queue_t wait;
+       struct work_struct remove;
+};
+
+static void mem_cgroup_threshold(struct mem_cgroup *memcg);
+static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
+
+/*
+ * The memory controller data structure. The memory controller controls both
+ * page cache and RSS per cgroup. We would eventually like to provide
+ * statistics based on the statistics developed by Rik Van Riel for clock-pro,
+ * to help the administrator determine what knobs to tune.
+ */
+struct mem_cgroup {
+       struct cgroup_subsys_state css;
+
+       /* Accounted resources */
+       struct page_counter memory;
+       struct page_counter memsw;
+       struct page_counter kmem;
+
+       /* Normal memory consumption range */
+       unsigned long low;
+       unsigned long high;
+
+       unsigned long soft_limit;
+
+       /* vmpressure notifications */
+       struct vmpressure vmpressure;
+
+       /* css_online() has been completed */
+       int initialized;
+
+       /*
+        * Should the accounting and control be hierarchical, per subtree?
+        */
+       bool use_hierarchy;
+
+       bool            oom_lock;
+       atomic_t        under_oom;
+       atomic_t        oom_wakeups;
+
+       int     swappiness;
+       /* OOM-Killer disable */
+       int             oom_kill_disable;
+
+       /* protect arrays of thresholds */
+       struct mutex thresholds_lock;
+
+       /* thresholds for memory usage. RCU-protected */
+       struct mem_cgroup_thresholds thresholds;
+
+       /* thresholds for mem+swap usage. RCU-protected */
+       struct mem_cgroup_thresholds memsw_thresholds;
+
+       /* For oom notifier event fd */
+       struct list_head oom_notify;
+
+       /*
+        * Should we move charges of a task when a task is moved into this
+        * mem_cgroup ? And what type of charges should we move ?
+        */
+       unsigned long move_charge_at_immigrate;
+       /*
+        * set > 0 if pages under this cgroup are moving to other cgroup.
+        */
+       atomic_t                moving_account;
+       /* taken only while moving_account > 0 */
+       spinlock_t              move_lock;
+       struct task_struct      *move_lock_task;
+       unsigned long           move_lock_flags;
+       /*
+        * percpu counter.
+        */
+       struct mem_cgroup_stat_cpu __percpu *stat;
+       /*
+        * used when a cpu is offlined or other synchronizations
+        * See mem_cgroup_read_stat().
+        */
+       struct mem_cgroup_stat_cpu nocpu_base;
+       spinlock_t pcp_counter_lock;
+
+#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
+       struct cg_proto tcp_mem;
+#endif
+#if defined(CONFIG_MEMCG_KMEM)
+        /* Index in the kmem_cache->memcg_params.memcg_caches array */
+       int kmemcg_id;
+       bool kmem_acct_activated;
+       bool kmem_acct_active;
+#endif
+
+       int last_scanned_node;
+#if MAX_NUMNODES > 1
+       nodemask_t      scan_nodes;
+       atomic_t        numainfo_events;
+       atomic_t        numainfo_updating;
+#endif
+
+       /* List of events which userspace want to receive */
+       struct list_head event_list;
+       spinlock_t event_list_lock;
+
+       struct mem_cgroup_per_node *nodeinfo[0];
+       /* WARNING: nodeinfo must be the last member here */
+};
+
+#ifdef CONFIG_MEMCG_KMEM
+bool memcg_kmem_is_active(struct mem_cgroup *memcg)
+{
+       return memcg->kmem_acct_active;
+}
+#endif
+
+/* Stuffs for move charges at task migration. */
+/*
+ * Types of charges to be moved.
+ */
+#define MOVE_ANON      0x1U
+#define MOVE_FILE      0x2U
+#define MOVE_MASK      (MOVE_ANON | MOVE_FILE)
+
+/* "mc" and its members are protected by cgroup_mutex */
+static struct move_charge_struct {
+       spinlock_t        lock; /* for from, to */
+       struct mem_cgroup *from;
+       struct mem_cgroup *to;
+       unsigned long flags;
+       unsigned long precharge;
+       unsigned long moved_charge;
+       unsigned long moved_swap;
+       struct task_struct *moving_task;        /* a task moving charges */
+       wait_queue_head_t waitq;                /* a waitq for other context */
+} mc = {
+       .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
+       .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
+};
+
+/*
+ * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
+ * limit reclaim to prevent infinite loops, if they ever occur.
+ */
+#define        MEM_CGROUP_MAX_RECLAIM_LOOPS            100
+#define        MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
+
+enum charge_type {
+       MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
+       MEM_CGROUP_CHARGE_TYPE_ANON,
+       MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
+       MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
+       NR_CHARGE_TYPE,
+};
+
+/* for encoding cft->private value on file */
+enum res_type {
+       _MEM,
+       _MEMSWAP,
+       _OOM_TYPE,
+       _KMEM,
+};
+
+#define MEMFILE_PRIVATE(x, val)        ((x) << 16 | (val))
+#define MEMFILE_TYPE(val)      ((val) >> 16 & 0xffff)
+#define MEMFILE_ATTR(val)      ((val) & 0xffff)
+/* Used for OOM nofiier */
+#define OOM_CONTROL            (0)
+
+/*
+ * The memcg_create_mutex will be held whenever a new cgroup is created.
+ * As a consequence, any change that needs to protect against new child cgroups
+ * appearing has to hold it as well.
+ */
+static DEFINE_MUTEX(memcg_create_mutex);
+
+struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
+{
+       return s ? container_of(s, struct mem_cgroup, css) : NULL;
+}
+
+/* Some nice accessors for the vmpressure. */
+struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
+{
+       if (!memcg)
+               memcg = root_mem_cgroup;
+       return &memcg->vmpressure;
+}
+
+struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
+{
+       return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
+}
+
+static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
+{
+       return (memcg == root_mem_cgroup);
+}
+
+/*
+ * We restrict the id in the range of [1, 65535], so it can fit into
+ * an unsigned short.
+ */
+#define MEM_CGROUP_ID_MAX      USHRT_MAX
+
+static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
+{
+       return memcg->css.id;
+}
+
+/*
+ * A helper function to get mem_cgroup from ID. must be called under
+ * rcu_read_lock().  The caller is responsible for calling
+ * css_tryget_online() if the mem_cgroup is used for charging. (dropping
+ * refcnt from swap can be called against removed memcg.)
+ */
+static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+       struct cgroup_subsys_state *css;
+
+       css = css_from_id(id, &memory_cgrp_subsys);
+       return mem_cgroup_from_css(css);
+}
+
+/* Writing them here to avoid exposing memcg's inner layout */
+#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
+
+void sock_update_memcg(struct sock *sk)
+{
+       if (mem_cgroup_sockets_enabled) {
+               struct mem_cgroup *memcg;
+               struct cg_proto *cg_proto;
+
+               BUG_ON(!sk->sk_prot->proto_cgroup);
+
+               /* Socket cloning can throw us here with sk_cgrp already
+                * filled. It won't however, necessarily happen from
+                * process context. So the test for root memcg given
+                * the current task's memcg won't help us in this case.
+                *
+                * Respecting the original socket's memcg is a better
+                * decision in this case.
+                */
+               if (sk->sk_cgrp) {
+                       BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
+                       css_get(&sk->sk_cgrp->memcg->css);
+                       return;
+               }
+
+               rcu_read_lock();
+               memcg = mem_cgroup_from_task(current);
+               cg_proto = sk->sk_prot->proto_cgroup(memcg);
+               if (!mem_cgroup_is_root(memcg) &&
+                   memcg_proto_active(cg_proto) &&
+                   css_tryget_online(&memcg->css)) {
+                       sk->sk_cgrp = cg_proto;
+               }
+               rcu_read_unlock();
+       }
+}
+EXPORT_SYMBOL(sock_update_memcg);
+
+void sock_release_memcg(struct sock *sk)
+{
+       if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
+               struct mem_cgroup *memcg;
+               WARN_ON(!sk->sk_cgrp->memcg);
+               memcg = sk->sk_cgrp->memcg;
+               css_put(&sk->sk_cgrp->memcg->css);
+       }
+}
+
+struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
+{
+       if (!memcg || mem_cgroup_is_root(memcg))
+               return NULL;
+
+       return &memcg->tcp_mem;
+}
+EXPORT_SYMBOL(tcp_proto_cgroup);
+
+#endif
+
+#ifdef CONFIG_MEMCG_KMEM
+/*
+ * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
+ * The main reason for not using cgroup id for this:
+ *  this works better in sparse environments, where we have a lot of memcgs,
+ *  but only a few kmem-limited. Or also, if we have, for instance, 200
+ *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
+ *  200 entry array for that.
+ *
+ * The current size of the caches array is stored in memcg_nr_cache_ids. It
+ * will double each time we have to increase it.
+ */
+static DEFINE_IDA(memcg_cache_ida);
+int memcg_nr_cache_ids;
+
+/* Protects memcg_nr_cache_ids */
+static DECLARE_RWSEM(memcg_cache_ids_sem);
+
+void memcg_get_cache_ids(void)
+{
+       down_read(&memcg_cache_ids_sem);
+}
+
+void memcg_put_cache_ids(void)
+{
+       up_read(&memcg_cache_ids_sem);
+}
+
+/*
+ * MIN_SIZE is different than 1, because we would like to avoid going through
+ * the alloc/free process all the time. In a small machine, 4 kmem-limited
+ * cgroups is a reasonable guess. In the future, it could be a parameter or
+ * tunable, but that is strictly not necessary.
+ *
+ * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
+ * this constant directly from cgroup, but it is understandable that this is
+ * better kept as an internal representation in cgroup.c. In any case, the
+ * cgrp_id space is not getting any smaller, and we don't have to necessarily
+ * increase ours as well if it increases.
+ */
+#define MEMCG_CACHES_MIN_SIZE 4
+#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
+
+/*
+ * A lot of the calls to the cache allocation functions are expected to be
+ * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
+ * conditional to this static branch, we'll have to allow modules that does
+ * kmem_cache_alloc and the such to see this symbol as well
+ */
+struct static_key memcg_kmem_enabled_key;
+EXPORT_SYMBOL(memcg_kmem_enabled_key);
+
+#endif /* CONFIG_MEMCG_KMEM */
+
+static struct mem_cgroup_per_zone *
+mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
+{
+       int nid = zone_to_nid(zone);
+       int zid = zone_idx(zone);
+
+       return &memcg->nodeinfo[nid]->zoneinfo[zid];
+}
+
+struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
+{
+       return &memcg->css;
+}
+
+static struct mem_cgroup_per_zone *
+mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
+{
+       int nid = page_to_nid(page);
+       int zid = page_zonenum(page);
+
+       return &memcg->nodeinfo[nid]->zoneinfo[zid];
+}
+
+static struct mem_cgroup_tree_per_zone *
+soft_limit_tree_node_zone(int nid, int zid)
+{
+       return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
+}
+
+static struct mem_cgroup_tree_per_zone *
+soft_limit_tree_from_page(struct page *page)
+{
+       int nid = page_to_nid(page);
+       int zid = page_zonenum(page);
+
+       return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
+}
+
+static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
+                                        struct mem_cgroup_tree_per_zone *mctz,
+                                        unsigned long new_usage_in_excess)
+{
+       struct rb_node **p = &mctz->rb_root.rb_node;
+       struct rb_node *parent = NULL;
+       struct mem_cgroup_per_zone *mz_node;
+
+       if (mz->on_tree)
+               return;
+
+       mz->usage_in_excess = new_usage_in_excess;
+       if (!mz->usage_in_excess)
+               return;
+       while (*p) {
+               parent = *p;
+               mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
+                                       tree_node);
+               if (mz->usage_in_excess < mz_node->usage_in_excess)
+                       p = &(*p)->rb_left;
+               /*
+                * We can't avoid mem cgroups that are over their soft
+                * limit by the same amount
+                */
+               else if (mz->usage_in_excess >= mz_node->usage_in_excess)
+                       p = &(*p)->rb_right;
+       }
+       rb_link_node(&mz->tree_node, parent, p);
+       rb_insert_color(&mz->tree_node, &mctz->rb_root);
+       mz->on_tree = true;
+}
+
+static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
+                                        struct mem_cgroup_tree_per_zone *mctz)
+{
+       if (!mz->on_tree)
+               return;
+       rb_erase(&mz->tree_node, &mctz->rb_root);
+       mz->on_tree = false;
+}
+
+static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
+                                      struct mem_cgroup_tree_per_zone *mctz)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&mctz->lock, flags);
+       __mem_cgroup_remove_exceeded(mz, mctz);
+       spin_unlock_irqrestore(&mctz->lock, flags);
+}
+
+static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
+{
+       unsigned long nr_pages = page_counter_read(&memcg->memory);
+       unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
+       unsigned long excess = 0;
+
+       if (nr_pages > soft_limit)
+               excess = nr_pages - soft_limit;
+
+       return excess;
+}
+
+static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
+{
+       unsigned long excess;
+       struct mem_cgroup_per_zone *mz;
+       struct mem_cgroup_tree_per_zone *mctz;
+
+       mctz = soft_limit_tree_from_page(page);
+       /*
+        * Necessary to update all ancestors when hierarchy is used.
+        * because their event counter is not touched.
+        */
+       for (; memcg; memcg = parent_mem_cgroup(memcg)) {
+               mz = mem_cgroup_page_zoneinfo(memcg, page);
+               excess = soft_limit_excess(memcg);
+               /*
+                * We have to update the tree if mz is on RB-tree or
+                * mem is over its softlimit.
+                */
+               if (excess || mz->on_tree) {
+                       unsigned long flags;
+
+                       spin_lock_irqsave(&mctz->lock, flags);
+                       /* if on-tree, remove it */
+                       if (mz->on_tree)
+                               __mem_cgroup_remove_exceeded(mz, mctz);
+                       /*
+                        * Insert again. mz->usage_in_excess will be updated.
+                        * If excess is 0, no tree ops.
+                        */
+                       __mem_cgroup_insert_exceeded(mz, mctz, excess);
+                       spin_unlock_irqrestore(&mctz->lock, flags);
+               }
+       }
+}
+
+static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup_tree_per_zone *mctz;
+       struct mem_cgroup_per_zone *mz;
+       int nid, zid;
+
+       for_each_node(nid) {
+               for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+                       mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+                       mctz = soft_limit_tree_node_zone(nid, zid);
+                       mem_cgroup_remove_exceeded(mz, mctz);
+               }
+       }
+}
+
+static struct mem_cgroup_per_zone *
+__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+{
+       struct rb_node *rightmost = NULL;
+       struct mem_cgroup_per_zone *mz;
+
+retry:
+       mz = NULL;
+       rightmost = rb_last(&mctz->rb_root);
+       if (!rightmost)
+               goto done;              /* Nothing to reclaim from */
+
+       mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
+       /*
+        * Remove the node now but someone else can add it back,
+        * we will to add it back at the end of reclaim to its correct
+        * position in the tree.
+        */
+       __mem_cgroup_remove_exceeded(mz, mctz);
+       if (!soft_limit_excess(mz->memcg) ||
+           !css_tryget_online(&mz->memcg->css))
+               goto retry;
+done:
+       return mz;
+}
+
+static struct mem_cgroup_per_zone *
+mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+{
+       struct mem_cgroup_per_zone *mz;
+
+       spin_lock_irq(&mctz->lock);
+       mz = __mem_cgroup_largest_soft_limit_node(mctz);
+       spin_unlock_irq(&mctz->lock);
+       return mz;
+}
+
+/*
+ * Implementation Note: reading percpu statistics for memcg.
+ *
+ * Both of vmstat[] and percpu_counter has threshold and do periodic
+ * synchronization to implement "quick" read. There are trade-off between
+ * reading cost and precision of value. Then, we may have a chance to implement
+ * a periodic synchronizion of counter in memcg's counter.
+ *
+ * But this _read() function is used for user interface now. The user accounts
+ * memory usage by memory cgroup and he _always_ requires exact value because
+ * he accounts memory. Even if we provide quick-and-fuzzy read, we always
+ * have to visit all online cpus and make sum. So, for now, unnecessary
+ * synchronization is not implemented. (just implemented for cpu hotplug)
+ *
+ * If there are kernel internal actions which can make use of some not-exact
+ * value, and reading all cpu value can be performance bottleneck in some
+ * common workload, threashold and synchonization as vmstat[] should be
+ * implemented.
+ */
+static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
+                                enum mem_cgroup_stat_index idx)
+{
+       long val = 0;
+       int cpu;
+
+       get_online_cpus();
+       for_each_online_cpu(cpu)
+               val += per_cpu(memcg->stat->count[idx], cpu);
+#ifdef CONFIG_HOTPLUG_CPU
+       spin_lock(&memcg->pcp_counter_lock);
+       val += memcg->nocpu_base.count[idx];
+       spin_unlock(&memcg->pcp_counter_lock);
+#endif
+       put_online_cpus();
+       return val;
+}
+
+static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
+                                           enum mem_cgroup_events_index idx)
+{
+       unsigned long val = 0;
+       int cpu;
+
+       get_online_cpus();
+       for_each_online_cpu(cpu)
+               val += per_cpu(memcg->stat->events[idx], cpu);
+#ifdef CONFIG_HOTPLUG_CPU
+       spin_lock(&memcg->pcp_counter_lock);
+       val += memcg->nocpu_base.events[idx];
+       spin_unlock(&memcg->pcp_counter_lock);
+#endif
+       put_online_cpus();
+       return val;
+}
+
+static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
+                                        struct page *page,
+                                        int nr_pages)
+{
+       /*
+        * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
+        * counted as CACHE even if it's on ANON LRU.
+        */
+       if (PageAnon(page))
+               __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
+                               nr_pages);
+       else
+               __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
+                               nr_pages);
+
+       if (PageTransHuge(page))
+               __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
+                               nr_pages);
+
+       /* pagein of a big page is an event. So, ignore page size */
+       if (nr_pages > 0)
+               __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
+       else {
+               __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
+               nr_pages = -nr_pages; /* for event */
+       }
+
+       __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
+}
+
+unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
+{
+       struct mem_cgroup_per_zone *mz;
+
+       mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
+       return mz->lru_size[lru];
+}
+
+static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
+                                                 int nid,
+                                                 unsigned int lru_mask)
+{
+       unsigned long nr = 0;
+       int zid;
+
+       VM_BUG_ON((unsigned)nid >= nr_node_ids);
+
+       for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+               struct mem_cgroup_per_zone *mz;
+               enum lru_list lru;
+
+               for_each_lru(lru) {
+                       if (!(BIT(lru) & lru_mask))
+                               continue;
+                       mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+                       nr += mz->lru_size[lru];
+               }
+       }
+       return nr;
+}
+
+static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
+                       unsigned int lru_mask)
+{
+       unsigned long nr = 0;
+       int nid;
+
+       for_each_node_state(nid, N_MEMORY)
+               nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
+       return nr;
+}
+
+static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
+                                      enum mem_cgroup_events_target target)
+{
+       unsigned long val, next;
+
+       val = __this_cpu_read(memcg->stat->nr_page_events);
+       next = __this_cpu_read(memcg->stat->targets[target]);
+       /* from time_after() in jiffies.h */
+       if ((long)next - (long)val < 0) {
+               switch (target) {
+               case MEM_CGROUP_TARGET_THRESH:
+                       next = val + THRESHOLDS_EVENTS_TARGET;
+                       break;
+               case MEM_CGROUP_TARGET_SOFTLIMIT:
+                       next = val + SOFTLIMIT_EVENTS_TARGET;
+                       break;
+               case MEM_CGROUP_TARGET_NUMAINFO:
+                       next = val + NUMAINFO_EVENTS_TARGET;
+                       break;
+               default:
+                       break;
+               }
+               __this_cpu_write(memcg->stat->targets[target], next);
+               return true;
+       }
+       return false;
+}
+
+/*
+ * Check events in order.
+ *
+ */
+static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
+{
+       /* threshold event is triggered in finer grain than soft limit */
+       if (unlikely(mem_cgroup_event_ratelimit(memcg,
+                                               MEM_CGROUP_TARGET_THRESH))) {
+               bool do_softlimit;
+               bool do_numainfo __maybe_unused;
+
+               do_softlimit = mem_cgroup_event_ratelimit(memcg,
+                                               MEM_CGROUP_TARGET_SOFTLIMIT);
+#if MAX_NUMNODES > 1
+               do_numainfo = mem_cgroup_event_ratelimit(memcg,
+                                               MEM_CGROUP_TARGET_NUMAINFO);
+#endif
+               mem_cgroup_threshold(memcg);
+               if (unlikely(do_softlimit))
+                       mem_cgroup_update_tree(memcg, page);
+#if MAX_NUMNODES > 1
+               if (unlikely(do_numainfo))
+                       atomic_inc(&memcg->numainfo_events);
+#endif
+       }
+}
+
+struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
+{
+       /*
+        * mm_update_next_owner() may clear mm->owner to NULL
+        * if it races with swapoff, page migration, etc.
+        * So this can be called with p == NULL.
+        */
+       if (unlikely(!p))
+               return NULL;
+
+       return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
+}
+
+static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
+{
+       struct mem_cgroup *memcg = NULL;
+
+       rcu_read_lock();
+       do {
+               /*
+                * Page cache insertions can happen withou an
+                * actual mm context, e.g. during disk probing
+                * on boot, loopback IO, acct() writes etc.
+                */
+               if (unlikely(!mm))
+                       memcg = root_mem_cgroup;
+               else {
+                       memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
+                       if (unlikely(!memcg))
+                               memcg = root_mem_cgroup;
+               }
+       } while (!css_tryget_online(&memcg->css));
+       rcu_read_unlock();
+       return memcg;
+}
+
+/**
+ * mem_cgroup_iter - iterate over memory cgroup hierarchy
+ * @root: hierarchy root
+ * @prev: previously returned memcg, NULL on first invocation
+ * @reclaim: cookie for shared reclaim walks, NULL for full walks
+ *
+ * Returns references to children of the hierarchy below @root, or
+ * @root itself, or %NULL after a full round-trip.
+ *
+ * Caller must pass the return value in @prev on subsequent
+ * invocations for reference counting, or use mem_cgroup_iter_break()
+ * to cancel a hierarchy walk before the round-trip is complete.
+ *
+ * Reclaimers can specify a zone and a priority level in @reclaim to
+ * divide up the memcgs in the hierarchy among all concurrent
+ * reclaimers operating on the same zone and priority.
+ */
+struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
+                                  struct mem_cgroup *prev,
+                                  struct mem_cgroup_reclaim_cookie *reclaim)
+{
+       struct reclaim_iter *uninitialized_var(iter);
+       struct cgroup_subsys_state *css = NULL;
+       struct mem_cgroup *memcg = NULL;
+       struct mem_cgroup *pos = NULL;
+
+       if (mem_cgroup_disabled())
+               return NULL;
+
+       if (!root)
+               root = root_mem_cgroup;
+
+       if (prev && !reclaim)
+               pos = prev;
+
+       if (!root->use_hierarchy && root != root_mem_cgroup) {
+               if (prev)
+                       goto out;
+               return root;
+       }
+
+       rcu_read_lock();
+
+       if (reclaim) {
+               struct mem_cgroup_per_zone *mz;
+
+               mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
+               iter = &mz->iter[reclaim->priority];
+
+               if (prev && reclaim->generation != iter->generation)
+                       goto out_unlock;
+
+               do {
+                       pos = READ_ONCE(iter->position);
+                       /*
+                        * A racing update may change the position and
+                        * put the last reference, hence css_tryget(),
+                        * or retry to see the updated position.
+                        */
+               } while (pos && !css_tryget(&pos->css));
+       }
+
+       if (pos)
+               css = &pos->css;
+
+       for (;;) {
+               css = css_next_descendant_pre(css, &root->css);
+               if (!css) {
+                       /*
+                        * Reclaimers share the hierarchy walk, and a
+                        * new one might jump in right at the end of
+                        * the hierarchy - make sure they see at least
+                        * one group and restart from the beginning.
+                        */
+                       if (!prev)
+                               continue;
+                       break;
+               }
+
+               /*
+                * Verify the css and acquire a reference.  The root
+                * is provided by the caller, so we know it's alive
+                * and kicking, and don't take an extra reference.
+                */
+               memcg = mem_cgroup_from_css(css);
+
+               if (css == &root->css)
+                       break;
+
+               if (css_tryget(css)) {
+                       /*
+                        * Make sure the memcg is initialized:
+                        * mem_cgroup_css_online() orders the the
+                        * initialization against setting the flag.
+                        */
+                       if (smp_load_acquire(&memcg->initialized))
+                               break;
+
+                       css_put(css);
+               }
+
+               memcg = NULL;
+       }
+
+       if (reclaim) {
+               if (cmpxchg(&iter->position, pos, memcg) == pos) {
+                       if (memcg)
+                               css_get(&memcg->css);
+                       if (pos)
+                               css_put(&pos->css);
+               }
+
+               /*
+                * pairs with css_tryget when dereferencing iter->position
+                * above.
+                */
+               if (pos)
+                       css_put(&pos->css);
+
+               if (!memcg)
+                       iter->generation++;
+               else if (!prev)
+                       reclaim->generation = iter->generation;
+       }
+
+out_unlock:
+       rcu_read_unlock();
+out:
+       if (prev && prev != root)
+               css_put(&prev->css);
+
+       return memcg;
+}
+
+/**
+ * mem_cgroup_iter_break - abort a hierarchy walk prematurely
+ * @root: hierarchy root
+ * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
+ */
+void mem_cgroup_iter_break(struct mem_cgroup *root,
+                          struct mem_cgroup *prev)
+{
+       if (!root)
+               root = root_mem_cgroup;
+       if (prev && prev != root)
+               css_put(&prev->css);
+}
+
+/*
+ * Iteration constructs for visiting all cgroups (under a tree).  If
+ * loops are exited prematurely (break), mem_cgroup_iter_break() must
+ * be used for reference counting.
+ */
+#define for_each_mem_cgroup_tree(iter, root)           \
+       for (iter = mem_cgroup_iter(root, NULL, NULL);  \
+            iter != NULL;                              \
+            iter = mem_cgroup_iter(root, iter, NULL))
+
+#define for_each_mem_cgroup(iter)                      \
+       for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
+            iter != NULL;                              \
+            iter = mem_cgroup_iter(NULL, iter, NULL))
+
+void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
+{
+       struct mem_cgroup *memcg;
+
+       rcu_read_lock();
+       memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
+       if (unlikely(!memcg))
+               goto out;
+
+       switch (idx) {
+       case PGFAULT:
+               this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
+               break;
+       case PGMAJFAULT:
+               this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
+               break;
+       default:
+               BUG();
+       }
+out:
+       rcu_read_unlock();
+}
+EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
+
+/**
+ * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
+ * @zone: zone of the wanted lruvec
+ * @memcg: memcg of the wanted lruvec
+ *
+ * Returns the lru list vector holding pages for the given @zone and
+ * @mem.  This can be the global zone lruvec, if the memory controller
+ * is disabled.
+ */
+struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
+                                     struct mem_cgroup *memcg)
+{
+       struct mem_cgroup_per_zone *mz;
+       struct lruvec *lruvec;
+
+       if (mem_cgroup_disabled()) {
+               lruvec = &zone->lruvec;
+               goto out;
+       }
+
+       mz = mem_cgroup_zone_zoneinfo(memcg, zone);
+       lruvec = &mz->lruvec;
+out:
+       /*
+        * Since a node can be onlined after the mem_cgroup was created,
+        * we have to be prepared to initialize lruvec->zone here;
+        * and if offlined then reonlined, we need to reinitialize it.
+        */
+       if (unlikely(lruvec->zone != zone))
+               lruvec->zone = zone;
+       return lruvec;
+}
+
+/**
+ * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
+ * @page: the page
+ * @zone: zone of the page
+ *
+ * This function is only safe when following the LRU page isolation
+ * and putback protocol: the LRU lock must be held, and the page must
+ * either be PageLRU() or the caller must have isolated/allocated it.
+ */
+struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
+{
+       struct mem_cgroup_per_zone *mz;
+       struct mem_cgroup *memcg;
+       struct lruvec *lruvec;
+
+       if (mem_cgroup_disabled()) {
+               lruvec = &zone->lruvec;
+               goto out;
+       }
+
+       memcg = page->mem_cgroup;
+       /*
+        * Swapcache readahead pages are added to the LRU - and
+        * possibly migrated - before they are charged.
+        */
+       if (!memcg)
+               memcg = root_mem_cgroup;
+
+       mz = mem_cgroup_page_zoneinfo(memcg, page);
+       lruvec = &mz->lruvec;
+out:
+       /*
+        * Since a node can be onlined after the mem_cgroup was created,
+        * we have to be prepared to initialize lruvec->zone here;
+        * and if offlined then reonlined, we need to reinitialize it.
+        */
+       if (unlikely(lruvec->zone != zone))
+               lruvec->zone = zone;
+       return lruvec;
+}
+
+/**
+ * mem_cgroup_update_lru_size - account for adding or removing an lru page
+ * @lruvec: mem_cgroup per zone lru vector
+ * @lru: index of lru list the page is sitting on
+ * @nr_pages: positive when adding or negative when removing
+ *
+ * This function must be called when a page is added to or removed from an
+ * lru list.
+ */
+void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
+                               int nr_pages)
+{
+       struct mem_cgroup_per_zone *mz;
+       unsigned long *lru_size;
+
+       if (mem_cgroup_disabled())
+               return;
+
+       mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
+       lru_size = mz->lru_size + lru;
+       *lru_size += nr_pages;
+       VM_BUG_ON((long)(*lru_size) < 0);
+}
+
+bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
+{
+       if (root == memcg)
+               return true;
+       if (!root->use_hierarchy)
+               return false;
+       return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
+}
+
+bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *task_memcg;
+       struct task_struct *p;
+       bool ret;
+
+       p = find_lock_task_mm(task);
+       if (p) {
+               task_memcg = get_mem_cgroup_from_mm(p->mm);
+               task_unlock(p);
+       } else {
+               /*
+                * All threads may have already detached their mm's, but the oom
+                * killer still needs to detect if they have already been oom
+                * killed to prevent needlessly killing additional tasks.
+                */
+               rcu_read_lock();
+               task_memcg = mem_cgroup_from_task(task);
+               css_get(&task_memcg->css);
+               rcu_read_unlock();
+       }
+       ret = mem_cgroup_is_descendant(task_memcg, memcg);
+       css_put(&task_memcg->css);
+       return ret;
+}
+
+int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
+{
+       unsigned long inactive_ratio;
+       unsigned long inactive;
+       unsigned long active;
+       unsigned long gb;
+
+       inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
+       active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
+
+       gb = (inactive + active) >> (30 - PAGE_SHIFT);
+       if (gb)
+               inactive_ratio = int_sqrt(10 * gb);
+       else
+               inactive_ratio = 1;
+
+       return inactive * inactive_ratio < active;
+}
+
+bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
+{
+       struct mem_cgroup_per_zone *mz;
+       struct mem_cgroup *memcg;
+
+       if (mem_cgroup_disabled())
+               return true;
+
+       mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
+       memcg = mz->memcg;
+
+       return !!(memcg->css.flags & CSS_ONLINE);
+}
+
+#define mem_cgroup_from_counter(counter, member)       \
+       container_of(counter, struct mem_cgroup, member)
+
+/**
+ * mem_cgroup_margin - calculate chargeable space of a memory cgroup
+ * @memcg: the memory cgroup
+ *
+ * Returns the maximum amount of memory @mem can be charged with, in
+ * pages.
+ */
+static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
+{
+       unsigned long margin = 0;
+       unsigned long count;
+       unsigned long limit;
+
+       count = page_counter_read(&memcg->memory);
+       limit = READ_ONCE(memcg->memory.limit);
+       if (count < limit)
+               margin = limit - count;
+
+       if (do_swap_account) {
+               count = page_counter_read(&memcg->memsw);
+               limit = READ_ONCE(memcg->memsw.limit);
+               if (count <= limit)
+                       margin = min(margin, limit - count);
+       }
+
+       return margin;
+}
+
+int mem_cgroup_swappiness(struct mem_cgroup *memcg)
+{
+       /* root ? */
+       if (mem_cgroup_disabled() || !memcg->css.parent)
+               return vm_swappiness;
+
+       return memcg->swappiness;
+}
+
+/*
+ * A routine for checking "mem" is under move_account() or not.
+ *
+ * Checking a cgroup is mc.from or mc.to or under hierarchy of
+ * moving cgroups. This is for waiting at high-memory pressure
+ * caused by "move".
+ */
+static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *from;
+       struct mem_cgroup *to;
+       bool ret = false;
+       /*
+        * Unlike task_move routines, we access mc.to, mc.from not under
+        * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
+        */
+       spin_lock(&mc.lock);
+       from = mc.from;
+       to = mc.to;
+       if (!from)
+               goto unlock;
+
+       ret = mem_cgroup_is_descendant(from, memcg) ||
+               mem_cgroup_is_descendant(to, memcg);
+unlock:
+       spin_unlock(&mc.lock);
+       return ret;
+}
+
+static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
+{
+       if (mc.moving_task && current != mc.moving_task) {
+               if (mem_cgroup_under_move(memcg)) {
+                       DEFINE_WAIT(wait);
+                       prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
+                       /* moving charge context might have finished. */
+                       if (mc.moving_task)
+                               schedule();
+                       finish_wait(&mc.waitq, &wait);
+                       return true;
+               }
+       }
+       return false;
+}
+
+#define K(x) ((x) << (PAGE_SHIFT-10))
+/**
+ * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
+ * @memcg: The memory cgroup that went over limit
+ * @p: Task that is going to be killed
+ *
+ * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
+ * enabled
+ */
+void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
+{
+       /* oom_info_lock ensures that parallel ooms do not interleave */
+       static DEFINE_MUTEX(oom_info_lock);
+       struct mem_cgroup *iter;
+       unsigned int i;
+
+       mutex_lock(&oom_info_lock);
+       rcu_read_lock();
+
+       if (p) {
+               pr_info("Task in ");
+               pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
+               pr_cont(" killed as a result of limit of ");
+       } else {
+               pr_info("Memory limit reached of cgroup ");
+       }
+
+       pr_cont_cgroup_path(memcg->css.cgroup);
+       pr_cont("\n");
+
+       rcu_read_unlock();
+
+       pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
+               K((u64)page_counter_read(&memcg->memory)),
+               K((u64)memcg->memory.limit), memcg->memory.failcnt);
+       pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
+               K((u64)page_counter_read(&memcg->memsw)),
+               K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
+       pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
+               K((u64)page_counter_read(&memcg->kmem)),
+               K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
+
+       for_each_mem_cgroup_tree(iter, memcg) {
+               pr_info("Memory cgroup stats for ");
+               pr_cont_cgroup_path(iter->css.cgroup);
+               pr_cont(":");
+
+               for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+                       if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+                               continue;
+                       pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
+                               K(mem_cgroup_read_stat(iter, i)));
+               }
+
+               for (i = 0; i < NR_LRU_LISTS; i++)
+                       pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
+                               K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
+
+               pr_cont("\n");
+       }
+       mutex_unlock(&oom_info_lock);
+}
+
+/*
+ * This function returns the number of memcg under hierarchy tree. Returns
+ * 1(self count) if no children.
+ */
+static int mem_cgroup_count_children(struct mem_cgroup *memcg)
+{
+       int num = 0;
+       struct mem_cgroup *iter;
+
+       for_each_mem_cgroup_tree(iter, memcg)
+               num++;
+       return num;
+}
+
+/*
+ * Return the memory (and swap, if configured) limit for a memcg.
+ */
+static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
+{
+       unsigned long limit;
+
+       limit = memcg->memory.limit;
+       if (mem_cgroup_swappiness(memcg)) {
+               unsigned long memsw_limit;
+
+               memsw_limit = memcg->memsw.limit;
+               limit = min(limit + total_swap_pages, memsw_limit);
+       }
+       return limit;
+}
+
+static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
+                                    int order)
+{
+       struct mem_cgroup *iter;
+       unsigned long chosen_points = 0;
+       unsigned long totalpages;
+       unsigned int points = 0;
+       struct task_struct *chosen = NULL;
+
+       /*
+        * If current has a pending SIGKILL or is exiting, then automatically
+        * select it.  The goal is to allow it to allocate so that it may
+        * quickly exit and free its memory.
+        */
+       if (fatal_signal_pending(current) || task_will_free_mem(current)) {
+               mark_tsk_oom_victim(current);
+               return;
+       }
+
+       check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
+       totalpages = mem_cgroup_get_limit(memcg) ? : 1;
+       for_each_mem_cgroup_tree(iter, memcg) {
+               struct css_task_iter it;
+               struct task_struct *task;
+
+               css_task_iter_start(&iter->css, &it);
+               while ((task = css_task_iter_next(&it))) {
+                       switch (oom_scan_process_thread(task, totalpages, NULL,
+                                                       false)) {
+                       case OOM_SCAN_SELECT:
+                               if (chosen)
+                                       put_task_struct(chosen);
+                               chosen = task;
+                               chosen_points = ULONG_MAX;
+                               get_task_struct(chosen);
+                               /* fall through */
+                       case OOM_SCAN_CONTINUE:
+                               continue;
+                       case OOM_SCAN_ABORT:
+                               css_task_iter_end(&it);
+                               mem_cgroup_iter_break(memcg, iter);
+                               if (chosen)
+                                       put_task_struct(chosen);
+                               return;
+                       case OOM_SCAN_OK:
+                               break;
+                       };
+                       points = oom_badness(task, memcg, NULL, totalpages);
+                       if (!points || points < chosen_points)
+                               continue;
+                       /* Prefer thread group leaders for display purposes */
+                       if (points == chosen_points &&
+                           thread_group_leader(chosen))
+                               continue;
+
+                       if (chosen)
+                               put_task_struct(chosen);
+                       chosen = task;
+                       chosen_points = points;
+                       get_task_struct(chosen);
+               }
+               css_task_iter_end(&it);
+       }
+
+       if (!chosen)
+               return;
+       points = chosen_points * 1000 / totalpages;
+       oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
+                        NULL, "Memory cgroup out of memory");
+}
+
+#if MAX_NUMNODES > 1
+
+/**
+ * test_mem_cgroup_node_reclaimable
+ * @memcg: the target memcg
+ * @nid: the node ID to be checked.
+ * @noswap : specify true here if the user wants flle only information.
+ *
+ * This function returns whether the specified memcg contains any
+ * reclaimable pages on a node. Returns true if there are any reclaimable
+ * pages in the node.
+ */
+static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
+               int nid, bool noswap)
+{
+       if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
+               return true;
+       if (noswap || !total_swap_pages)
+               return false;
+       if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
+               return true;
+       return false;
+
+}
+
+/*
+ * Always updating the nodemask is not very good - even if we have an empty
+ * list or the wrong list here, we can start from some node and traverse all
+ * nodes based on the zonelist. So update the list loosely once per 10 secs.
+ *
+ */
+static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
+{
+       int nid;
+       /*
+        * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
+        * pagein/pageout changes since the last update.
+        */
+       if (!atomic_read(&memcg->numainfo_events))
+               return;
+       if (atomic_inc_return(&memcg->numainfo_updating) > 1)
+               return;
+
+       /* make a nodemask where this memcg uses memory from */
+       memcg->scan_nodes = node_states[N_MEMORY];
+
+       for_each_node_mask(nid, node_states[N_MEMORY]) {
+
+               if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
+                       node_clear(nid, memcg->scan_nodes);
+       }
+
+       atomic_set(&memcg->numainfo_events, 0);
+       atomic_set(&memcg->numainfo_updating, 0);
+}
+
+/*
+ * Selecting a node where we start reclaim from. Because what we need is just
+ * reducing usage counter, start from anywhere is O,K. Considering
+ * memory reclaim from current node, there are pros. and cons.
+ *
+ * Freeing memory from current node means freeing memory from a node which
+ * we'll use or we've used. So, it may make LRU bad. And if several threads
+ * hit limits, it will see a contention on a node. But freeing from remote
+ * node means more costs for memory reclaim because of memory latency.
+ *
+ * Now, we use round-robin. Better algorithm is welcomed.
+ */
+int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
+{
+       int node;
+
+       mem_cgroup_may_update_nodemask(memcg);
+       node = memcg->last_scanned_node;
+
+       node = next_node(node, memcg->scan_nodes);
+       if (node == MAX_NUMNODES)
+               node = first_node(memcg->scan_nodes);
+       /*
+        * We call this when we hit limit, not when pages are added to LRU.
+        * No LRU may hold pages because all pages are UNEVICTABLE or
+        * memcg is too small and all pages are not on LRU. In that case,
+        * we use curret node.
+        */
+       if (unlikely(node == MAX_NUMNODES))
+               node = numa_node_id();
+
+       memcg->last_scanned_node = node;
+       return node;
+}
+#else
+int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
+{
+       return 0;
+}
+#endif
+
+static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
+                                  struct zone *zone,
+                                  gfp_t gfp_mask,
+                                  unsigned long *total_scanned)
+{
+       struct mem_cgroup *victim = NULL;
+       int total = 0;
+       int loop = 0;
+       unsigned long excess;
+       unsigned long nr_scanned;
+       struct mem_cgroup_reclaim_cookie reclaim = {
+               .zone = zone,
+               .priority = 0,
+       };
+
+       excess = soft_limit_excess(root_memcg);
+
+       while (1) {
+               victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
+               if (!victim) {
+                       loop++;
+                       if (loop >= 2) {
+                               /*
+                                * If we have not been able to reclaim
+                                * anything, it might because there are
+                                * no reclaimable pages under this hierarchy
+                                */
+                               if (!total)
+                                       break;
+                               /*
+                                * We want to do more targeted reclaim.
+                                * excess >> 2 is not to excessive so as to
+                                * reclaim too much, nor too less that we keep
+                                * coming back to reclaim from this cgroup
+                                */
+                               if (total >= (excess >> 2) ||
+                                       (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
+                                       break;
+                       }
+                       continue;
+               }
+               total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
+                                                    zone, &nr_scanned);
+               *total_scanned += nr_scanned;
+               if (!soft_limit_excess(root_memcg))
+                       break;
+       }
+       mem_cgroup_iter_break(root_memcg, victim);
+       return total;
+}
+
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map memcg_oom_lock_dep_map = {
+       .name = "memcg_oom_lock",
+};
+#endif
+
+static DEFINE_SPINLOCK(memcg_oom_lock);
+
+/*
+ * Check OOM-Killer is already running under our hierarchy.
+ * If someone is running, return false.
+ */
+static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *iter, *failed = NULL;
+
+       spin_lock(&memcg_oom_lock);
+
+       for_each_mem_cgroup_tree(iter, memcg) {
+               if (iter->oom_lock) {
+                       /*
+                        * this subtree of our hierarchy is already locked
+                        * so we cannot give a lock.
+                        */
+                       failed = iter;
+                       mem_cgroup_iter_break(memcg, iter);
+                       break;
+               } else
+                       iter->oom_lock = true;
+       }
+
+       if (failed) {
+               /*
+                * OK, we failed to lock the whole subtree so we have
+                * to clean up what we set up to the failing subtree
+                */
+               for_each_mem_cgroup_tree(iter, memcg) {
+                       if (iter == failed) {
+                               mem_cgroup_iter_break(memcg, iter);
+                               break;
+                       }
+                       iter->oom_lock = false;
+               }
+       } else
+               mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
+
+       spin_unlock(&memcg_oom_lock);
+
+       return !failed;
+}
+
+static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *iter;
+
+       spin_lock(&memcg_oom_lock);
+       mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
+       for_each_mem_cgroup_tree(iter, memcg)
+               iter->oom_lock = false;
+       spin_unlock(&memcg_oom_lock);
+}
+
+static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *iter;
+
+       for_each_mem_cgroup_tree(iter, memcg)
+               atomic_inc(&iter->under_oom);
+}
+
+static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *iter;
+
+       /*
+        * When a new child is created while the hierarchy is under oom,
+        * mem_cgroup_oom_lock() may not be called. We have to use
+        * atomic_add_unless() here.
+        */
+       for_each_mem_cgroup_tree(iter, memcg)
+               atomic_add_unless(&iter->under_oom, -1, 0);
+}
+
+static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
+
+struct oom_wait_info {
+       struct mem_cgroup *memcg;
+       wait_queue_t    wait;
+};
+
+static int memcg_oom_wake_function(wait_queue_t *wait,
+       unsigned mode, int sync, void *arg)
+{
+       struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
+       struct mem_cgroup *oom_wait_memcg;
+       struct oom_wait_info *oom_wait_info;
+
+       oom_wait_info = container_of(wait, struct oom_wait_info, wait);
+       oom_wait_memcg = oom_wait_info->memcg;
+
+       if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
+           !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
+               return 0;
+       return autoremove_wake_function(wait, mode, sync, arg);
+}
+
+static void memcg_wakeup_oom(struct mem_cgroup *memcg)
+{
+       atomic_inc(&memcg->oom_wakeups);
+       /* for filtering, pass "memcg" as argument. */
+       __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
+}
+
+static void memcg_oom_recover(struct mem_cgroup *memcg)
+{
+       if (memcg && atomic_read(&memcg->under_oom))
+               memcg_wakeup_oom(memcg);
+}
+
+static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
+{
+       if (!current->memcg_oom.may_oom)
+               return;
+       /*
+        * We are in the middle of the charge context here, so we
+        * don't want to block when potentially sitting on a callstack
+        * that holds all kinds of filesystem and mm locks.
+        *
+        * Also, the caller may handle a failed allocation gracefully
+        * (like optional page cache readahead) and so an OOM killer
+        * invocation might not even be necessary.
+        *
+        * That's why we don't do anything here except remember the
+        * OOM context and then deal with it at the end of the page
+        * fault when the stack is unwound, the locks are released,
+        * and when we know whether the fault was overall successful.
+        */
+       css_get(&memcg->css);
+       current->memcg_oom.memcg = memcg;
+       current->memcg_oom.gfp_mask = mask;
+       current->memcg_oom.order = order;
+}
+
+/**
+ * mem_cgroup_oom_synchronize - complete memcg OOM handling
+ * @handle: actually kill/wait or just clean up the OOM state
+ *
+ * This has to be called at the end of a page fault if the memcg OOM
+ * handler was enabled.
+ *
+ * Memcg supports userspace OOM handling where failed allocations must
+ * sleep on a waitqueue until the userspace task resolves the
+ * situation.  Sleeping directly in the charge context with all kinds
+ * of locks held is not a good idea, instead we remember an OOM state
+ * in the task and mem_cgroup_oom_synchronize() has to be called at
+ * the end of the page fault to complete the OOM handling.
+ *
+ * Returns %true if an ongoing memcg OOM situation was detected and
+ * completed, %false otherwise.
+ */
+bool mem_cgroup_oom_synchronize(bool handle)
+{
+       struct mem_cgroup *memcg = current->memcg_oom.memcg;
+       struct oom_wait_info owait;
+       bool locked;
+
+       /* OOM is global, do not handle */
+       if (!memcg)
+               return false;
+
+       if (!handle || oom_killer_disabled)
+               goto cleanup;
+
+       owait.memcg = memcg;
+       owait.wait.flags = 0;
+       owait.wait.func = memcg_oom_wake_function;
+       owait.wait.private = current;
+       INIT_LIST_HEAD(&owait.wait.task_list);
+
+       prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
+       mem_cgroup_mark_under_oom(memcg);
+
+       locked = mem_cgroup_oom_trylock(memcg);
+
+       if (locked)
+               mem_cgroup_oom_notify(memcg);
+
+       if (locked && !memcg->oom_kill_disable) {
+               mem_cgroup_unmark_under_oom(memcg);
+               finish_wait(&memcg_oom_waitq, &owait.wait);
+               mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
+                                        current->memcg_oom.order);
+       } else {
+               schedule();
+               mem_cgroup_unmark_under_oom(memcg);
+               finish_wait(&memcg_oom_waitq, &owait.wait);
+       }
+
+       if (locked) {
+               mem_cgroup_oom_unlock(memcg);
+               /*
+                * There is no guarantee that an OOM-lock contender
+                * sees the wakeups triggered by the OOM kill
+                * uncharges.  Wake any sleepers explicitely.
+                */
+               memcg_oom_recover(memcg);
+       }
+cleanup:
+       current->memcg_oom.memcg = NULL;
+       css_put(&memcg->css);
+       return true;
+}
+
+/**
+ * mem_cgroup_begin_page_stat - begin a page state statistics transaction
+ * @page: page that is going to change accounted state
+ *
+ * This function must mark the beginning of an accounted page state
+ * change to prevent double accounting when the page is concurrently
+ * being moved to another memcg:
+ *
+ *   memcg = mem_cgroup_begin_page_stat(page);
+ *   if (TestClearPageState(page))
+ *     mem_cgroup_update_page_stat(memcg, state, -1);
+ *   mem_cgroup_end_page_stat(memcg);
+ */
+struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
+{
+       struct mem_cgroup *memcg;
+       unsigned long flags;
+
+       /*
+        * The RCU lock is held throughout the transaction.  The fast
+        * path can get away without acquiring the memcg->move_lock
+        * because page moving starts with an RCU grace period.
+        *
+        * The RCU lock also protects the memcg from being freed when
+        * the page state that is going to change is the only thing
+        * preventing the page from being uncharged.
+        * E.g. end-writeback clearing PageWriteback(), which allows
+        * migration to go ahead and uncharge the page before the
+        * account transaction might be complete.
+        */
+       rcu_read_lock();
+
+       if (mem_cgroup_disabled())
+               return NULL;
+again:
+       memcg = page->mem_cgroup;
+       if (unlikely(!memcg))
+               return NULL;
+
+       if (atomic_read(&memcg->moving_account) <= 0)
+               return memcg;
+
+       spin_lock_irqsave(&memcg->move_lock, flags);
+       if (memcg != page->mem_cgroup) {
+               spin_unlock_irqrestore(&memcg->move_lock, flags);
+               goto again;
+       }
+
+       /*
+        * When charge migration first begins, we can have locked and
+        * unlocked page stat updates happening concurrently.  Track
+        * the task who has the lock for mem_cgroup_end_page_stat().
+        */
+       memcg->move_lock_task = current;
+       memcg->move_lock_flags = flags;
+
+       return memcg;
+}
+
+/**
+ * mem_cgroup_end_page_stat - finish a page state statistics transaction
+ * @memcg: the memcg that was accounted against
+ */
+void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
+{
+       if (memcg && memcg->move_lock_task == current) {
+               unsigned long flags = memcg->move_lock_flags;
+
+               memcg->move_lock_task = NULL;
+               memcg->move_lock_flags = 0;
+
+               spin_unlock_irqrestore(&memcg->move_lock, flags);
+       }
+
+       rcu_read_unlock();
+}
+
+/**
+ * mem_cgroup_update_page_stat - update page state statistics
+ * @memcg: memcg to account against
+ * @idx: page state item to account
+ * @val: number of pages (positive or negative)
+ *
+ * See mem_cgroup_begin_page_stat() for locking requirements.
+ */
+void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
+                                enum mem_cgroup_stat_index idx, int val)
+{
+       VM_BUG_ON(!rcu_read_lock_held());
+
+       if (memcg)
+               this_cpu_add(memcg->stat->count[idx], val);
+}
+
+/*
+ * size of first charge trial. "32" comes from vmscan.c's magic value.
+ * TODO: maybe necessary to use big numbers in big irons.
+ */
+#define CHARGE_BATCH   32U
+struct memcg_stock_pcp {
+       struct mem_cgroup *cached; /* this never be root cgroup */
+       unsigned int nr_pages;
+       struct work_struct work;
+       unsigned long flags;
+#define FLUSHING_CACHED_CHARGE 0
+};
+static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
+static DEFINE_MUTEX(percpu_charge_mutex);
+
+/**
+ * consume_stock: Try to consume stocked charge on this cpu.
+ * @memcg: memcg to consume from.
+ * @nr_pages: how many pages to charge.
+ *
+ * The charges will only happen if @memcg matches the current cpu's memcg
+ * stock, and at least @nr_pages are available in that stock.  Failure to
+ * service an allocation will refill the stock.
+ *
+ * returns true if successful, false otherwise.
+ */
+static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+       struct memcg_stock_pcp *stock;
+       bool ret = false;
+
+       if (nr_pages > CHARGE_BATCH)
+               return ret;
+
+       stock = &get_cpu_var(memcg_stock);
+       if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
+               stock->nr_pages -= nr_pages;
+               ret = true;
+       }
+       put_cpu_var(memcg_stock);
+       return ret;
+}
+
+/*
+ * Returns stocks cached in percpu and reset cached information.
+ */
+static void drain_stock(struct memcg_stock_pcp *stock)
+{
+       struct mem_cgroup *old = stock->cached;
+
+       if (stock->nr_pages) {
+               page_counter_uncharge(&old->memory, stock->nr_pages);
+               if (do_swap_account)
+                       page_counter_uncharge(&old->memsw, stock->nr_pages);
+               css_put_many(&old->css, stock->nr_pages);
+               stock->nr_pages = 0;
+       }
+       stock->cached = NULL;
+}
+
+/*
+ * This must be called under preempt disabled or must be called by
+ * a thread which is pinned to local cpu.
+ */
+static void drain_local_stock(struct work_struct *dummy)
+{
+       struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
+       drain_stock(stock);
+       clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
+}
+
+/*
+ * Cache charges(val) to local per_cpu area.
+ * This will be consumed by consume_stock() function, later.
+ */
+static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+       struct memcg_stock_pcp *stock;
+       int cpu = get_cpu_light();
+
+       stock = &per_cpu(memcg_stock, cpu);
+
+       if (stock->cached != memcg) { /* reset if necessary */
+               drain_stock(stock);
+               stock->cached = memcg;
+       }
+       stock->nr_pages += nr_pages;
+       put_cpu_light();
+}
+
+/*
+ * Drains all per-CPU charge caches for given root_memcg resp. subtree
+ * of the hierarchy under it.
+ */
+static void drain_all_stock(struct mem_cgroup *root_memcg)
+{
+       int cpu, curcpu;
+
+       /* If someone's already draining, avoid adding running more workers. */
+       if (!mutex_trylock(&percpu_charge_mutex))
+               return;
+       /* Notify other cpus that system-wide "drain" is running */
+       get_online_cpus();
+       curcpu = get_cpu_light();
+       for_each_online_cpu(cpu) {
+               struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
+               struct mem_cgroup *memcg;
+
+               memcg = stock->cached;
+               if (!memcg || !stock->nr_pages)
+                       continue;
+               if (!mem_cgroup_is_descendant(memcg, root_memcg))
+                       continue;
+               if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
+                       if (cpu == curcpu)
+                               drain_local_stock(&stock->work);
+                       else
+                               schedule_work_on(cpu, &stock->work);
+               }
+       }
+       put_cpu_light();
+       put_online_cpus();
+       mutex_unlock(&percpu_charge_mutex);
+}
+
+/*
+ * This function drains percpu counter value from DEAD cpu and
+ * move it to local cpu. Note that this function can be preempted.
+ */
+static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
+{
+       int i;
+
+       spin_lock(&memcg->pcp_counter_lock);
+       for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+               long x = per_cpu(memcg->stat->count[i], cpu);
+
+               per_cpu(memcg->stat->count[i], cpu) = 0;
+               memcg->nocpu_base.count[i] += x;
+       }
+       for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
+               unsigned long x = per_cpu(memcg->stat->events[i], cpu);
+
+               per_cpu(memcg->stat->events[i], cpu) = 0;
+               memcg->nocpu_base.events[i] += x;
+       }
+       spin_unlock(&memcg->pcp_counter_lock);
+}
+
+static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
+                                       unsigned long action,
+                                       void *hcpu)
+{
+       int cpu = (unsigned long)hcpu;
+       struct memcg_stock_pcp *stock;
+       struct mem_cgroup *iter;
+
+       if (action == CPU_ONLINE)
+               return NOTIFY_OK;
+
+       if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
+               return NOTIFY_OK;
+
+       for_each_mem_cgroup(iter)
+               mem_cgroup_drain_pcp_counter(iter, cpu);
+
+       stock = &per_cpu(memcg_stock, cpu);
+       drain_stock(stock);
+       return NOTIFY_OK;
+}
+
+static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
+                     unsigned int nr_pages)
+{
+       unsigned int batch = max(CHARGE_BATCH, nr_pages);
+       int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+       struct mem_cgroup *mem_over_limit;
+       struct page_counter *counter;
+       unsigned long nr_reclaimed;
+       bool may_swap = true;
+       bool drained = false;
+       int ret = 0;
+
+       if (mem_cgroup_is_root(memcg))
+               goto done;
+retry:
+       if (consume_stock(memcg, nr_pages))
+               goto done;
+
+       if (!do_swap_account ||
+           !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
+               if (!page_counter_try_charge(&memcg->memory, batch, &counter))
+                       goto done_restock;
+               if (do_swap_account)
+                       page_counter_uncharge(&memcg->memsw, batch);
+               mem_over_limit = mem_cgroup_from_counter(counter, memory);
+       } else {
+               mem_over_limit = mem_cgroup_from_counter(counter, memsw);
+               may_swap = false;
+       }
+
+       if (batch > nr_pages) {
+               batch = nr_pages;
+               goto retry;
+       }
+
+       /*
+        * Unlike in global OOM situations, memcg is not in a physical
+        * memory shortage.  Allow dying and OOM-killed tasks to
+        * bypass the last charges so that they can exit quickly and
+        * free their memory.
+        */
+       if (unlikely(test_thread_flag(TIF_MEMDIE) ||
+                    fatal_signal_pending(current) ||
+                    current->flags & PF_EXITING))
+               goto bypass;
+
+       if (unlikely(task_in_memcg_oom(current)))
+               goto nomem;
+
+       if (!(gfp_mask & __GFP_WAIT))
+               goto nomem;
+
+       mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
+
+       nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
+                                                   gfp_mask, may_swap);
+
+       if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
+               goto retry;
+
+       if (!drained) {
+               drain_all_stock(mem_over_limit);
+               drained = true;
+               goto retry;
+       }
+
+       if (gfp_mask & __GFP_NORETRY)
+               goto nomem;
+       /*
+        * Even though the limit is exceeded at this point, reclaim
+        * may have been able to free some pages.  Retry the charge
+        * before killing the task.
+        *
+        * Only for regular pages, though: huge pages are rather
+        * unlikely to succeed so close to the limit, and we fall back
+        * to regular pages anyway in case of failure.
+        */
+       if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
+               goto retry;
+       /*
+        * At task move, charge accounts can be doubly counted. So, it's
+        * better to wait until the end of task_move if something is going on.
+        */
+       if (mem_cgroup_wait_acct_move(mem_over_limit))
+               goto retry;
+
+       if (nr_retries--)
+               goto retry;
+
+       if (gfp_mask & __GFP_NOFAIL)
+               goto bypass;
+
+       if (fatal_signal_pending(current))
+               goto bypass;
+
+       mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
+
+       mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
+nomem:
+       if (!(gfp_mask & __GFP_NOFAIL))
+               return -ENOMEM;
+bypass:
+       return -EINTR;
+
+done_restock:
+       css_get_many(&memcg->css, batch);
+       if (batch > nr_pages)
+               refill_stock(memcg, batch - nr_pages);
+       if (!(gfp_mask & __GFP_WAIT))
+               goto done;
+       /*
+        * If the hierarchy is above the normal consumption range,
+        * make the charging task trim their excess contribution.
+        */
+       do {
+               if (page_counter_read(&memcg->memory) <= memcg->high)
+                       continue;
+               mem_cgroup_events(memcg, MEMCG_HIGH, 1);
+               try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
+       } while ((memcg = parent_mem_cgroup(memcg)));
+done:
+       return ret;
+}
+
+static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+       if (mem_cgroup_is_root(memcg))
+               return;
+
+       page_counter_uncharge(&memcg->memory, nr_pages);
+       if (do_swap_account)
+               page_counter_uncharge(&memcg->memsw, nr_pages);
+
+       css_put_many(&memcg->css, nr_pages);
+}
+
+/*
+ * try_get_mem_cgroup_from_page - look up page's memcg association
+ * @page: the page
+ *
+ * Look up, get a css reference, and return the memcg that owns @page.
+ *
+ * The page must be locked to prevent racing with swap-in and page
+ * cache charges.  If coming from an unlocked page table, the caller
+ * must ensure the page is on the LRU or this can race with charging.
+ */
+struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
+{
+       struct mem_cgroup *memcg;
+       unsigned short id;
+       swp_entry_t ent;
+
+       VM_BUG_ON_PAGE(!PageLocked(page), page);
+
+       memcg = page->mem_cgroup;
+       if (memcg) {
+               if (!css_tryget_online(&memcg->css))
+                       memcg = NULL;
+       } else if (PageSwapCache(page)) {
+               ent.val = page_private(page);
+               id = lookup_swap_cgroup_id(ent);
+               rcu_read_lock();
+               memcg = mem_cgroup_from_id(id);
+               if (memcg && !css_tryget_online(&memcg->css))
+                       memcg = NULL;
+               rcu_read_unlock();
+       }
+       return memcg;
+}
+
+static void lock_page_lru(struct page *page, int *isolated)
+{
+       struct zone *zone = page_zone(page);
+
+       spin_lock_irq(&zone->lru_lock);
+       if (PageLRU(page)) {
+               struct lruvec *lruvec;
+
+               lruvec = mem_cgroup_page_lruvec(page, zone);
+               ClearPageLRU(page);
+               del_page_from_lru_list(page, lruvec, page_lru(page));
+               *isolated = 1;
+       } else
+               *isolated = 0;
+}
+
+static void unlock_page_lru(struct page *page, int isolated)
+{
+       struct zone *zone = page_zone(page);
+
+       if (isolated) {
+               struct lruvec *lruvec;
+
+               lruvec = mem_cgroup_page_lruvec(page, zone);
+               VM_BUG_ON_PAGE(PageLRU(page), page);
+               SetPageLRU(page);
+               add_page_to_lru_list(page, lruvec, page_lru(page));
+       }
+       spin_unlock_irq(&zone->lru_lock);
+}
+
+static void commit_charge(struct page *page, struct mem_cgroup *memcg,
+                         bool lrucare)
+{
+       int isolated;
+
+       VM_BUG_ON_PAGE(page->mem_cgroup, page);
+
+       /*
+        * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
+        * may already be on some other mem_cgroup's LRU.  Take care of it.
+        */
+       if (lrucare)
+               lock_page_lru(page, &isolated);
+
+       /*
+        * Nobody should be changing or seriously looking at
+        * page->mem_cgroup at this point:
+        *
+        * - the page is uncharged
+        *
+        * - the page is off-LRU
+        *
+        * - an anonymous fault has exclusive page access, except for
+        *   a locked page table
+        *
+        * - a page cache insertion, a swapin fault, or a migration
+        *   have the page locked
+        */
+       page->mem_cgroup = memcg;
+
+       if (lrucare)
+               unlock_page_lru(page, isolated);
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
+                     unsigned long nr_pages)
+{
+       struct page_counter *counter;
+       int ret = 0;
+
+       ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
+       if (ret < 0)
+               return ret;
+
+       ret = try_charge(memcg, gfp, nr_pages);
+       if (ret == -EINTR)  {
+               /*
+                * try_charge() chose to bypass to root due to OOM kill or
+                * fatal signal.  Since our only options are to either fail
+                * the allocation or charge it to this cgroup, do it as a
+                * temporary condition. But we can't fail. From a kmem/slab
+                * perspective, the cache has already been selected, by
+                * mem_cgroup_kmem_get_cache(), so it is too late to change
+                * our minds.
+                *
+                * This condition will only trigger if the task entered
+                * memcg_charge_kmem in a sane state, but was OOM-killed
+                * during try_charge() above. Tasks that were already dying
+                * when the allocation triggers should have been already
+                * directed to the root cgroup in memcontrol.h
+                */
+               page_counter_charge(&memcg->memory, nr_pages);
+               if (do_swap_account)
+                       page_counter_charge(&memcg->memsw, nr_pages);
+               css_get_many(&memcg->css, nr_pages);
+               ret = 0;
+       } else if (ret)
+               page_counter_uncharge(&memcg->kmem, nr_pages);
+
+       return ret;
+}
+
+void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
+{
+       page_counter_uncharge(&memcg->memory, nr_pages);
+       if (do_swap_account)
+               page_counter_uncharge(&memcg->memsw, nr_pages);
+
+       page_counter_uncharge(&memcg->kmem, nr_pages);
+
+       css_put_many(&memcg->css, nr_pages);
+}
+
+/*
+ * helper for acessing a memcg's index. It will be used as an index in the
+ * child cache array in kmem_cache, and also to derive its name. This function
+ * will return -1 when this is not a kmem-limited memcg.
+ */
+int memcg_cache_id(struct mem_cgroup *memcg)
+{
+       return memcg ? memcg->kmemcg_id : -1;
+}
+
+static int memcg_alloc_cache_id(void)
+{
+       int id, size;
+       int err;
+
+       id = ida_simple_get(&memcg_cache_ida,
+                           0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
+       if (id < 0)
+               return id;
+
+       if (id < memcg_nr_cache_ids)
+               return id;
+
+       /*
+        * There's no space for the new id in memcg_caches arrays,
+        * so we have to grow them.
+        */
+       down_write(&memcg_cache_ids_sem);
+
+       size = 2 * (id + 1);
+       if (size < MEMCG_CACHES_MIN_SIZE)
+               size = MEMCG_CACHES_MIN_SIZE;
+       else if (size > MEMCG_CACHES_MAX_SIZE)
+               size = MEMCG_CACHES_MAX_SIZE;
+
+       err = memcg_update_all_caches(size);
+       if (!err)
+               err = memcg_update_all_list_lrus(size);
+       if (!err)
+               memcg_nr_cache_ids = size;
+
+       up_write(&memcg_cache_ids_sem);
+
+       if (err) {
+               ida_simple_remove(&memcg_cache_ida, id);
+               return err;
+       }
+       return id;
+}
+
+static void memcg_free_cache_id(int id)
+{
+       ida_simple_remove(&memcg_cache_ida, id);
+}
+
+struct memcg_kmem_cache_create_work {
+       struct mem_cgroup *memcg;
+       struct kmem_cache *cachep;
+       struct work_struct work;
+};
+
+static void memcg_kmem_cache_create_func(struct work_struct *w)
+{
+       struct memcg_kmem_cache_create_work *cw =
+               container_of(w, struct memcg_kmem_cache_create_work, work);
+       struct mem_cgroup *memcg = cw->memcg;
+       struct kmem_cache *cachep = cw->cachep;
+
+       memcg_create_kmem_cache(memcg, cachep);
+
+       css_put(&memcg->css);
+       kfree(cw);
+}
+
+/*
+ * Enqueue the creation of a per-memcg kmem_cache.
+ */
+static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
+                                              struct kmem_cache *cachep)
+{
+       struct memcg_kmem_cache_create_work *cw;
+
+       cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
+       if (!cw)
+               return;
+
+       css_get(&memcg->css);
+
+       cw->memcg = memcg;
+       cw->cachep = cachep;
+       INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
+
+       schedule_work(&cw->work);
+}
+
+static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
+                                            struct kmem_cache *cachep)
+{
+       /*
+        * We need to stop accounting when we kmalloc, because if the
+        * corresponding kmalloc cache is not yet created, the first allocation
+        * in __memcg_schedule_kmem_cache_create will recurse.
+        *
+        * However, it is better to enclose the whole function. Depending on
+        * the debugging options enabled, INIT_WORK(), for instance, can
+        * trigger an allocation. This too, will make us recurse. Because at
+        * this point we can't allow ourselves back into memcg_kmem_get_cache,
+        * the safest choice is to do it like this, wrapping the whole function.
+        */
+       current->memcg_kmem_skip_account = 1;
+       __memcg_schedule_kmem_cache_create(memcg, cachep);
+       current->memcg_kmem_skip_account = 0;
+}
+
+/*
+ * Return the kmem_cache we're supposed to use for a slab allocation.
+ * We try to use the current memcg's version of the cache.
+ *
+ * If the cache does not exist yet, if we are the first user of it,
+ * we either create it immediately, if possible, or create it asynchronously
+ * in a workqueue.
+ * In the latter case, we will let the current allocation go through with
+ * the original cache.
+ *
+ * Can't be called in interrupt context or from kernel threads.
+ * This function needs to be called with rcu_read_lock() held.
+ */
+struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
+{
+       struct mem_cgroup *memcg;
+       struct kmem_cache *memcg_cachep;
+       int kmemcg_id;
+
+       VM_BUG_ON(!is_root_cache(cachep));
+
+       if (current->memcg_kmem_skip_account)
+               return cachep;
+
+       memcg = get_mem_cgroup_from_mm(current->mm);
+       kmemcg_id = READ_ONCE(memcg->kmemcg_id);
+       if (kmemcg_id < 0)
+               goto out;
+
+       memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
+       if (likely(memcg_cachep))
+               return memcg_cachep;
+
+       /*
+        * If we are in a safe context (can wait, and not in interrupt
+        * context), we could be be predictable and return right away.
+        * This would guarantee that the allocation being performed
+        * already belongs in the new cache.
+        *
+        * However, there are some clashes that can arrive from locking.
+        * For instance, because we acquire the slab_mutex while doing
+        * memcg_create_kmem_cache, this means no further allocation
+        * could happen with the slab_mutex held. So it's better to
+        * defer everything.
+        */
+       memcg_schedule_kmem_cache_create(memcg, cachep);
+out:
+       css_put(&memcg->css);
+       return cachep;
+}
+
+void __memcg_kmem_put_cache(struct kmem_cache *cachep)
+{
+       if (!is_root_cache(cachep))
+               css_put(&cachep->memcg_params.memcg->css);
+}
+
+/*
+ * We need to verify if the allocation against current->mm->owner's memcg is
+ * possible for the given order. But the page is not allocated yet, so we'll
+ * need a further commit step to do the final arrangements.
+ *
+ * It is possible for the task to switch cgroups in this mean time, so at
+ * commit time, we can't rely on task conversion any longer.  We'll then use
+ * the handle argument to return to the caller which cgroup we should commit
+ * against. We could also return the memcg directly and avoid the pointer
+ * passing, but a boolean return value gives better semantics considering
+ * the compiled-out case as well.
+ *
+ * Returning true means the allocation is possible.
+ */
+bool
+__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
+{
+       struct mem_cgroup *memcg;
+       int ret;
+
+       *_memcg = NULL;
+
+       memcg = get_mem_cgroup_from_mm(current->mm);
+
+       if (!memcg_kmem_is_active(memcg)) {
+               css_put(&memcg->css);
+               return true;
+       }
+
+       ret = memcg_charge_kmem(memcg, gfp, 1 << order);
+       if (!ret)
+               *_memcg = memcg;
+
+       css_put(&memcg->css);
+       return (ret == 0);
+}
+
+void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
+                             int order)
+{
+       VM_BUG_ON(mem_cgroup_is_root(memcg));
+
+       /* The page allocation failed. Revert */
+       if (!page) {
+               memcg_uncharge_kmem(memcg, 1 << order);
+               return;
+       }
+       page->mem_cgroup = memcg;
+}
+
+void __memcg_kmem_uncharge_pages(struct page *page, int order)
+{
+       struct mem_cgroup *memcg = page->mem_cgroup;
+
+       if (!memcg)
+               return;
+
+       VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
+
+       memcg_uncharge_kmem(memcg, 1 << order);
+       page->mem_cgroup = NULL;
+}
+
+struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
+{
+       struct mem_cgroup *memcg = NULL;
+       struct kmem_cache *cachep;
+       struct page *page;
+
+       page = virt_to_head_page(ptr);
+       if (PageSlab(page)) {
+               cachep = page->slab_cache;
+               if (!is_root_cache(cachep))
+                       memcg = cachep->memcg_params.memcg;
+       } else
+               /* page allocated by alloc_kmem_pages */
+               memcg = page->mem_cgroup;
+
+       return memcg;
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+
+/*
+ * Because tail pages are not marked as "used", set it. We're under
+ * zone->lru_lock, 'splitting on pmd' and compound_lock.
+ * charge/uncharge will be never happen and move_account() is done under
+ * compound_lock(), so we don't have to take care of races.
+ */
+void mem_cgroup_split_huge_fixup(struct page *head)
+{
+       int i;
+
+       if (mem_cgroup_disabled())
+               return;
+
+       for (i = 1; i < HPAGE_PMD_NR; i++)
+               head[i].mem_cgroup = head->mem_cgroup;
+
+       __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
+                      HPAGE_PMD_NR);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+#ifdef CONFIG_MEMCG_SWAP
+static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
+                                        bool charge)
+{
+       int val = (charge) ? 1 : -1;
+       this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
+}
+
+/**
+ * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
+ * @entry: swap entry to be moved
+ * @from:  mem_cgroup which the entry is moved from
+ * @to:  mem_cgroup which the entry is moved to
+ *
+ * It succeeds only when the swap_cgroup's record for this entry is the same
+ * as the mem_cgroup's id of @from.
+ *
+ * Returns 0 on success, -EINVAL on failure.
+ *
+ * The caller must have charged to @to, IOW, called page_counter_charge() about
+ * both res and memsw, and called css_get().
+ */
+static int mem_cgroup_move_swap_account(swp_entry_t entry,
+                               struct mem_cgroup *from, struct mem_cgroup *to)
+{
+       unsigned short old_id, new_id;
+
+       old_id = mem_cgroup_id(from);
+       new_id = mem_cgroup_id(to);
+
+       if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
+               mem_cgroup_swap_statistics(from, false);
+               mem_cgroup_swap_statistics(to, true);
+               return 0;
+       }
+       return -EINVAL;
+}
+#else
+static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
+                               struct mem_cgroup *from, struct mem_cgroup *to)
+{
+       return -EINVAL;
+}
+#endif
+
+static DEFINE_MUTEX(memcg_limit_mutex);
+
+static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
+                                  unsigned long limit)
+{
+       unsigned long curusage;
+       unsigned long oldusage;
+       bool enlarge = false;
+       int retry_count;
+       int ret;
+
+       /*
+        * For keeping hierarchical_reclaim simple, how long we should retry
+        * is depends on callers. We set our retry-count to be function
+        * of # of children which we should visit in this loop.
+        */
+       retry_count = MEM_CGROUP_RECLAIM_RETRIES *
+                     mem_cgroup_count_children(memcg);
+
+       oldusage = page_counter_read(&memcg->memory);
+
+       do {
+               if (signal_pending(current)) {
+                       ret = -EINTR;
+                       break;
+               }
+
+               mutex_lock(&memcg_limit_mutex);
+               if (limit > memcg->memsw.limit) {
+                       mutex_unlock(&memcg_limit_mutex);
+                       ret = -EINVAL;
+                       break;
+               }
+               if (limit > memcg->memory.limit)
+                       enlarge = true;
+               ret = page_counter_limit(&memcg->memory, limit);
+               mutex_unlock(&memcg_limit_mutex);
+
+               if (!ret)
+                       break;
+
+               try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
+
+               curusage = page_counter_read(&memcg->memory);
+               /* Usage is reduced ? */
+               if (curusage >= oldusage)
+                       retry_count--;
+               else
+                       oldusage = curusage;
+       } while (retry_count);
+
+       if (!ret && enlarge)
+               memcg_oom_recover(memcg);
+
+       return ret;
+}
+
+static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
+                                        unsigned long limit)
+{
+       unsigned long curusage;
+       unsigned long oldusage;
+       bool enlarge = false;
+       int retry_count;
+       int ret;
+
+       /* see mem_cgroup_resize_res_limit */
+       retry_count = MEM_CGROUP_RECLAIM_RETRIES *
+                     mem_cgroup_count_children(memcg);
+
+       oldusage = page_counter_read(&memcg->memsw);
+
+       do {
+               if (signal_pending(current)) {
+                       ret = -EINTR;
+                       break;
+               }
+
+               mutex_lock(&memcg_limit_mutex);
+               if (limit < memcg->memory.limit) {
+                       mutex_unlock(&memcg_limit_mutex);
+                       ret = -EINVAL;
+                       break;
+               }
+               if (limit > memcg->memsw.limit)
+                       enlarge = true;
+               ret = page_counter_limit(&memcg->memsw, limit);
+               mutex_unlock(&memcg_limit_mutex);
+
+               if (!ret)
+                       break;
+
+               try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
+
+               curusage = page_counter_read(&memcg->memsw);
+               /* Usage is reduced ? */
+               if (curusage >= oldusage)
+                       retry_count--;
+               else
+                       oldusage = curusage;
+       } while (retry_count);
+
+       if (!ret && enlarge)
+               memcg_oom_recover(memcg);
+
+       return ret;
+}
+
+unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
+                                           gfp_t gfp_mask,
+                                           unsigned long *total_scanned)
+{
+       unsigned long nr_reclaimed = 0;
+       struct mem_cgroup_per_zone *mz, *next_mz = NULL;
+       unsigned long reclaimed;
+       int loop = 0;
+       struct mem_cgroup_tree_per_zone *mctz;
+       unsigned long excess;
+       unsigned long nr_scanned;
+
+       if (order > 0)
+               return 0;
+
+       mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
+       /*
+        * This loop can run a while, specially if mem_cgroup's continuously
+        * keep exceeding their soft limit and putting the system under
+        * pressure
+        */
+       do {
+               if (next_mz)
+                       mz = next_mz;
+               else
+                       mz = mem_cgroup_largest_soft_limit_node(mctz);
+               if (!mz)
+                       break;
+
+               nr_scanned = 0;
+               reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
+                                                   gfp_mask, &nr_scanned);
+               nr_reclaimed += reclaimed;
+               *total_scanned += nr_scanned;
+               spin_lock_irq(&mctz->lock);
+               __mem_cgroup_remove_exceeded(mz, mctz);
+
+               /*
+                * If we failed to reclaim anything from this memory cgroup
+                * it is time to move on to the next cgroup
+                */
+               next_mz = NULL;
+               if (!reclaimed)
+                       next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
+
+               excess = soft_limit_excess(mz->memcg);
+               /*
+                * One school of thought says that we should not add
+                * back the node to the tree if reclaim returns 0.
+                * But our reclaim could return 0, simply because due
+                * to priority we are exposing a smaller subset of
+                * memory to reclaim from. Consider this as a longer
+                * term TODO.
+                */
+               /* If excess == 0, no tree ops */
+               __mem_cgroup_insert_exceeded(mz, mctz, excess);
+               spin_unlock_irq(&mctz->lock);
+               css_put(&mz->memcg->css);
+               loop++;
+               /*
+                * Could not reclaim anything and there are no more
+                * mem cgroups to try or we seem to be looping without
+                * reclaiming anything.
+                */
+               if (!nr_reclaimed &&
+                       (next_mz == NULL ||
+                       loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
+                       break;
+       } while (!nr_reclaimed);
+       if (next_mz)
+               css_put(&next_mz->memcg->css);
+       return nr_reclaimed;
+}
+
+/*
+ * Test whether @memcg has children, dead or alive.  Note that this
+ * function doesn't care whether @memcg has use_hierarchy enabled and
+ * returns %true if there are child csses according to the cgroup
+ * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
+ */
+static inline bool memcg_has_children(struct mem_cgroup *memcg)
+{
+       bool ret;
+
+       /*
+        * The lock does not prevent addition or deletion of children, but
+        * it prevents a new child from being initialized based on this
+        * parent in css_online(), so it's enough to decide whether
+        * hierarchically inherited attributes can still be changed or not.
+        */
+       lockdep_assert_held(&memcg_create_mutex);
+
+       rcu_read_lock();
+       ret = css_next_child(NULL, &memcg->css);
+       rcu_read_unlock();
+       return ret;
+}
+
+/*
+ * Reclaims as many pages from the given memcg as possible and moves
+ * the rest to the parent.
+ *
+ * Caller is responsible for holding css reference for memcg.
+ */
+static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
+{
+       int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+
+       /* we call try-to-free pages for make this cgroup empty */
+       lru_add_drain_all();
+       /* try to free all pages in this cgroup */
+       while (nr_retries && page_counter_read(&memcg->memory)) {
+               int progress;
+
+               if (signal_pending(current))
+                       return -EINTR;
+
+               progress = try_to_free_mem_cgroup_pages(memcg, 1,
+                                                       GFP_KERNEL, true);
+               if (!progress) {
+                       nr_retries--;
+                       /* maybe some writeback is necessary */
+                       congestion_wait(BLK_RW_ASYNC, HZ/10);
+               }
+
+       }
+
+       return 0;
+}
+
+static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
+                                           char *buf, size_t nbytes,
+                                           loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+
+       if (mem_cgroup_is_root(memcg))
+               return -EINVAL;
+       return mem_cgroup_force_empty(memcg) ?: nbytes;
+}
+
+static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
+                                    struct cftype *cft)
+{
+       return mem_cgroup_from_css(css)->use_hierarchy;
+}
+
+static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
+                                     struct cftype *cft, u64 val)
+{
+       int retval = 0;
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
+
+       mutex_lock(&memcg_create_mutex);
+
+       if (memcg->use_hierarchy == val)
+               goto out;
+
+       /*
+        * If parent's use_hierarchy is set, we can't make any modifications
+        * in the child subtrees. If it is unset, then the change can
+        * occur, provided the current cgroup has no children.
+        *
+        * For the root cgroup, parent_mem is NULL, we allow value to be
+        * set if there are no children.
+        */
+       if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
+                               (val == 1 || val == 0)) {
+               if (!memcg_has_children(memcg))
+                       memcg->use_hierarchy = val;
+               else
+                       retval = -EBUSY;
+       } else
+               retval = -EINVAL;
+
+out:
+       mutex_unlock(&memcg_create_mutex);
+
+       return retval;
+}
+
+static unsigned long tree_stat(struct mem_cgroup *memcg,
+                              enum mem_cgroup_stat_index idx)
+{
+       struct mem_cgroup *iter;
+       long val = 0;
+
+       /* Per-cpu values can be negative, use a signed accumulator */
+       for_each_mem_cgroup_tree(iter, memcg)
+               val += mem_cgroup_read_stat(iter, idx);
+
+       if (val < 0) /* race ? */
+               val = 0;
+       return val;
+}
+
+static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+{
+       u64 val;
+
+       if (mem_cgroup_is_root(memcg)) {
+               val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
+               val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
+               if (swap)
+                       val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
+       } else {
+               if (!swap)
+                       val = page_counter_read(&memcg->memory);
+               else
+                       val = page_counter_read(&memcg->memsw);
+       }
+       return val << PAGE_SHIFT;
+}
+
+enum {
+       RES_USAGE,
+       RES_LIMIT,
+       RES_MAX_USAGE,
+       RES_FAILCNT,
+       RES_SOFT_LIMIT,
+};
+
+static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
+                              struct cftype *cft)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       struct page_counter *counter;
+
+       switch (MEMFILE_TYPE(cft->private)) {
+       case _MEM:
+               counter = &memcg->memory;
+               break;
+       case _MEMSWAP:
+               counter = &memcg->memsw;
+               break;
+       case _KMEM:
+               counter = &memcg->kmem;
+               break;
+       default:
+               BUG();
+       }
+
+       switch (MEMFILE_ATTR(cft->private)) {
+       case RES_USAGE:
+               if (counter == &memcg->memory)
+                       return mem_cgroup_usage(memcg, false);
+               if (counter == &memcg->memsw)
+                       return mem_cgroup_usage(memcg, true);
+               return (u64)page_counter_read(counter) * PAGE_SIZE;
+       case RES_LIMIT:
+               return (u64)counter->limit * PAGE_SIZE;
+       case RES_MAX_USAGE:
+               return (u64)counter->watermark * PAGE_SIZE;
+       case RES_FAILCNT:
+               return counter->failcnt;
+       case RES_SOFT_LIMIT:
+               return (u64)memcg->soft_limit * PAGE_SIZE;
+       default:
+               BUG();
+       }
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+static int memcg_activate_kmem(struct mem_cgroup *memcg,
+                              unsigned long nr_pages)
+{
+       int err = 0;
+       int memcg_id;
+
+       BUG_ON(memcg->kmemcg_id >= 0);
+       BUG_ON(memcg->kmem_acct_activated);
+       BUG_ON(memcg->kmem_acct_active);
+
+       /*
+        * For simplicity, we won't allow this to be disabled.  It also can't
+        * be changed if the cgroup has children already, or if tasks had
+        * already joined.
+        *
+        * If tasks join before we set the limit, a person looking at
+        * kmem.usage_in_bytes will have no way to determine when it took
+        * place, which makes the value quite meaningless.
+        *
+        * After it first became limited, changes in the value of the limit are
+        * of course permitted.
+        */
+       mutex_lock(&memcg_create_mutex);
+       if (cgroup_has_tasks(memcg->css.cgroup) ||
+           (memcg->use_hierarchy && memcg_has_children(memcg)))
+               err = -EBUSY;
+       mutex_unlock(&memcg_create_mutex);
+       if (err)
+               goto out;
+
+       memcg_id = memcg_alloc_cache_id();
+       if (memcg_id < 0) {
+               err = memcg_id;
+               goto out;
+       }
+
+       /*
+        * We couldn't have accounted to this cgroup, because it hasn't got
+        * activated yet, so this should succeed.
+        */
+       err = page_counter_limit(&memcg->kmem, nr_pages);
+       VM_BUG_ON(err);
+
+       static_key_slow_inc(&memcg_kmem_enabled_key);
+       /*
+        * A memory cgroup is considered kmem-active as soon as it gets
+        * kmemcg_id. Setting the id after enabling static branching will
+        * guarantee no one starts accounting before all call sites are
+        * patched.
+        */
+       memcg->kmemcg_id = memcg_id;
+       memcg->kmem_acct_activated = true;
+       memcg->kmem_acct_active = true;
+out:
+       return err;
+}
+
+static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
+                                  unsigned long limit)
+{
+       int ret;
+
+       mutex_lock(&memcg_limit_mutex);
+       if (!memcg_kmem_is_active(memcg))
+               ret = memcg_activate_kmem(memcg, limit);
+       else
+               ret = page_counter_limit(&memcg->kmem, limit);
+       mutex_unlock(&memcg_limit_mutex);
+       return ret;
+}
+
+static int memcg_propagate_kmem(struct mem_cgroup *memcg)
+{
+       int ret = 0;
+       struct mem_cgroup *parent = parent_mem_cgroup(memcg);
+
+       if (!parent)
+               return 0;
+
+       mutex_lock(&memcg_limit_mutex);
+       /*
+        * If the parent cgroup is not kmem-active now, it cannot be activated
+        * after this point, because it has at least one child already.
+        */
+       if (memcg_kmem_is_active(parent))
+               ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
+       mutex_unlock(&memcg_limit_mutex);
+       return ret;
+}
+#else
+static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
+                                  unsigned long limit)
+{
+       return -EINVAL;
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+/*
+ * The user of this function is...
+ * RES_LIMIT.
+ */
+static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
+                               char *buf, size_t nbytes, loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+       unsigned long nr_pages;
+       int ret;
+
+       buf = strstrip(buf);
+       ret = page_counter_memparse(buf, "-1", &nr_pages);
+       if (ret)
+               return ret;
+
+       switch (MEMFILE_ATTR(of_cft(of)->private)) {
+       case RES_LIMIT:
+               if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
+                       ret = -EINVAL;
+                       break;
+               }
+               switch (MEMFILE_TYPE(of_cft(of)->private)) {
+               case _MEM:
+                       ret = mem_cgroup_resize_limit(memcg, nr_pages);
+                       break;
+               case _MEMSWAP:
+                       ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
+                       break;
+               case _KMEM:
+                       ret = memcg_update_kmem_limit(memcg, nr_pages);
+                       break;
+               }
+               break;
+       case RES_SOFT_LIMIT:
+               memcg->soft_limit = nr_pages;
+               ret = 0;
+               break;
+       }
+       return ret ?: nbytes;
+}
+
+static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
+                               size_t nbytes, loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+       struct page_counter *counter;
+
+       switch (MEMFILE_TYPE(of_cft(of)->private)) {
+       case _MEM:
+               counter = &memcg->memory;
+               break;
+       case _MEMSWAP:
+               counter = &memcg->memsw;
+               break;
+       case _KMEM:
+               counter = &memcg->kmem;
+               break;
+       default:
+               BUG();
+       }
+
+       switch (MEMFILE_ATTR(of_cft(of)->private)) {
+       case RES_MAX_USAGE:
+               page_counter_reset_watermark(counter);
+               break;
+       case RES_FAILCNT:
+               counter->failcnt = 0;
+               break;
+       default:
+               BUG();
+       }
+
+       return nbytes;
+}
+
+static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
+                                       struct cftype *cft)
+{
+       return mem_cgroup_from_css(css)->move_charge_at_immigrate;
+}
+
+#ifdef CONFIG_MMU
+static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
+                                       struct cftype *cft, u64 val)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       if (val & ~MOVE_MASK)
+               return -EINVAL;
+
+       /*
+        * No kind of locking is needed in here, because ->can_attach() will
+        * check this value once in the beginning of the process, and then carry
+        * on with stale data. This means that changes to this value will only
+        * affect task migrations starting after the change.
+        */
+       memcg->move_charge_at_immigrate = val;
+       return 0;
+}
+#else
+static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
+                                       struct cftype *cft, u64 val)
+{
+       return -ENOSYS;
+}
+#endif
+
+#ifdef CONFIG_NUMA
+static int memcg_numa_stat_show(struct seq_file *m, void *v)
+{
+       struct numa_stat {
+               const char *name;
+               unsigned int lru_mask;
+       };
+
+       static const struct numa_stat stats[] = {
+               { "total", LRU_ALL },
+               { "file", LRU_ALL_FILE },
+               { "anon", LRU_ALL_ANON },
+               { "unevictable", BIT(LRU_UNEVICTABLE) },
+       };
+       const struct numa_stat *stat;
+       int nid;
+       unsigned long nr;
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+
+       for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+               nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
+               seq_printf(m, "%s=%lu", stat->name, nr);
+               for_each_node_state(nid, N_MEMORY) {
+                       nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
+                                                         stat->lru_mask);
+                       seq_printf(m, " N%d=%lu", nid, nr);
+               }
+               seq_putc(m, '\n');
+       }
+
+       for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+               struct mem_cgroup *iter;
+
+               nr = 0;
+               for_each_mem_cgroup_tree(iter, memcg)
+                       nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
+               seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
+               for_each_node_state(nid, N_MEMORY) {
+                       nr = 0;
+                       for_each_mem_cgroup_tree(iter, memcg)
+                               nr += mem_cgroup_node_nr_lru_pages(
+                                       iter, nid, stat->lru_mask);
+                       seq_printf(m, " N%d=%lu", nid, nr);
+               }
+               seq_putc(m, '\n');
+       }
+
+       return 0;
+}
+#endif /* CONFIG_NUMA */
+
+static int memcg_stat_show(struct seq_file *m, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+       unsigned long memory, memsw;
+       struct mem_cgroup *mi;
+       unsigned int i;
+
+       BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
+                    MEM_CGROUP_STAT_NSTATS);
+       BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
+                    MEM_CGROUP_EVENTS_NSTATS);
+       BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
+
+       for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+               if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+                       continue;
+               seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
+                          mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
+       }
+
+       for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
+               seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
+                          mem_cgroup_read_events(memcg, i));
+
+       for (i = 0; i < NR_LRU_LISTS; i++)
+               seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
+                          mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
+
+       /* Hierarchical information */
+       memory = memsw = PAGE_COUNTER_MAX;
+       for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
+               memory = min(memory, mi->memory.limit);
+               memsw = min(memsw, mi->memsw.limit);
+       }
+       seq_printf(m, "hierarchical_memory_limit %llu\n",
+                  (u64)memory * PAGE_SIZE);
+       if (do_swap_account)
+               seq_printf(m, "hierarchical_memsw_limit %llu\n",
+                          (u64)memsw * PAGE_SIZE);
+
+       for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+               long long val = 0;
+
+               if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+                       continue;
+               for_each_mem_cgroup_tree(mi, memcg)
+                       val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
+               seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
+       }
+
+       for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
+               unsigned long long val = 0;
+
+               for_each_mem_cgroup_tree(mi, memcg)
+                       val += mem_cgroup_read_events(mi, i);
+               seq_printf(m, "total_%s %llu\n",
+                          mem_cgroup_events_names[i], val);
+       }
+
+       for (i = 0; i < NR_LRU_LISTS; i++) {
+               unsigned long long val = 0;
+
+               for_each_mem_cgroup_tree(mi, memcg)
+                       val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
+               seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
+       }
+
+#ifdef CONFIG_DEBUG_VM
+       {
+               int nid, zid;
+               struct mem_cgroup_per_zone *mz;
+               struct zone_reclaim_stat *rstat;
+               unsigned long recent_rotated[2] = {0, 0};
+               unsigned long recent_scanned[2] = {0, 0};
+
+               for_each_online_node(nid)
+                       for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+                               mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+                               rstat = &mz->lruvec.reclaim_stat;
+
+                               recent_rotated[0] += rstat->recent_rotated[0];
+                               recent_rotated[1] += rstat->recent_rotated[1];
+                               recent_scanned[0] += rstat->recent_scanned[0];
+                               recent_scanned[1] += rstat->recent_scanned[1];
+                       }
+               seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
+               seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
+               seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
+               seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
+       }
+#endif
+
+       return 0;
+}
+
+static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
+                                     struct cftype *cft)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       return mem_cgroup_swappiness(memcg);
+}
+
+static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
+                                      struct cftype *cft, u64 val)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       if (val > 100)
+               return -EINVAL;
+
+       if (css->parent)
+               memcg->swappiness = val;
+       else
+               vm_swappiness = val;
+
+       return 0;
+}
+
+static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
+{
+       struct mem_cgroup_threshold_ary *t;
+       unsigned long usage;
+       int i;
+
+       rcu_read_lock();
+       if (!swap)
+               t = rcu_dereference(memcg->thresholds.primary);
+       else
+               t = rcu_dereference(memcg->memsw_thresholds.primary);
+
+       if (!t)
+               goto unlock;
+
+       usage = mem_cgroup_usage(memcg, swap);
+
+       /*
+        * current_threshold points to threshold just below or equal to usage.
+        * If it's not true, a threshold was crossed after last
+        * call of __mem_cgroup_threshold().
+        */
+       i = t->current_threshold;
+
+       /*
+        * Iterate backward over array of thresholds starting from
+        * current_threshold and check if a threshold is crossed.
+        * If none of thresholds below usage is crossed, we read
+        * only one element of the array here.
+        */
+       for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
+               eventfd_signal(t->entries[i].eventfd, 1);
+
+       /* i = current_threshold + 1 */
+       i++;
+
+       /*
+        * Iterate forward over array of thresholds starting from
+        * current_threshold+1 and check if a threshold is crossed.
+        * If none of thresholds above usage is crossed, we read
+        * only one element of the array here.
+        */
+       for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
+               eventfd_signal(t->entries[i].eventfd, 1);
+
+       /* Update current_threshold */
+       t->current_threshold = i - 1;
+unlock:
+       rcu_read_unlock();
+}
+
+static void mem_cgroup_threshold(struct mem_cgroup *memcg)
+{
+       while (memcg) {
+               __mem_cgroup_threshold(memcg, false);
+               if (do_swap_account)
+                       __mem_cgroup_threshold(memcg, true);
+
+               memcg = parent_mem_cgroup(memcg);
+       }
+}
+
+static int compare_thresholds(const void *a, const void *b)
+{
+       const struct mem_cgroup_threshold *_a = a;
+       const struct mem_cgroup_threshold *_b = b;
+
+       if (_a->threshold > _b->threshold)
+               return 1;
+
+       if (_a->threshold < _b->threshold)
+               return -1;
+
+       return 0;
+}
+
+static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup_eventfd_list *ev;
+
+       spin_lock(&memcg_oom_lock);
+
+       list_for_each_entry(ev, &memcg->oom_notify, list)
+               eventfd_signal(ev->eventfd, 1);
+
+       spin_unlock(&memcg_oom_lock);
+       return 0;
+}
+
+static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
+{
+       struct mem_cgroup *iter;
+
+       for_each_mem_cgroup_tree(iter, memcg)
+               mem_cgroup_oom_notify_cb(iter);
+}
+
+static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd, const char *args, enum res_type type)
+{
+       struct mem_cgroup_thresholds *thresholds;
+       struct mem_cgroup_threshold_ary *new;
+       unsigned long threshold;
+       unsigned long usage;
+       int i, size, ret;
+
+       ret = page_counter_memparse(args, "-1", &threshold);
+       if (ret)
+               return ret;
+
+       mutex_lock(&memcg->thresholds_lock);
+
+       if (type == _MEM) {
+               thresholds = &memcg->thresholds;
+               usage = mem_cgroup_usage(memcg, false);
+       } else if (type == _MEMSWAP) {
+               thresholds = &memcg->memsw_thresholds;
+               usage = mem_cgroup_usage(memcg, true);
+       } else
+               BUG();
+
+       /* Check if a threshold crossed before adding a new one */
+       if (thresholds->primary)
+               __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+       size = thresholds->primary ? thresholds->primary->size + 1 : 1;
+
+       /* Allocate memory for new array of thresholds */
+       new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
+                       GFP_KERNEL);
+       if (!new) {
+               ret = -ENOMEM;
+               goto unlock;
+       }
+       new->size = size;
+
+       /* Copy thresholds (if any) to new array */
+       if (thresholds->primary) {
+               memcpy(new->entries, thresholds->primary->entries, (size - 1) *
+                               sizeof(struct mem_cgroup_threshold));
+       }
+
+       /* Add new threshold */
+       new->entries[size - 1].eventfd = eventfd;
+       new->entries[size - 1].threshold = threshold;
+
+       /* Sort thresholds. Registering of new threshold isn't time-critical */
+       sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
+                       compare_thresholds, NULL);
+
+       /* Find current threshold */
+       new->current_threshold = -1;
+       for (i = 0; i < size; i++) {
+               if (new->entries[i].threshold <= usage) {
+                       /*
+                        * new->current_threshold will not be used until
+                        * rcu_assign_pointer(), so it's safe to increment
+                        * it here.
+                        */
+                       ++new->current_threshold;
+               } else
+                       break;
+       }
+
+       /* Free old spare buffer and save old primary buffer as spare */
+       kfree(thresholds->spare);
+       thresholds->spare = thresholds->primary;
+
+       rcu_assign_pointer(thresholds->primary, new);
+
+       /* To be sure that nobody uses thresholds */
+       synchronize_rcu();
+
+unlock:
+       mutex_unlock(&memcg->thresholds_lock);
+
+       return ret;
+}
+
+static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd, const char *args)
+{
+       return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
+}
+
+static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd, const char *args)
+{
+       return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
+}
+
+static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd, enum res_type type)
+{
+       struct mem_cgroup_thresholds *thresholds;
+       struct mem_cgroup_threshold_ary *new;
+       unsigned long usage;
+       int i, j, size;
+
+       mutex_lock(&memcg->thresholds_lock);
+
+       if (type == _MEM) {
+               thresholds = &memcg->thresholds;
+               usage = mem_cgroup_usage(memcg, false);
+       } else if (type == _MEMSWAP) {
+               thresholds = &memcg->memsw_thresholds;
+               usage = mem_cgroup_usage(memcg, true);
+       } else
+               BUG();
+
+       if (!thresholds->primary)
+               goto unlock;
+
+       /* Check if a threshold crossed before removing */
+       __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+       /* Calculate new number of threshold */
+       size = 0;
+       for (i = 0; i < thresholds->primary->size; i++) {
+               if (thresholds->primary->entries[i].eventfd != eventfd)
+                       size++;
+       }
+
+       new = thresholds->spare;
+
+       /* Set thresholds array to NULL if we don't have thresholds */
+       if (!size) {
+               kfree(new);
+               new = NULL;
+               goto swap_buffers;
+       }
+
+       new->size = size;
+
+       /* Copy thresholds and find current threshold */
+       new->current_threshold = -1;
+       for (i = 0, j = 0; i < thresholds->primary->size; i++) {
+               if (thresholds->primary->entries[i].eventfd == eventfd)
+                       continue;
+
+               new->entries[j] = thresholds->primary->entries[i];
+               if (new->entries[j].threshold <= usage) {
+                       /*
+                        * new->current_threshold will not be used
+                        * until rcu_assign_pointer(), so it's safe to increment
+                        * it here.
+                        */
+                       ++new->current_threshold;
+               }
+               j++;
+       }
+
+swap_buffers:
+       /* Swap primary and spare array */
+       thresholds->spare = thresholds->primary;
+       /* If all events are unregistered, free the spare array */
+       if (!new) {
+               kfree(thresholds->spare);
+               thresholds->spare = NULL;
+       }
+
+       rcu_assign_pointer(thresholds->primary, new);
+
+       /* To be sure that nobody uses thresholds */
+       synchronize_rcu();
+unlock:
+       mutex_unlock(&memcg->thresholds_lock);
+}
+
+static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd)
+{
+       return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
+}
+
+static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd)
+{
+       return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
+}
+
+static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd, const char *args)
+{
+       struct mem_cgroup_eventfd_list *event;
+
+       event = kmalloc(sizeof(*event), GFP_KERNEL);
+       if (!event)
+               return -ENOMEM;
+
+       spin_lock(&memcg_oom_lock);
+
+       event->eventfd = eventfd;
+       list_add(&event->list, &memcg->oom_notify);
+
+       /* already in OOM ? */
+       if (atomic_read(&memcg->under_oom))
+               eventfd_signal(eventfd, 1);
+       spin_unlock(&memcg_oom_lock);
+
+       return 0;
+}
+
+static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
+       struct eventfd_ctx *eventfd)
+{
+       struct mem_cgroup_eventfd_list *ev, *tmp;
+
+       spin_lock(&memcg_oom_lock);
+
+       list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
+               if (ev->eventfd == eventfd) {
+                       list_del(&ev->list);
+                       kfree(ev);
+               }
+       }
+
+       spin_unlock(&memcg_oom_lock);
+}
+
+static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
+
+       seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
+       seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
+       return 0;
+}
+
+static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
+       struct cftype *cft, u64 val)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       /* cannot set to root cgroup and only 0 and 1 are allowed */
+       if (!css->parent || !((val == 0) || (val == 1)))
+               return -EINVAL;
+
+       memcg->oom_kill_disable = val;
+       if (!val)
+               memcg_oom_recover(memcg);
+
+       return 0;
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
+{
+       int ret;
+
+       ret = memcg_propagate_kmem(memcg);
+       if (ret)
+               return ret;
+
+       return mem_cgroup_sockets_init(memcg, ss);
+}
+
+static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
+{
+       struct cgroup_subsys_state *css;
+       struct mem_cgroup *parent, *child;
+       int kmemcg_id;
+
+       if (!memcg->kmem_acct_active)
+               return;
+
+       /*
+        * Clear the 'active' flag before clearing memcg_caches arrays entries.
+        * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
+        * guarantees no cache will be created for this cgroup after we are
+        * done (see memcg_create_kmem_cache()).
+        */
+       memcg->kmem_acct_active = false;
+
+       memcg_deactivate_kmem_caches(memcg);
+
+       kmemcg_id = memcg->kmemcg_id;
+       BUG_ON(kmemcg_id < 0);
+
+       parent = parent_mem_cgroup(memcg);
+       if (!parent)
+               parent = root_mem_cgroup;
+
+       /*
+        * Change kmemcg_id of this cgroup and all its descendants to the
+        * parent's id, and then move all entries from this cgroup's list_lrus
+        * to ones of the parent. After we have finished, all list_lrus
+        * corresponding to this cgroup are guaranteed to remain empty. The
+        * ordering is imposed by list_lru_node->lock taken by
+        * memcg_drain_all_list_lrus().
+        */
+       css_for_each_descendant_pre(css, &memcg->css) {
+               child = mem_cgroup_from_css(css);
+               BUG_ON(child->kmemcg_id != kmemcg_id);
+               child->kmemcg_id = parent->kmemcg_id;
+               if (!memcg->use_hierarchy)
+                       break;
+       }
+       memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
+
+       memcg_free_cache_id(kmemcg_id);
+}
+
+static void memcg_destroy_kmem(struct mem_cgroup *memcg)
+{
+       if (memcg->kmem_acct_activated) {
+               memcg_destroy_kmem_caches(memcg);
+               static_key_slow_dec(&memcg_kmem_enabled_key);
+               WARN_ON(page_counter_read(&memcg->kmem));
+       }
+       mem_cgroup_sockets_destroy(memcg);
+}
+#else
+static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
+{
+       return 0;
+}
+
+static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
+{
+}
+
+static void memcg_destroy_kmem(struct mem_cgroup *memcg)
+{
+}
+#endif
+
+/*
+ * DO NOT USE IN NEW FILES.
+ *
+ * "cgroup.event_control" implementation.
+ *
+ * This is way over-engineered.  It tries to support fully configurable
+ * events for each user.  Such level of flexibility is completely
+ * unnecessary especially in the light of the planned unified hierarchy.
+ *
+ * Please deprecate this and replace with something simpler if at all
+ * possible.
+ */
+
+/*
+ * Unregister event and free resources.
+ *
+ * Gets called from workqueue.
+ */
+static void memcg_event_remove(struct work_struct *work)
+{
+       struct mem_cgroup_event *event =
+               container_of(work, struct mem_cgroup_event, remove);
+       struct mem_cgroup *memcg = event->memcg;
+
+       remove_wait_queue(event->wqh, &event->wait);
+
+       event->unregister_event(memcg, event->eventfd);
+
+       /* Notify userspace the event is going away. */
+       eventfd_signal(event->eventfd, 1);
+
+       eventfd_ctx_put(event->eventfd);
+       kfree(event);
+       css_put(&memcg->css);
+}
+
+/*
+ * Gets called on POLLHUP on eventfd when user closes it.
+ *
+ * Called with wqh->lock held and interrupts disabled.
+ */
+static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
+                           int sync, void *key)
+{
+       struct mem_cgroup_event *event =
+               container_of(wait, struct mem_cgroup_event, wait);
+       struct mem_cgroup *memcg = event->memcg;
+       unsigned long flags = (unsigned long)key;
+
+       if (flags & POLLHUP) {
+               /*
+                * If the event has been detached at cgroup removal, we
+                * can simply return knowing the other side will cleanup
+                * for us.
+                *
+                * We can't race against event freeing since the other
+                * side will require wqh->lock via remove_wait_queue(),
+                * which we hold.
+                */
+               spin_lock(&memcg->event_list_lock);
+               if (!list_empty(&event->list)) {
+                       list_del_init(&event->list);
+                       /*
+                        * We are in atomic context, but cgroup_event_remove()
+                        * may sleep, so we have to call it in workqueue.
+                        */
+                       schedule_work(&event->remove);
+               }
+               spin_unlock(&memcg->event_list_lock);
+       }
+
+       return 0;
+}
+
+static void memcg_event_ptable_queue_proc(struct file *file,
+               wait_queue_head_t *wqh, poll_table *pt)
+{
+       struct mem_cgroup_event *event =
+               container_of(pt, struct mem_cgroup_event, pt);
+
+       event->wqh = wqh;
+       add_wait_queue(wqh, &event->wait);
+}
+
+/*
+ * DO NOT USE IN NEW FILES.
+ *
+ * Parse input and register new cgroup event handler.
+ *
+ * Input must be in format '<event_fd> <control_fd> <args>'.
+ * Interpretation of args is defined by control file implementation.
+ */
+static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
+                                        char *buf, size_t nbytes, loff_t off)
+{
+       struct cgroup_subsys_state *css = of_css(of);
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       struct mem_cgroup_event *event;
+       struct cgroup_subsys_state *cfile_css;
+       unsigned int efd, cfd;
+       struct fd efile;
+       struct fd cfile;
+       const char *name;
+       char *endp;
+       int ret;
+
+       buf = strstrip(buf);
+
+       efd = simple_strtoul(buf, &endp, 10);
+       if (*endp != ' ')
+               return -EINVAL;
+       buf = endp + 1;
+
+       cfd = simple_strtoul(buf, &endp, 10);
+       if ((*endp != ' ') && (*endp != '\0'))
+               return -EINVAL;
+       buf = endp + 1;
+
+       event = kzalloc(sizeof(*event), GFP_KERNEL);
+       if (!event)
+               return -ENOMEM;
+
+       event->memcg = memcg;
+       INIT_LIST_HEAD(&event->list);
+       init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
+       init_waitqueue_func_entry(&event->wait, memcg_event_wake);
+       INIT_WORK(&event->remove, memcg_event_remove);
+
+       efile = fdget(efd);
+       if (!efile.file) {
+               ret = -EBADF;
+               goto out_kfree;
+       }
+
+       event->eventfd = eventfd_ctx_fileget(efile.file);
+       if (IS_ERR(event->eventfd)) {
+               ret = PTR_ERR(event->eventfd);
+               goto out_put_efile;
+       }
+
+       cfile = fdget(cfd);
+       if (!cfile.file) {
+               ret = -EBADF;
+               goto out_put_eventfd;
+       }
+
+       /* the process need read permission on control file */
+       /* AV: shouldn't we check that it's been opened for read instead? */
+       ret = inode_permission(file_inode(cfile.file), MAY_READ);
+       if (ret < 0)
+               goto out_put_cfile;
+
+       /*
+        * Determine the event callbacks and set them in @event.  This used
+        * to be done via struct cftype but cgroup core no longer knows
+        * about these events.  The following is crude but the whole thing
+        * is for compatibility anyway.
+        *
+        * DO NOT ADD NEW FILES.
+        */
+       name = cfile.file->f_path.dentry->d_name.name;
+
+       if (!strcmp(name, "memory.usage_in_bytes")) {
+               event->register_event = mem_cgroup_usage_register_event;
+               event->unregister_event = mem_cgroup_usage_unregister_event;
+       } else if (!strcmp(name, "memory.oom_control")) {
+               event->register_event = mem_cgroup_oom_register_event;
+               event->unregister_event = mem_cgroup_oom_unregister_event;
+       } else if (!strcmp(name, "memory.pressure_level")) {
+               event->register_event = vmpressure_register_event;
+               event->unregister_event = vmpressure_unregister_event;
+       } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
+               event->register_event = memsw_cgroup_usage_register_event;
+               event->unregister_event = memsw_cgroup_usage_unregister_event;
+       } else {
+               ret = -EINVAL;
+               goto out_put_cfile;
+       }
+
+       /*
+        * Verify @cfile should belong to @css.  Also, remaining events are
+        * automatically removed on cgroup destruction but the removal is
+        * asynchronous, so take an extra ref on @css.
+        */
+       cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
+                                              &memory_cgrp_subsys);
+       ret = -EINVAL;
+       if (IS_ERR(cfile_css))
+               goto out_put_cfile;
+       if (cfile_css != css) {
+               css_put(cfile_css);
+               goto out_put_cfile;
+       }
+
+       ret = event->register_event(memcg, event->eventfd, buf);
+       if (ret)
+               goto out_put_css;
+
+       efile.file->f_op->poll(efile.file, &event->pt);
+
+       spin_lock(&memcg->event_list_lock);
+       list_add(&event->list, &memcg->event_list);
+       spin_unlock(&memcg->event_list_lock);
+
+       fdput(cfile);
+       fdput(efile);
+
+       return nbytes;
+
+out_put_css:
+       css_put(css);
+out_put_cfile:
+       fdput(cfile);
+out_put_eventfd:
+       eventfd_ctx_put(event->eventfd);
+out_put_efile:
+       fdput(efile);
+out_kfree:
+       kfree(event);
+
+       return ret;
+}
+
+static struct cftype mem_cgroup_legacy_files[] = {
+       {
+               .name = "usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "max_usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "limit_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
+               .write = mem_cgroup_write,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "soft_limit_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
+               .write = mem_cgroup_write,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "failcnt",
+               .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "stat",
+               .seq_show = memcg_stat_show,
+       },
+       {
+               .name = "force_empty",
+               .write = mem_cgroup_force_empty_write,
+       },
+       {
+               .name = "use_hierarchy",
+               .write_u64 = mem_cgroup_hierarchy_write,
+               .read_u64 = mem_cgroup_hierarchy_read,
+       },
+       {
+               .name = "cgroup.event_control",         /* XXX: for compat */
+               .write = memcg_write_event_control,
+               .flags = CFTYPE_NO_PREFIX,
+               .mode = S_IWUGO,
+       },
+       {
+               .name = "swappiness",
+               .read_u64 = mem_cgroup_swappiness_read,
+               .write_u64 = mem_cgroup_swappiness_write,
+       },
+       {
+               .name = "move_charge_at_immigrate",
+               .read_u64 = mem_cgroup_move_charge_read,
+               .write_u64 = mem_cgroup_move_charge_write,
+       },
+       {
+               .name = "oom_control",
+               .seq_show = mem_cgroup_oom_control_read,
+               .write_u64 = mem_cgroup_oom_control_write,
+               .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
+       },
+       {
+               .name = "pressure_level",
+       },
+#ifdef CONFIG_NUMA
+       {
+               .name = "numa_stat",
+               .seq_show = memcg_numa_stat_show,
+       },
+#endif
+#ifdef CONFIG_MEMCG_KMEM
+       {
+               .name = "kmem.limit_in_bytes",
+               .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
+               .write = mem_cgroup_write,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "kmem.usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "kmem.failcnt",
+               .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "kmem.max_usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+#ifdef CONFIG_SLABINFO
+       {
+               .name = "kmem.slabinfo",
+               .seq_start = slab_start,
+               .seq_next = slab_next,
+               .seq_stop = slab_stop,
+               .seq_show = memcg_slab_show,
+       },
+#endif
+#endif
+       { },    /* terminate */
+};
+
+static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
+{
+       struct mem_cgroup_per_node *pn;
+       struct mem_cgroup_per_zone *mz;
+       int zone, tmp = node;
+       /*
+        * This routine is called against possible nodes.
+        * But it's BUG to call kmalloc() against offline node.
+        *
+        * TODO: this routine can waste much memory for nodes which will
+        *       never be onlined. It's better to use memory hotplug callback
+        *       function.
+        */
+       if (!node_state(node, N_NORMAL_MEMORY))
+               tmp = -1;
+       pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
+       if (!pn)
+               return 1;
+
+       for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+               mz = &pn->zoneinfo[zone];
+               lruvec_init(&mz->lruvec);
+               mz->usage_in_excess = 0;
+               mz->on_tree = false;
+               mz->memcg = memcg;
+       }
+       memcg->nodeinfo[node] = pn;
+       return 0;
+}
+
+static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
+{
+       kfree(memcg->nodeinfo[node]);
+}
+
+static struct mem_cgroup *mem_cgroup_alloc(void)
+{
+       struct mem_cgroup *memcg;
+       size_t size;
+
+       size = sizeof(struct mem_cgroup);
+       size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
+
+       memcg = kzalloc(size, GFP_KERNEL);
+       if (!memcg)
+               return NULL;
+
+       memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
+       if (!memcg->stat)
+               goto out_free;
+       spin_lock_init(&memcg->pcp_counter_lock);
+       return memcg;
+
+out_free:
+       kfree(memcg);
+       return NULL;
+}
+
+/*
+ * At destroying mem_cgroup, references from swap_cgroup can remain.
+ * (scanning all at force_empty is too costly...)
+ *
+ * Instead of clearing all references at force_empty, we remember
+ * the number of reference from swap_cgroup and free mem_cgroup when
+ * it goes down to 0.
+ *
+ * Removal of cgroup itself succeeds regardless of refs from swap.
+ */
+
+static void __mem_cgroup_free(struct mem_cgroup *memcg)
+{
+       int node;
+
+       mem_cgroup_remove_from_trees(memcg);
+
+       for_each_node(node)
+               free_mem_cgroup_per_zone_info(memcg, node);
+
+       free_percpu(memcg->stat);
+       kfree(memcg);
+}
+
+/*
+ * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
+ */
+struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
+{
+       if (!memcg->memory.parent)
+               return NULL;
+       return mem_cgroup_from_counter(memcg->memory.parent, memory);
+}
+EXPORT_SYMBOL(parent_mem_cgroup);
+
+static struct cgroup_subsys_state * __ref
+mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+       struct mem_cgroup *memcg;
+       long error = -ENOMEM;
+       int node;
+
+       memcg = mem_cgroup_alloc();
+       if (!memcg)
+               return ERR_PTR(error);
+
+       for_each_node(node)
+               if (alloc_mem_cgroup_per_zone_info(memcg, node))
+                       goto free_out;
+
+       /* root ? */
+       if (parent_css == NULL) {
+               root_mem_cgroup = memcg;
+               page_counter_init(&memcg->memory, NULL);
+               memcg->high = PAGE_COUNTER_MAX;
+               memcg->soft_limit = PAGE_COUNTER_MAX;
+               page_counter_init(&memcg->memsw, NULL);
+               page_counter_init(&memcg->kmem, NULL);
+       }
+
+       memcg->last_scanned_node = MAX_NUMNODES;
+       INIT_LIST_HEAD(&memcg->oom_notify);
+       memcg->move_charge_at_immigrate = 0;
+       mutex_init(&memcg->thresholds_lock);
+       spin_lock_init(&memcg->move_lock);
+       vmpressure_init(&memcg->vmpressure);
+       INIT_LIST_HEAD(&memcg->event_list);
+       spin_lock_init(&memcg->event_list_lock);
+#ifdef CONFIG_MEMCG_KMEM
+       memcg->kmemcg_id = -1;
+#endif
+
+       return &memcg->css;
+
+free_out:
+       __mem_cgroup_free(memcg);
+       return ERR_PTR(error);
+}
+
+static int
+mem_cgroup_css_online(struct cgroup_subsys_state *css)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
+       int ret;
+
+       if (css->id > MEM_CGROUP_ID_MAX)
+               return -ENOSPC;
+
+       if (!parent)
+               return 0;
+
+       mutex_lock(&memcg_create_mutex);
+
+       memcg->use_hierarchy = parent->use_hierarchy;
+       memcg->oom_kill_disable = parent->oom_kill_disable;
+       memcg->swappiness = mem_cgroup_swappiness(parent);
+
+       if (parent->use_hierarchy) {
+               page_counter_init(&memcg->memory, &parent->memory);
+               memcg->high = PAGE_COUNTER_MAX;
+               memcg->soft_limit = PAGE_COUNTER_MAX;
+               page_counter_init(&memcg->memsw, &parent->memsw);
+               page_counter_init(&memcg->kmem, &parent->kmem);
+
+               /*
+                * No need to take a reference to the parent because cgroup
+                * core guarantees its existence.
+                */
+       } else {
+               page_counter_init(&memcg->memory, NULL);
+               memcg->high = PAGE_COUNTER_MAX;
+               memcg->soft_limit = PAGE_COUNTER_MAX;
+               page_counter_init(&memcg->memsw, NULL);
+               page_counter_init(&memcg->kmem, NULL);
+               /*
+                * Deeper hierachy with use_hierarchy == false doesn't make
+                * much sense so let cgroup subsystem know about this
+                * unfortunate state in our controller.
+                */
+               if (parent != root_mem_cgroup)
+                       memory_cgrp_subsys.broken_hierarchy = true;
+       }
+       mutex_unlock(&memcg_create_mutex);
+
+       ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
+       if (ret)
+               return ret;
+
+       /*
+        * Make sure the memcg is initialized: mem_cgroup_iter()
+        * orders reading memcg->initialized against its callers
+        * reading the memcg members.
+        */
+       smp_store_release(&memcg->initialized, 1);
+
+       return 0;
+}
+
+static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       struct mem_cgroup_event *event, *tmp;
+
+       /*
+        * Unregister events and notify userspace.
+        * Notify userspace about cgroup removing only after rmdir of cgroup
+        * directory to avoid race between userspace and kernelspace.
+        */
+       spin_lock(&memcg->event_list_lock);
+       list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
+               list_del_init(&event->list);
+               schedule_work(&event->remove);
+       }
+       spin_unlock(&memcg->event_list_lock);
+
+       vmpressure_cleanup(&memcg->vmpressure);
+
+       memcg_deactivate_kmem(memcg);
+}
+
+static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       memcg_destroy_kmem(memcg);
+       __mem_cgroup_free(memcg);
+}
+
+/**
+ * mem_cgroup_css_reset - reset the states of a mem_cgroup
+ * @css: the target css
+ *
+ * Reset the states of the mem_cgroup associated with @css.  This is
+ * invoked when the userland requests disabling on the default hierarchy
+ * but the memcg is pinned through dependency.  The memcg should stop
+ * applying policies and should revert to the vanilla state as it may be
+ * made visible again.
+ *
+ * The current implementation only resets the essential configurations.
+ * This needs to be expanded to cover all the visible parts.
+ */
+static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+       mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
+       mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
+       memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
+       memcg->low = 0;
+       memcg->high = PAGE_COUNTER_MAX;
+       memcg->soft_limit = PAGE_COUNTER_MAX;
+}
+
+#ifdef CONFIG_MMU
+/* Handlers for move charge at task migration. */
+static int mem_cgroup_do_precharge(unsigned long count)
+{
+       int ret;
+
+       /* Try a single bulk charge without reclaim first */
+       ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
+       if (!ret) {
+               mc.precharge += count;
+               return ret;
+       }
+       if (ret == -EINTR) {
+               cancel_charge(root_mem_cgroup, count);
+               return ret;
+       }
+
+       /* Try charges one by one with reclaim */
+       while (count--) {
+               ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
+               /*
+                * In case of failure, any residual charges against
+                * mc.to will be dropped by mem_cgroup_clear_mc()
+                * later on.  However, cancel any charges that are
+                * bypassed to root right away or they'll be lost.
+                */
+               if (ret == -EINTR)
+                       cancel_charge(root_mem_cgroup, 1);
+               if (ret)
+                       return ret;
+               mc.precharge++;
+               cond_resched();
+       }
+       return 0;
+}
+
+/**
+ * get_mctgt_type - get target type of moving charge
+ * @vma: the vma the pte to be checked belongs
+ * @addr: the address corresponding to the pte to be checked
+ * @ptent: the pte to be checked
+ * @target: the pointer the target page or swap ent will be stored(can be NULL)
+ *
+ * Returns
+ *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
+ *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
+ *     move charge. if @target is not NULL, the page is stored in target->page
+ *     with extra refcnt got(Callers should handle it).
+ *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
+ *     target for charge migration. if @target is not NULL, the entry is stored
+ *     in target->ent.
+ *
+ * Called with pte lock held.
+ */
+union mc_target {
+       struct page     *page;
+       swp_entry_t     ent;
+};
+
+enum mc_target_type {
+       MC_TARGET_NONE = 0,
+       MC_TARGET_PAGE,
+       MC_TARGET_SWAP,
+};
+
+static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
+                                               unsigned long addr, pte_t ptent)
+{
+       struct page *page = vm_normal_page(vma, addr, ptent);
+
+       if (!page || !page_mapped(page))
+               return NULL;
+       if (PageAnon(page)) {
+               if (!(mc.flags & MOVE_ANON))
+                       return NULL;
+       } else {
+               if (!(mc.flags & MOVE_FILE))
+                       return NULL;
+       }
+       if (!get_page_unless_zero(page))
+               return NULL;
+
+       return page;
+}
+
+#ifdef CONFIG_SWAP
+static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
+                       unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+       struct page *page = NULL;
+       swp_entry_t ent = pte_to_swp_entry(ptent);
+
+       if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
+               return NULL;
+       /*
+        * Because lookup_swap_cache() updates some statistics counter,
+        * we call find_get_page() with swapper_space directly.
+        */
+       page = find_get_page(swap_address_space(ent), ent.val);
+       if (do_swap_account)
+               entry->val = ent.val;
+
+       return page;
+}
+#else
+static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
+                       unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+       return NULL;
+}
+#endif
+
+static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
+                       unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+       struct page *page = NULL;
+       struct address_space *mapping;
+       pgoff_t pgoff;
+
+       if (!vma->vm_file) /* anonymous vma */
+               return NULL;
+       if (!(mc.flags & MOVE_FILE))
+               return NULL;
+
+       mapping = vma->vm_file->f_mapping;
+       pgoff = linear_page_index(vma, addr);
+
+       /* page is moved even if it's not RSS of this task(page-faulted). */
+#ifdef CONFIG_SWAP
+       /* shmem/tmpfs may report page out on swap: account for that too. */
+       if (shmem_mapping(mapping)) {
+               page = find_get_entry(mapping, pgoff);
+               if (radix_tree_exceptional_entry(page)) {
+                       swp_entry_t swp = radix_to_swp_entry(page);
+                       if (do_swap_account)
+                               *entry = swp;
+                       page = find_get_page(swap_address_space(swp), swp.val);
+               }
+       } else
+               page = find_get_page(mapping, pgoff);
+#else
+       page = find_get_page(mapping, pgoff);
+#endif
+       return page;
+}
+
+/**
+ * mem_cgroup_move_account - move account of the page
+ * @page: the page
+ * @nr_pages: number of regular pages (>1 for huge pages)
+ * @from: mem_cgroup which the page is moved from.
+ * @to:        mem_cgroup which the page is moved to. @from != @to.
+ *
+ * The caller must confirm following.
+ * - page is not on LRU (isolate_page() is useful.)
+ * - compound_lock is held when nr_pages > 1
+ *
+ * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
+ * from old cgroup.
+ */
+static int mem_cgroup_move_account(struct page *page,
+                                  unsigned int nr_pages,
+                                  struct mem_cgroup *from,
+                                  struct mem_cgroup *to)
+{
+       unsigned long flags;
+       int ret;
+
+       VM_BUG_ON(from == to);
+       VM_BUG_ON_PAGE(PageLRU(page), page);
+       /*
+        * The page is isolated from LRU. So, collapse function
+        * will not handle this page. But page splitting can happen.
+        * Do this check under compound_page_lock(). The caller should
+        * hold it.
+        */
+       ret = -EBUSY;
+       if (nr_pages > 1 && !PageTransHuge(page))
+               goto out;
+
+       /*
+        * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
+        * of its source page while we change it: page migration takes
+        * both pages off the LRU, but page cache replacement doesn't.
+        */
+       if (!trylock_page(page))
+               goto out;
+
+       ret = -EINVAL;
+       if (page->mem_cgroup != from)
+               goto out_unlock;
+
+       spin_lock_irqsave(&from->move_lock, flags);
+
+       if (!PageAnon(page) && page_mapped(page)) {
+               __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+                              nr_pages);
+               __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+                              nr_pages);
+       }
+
+       if (PageWriteback(page)) {
+               __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+                              nr_pages);
+               __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+                              nr_pages);
+       }
+
+       /*
+        * It is safe to change page->mem_cgroup here because the page
+        * is referenced, charged, and isolated - we can't race with
+        * uncharging, charging, migration, or LRU putback.
+        */
+
+       /* caller should have done css_get */
+       page->mem_cgroup = to;
+       spin_unlock_irqrestore(&from->move_lock, flags);
+
+       ret = 0;
+
+       local_lock_irq(event_lock);
+       mem_cgroup_charge_statistics(to, page, nr_pages);
+       memcg_check_events(to, page);
+       mem_cgroup_charge_statistics(from, page, -nr_pages);
+       memcg_check_events(from, page);
+       local_unlock_irq(event_lock);
+out_unlock:
+       unlock_page(page);
+out:
+       return ret;
+}
+
+static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
+               unsigned long addr, pte_t ptent, union mc_target *target)
+{
+       struct page *page = NULL;
+       enum mc_target_type ret = MC_TARGET_NONE;
+       swp_entry_t ent = { .val = 0 };
+
+       if (pte_present(ptent))
+               page = mc_handle_present_pte(vma, addr, ptent);
+       else if (is_swap_pte(ptent))
+               page = mc_handle_swap_pte(vma, addr, ptent, &ent);
+       else if (pte_none(ptent))
+               page = mc_handle_file_pte(vma, addr, ptent, &ent);
+
+       if (!page && !ent.val)
+               return ret;
+       if (page) {
+               /*
+                * Do only loose check w/o serialization.
+                * mem_cgroup_move_account() checks the page is valid or
+                * not under LRU exclusion.
+                */
+               if (page->mem_cgroup == mc.from) {
+                       ret = MC_TARGET_PAGE;
+                       if (target)
+                               target->page = page;
+               }
+               if (!ret || !target)
+                       put_page(page);
+       }
+       /* There is a swap entry and a page doesn't exist or isn't charged */
+       if (ent.val && !ret &&
+           mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
+               ret = MC_TARGET_SWAP;
+               if (target)
+                       target->ent = ent;
+       }
+       return ret;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+/*
+ * We don't consider swapping or file mapped pages because THP does not
+ * support them for now.
+ * Caller should make sure that pmd_trans_huge(pmd) is true.
+ */
+static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
+               unsigned long addr, pmd_t pmd, union mc_target *target)
+{
+       struct page *page = NULL;
+       enum mc_target_type ret = MC_TARGET_NONE;
+
+       page = pmd_page(pmd);
+       VM_BUG_ON_PAGE(!page || !PageHead(page), page);
+       if (!(mc.flags & MOVE_ANON))
+               return ret;
+       if (page->mem_cgroup == mc.from) {
+               ret = MC_TARGET_PAGE;
+               if (target) {
+                       get_page(page);
+                       target->page = page;
+               }
+       }
+       return ret;
+}
+#else
+static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
+               unsigned long addr, pmd_t pmd, union mc_target *target)
+{
+       return MC_TARGET_NONE;
+}
+#endif
+
+static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
+                                       unsigned long addr, unsigned long end,
+                                       struct mm_walk *walk)
+{
+       struct vm_area_struct *vma = walk->vma;
+       pte_t *pte;
+       spinlock_t *ptl;
+
+       if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+               if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
+                       mc.precharge += HPAGE_PMD_NR;
+               spin_unlock(ptl);
+               return 0;
+       }
+
+       if (pmd_trans_unstable(pmd))
+               return 0;
+       pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+       for (; addr != end; pte++, addr += PAGE_SIZE)
+               if (get_mctgt_type(vma, addr, *pte, NULL))
+                       mc.precharge++; /* increment precharge temporarily */
+       pte_unmap_unlock(pte - 1, ptl);
+       cond_resched();
+
+       return 0;
+}
+
+static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
+{
+       unsigned long precharge;
+
+       struct mm_walk mem_cgroup_count_precharge_walk = {
+               .pmd_entry = mem_cgroup_count_precharge_pte_range,
+               .mm = mm,
+       };
+       down_read(&mm->mmap_sem);
+       walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
+       up_read(&mm->mmap_sem);
+
+       precharge = mc.precharge;
+       mc.precharge = 0;
+
+       return precharge;
+}
+
+static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+{
+       unsigned long precharge = mem_cgroup_count_precharge(mm);
+
+       VM_BUG_ON(mc.moving_task);
+       mc.moving_task = current;
+       return mem_cgroup_do_precharge(precharge);
+}
+
+/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
+static void __mem_cgroup_clear_mc(void)
+{
+       struct mem_cgroup *from = mc.from;
+       struct mem_cgroup *to = mc.to;
+
+       /* we must uncharge all the leftover precharges from mc.to */
+       if (mc.precharge) {
+               cancel_charge(mc.to, mc.precharge);
+               mc.precharge = 0;
+       }
+       /*
+        * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
+        * we must uncharge here.
+        */
+       if (mc.moved_charge) {
+               cancel_charge(mc.from, mc.moved_charge);
+               mc.moved_charge = 0;
+       }
+       /* we must fixup refcnts and charges */
+       if (mc.moved_swap) {
+               /* uncharge swap account from the old cgroup */
+               if (!mem_cgroup_is_root(mc.from))
+                       page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
+
+               /*
+                * we charged both to->memory and to->memsw, so we
+                * should uncharge to->memory.
+                */
+               if (!mem_cgroup_is_root(mc.to))
+                       page_counter_uncharge(&mc.to->memory, mc.moved_swap);
+
+               css_put_many(&mc.from->css, mc.moved_swap);
+
+               /* we've already done css_get(mc.to) */
+               mc.moved_swap = 0;
+       }
+       memcg_oom_recover(from);
+       memcg_oom_recover(to);
+       wake_up_all(&mc.waitq);
+}
+
+static void mem_cgroup_clear_mc(void)
+{
+       /*
+        * we must clear moving_task before waking up waiters at the end of
+        * task migration.
+        */
+       mc.moving_task = NULL;
+       __mem_cgroup_clear_mc();
+       spin_lock(&mc.lock);
+       mc.from = NULL;
+       mc.to = NULL;
+       spin_unlock(&mc.lock);
+}
+
+static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
+                                struct cgroup_taskset *tset)
+{
+       struct task_struct *p = cgroup_taskset_first(tset);
+       int ret = 0;
+       struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+       unsigned long move_flags;
+
+       /*
+        * We are now commited to this value whatever it is. Changes in this
+        * tunable will only affect upcoming migrations, not the current one.
+        * So we need to save it, and keep it going.
+        */
+       move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
+       if (move_flags) {
+               struct mm_struct *mm;
+               struct mem_cgroup *from = mem_cgroup_from_task(p);
+
+               VM_BUG_ON(from == memcg);
+
+               mm = get_task_mm(p);
+               if (!mm)
+                       return 0;
+               /* We move charges only when we move a owner of the mm */
+               if (mm->owner == p) {
+                       VM_BUG_ON(mc.from);
+                       VM_BUG_ON(mc.to);
+                       VM_BUG_ON(mc.precharge);
+                       VM_BUG_ON(mc.moved_charge);
+                       VM_BUG_ON(mc.moved_swap);
+
+                       spin_lock(&mc.lock);
+                       mc.from = from;
+                       mc.to = memcg;
+                       mc.flags = move_flags;
+                       spin_unlock(&mc.lock);
+                       /* We set mc.moving_task later */
+
+                       ret = mem_cgroup_precharge_mc(mm);
+                       if (ret)
+                               mem_cgroup_clear_mc();
+               }
+               mmput(mm);
+       }
+       return ret;
+}
+
+static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
+                                    struct cgroup_taskset *tset)
+{
+       if (mc.to)
+               mem_cgroup_clear_mc();
+}
+
+static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
+                               unsigned long addr, unsigned long end,
+                               struct mm_walk *walk)
+{
+       int ret = 0;
+       struct vm_area_struct *vma = walk->vma;
+       pte_t *pte;
+       spinlock_t *ptl;
+       enum mc_target_type target_type;
+       union mc_target target;
+       struct page *page;
+
+       /*
+        * We don't take compound_lock() here but no race with splitting thp
+        * happens because:
+        *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
+        *    under splitting, which means there's no concurrent thp split,
+        *  - if another thread runs into split_huge_page() just after we
+        *    entered this if-block, the thread must wait for page table lock
+        *    to be unlocked in __split_huge_page_splitting(), where the main
+        *    part of thp split is not executed yet.
+        */
+       if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+               if (mc.precharge < HPAGE_PMD_NR) {
+                       spin_unlock(ptl);
+                       return 0;
+               }
+               target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
+               if (target_type == MC_TARGET_PAGE) {
+                       page = target.page;
+                       if (!isolate_lru_page(page)) {
+                               if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
+                                                            mc.from, mc.to)) {
+                                       mc.precharge -= HPAGE_PMD_NR;
+                                       mc.moved_charge += HPAGE_PMD_NR;
+                               }
+                               putback_lru_page(page);
+                       }
+                       put_page(page);
+               }
+               spin_unlock(ptl);
+               return 0;
+       }
+
+       if (pmd_trans_unstable(pmd))
+               return 0;
+retry:
+       pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+       for (; addr != end; addr += PAGE_SIZE) {
+               pte_t ptent = *(pte++);
+               swp_entry_t ent;
+
+               if (!mc.precharge)
+                       break;
+
+               switch (get_mctgt_type(vma, addr, ptent, &target)) {
+               case MC_TARGET_PAGE:
+                       page = target.page;
+                       if (isolate_lru_page(page))
+                               goto put;
+                       if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
+                               mc.precharge--;
+                               /* we uncharge from mc.from later. */
+                               mc.moved_charge++;
+                       }
+                       putback_lru_page(page);
+put:                   /* get_mctgt_type() gets the page */
+                       put_page(page);
+                       break;
+               case MC_TARGET_SWAP:
+                       ent = target.ent;
+                       if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
+                               mc.precharge--;
+                               /* we fixup refcnts and charges later. */
+                               mc.moved_swap++;
+                       }
+                       break;
+               default:
+                       break;
+               }
+       }
+       pte_unmap_unlock(pte - 1, ptl);
+       cond_resched();
+
+       if (addr != end) {
+               /*
+                * We have consumed all precharges we got in can_attach().
+                * We try charge one by one, but don't do any additional
+                * charges to mc.to if we have failed in charge once in attach()
+                * phase.
+                */
+               ret = mem_cgroup_do_precharge(1);
+               if (!ret)
+                       goto retry;
+       }
+
+       return ret;
+}
+
+static void mem_cgroup_move_charge(struct mm_struct *mm)
+{
+       struct mm_walk mem_cgroup_move_charge_walk = {
+               .pmd_entry = mem_cgroup_move_charge_pte_range,
+               .mm = mm,
+       };
+
+       lru_add_drain_all();
+       /*
+        * Signal mem_cgroup_begin_page_stat() to take the memcg's
+        * move_lock while we're moving its pages to another memcg.
+        * Then wait for already started RCU-only updates to finish.
+        */
+       atomic_inc(&mc.from->moving_account);
+       synchronize_rcu();
+retry:
+       if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
+               /*
+                * Someone who are holding the mmap_sem might be waiting in
+                * waitq. So we cancel all extra charges, wake up all waiters,
+                * and retry. Because we cancel precharges, we might not be able
+                * to move enough charges, but moving charge is a best-effort
+                * feature anyway, so it wouldn't be a big problem.
+                */
+               __mem_cgroup_clear_mc();
+               cond_resched();
+               goto retry;
+       }
+       /*
+        * When we have consumed all precharges and failed in doing
+        * additional charge, the page walk just aborts.
+        */
+       walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
+       up_read(&mm->mmap_sem);
+       atomic_dec(&mc.from->moving_account);
+}
+
+static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
+                                struct cgroup_taskset *tset)
+{
+       struct task_struct *p = cgroup_taskset_first(tset);
+       struct mm_struct *mm = get_task_mm(p);
+
+       if (mm) {
+               if (mc.to)
+                       mem_cgroup_move_charge(mm);
+               mmput(mm);
+       }
+       if (mc.to)
+               mem_cgroup_clear_mc();
+}
+#else  /* !CONFIG_MMU */
+static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
+                                struct cgroup_taskset *tset)
+{
+       return 0;
+}
+static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
+                                    struct cgroup_taskset *tset)
+{
+}
+static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
+                                struct cgroup_taskset *tset)
+{
+}
+#endif
+
+/*
+ * Cgroup retains root cgroups across [un]mount cycles making it necessary
+ * to verify whether we're attached to the default hierarchy on each mount
+ * attempt.
+ */
+static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
+{
+       /*
+        * use_hierarchy is forced on the default hierarchy.  cgroup core
+        * guarantees that @root doesn't have any children, so turning it
+        * on for the root memcg is enough.
+        */
+       if (cgroup_on_dfl(root_css->cgroup))
+               root_mem_cgroup->use_hierarchy = true;
+       else
+               root_mem_cgroup->use_hierarchy = false;
+}
+
+static u64 memory_current_read(struct cgroup_subsys_state *css,
+                              struct cftype *cft)
+{
+       return mem_cgroup_usage(mem_cgroup_from_css(css), false);
+}
+
+static int memory_low_show(struct seq_file *m, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+       unsigned long low = READ_ONCE(memcg->low);
+
+       if (low == PAGE_COUNTER_MAX)
+               seq_puts(m, "max\n");
+       else
+               seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
+
+       return 0;
+}
+
+static ssize_t memory_low_write(struct kernfs_open_file *of,
+                               char *buf, size_t nbytes, loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+       unsigned long low;
+       int err;
+
+       buf = strstrip(buf);
+       err = page_counter_memparse(buf, "max", &low);
+       if (err)
+               return err;
+
+       memcg->low = low;
+
+       return nbytes;
+}
+
+static int memory_high_show(struct seq_file *m, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+       unsigned long high = READ_ONCE(memcg->high);
+
+       if (high == PAGE_COUNTER_MAX)
+               seq_puts(m, "max\n");
+       else
+               seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
+
+       return 0;
+}
+
+static ssize_t memory_high_write(struct kernfs_open_file *of,
+                                char *buf, size_t nbytes, loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+       unsigned long high;
+       int err;
+
+       buf = strstrip(buf);
+       err = page_counter_memparse(buf, "max", &high);
+       if (err)
+               return err;
+
+       memcg->high = high;
+
+       return nbytes;
+}
+
+static int memory_max_show(struct seq_file *m, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+       unsigned long max = READ_ONCE(memcg->memory.limit);
+
+       if (max == PAGE_COUNTER_MAX)
+               seq_puts(m, "max\n");
+       else
+               seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
+
+       return 0;
+}
+
+static ssize_t memory_max_write(struct kernfs_open_file *of,
+                               char *buf, size_t nbytes, loff_t off)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+       unsigned long max;
+       int err;
+
+       buf = strstrip(buf);
+       err = page_counter_memparse(buf, "max", &max);
+       if (err)
+               return err;
+
+       err = mem_cgroup_resize_limit(memcg, max);
+       if (err)
+               return err;
+
+       return nbytes;
+}
+
+static int memory_events_show(struct seq_file *m, void *v)
+{
+       struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+
+       seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
+       seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
+       seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
+       seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
+
+       return 0;
+}
+
+static struct cftype memory_files[] = {
+       {
+               .name = "current",
+               .read_u64 = memory_current_read,
+       },
+       {
+               .name = "low",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .seq_show = memory_low_show,
+               .write = memory_low_write,
+       },
+       {
+               .name = "high",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .seq_show = memory_high_show,
+               .write = memory_high_write,
+       },
+       {
+               .name = "max",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .seq_show = memory_max_show,
+               .write = memory_max_write,
+       },
+       {
+               .name = "events",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .seq_show = memory_events_show,
+       },
+       { }     /* terminate */
+};
+
+struct cgroup_subsys memory_cgrp_subsys = {
+       .css_alloc = mem_cgroup_css_alloc,
+       .css_online = mem_cgroup_css_online,
+       .css_offline = mem_cgroup_css_offline,
+       .css_free = mem_cgroup_css_free,
+       .css_reset = mem_cgroup_css_reset,
+       .can_attach = mem_cgroup_can_attach,
+       .cancel_attach = mem_cgroup_cancel_attach,
+       .attach = mem_cgroup_move_task,
+       .bind = mem_cgroup_bind,
+       .dfl_cftypes = memory_files,
+       .legacy_cftypes = mem_cgroup_legacy_files,
+       .early_init = 0,
+};
+
+/**
+ * mem_cgroup_events - count memory events against a cgroup
+ * @memcg: the memory cgroup
+ * @idx: the event index
+ * @nr: the number of events to account for
+ */
+void mem_cgroup_events(struct mem_cgroup *memcg,
+                      enum mem_cgroup_events_index idx,
+                      unsigned int nr)
+{
+       this_cpu_add(memcg->stat->events[idx], nr);
+}
+
+/**
+ * mem_cgroup_low - check if memory consumption is below the normal range
+ * @root: the highest ancestor to consider
+ * @memcg: the memory cgroup to check
+ *
+ * Returns %true if memory consumption of @memcg, and that of all
+ * configurable ancestors up to @root, is below the normal range.
+ */
+bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
+{
+       if (mem_cgroup_disabled())
+               return false;
+
+       /*
+        * The toplevel group doesn't have a configurable range, so
+        * it's never low when looked at directly, and it is not
+        * considered an ancestor when assessing the hierarchy.
+        */
+
+       if (memcg == root_mem_cgroup)
+               return false;
+
+       if (page_counter_read(&memcg->memory) >= memcg->low)
+               return false;
+
+       while (memcg != root) {
+               memcg = parent_mem_cgroup(memcg);
+
+               if (memcg == root_mem_cgroup)
+                       break;
+
+               if (page_counter_read(&memcg->memory) >= memcg->low)
+                       return false;
+       }
+       return true;
+}
+
+/**
+ * mem_cgroup_try_charge - try charging a page
+ * @page: page to charge
+ * @mm: mm context of the victim
+ * @gfp_mask: reclaim mode
+ * @memcgp: charged memcg return
+ *
+ * Try to charge @page to the memcg that @mm belongs to, reclaiming
+ * pages according to @gfp_mask if necessary.
+ *
+ * Returns 0 on success, with *@memcgp pointing to the charged memcg.
+ * Otherwise, an error code is returned.
+ *
+ * After page->mapping has been set up, the caller must finalize the
+ * charge with mem_cgroup_commit_charge().  Or abort the transaction
+ * with mem_cgroup_cancel_charge() in case page instantiation fails.
+ */
+int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
+                         gfp_t gfp_mask, struct mem_cgroup **memcgp)
+{
+       struct mem_cgroup *memcg = NULL;
+       unsigned int nr_pages = 1;
+       int ret = 0;
+
+       if (mem_cgroup_disabled())
+               goto out;
+
+       if (PageSwapCache(page)) {
+               /*
+                * Every swap fault against a single page tries to charge the
+                * page, bail as early as possible.  shmem_unuse() encounters
+                * already charged pages, too.  The USED bit is protected by
+                * the page lock, which serializes swap cache removal, which
+                * in turn serializes uncharging.
+                */
+               if (page->mem_cgroup)
+                       goto out;
+       }
+
+       if (PageTransHuge(page)) {
+               nr_pages <<= compound_order(page);
+               VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+       }
+
+       if (do_swap_account && PageSwapCache(page))
+               memcg = try_get_mem_cgroup_from_page(page);
+       if (!memcg)
+               memcg = get_mem_cgroup_from_mm(mm);
+
+       ret = try_charge(memcg, gfp_mask, nr_pages);
+
+       css_put(&memcg->css);
+
+       if (ret == -EINTR) {
+               memcg = root_mem_cgroup;
+               ret = 0;
+       }
+out:
+       *memcgp = memcg;
+       return ret;
+}
+
+/**
+ * mem_cgroup_commit_charge - commit a page charge
+ * @page: page to charge
+ * @memcg: memcg to charge the page to
+ * @lrucare: page might be on LRU already
+ *
+ * Finalize a charge transaction started by mem_cgroup_try_charge(),
+ * after page->mapping has been set up.  This must happen atomically
+ * as part of the page instantiation, i.e. under the page table lock
+ * for anonymous pages, under the page lock for page and swap cache.
+ *
+ * In addition, the page must not be on the LRU during the commit, to
+ * prevent racing with task migration.  If it might be, use @lrucare.
+ *
+ * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
+ */
+void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
+                             bool lrucare)
+{
+       unsigned int nr_pages = 1;
+
+       VM_BUG_ON_PAGE(!page->mapping, page);
+       VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
+
+       if (mem_cgroup_disabled())
+               return;
+       /*
+        * Swap faults will attempt to charge the same page multiple
+        * times.  But reuse_swap_page() might have removed the page
+        * from swapcache already, so we can't check PageSwapCache().
+        */
+       if (!memcg)
+               return;
+
+       commit_charge(page, memcg, lrucare);
+
+       if (PageTransHuge(page)) {
+               nr_pages <<= compound_order(page);
+               VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+       }
+
+       local_lock_irq(event_lock);
+       mem_cgroup_charge_statistics(memcg, page, nr_pages);
+       memcg_check_events(memcg, page);
+       local_unlock_irq(event_lock);
+
+       if (do_swap_account && PageSwapCache(page)) {
+               swp_entry_t entry = { .val = page_private(page) };
+               /*
+                * The swap entry might not get freed for a long time,
+                * let's not wait for it.  The page already received a
+                * memory+swap charge, drop the swap entry duplicate.
+                */
+               mem_cgroup_uncharge_swap(entry);
+       }
+}
+
+/**
+ * mem_cgroup_cancel_charge - cancel a page charge
+ * @page: page to charge
+ * @memcg: memcg to charge the page to
+ *
+ * Cancel a charge transaction started by mem_cgroup_try_charge().
+ */
+void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
+{
+       unsigned int nr_pages = 1;
+
+       if (mem_cgroup_disabled())
+               return;
+       /*
+        * Swap faults will attempt to charge the same page multiple
+        * times.  But reuse_swap_page() might have removed the page
+        * from swapcache already, so we can't check PageSwapCache().
+        */
+       if (!memcg)
+               return;
+
+       if (PageTransHuge(page)) {
+               nr_pages <<= compound_order(page);
+               VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+       }
+
+       cancel_charge(memcg, nr_pages);
+}
+
+static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
+                          unsigned long nr_anon, unsigned long nr_file,
+                          unsigned long nr_huge, struct page *dummy_page)
+{
+       unsigned long nr_pages = nr_anon + nr_file;
+       unsigned long flags;
+
+       if (!mem_cgroup_is_root(memcg)) {
+               page_counter_uncharge(&memcg->memory, nr_pages);
+               if (do_swap_account)
+                       page_counter_uncharge(&memcg->memsw, nr_pages);
+               memcg_oom_recover(memcg);
+       }
+
+       local_lock_irqsave(event_lock, flags);
+       __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
+       __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
+       __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
+       __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
+       __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
+       memcg_check_events(memcg, dummy_page);
+       local_unlock_irqrestore(event_lock, flags);
+
+       if (!mem_cgroup_is_root(memcg))
+               css_put_many(&memcg->css, nr_pages);
+}
+
+static void uncharge_list(struct list_head *page_list)
+{
+       struct mem_cgroup *memcg = NULL;
+       unsigned long nr_anon = 0;
+       unsigned long nr_file = 0;
+       unsigned long nr_huge = 0;
+       unsigned long pgpgout = 0;
+       struct list_head *next;
+       struct page *page;
+
+       next = page_list->next;
+       do {
+               unsigned int nr_pages = 1;
+
+               page = list_entry(next, struct page, lru);
+               next = page->lru.next;
+
+               VM_BUG_ON_PAGE(PageLRU(page), page);
+               VM_BUG_ON_PAGE(page_count(page), page);
+
+               if (!page->mem_cgroup)
+                       continue;
+
+               /*
+                * Nobody should be changing or seriously looking at
+                * page->mem_cgroup at this point, we have fully
+                * exclusive access to the page.
+                */
+
+               if (memcg != page->mem_cgroup) {
+                       if (memcg) {
+                               uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
+                                              nr_huge, page);
+                               pgpgout = nr_anon = nr_file = nr_huge = 0;
+                       }
+                       memcg = page->mem_cgroup;
+               }
+
+               if (PageTransHuge(page)) {
+                       nr_pages <<= compound_order(page);
+                       VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+                       nr_huge += nr_pages;
+               }
+
+               if (PageAnon(page))
+                       nr_anon += nr_pages;
+               else
+                       nr_file += nr_pages;
+
+               page->mem_cgroup = NULL;
+
+               pgpgout++;
+       } while (next != page_list);
+
+       if (memcg)
+               uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
+                              nr_huge, page);
+}
+
+/**
+ * mem_cgroup_uncharge - uncharge a page
+ * @page: page to uncharge
+ *
+ * Uncharge a page previously charged with mem_cgroup_try_charge() and
+ * mem_cgroup_commit_charge().
+ */
+void mem_cgroup_uncharge(struct page *page)
+{
+       if (mem_cgroup_disabled())
+               return;
+
+       /* Don't touch page->lru of any random page, pre-check: */
+       if (!page->mem_cgroup)
+               return;
+
+       INIT_LIST_HEAD(&page->lru);
+       uncharge_list(&page->lru);
+}
+
+/**
+ * mem_cgroup_uncharge_list - uncharge a list of page
+ * @page_list: list of pages to uncharge
+ *
+ * Uncharge a list of pages previously charged with
+ * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
+ */
+void mem_cgroup_uncharge_list(struct list_head *page_list)
+{
+       if (mem_cgroup_disabled())
+               return;
+
+       if (!list_empty(page_list))
+               uncharge_list(page_list);
+}
+
+/**
+ * mem_cgroup_migrate - migrate a charge to another page
+ * @oldpage: currently charged page
+ * @newpage: page to transfer the charge to
+ * @lrucare: either or both pages might be on the LRU already
+ *
+ * Migrate the charge from @oldpage to @newpage.
+ *
+ * Both pages must be locked, @newpage->mapping must be set up.
+ */
+void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
+                       bool lrucare)
+{
+       struct mem_cgroup *memcg;
+       int isolated;
+
+       VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
+       VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
+       VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
+       VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
+       VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
+       VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
+                      newpage);
+
+       if (mem_cgroup_disabled())
+               return;
+
+       /* Page cache replacement: new page already charged? */
+       if (newpage->mem_cgroup)
+               return;
+
+       /*
+        * Swapcache readahead pages can get migrated before being
+        * charged, and migration from compaction can happen to an
+        * uncharged page when the PFN walker finds a page that
+        * reclaim just put back on the LRU but has not released yet.
+        */
+       memcg = oldpage->mem_cgroup;
+       if (!memcg)
+               return;
+
+       if (lrucare)
+               lock_page_lru(oldpage, &isolated);
+
+       oldpage->mem_cgroup = NULL;
+
+       if (lrucare)
+               unlock_page_lru(oldpage, isolated);
+
+       commit_charge(newpage, memcg, lrucare);
+}
+
+/*
+ * subsys_initcall() for memory controller.
+ *
+ * Some parts like hotcpu_notifier() have to be initialized from this context
+ * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
+ * everything that doesn't depend on a specific mem_cgroup structure should
+ * be initialized from here.
+ */
+static int __init mem_cgroup_init(void)
+{
+       int cpu, node;
+
+       hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
+
+       for_each_possible_cpu(cpu)
+               INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
+                         drain_local_stock);
+
+       for_each_node(node) {
+               struct mem_cgroup_tree_per_node *rtpn;
+               int zone;
+
+               rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
+                                   node_online(node) ? node : NUMA_NO_NODE);
+
+               for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+                       struct mem_cgroup_tree_per_zone *rtpz;
+
+                       rtpz = &rtpn->rb_tree_per_zone[zone];
+                       rtpz->rb_root = RB_ROOT;
+                       spin_lock_init(&rtpz->lock);
+               }
+               soft_limit_tree.rb_tree_per_node[node] = rtpn;
+       }
+
+       return 0;
+}
+subsys_initcall(mem_cgroup_init);
+
+#ifdef CONFIG_MEMCG_SWAP
+/**
+ * mem_cgroup_swapout - transfer a memsw charge to swap
+ * @page: page whose memsw charge to transfer
+ * @entry: swap entry to move the charge to
+ *
+ * Transfer the memsw charge of @page to @entry.
+ */
+void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
+{
+       struct mem_cgroup *memcg;
+       unsigned short oldid;
+       unsigned long flags;
+
+       VM_BUG_ON_PAGE(PageLRU(page), page);
+       VM_BUG_ON_PAGE(page_count(page), page);
+
+       if (!do_swap_account)
+               return;
+
+       memcg = page->mem_cgroup;
+
+       /* Readahead page, never charged */
+       if (!memcg)
+               return;
+
+       oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
+       VM_BUG_ON_PAGE(oldid, page);
+       mem_cgroup_swap_statistics(memcg, true);
+
+       page->mem_cgroup = NULL;
+
+       if (!mem_cgroup_is_root(memcg))
+               page_counter_uncharge(&memcg->memory, 1);
+
+       local_lock_irqsave(event_lock, flags);
+       /* Caller disabled preemption with mapping->tree_lock */
+       mem_cgroup_charge_statistics(memcg, page, -1);
+       memcg_check_events(memcg, page);
+       local_unlock_irqrestore(event_lock, flags);
+}
+
+/**
+ * mem_cgroup_uncharge_swap - uncharge a swap entry
+ * @entry: swap entry to uncharge
+ *
+ * Drop the memsw charge associated with @entry.
+ */
+void mem_cgroup_uncharge_swap(swp_entry_t entry)
+{
+       struct mem_cgroup *memcg;
+       unsigned short id;
+
+       if (!do_swap_account)
+               return;
+
+       id = swap_cgroup_record(entry, 0);
+       rcu_read_lock();
+       memcg = mem_cgroup_from_id(id);
+       if (memcg) {
+               if (!mem_cgroup_is_root(memcg))
+                       page_counter_uncharge(&memcg->memsw, 1);
+               mem_cgroup_swap_statistics(memcg, false);
+               css_put(&memcg->css);
+       }
+       rcu_read_unlock();
+}
+
+/* for remember boot option*/
+#ifdef CONFIG_MEMCG_SWAP_ENABLED
+static int really_do_swap_account __initdata = 1;
+#else
+static int really_do_swap_account __initdata;
+#endif
+
+static int __init enable_swap_account(char *s)
+{
+       if (!strcmp(s, "1"))
+               really_do_swap_account = 1;
+       else if (!strcmp(s, "0"))
+               really_do_swap_account = 0;
+       return 1;
+}
+__setup("swapaccount=", enable_swap_account);
+
+static struct cftype memsw_cgroup_files[] = {
+       {
+               .name = "memsw.usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "memsw.max_usage_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "memsw.limit_in_bytes",
+               .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
+               .write = mem_cgroup_write,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       {
+               .name = "memsw.failcnt",
+               .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
+               .write = mem_cgroup_reset,
+               .read_u64 = mem_cgroup_read_u64,
+       },
+       { },    /* terminate */
+};
+
+static int __init mem_cgroup_swap_init(void)
+{
+       if (!mem_cgroup_disabled() && really_do_swap_account) {
+               do_swap_account = 1;
+               WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
+                                                 memsw_cgroup_files));
+       }
+       return 0;
+}
+subsys_initcall(mem_cgroup_swap_init);
+
+#endif /* CONFIG_MEMCG_SWAP */