Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / hugetlb.c
diff --git a/kernel/mm/hugetlb.c b/kernel/mm/hugetlb.c
new file mode 100644 (file)
index 0000000..271e443
--- /dev/null
@@ -0,0 +1,3957 @@
+/*
+ * Generic hugetlb support.
+ * (C) Nadia Yvette Chambers, April 2004
+ */
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/seq_file.h>
+#include <linux/sysctl.h>
+#include <linux/highmem.h>
+#include <linux/mmu_notifier.h>
+#include <linux/nodemask.h>
+#include <linux/pagemap.h>
+#include <linux/mempolicy.h>
+#include <linux/compiler.h>
+#include <linux/cpuset.h>
+#include <linux/mutex.h>
+#include <linux/bootmem.h>
+#include <linux/sysfs.h>
+#include <linux/slab.h>
+#include <linux/rmap.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/page-isolation.h>
+#include <linux/jhash.h>
+
+#include <asm/page.h>
+#include <asm/pgtable.h>
+#include <asm/tlb.h>
+
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <linux/hugetlb_cgroup.h>
+#include <linux/node.h>
+#include "internal.h"
+
+int hugepages_treat_as_movable;
+
+int hugetlb_max_hstate __read_mostly;
+unsigned int default_hstate_idx;
+struct hstate hstates[HUGE_MAX_HSTATE];
+
+__initdata LIST_HEAD(huge_boot_pages);
+
+/* for command line parsing */
+static struct hstate * __initdata parsed_hstate;
+static unsigned long __initdata default_hstate_max_huge_pages;
+static unsigned long __initdata default_hstate_size;
+
+/*
+ * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
+ * free_huge_pages, and surplus_huge_pages.
+ */
+DEFINE_SPINLOCK(hugetlb_lock);
+
+/*
+ * Serializes faults on the same logical page.  This is used to
+ * prevent spurious OOMs when the hugepage pool is fully utilized.
+ */
+static int num_fault_mutexes;
+static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
+
+/* Forward declaration */
+static int hugetlb_acct_memory(struct hstate *h, long delta);
+
+static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
+{
+       bool free = (spool->count == 0) && (spool->used_hpages == 0);
+
+       spin_unlock(&spool->lock);
+
+       /* If no pages are used, and no other handles to the subpool
+        * remain, give up any reservations mased on minimum size and
+        * free the subpool */
+       if (free) {
+               if (spool->min_hpages != -1)
+                       hugetlb_acct_memory(spool->hstate,
+                                               -spool->min_hpages);
+               kfree(spool);
+       }
+}
+
+struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
+                                               long min_hpages)
+{
+       struct hugepage_subpool *spool;
+
+       spool = kzalloc(sizeof(*spool), GFP_KERNEL);
+       if (!spool)
+               return NULL;
+
+       spin_lock_init(&spool->lock);
+       spool->count = 1;
+       spool->max_hpages = max_hpages;
+       spool->hstate = h;
+       spool->min_hpages = min_hpages;
+
+       if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
+               kfree(spool);
+               return NULL;
+       }
+       spool->rsv_hpages = min_hpages;
+
+       return spool;
+}
+
+void hugepage_put_subpool(struct hugepage_subpool *spool)
+{
+       spin_lock(&spool->lock);
+       BUG_ON(!spool->count);
+       spool->count--;
+       unlock_or_release_subpool(spool);
+}
+
+/*
+ * Subpool accounting for allocating and reserving pages.
+ * Return -ENOMEM if there are not enough resources to satisfy the
+ * the request.  Otherwise, return the number of pages by which the
+ * global pools must be adjusted (upward).  The returned value may
+ * only be different than the passed value (delta) in the case where
+ * a subpool minimum size must be manitained.
+ */
+static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
+                                     long delta)
+{
+       long ret = delta;
+
+       if (!spool)
+               return ret;
+
+       spin_lock(&spool->lock);
+
+       if (spool->max_hpages != -1) {          /* maximum size accounting */
+               if ((spool->used_hpages + delta) <= spool->max_hpages)
+                       spool->used_hpages += delta;
+               else {
+                       ret = -ENOMEM;
+                       goto unlock_ret;
+               }
+       }
+
+       if (spool->min_hpages != -1) {          /* minimum size accounting */
+               if (delta > spool->rsv_hpages) {
+                       /*
+                        * Asking for more reserves than those already taken on
+                        * behalf of subpool.  Return difference.
+                        */
+                       ret = delta - spool->rsv_hpages;
+                       spool->rsv_hpages = 0;
+               } else {
+                       ret = 0;        /* reserves already accounted for */
+                       spool->rsv_hpages -= delta;
+               }
+       }
+
+unlock_ret:
+       spin_unlock(&spool->lock);
+       return ret;
+}
+
+/*
+ * Subpool accounting for freeing and unreserving pages.
+ * Return the number of global page reservations that must be dropped.
+ * The return value may only be different than the passed value (delta)
+ * in the case where a subpool minimum size must be maintained.
+ */
+static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
+                                      long delta)
+{
+       long ret = delta;
+
+       if (!spool)
+               return delta;
+
+       spin_lock(&spool->lock);
+
+       if (spool->max_hpages != -1)            /* maximum size accounting */
+               spool->used_hpages -= delta;
+
+       if (spool->min_hpages != -1) {          /* minimum size accounting */
+               if (spool->rsv_hpages + delta <= spool->min_hpages)
+                       ret = 0;
+               else
+                       ret = spool->rsv_hpages + delta - spool->min_hpages;
+
+               spool->rsv_hpages += delta;
+               if (spool->rsv_hpages > spool->min_hpages)
+                       spool->rsv_hpages = spool->min_hpages;
+       }
+
+       /*
+        * If hugetlbfs_put_super couldn't free spool due to an outstanding
+        * quota reference, free it now.
+        */
+       unlock_or_release_subpool(spool);
+
+       return ret;
+}
+
+static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
+{
+       return HUGETLBFS_SB(inode->i_sb)->spool;
+}
+
+static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
+{
+       return subpool_inode(file_inode(vma->vm_file));
+}
+
+/*
+ * Region tracking -- allows tracking of reservations and instantiated pages
+ *                    across the pages in a mapping.
+ *
+ * The region data structures are embedded into a resv_map and
+ * protected by a resv_map's lock
+ */
+struct file_region {
+       struct list_head link;
+       long from;
+       long to;
+};
+
+static long region_add(struct resv_map *resv, long f, long t)
+{
+       struct list_head *head = &resv->regions;
+       struct file_region *rg, *nrg, *trg;
+
+       spin_lock(&resv->lock);
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+
+       /* Check for and consume any regions we now overlap with. */
+       nrg = rg;
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       break;
+
+               /* If this area reaches higher then extend our area to
+                * include it completely.  If this is not the first area
+                * which we intend to reuse, free it. */
+               if (rg->to > t)
+                       t = rg->to;
+               if (rg != nrg) {
+                       list_del(&rg->link);
+                       kfree(rg);
+               }
+       }
+       nrg->from = f;
+       nrg->to = t;
+       spin_unlock(&resv->lock);
+       return 0;
+}
+
+static long region_chg(struct resv_map *resv, long f, long t)
+{
+       struct list_head *head = &resv->regions;
+       struct file_region *rg, *nrg = NULL;
+       long chg = 0;
+
+retry:
+       spin_lock(&resv->lock);
+       /* Locate the region we are before or in. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* If we are below the current region then a new region is required.
+        * Subtle, allocate a new region at the position but make it zero
+        * size such that we can guarantee to record the reservation. */
+       if (&rg->link == head || t < rg->from) {
+               if (!nrg) {
+                       spin_unlock(&resv->lock);
+                       nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
+                       if (!nrg)
+                               return -ENOMEM;
+
+                       nrg->from = f;
+                       nrg->to   = f;
+                       INIT_LIST_HEAD(&nrg->link);
+                       goto retry;
+               }
+
+               list_add(&nrg->link, rg->link.prev);
+               chg = t - f;
+               goto out_nrg;
+       }
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+       chg = t - f;
+
+       /* Check for and consume any regions we now overlap with. */
+       list_for_each_entry(rg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       goto out;
+
+               /* We overlap with this area, if it extends further than
+                * us then we must extend ourselves.  Account for its
+                * existing reservation. */
+               if (rg->to > t) {
+                       chg += rg->to - t;
+                       t = rg->to;
+               }
+               chg -= rg->to - rg->from;
+       }
+
+out:
+       spin_unlock(&resv->lock);
+       /*  We already know we raced and no longer need the new region */
+       kfree(nrg);
+       return chg;
+out_nrg:
+       spin_unlock(&resv->lock);
+       return chg;
+}
+
+static long region_truncate(struct resv_map *resv, long end)
+{
+       struct list_head *head = &resv->regions;
+       struct file_region *rg, *trg;
+       long chg = 0;
+
+       spin_lock(&resv->lock);
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (end <= rg->to)
+                       break;
+       if (&rg->link == head)
+               goto out;
+
+       /* If we are in the middle of a region then adjust it. */
+       if (end > rg->from) {
+               chg = rg->to - end;
+               rg->to = end;
+               rg = list_entry(rg->link.next, typeof(*rg), link);
+       }
+
+       /* Drop any remaining regions. */
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               chg += rg->to - rg->from;
+               list_del(&rg->link);
+               kfree(rg);
+       }
+
+out:
+       spin_unlock(&resv->lock);
+       return chg;
+}
+
+static long region_count(struct resv_map *resv, long f, long t)
+{
+       struct list_head *head = &resv->regions;
+       struct file_region *rg;
+       long chg = 0;
+
+       spin_lock(&resv->lock);
+       /* Locate each segment we overlap with, and count that overlap. */
+       list_for_each_entry(rg, head, link) {
+               long seg_from;
+               long seg_to;
+
+               if (rg->to <= f)
+                       continue;
+               if (rg->from >= t)
+                       break;
+
+               seg_from = max(rg->from, f);
+               seg_to = min(rg->to, t);
+
+               chg += seg_to - seg_from;
+       }
+       spin_unlock(&resv->lock);
+
+       return chg;
+}
+
+/*
+ * Convert the address within this vma to the page offset within
+ * the mapping, in pagecache page units; huge pages here.
+ */
+static pgoff_t vma_hugecache_offset(struct hstate *h,
+                       struct vm_area_struct *vma, unsigned long address)
+{
+       return ((address - vma->vm_start) >> huge_page_shift(h)) +
+                       (vma->vm_pgoff >> huge_page_order(h));
+}
+
+pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
+                                    unsigned long address)
+{
+       return vma_hugecache_offset(hstate_vma(vma), vma, address);
+}
+
+/*
+ * Return the size of the pages allocated when backing a VMA. In the majority
+ * cases this will be same size as used by the page table entries.
+ */
+unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
+{
+       struct hstate *hstate;
+
+       if (!is_vm_hugetlb_page(vma))
+               return PAGE_SIZE;
+
+       hstate = hstate_vma(vma);
+
+       return 1UL << huge_page_shift(hstate);
+}
+EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
+
+/*
+ * Return the page size being used by the MMU to back a VMA. In the majority
+ * of cases, the page size used by the kernel matches the MMU size. On
+ * architectures where it differs, an architecture-specific version of this
+ * function is required.
+ */
+#ifndef vma_mmu_pagesize
+unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
+{
+       return vma_kernel_pagesize(vma);
+}
+#endif
+
+/*
+ * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
+ * bits of the reservation map pointer, which are always clear due to
+ * alignment.
+ */
+#define HPAGE_RESV_OWNER    (1UL << 0)
+#define HPAGE_RESV_UNMAPPED (1UL << 1)
+#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
+
+/*
+ * These helpers are used to track how many pages are reserved for
+ * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
+ * is guaranteed to have their future faults succeed.
+ *
+ * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
+ * the reserve counters are updated with the hugetlb_lock held. It is safe
+ * to reset the VMA at fork() time as it is not in use yet and there is no
+ * chance of the global counters getting corrupted as a result of the values.
+ *
+ * The private mapping reservation is represented in a subtly different
+ * manner to a shared mapping.  A shared mapping has a region map associated
+ * with the underlying file, this region map represents the backing file
+ * pages which have ever had a reservation assigned which this persists even
+ * after the page is instantiated.  A private mapping has a region map
+ * associated with the original mmap which is attached to all VMAs which
+ * reference it, this region map represents those offsets which have consumed
+ * reservation ie. where pages have been instantiated.
+ */
+static unsigned long get_vma_private_data(struct vm_area_struct *vma)
+{
+       return (unsigned long)vma->vm_private_data;
+}
+
+static void set_vma_private_data(struct vm_area_struct *vma,
+                                                       unsigned long value)
+{
+       vma->vm_private_data = (void *)value;
+}
+
+struct resv_map *resv_map_alloc(void)
+{
+       struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
+       if (!resv_map)
+               return NULL;
+
+       kref_init(&resv_map->refs);
+       spin_lock_init(&resv_map->lock);
+       INIT_LIST_HEAD(&resv_map->regions);
+
+       return resv_map;
+}
+
+void resv_map_release(struct kref *ref)
+{
+       struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
+
+       /* Clear out any active regions before we release the map. */
+       region_truncate(resv_map, 0);
+       kfree(resv_map);
+}
+
+static inline struct resv_map *inode_resv_map(struct inode *inode)
+{
+       return inode->i_mapping->private_data;
+}
+
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
+{
+       VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+       if (vma->vm_flags & VM_MAYSHARE) {
+               struct address_space *mapping = vma->vm_file->f_mapping;
+               struct inode *inode = mapping->host;
+
+               return inode_resv_map(inode);
+
+       } else {
+               return (struct resv_map *)(get_vma_private_data(vma) &
+                                                       ~HPAGE_RESV_MASK);
+       }
+}
+
+static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
+{
+       VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+       VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+
+       set_vma_private_data(vma, (get_vma_private_data(vma) &
+                               HPAGE_RESV_MASK) | (unsigned long)map);
+}
+
+static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
+{
+       VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+       VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+
+       set_vma_private_data(vma, get_vma_private_data(vma) | flags);
+}
+
+static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
+{
+       VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+
+       return (get_vma_private_data(vma) & flag) != 0;
+}
+
+/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
+void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
+{
+       VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+       if (!(vma->vm_flags & VM_MAYSHARE))
+               vma->vm_private_data = (void *)0;
+}
+
+/* Returns true if the VMA has associated reserve pages */
+static int vma_has_reserves(struct vm_area_struct *vma, long chg)
+{
+       if (vma->vm_flags & VM_NORESERVE) {
+               /*
+                * This address is already reserved by other process(chg == 0),
+                * so, we should decrement reserved count. Without decrementing,
+                * reserve count remains after releasing inode, because this
+                * allocated page will go into page cache and is regarded as
+                * coming from reserved pool in releasing step.  Currently, we
+                * don't have any other solution to deal with this situation
+                * properly, so add work-around here.
+                */
+               if (vma->vm_flags & VM_MAYSHARE && chg == 0)
+                       return 1;
+               else
+                       return 0;
+       }
+
+       /* Shared mappings always use reserves */
+       if (vma->vm_flags & VM_MAYSHARE)
+               return 1;
+
+       /*
+        * Only the process that called mmap() has reserves for
+        * private mappings.
+        */
+       if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+               return 1;
+
+       return 0;
+}
+
+static void enqueue_huge_page(struct hstate *h, struct page *page)
+{
+       int nid = page_to_nid(page);
+       list_move(&page->lru, &h->hugepage_freelists[nid]);
+       h->free_huge_pages++;
+       h->free_huge_pages_node[nid]++;
+}
+
+static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
+{
+       struct page *page;
+
+       list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
+               if (!is_migrate_isolate_page(page))
+                       break;
+       /*
+        * if 'non-isolated free hugepage' not found on the list,
+        * the allocation fails.
+        */
+       if (&h->hugepage_freelists[nid] == &page->lru)
+               return NULL;
+       list_move(&page->lru, &h->hugepage_activelist);
+       set_page_refcounted(page);
+       h->free_huge_pages--;
+       h->free_huge_pages_node[nid]--;
+       return page;
+}
+
+/* Movability of hugepages depends on migration support. */
+static inline gfp_t htlb_alloc_mask(struct hstate *h)
+{
+       if (hugepages_treat_as_movable || hugepage_migration_supported(h))
+               return GFP_HIGHUSER_MOVABLE;
+       else
+               return GFP_HIGHUSER;
+}
+
+static struct page *dequeue_huge_page_vma(struct hstate *h,
+                               struct vm_area_struct *vma,
+                               unsigned long address, int avoid_reserve,
+                               long chg)
+{
+       struct page *page = NULL;
+       struct mempolicy *mpol;
+       nodemask_t *nodemask;
+       struct zonelist *zonelist;
+       struct zone *zone;
+       struct zoneref *z;
+       unsigned int cpuset_mems_cookie;
+
+       /*
+        * A child process with MAP_PRIVATE mappings created by their parent
+        * have no page reserves. This check ensures that reservations are
+        * not "stolen". The child may still get SIGKILLed
+        */
+       if (!vma_has_reserves(vma, chg) &&
+                       h->free_huge_pages - h->resv_huge_pages == 0)
+               goto err;
+
+       /* If reserves cannot be used, ensure enough pages are in the pool */
+       if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
+               goto err;
+
+retry_cpuset:
+       cpuset_mems_cookie = read_mems_allowed_begin();
+       zonelist = huge_zonelist(vma, address,
+                                       htlb_alloc_mask(h), &mpol, &nodemask);
+
+       for_each_zone_zonelist_nodemask(zone, z, zonelist,
+                                               MAX_NR_ZONES - 1, nodemask) {
+               if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
+                       page = dequeue_huge_page_node(h, zone_to_nid(zone));
+                       if (page) {
+                               if (avoid_reserve)
+                                       break;
+                               if (!vma_has_reserves(vma, chg))
+                                       break;
+
+                               SetPagePrivate(page);
+                               h->resv_huge_pages--;
+                               break;
+                       }
+               }
+       }
+
+       mpol_cond_put(mpol);
+       if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
+               goto retry_cpuset;
+       return page;
+
+err:
+       return NULL;
+}
+
+/*
+ * common helper functions for hstate_next_node_to_{alloc|free}.
+ * We may have allocated or freed a huge page based on a different
+ * nodes_allowed previously, so h->next_node_to_{alloc|free} might
+ * be outside of *nodes_allowed.  Ensure that we use an allowed
+ * node for alloc or free.
+ */
+static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
+{
+       nid = next_node(nid, *nodes_allowed);
+       if (nid == MAX_NUMNODES)
+               nid = first_node(*nodes_allowed);
+       VM_BUG_ON(nid >= MAX_NUMNODES);
+
+       return nid;
+}
+
+static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
+{
+       if (!node_isset(nid, *nodes_allowed))
+               nid = next_node_allowed(nid, nodes_allowed);
+       return nid;
+}
+
+/*
+ * returns the previously saved node ["this node"] from which to
+ * allocate a persistent huge page for the pool and advance the
+ * next node from which to allocate, handling wrap at end of node
+ * mask.
+ */
+static int hstate_next_node_to_alloc(struct hstate *h,
+                                       nodemask_t *nodes_allowed)
+{
+       int nid;
+
+       VM_BUG_ON(!nodes_allowed);
+
+       nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
+       h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
+
+       return nid;
+}
+
+/*
+ * helper for free_pool_huge_page() - return the previously saved
+ * node ["this node"] from which to free a huge page.  Advance the
+ * next node id whether or not we find a free huge page to free so
+ * that the next attempt to free addresses the next node.
+ */
+static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
+{
+       int nid;
+
+       VM_BUG_ON(!nodes_allowed);
+
+       nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
+       h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
+
+       return nid;
+}
+
+#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)          \
+       for (nr_nodes = nodes_weight(*mask);                            \
+               nr_nodes > 0 &&                                         \
+               ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
+               nr_nodes--)
+
+#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)           \
+       for (nr_nodes = nodes_weight(*mask);                            \
+               nr_nodes > 0 &&                                         \
+               ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
+               nr_nodes--)
+
+#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
+static void destroy_compound_gigantic_page(struct page *page,
+                                       unsigned long order)
+{
+       int i;
+       int nr_pages = 1 << order;
+       struct page *p = page + 1;
+
+       for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
+               __ClearPageTail(p);
+               set_page_refcounted(p);
+               p->first_page = NULL;
+       }
+
+       set_compound_order(page, 0);
+       __ClearPageHead(page);
+}
+
+static void free_gigantic_page(struct page *page, unsigned order)
+{
+       free_contig_range(page_to_pfn(page), 1 << order);
+}
+
+static int __alloc_gigantic_page(unsigned long start_pfn,
+                               unsigned long nr_pages)
+{
+       unsigned long end_pfn = start_pfn + nr_pages;
+       return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
+}
+
+static bool pfn_range_valid_gigantic(unsigned long start_pfn,
+                               unsigned long nr_pages)
+{
+       unsigned long i, end_pfn = start_pfn + nr_pages;
+       struct page *page;
+
+       for (i = start_pfn; i < end_pfn; i++) {
+               if (!pfn_valid(i))
+                       return false;
+
+               page = pfn_to_page(i);
+
+               if (PageReserved(page))
+                       return false;
+
+               if (page_count(page) > 0)
+                       return false;
+
+               if (PageHuge(page))
+                       return false;
+       }
+
+       return true;
+}
+
+static bool zone_spans_last_pfn(const struct zone *zone,
+                       unsigned long start_pfn, unsigned long nr_pages)
+{
+       unsigned long last_pfn = start_pfn + nr_pages - 1;
+       return zone_spans_pfn(zone, last_pfn);
+}
+
+static struct page *alloc_gigantic_page(int nid, unsigned order)
+{
+       unsigned long nr_pages = 1 << order;
+       unsigned long ret, pfn, flags;
+       struct zone *z;
+
+       z = NODE_DATA(nid)->node_zones;
+       for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
+               spin_lock_irqsave(&z->lock, flags);
+
+               pfn = ALIGN(z->zone_start_pfn, nr_pages);
+               while (zone_spans_last_pfn(z, pfn, nr_pages)) {
+                       if (pfn_range_valid_gigantic(pfn, nr_pages)) {
+                               /*
+                                * We release the zone lock here because
+                                * alloc_contig_range() will also lock the zone
+                                * at some point. If there's an allocation
+                                * spinning on this lock, it may win the race
+                                * and cause alloc_contig_range() to fail...
+                                */
+                               spin_unlock_irqrestore(&z->lock, flags);
+                               ret = __alloc_gigantic_page(pfn, nr_pages);
+                               if (!ret)
+                                       return pfn_to_page(pfn);
+                               spin_lock_irqsave(&z->lock, flags);
+                       }
+                       pfn += nr_pages;
+               }
+
+               spin_unlock_irqrestore(&z->lock, flags);
+       }
+
+       return NULL;
+}
+
+static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
+static void prep_compound_gigantic_page(struct page *page, unsigned long order);
+
+static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
+{
+       struct page *page;
+
+       page = alloc_gigantic_page(nid, huge_page_order(h));
+       if (page) {
+               prep_compound_gigantic_page(page, huge_page_order(h));
+               prep_new_huge_page(h, page, nid);
+       }
+
+       return page;
+}
+
+static int alloc_fresh_gigantic_page(struct hstate *h,
+                               nodemask_t *nodes_allowed)
+{
+       struct page *page = NULL;
+       int nr_nodes, node;
+
+       for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+               page = alloc_fresh_gigantic_page_node(h, node);
+               if (page)
+                       return 1;
+       }
+
+       return 0;
+}
+
+static inline bool gigantic_page_supported(void) { return true; }
+#else
+static inline bool gigantic_page_supported(void) { return false; }
+static inline void free_gigantic_page(struct page *page, unsigned order) { }
+static inline void destroy_compound_gigantic_page(struct page *page,
+                                               unsigned long order) { }
+static inline int alloc_fresh_gigantic_page(struct hstate *h,
+                                       nodemask_t *nodes_allowed) { return 0; }
+#endif
+
+static void update_and_free_page(struct hstate *h, struct page *page)
+{
+       int i;
+
+       if (hstate_is_gigantic(h) && !gigantic_page_supported())
+               return;
+
+       h->nr_huge_pages--;
+       h->nr_huge_pages_node[page_to_nid(page)]--;
+       for (i = 0; i < pages_per_huge_page(h); i++) {
+               page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
+                               1 << PG_referenced | 1 << PG_dirty |
+                               1 << PG_active | 1 << PG_private |
+                               1 << PG_writeback);
+       }
+       VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
+       set_compound_page_dtor(page, NULL);
+       set_page_refcounted(page);
+       if (hstate_is_gigantic(h)) {
+               destroy_compound_gigantic_page(page, huge_page_order(h));
+               free_gigantic_page(page, huge_page_order(h));
+       } else {
+               arch_release_hugepage(page);
+               __free_pages(page, huge_page_order(h));
+       }
+}
+
+struct hstate *size_to_hstate(unsigned long size)
+{
+       struct hstate *h;
+
+       for_each_hstate(h) {
+               if (huge_page_size(h) == size)
+                       return h;
+       }
+       return NULL;
+}
+
+/*
+ * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
+ * to hstate->hugepage_activelist.)
+ *
+ * This function can be called for tail pages, but never returns true for them.
+ */
+bool page_huge_active(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageHuge(page), page);
+       return PageHead(page) && PagePrivate(&page[1]);
+}
+
+/* never called for tail page */
+static void set_page_huge_active(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
+       SetPagePrivate(&page[1]);
+}
+
+static void clear_page_huge_active(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
+       ClearPagePrivate(&page[1]);
+}
+
+void free_huge_page(struct page *page)
+{
+       /*
+        * Can't pass hstate in here because it is called from the
+        * compound page destructor.
+        */
+       struct hstate *h = page_hstate(page);
+       int nid = page_to_nid(page);
+       struct hugepage_subpool *spool =
+               (struct hugepage_subpool *)page_private(page);
+       bool restore_reserve;
+
+       set_page_private(page, 0);
+       page->mapping = NULL;
+       BUG_ON(page_count(page));
+       BUG_ON(page_mapcount(page));
+       restore_reserve = PagePrivate(page);
+       ClearPagePrivate(page);
+
+       /*
+        * A return code of zero implies that the subpool will be under its
+        * minimum size if the reservation is not restored after page is free.
+        * Therefore, force restore_reserve operation.
+        */
+       if (hugepage_subpool_put_pages(spool, 1) == 0)
+               restore_reserve = true;
+
+       spin_lock(&hugetlb_lock);
+       clear_page_huge_active(page);
+       hugetlb_cgroup_uncharge_page(hstate_index(h),
+                                    pages_per_huge_page(h), page);
+       if (restore_reserve)
+               h->resv_huge_pages++;
+
+       if (h->surplus_huge_pages_node[nid]) {
+               /* remove the page from active list */
+               list_del(&page->lru);
+               update_and_free_page(h, page);
+               h->surplus_huge_pages--;
+               h->surplus_huge_pages_node[nid]--;
+       } else {
+               arch_clear_hugepage_flags(page);
+               enqueue_huge_page(h, page);
+       }
+       spin_unlock(&hugetlb_lock);
+}
+
+static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
+{
+       INIT_LIST_HEAD(&page->lru);
+       set_compound_page_dtor(page, free_huge_page);
+       spin_lock(&hugetlb_lock);
+       set_hugetlb_cgroup(page, NULL);
+       h->nr_huge_pages++;
+       h->nr_huge_pages_node[nid]++;
+       spin_unlock(&hugetlb_lock);
+       put_page(page); /* free it into the hugepage allocator */
+}
+
+static void prep_compound_gigantic_page(struct page *page, unsigned long order)
+{
+       int i;
+       int nr_pages = 1 << order;
+       struct page *p = page + 1;
+
+       /* we rely on prep_new_huge_page to set the destructor */
+       set_compound_order(page, order);
+       __SetPageHead(page);
+       __ClearPageReserved(page);
+       for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
+               /*
+                * For gigantic hugepages allocated through bootmem at
+                * boot, it's safer to be consistent with the not-gigantic
+                * hugepages and clear the PG_reserved bit from all tail pages
+                * too.  Otherwse drivers using get_user_pages() to access tail
+                * pages may get the reference counting wrong if they see
+                * PG_reserved set on a tail page (despite the head page not
+                * having PG_reserved set).  Enforcing this consistency between
+                * head and tail pages allows drivers to optimize away a check
+                * on the head page when they need know if put_page() is needed
+                * after get_user_pages().
+                */
+               __ClearPageReserved(p);
+               set_page_count(p, 0);
+               p->first_page = page;
+               /* Make sure p->first_page is always valid for PageTail() */
+               smp_wmb();
+               __SetPageTail(p);
+       }
+}
+
+/*
+ * PageHuge() only returns true for hugetlbfs pages, but not for normal or
+ * transparent huge pages.  See the PageTransHuge() documentation for more
+ * details.
+ */
+int PageHuge(struct page *page)
+{
+       if (!PageCompound(page))
+               return 0;
+
+       page = compound_head(page);
+       return get_compound_page_dtor(page) == free_huge_page;
+}
+EXPORT_SYMBOL_GPL(PageHuge);
+
+/*
+ * PageHeadHuge() only returns true for hugetlbfs head page, but not for
+ * normal or transparent huge pages.
+ */
+int PageHeadHuge(struct page *page_head)
+{
+       if (!PageHead(page_head))
+               return 0;
+
+       return get_compound_page_dtor(page_head) == free_huge_page;
+}
+
+pgoff_t __basepage_index(struct page *page)
+{
+       struct page *page_head = compound_head(page);
+       pgoff_t index = page_index(page_head);
+       unsigned long compound_idx;
+
+       if (!PageHuge(page_head))
+               return page_index(page);
+
+       if (compound_order(page_head) >= MAX_ORDER)
+               compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
+       else
+               compound_idx = page - page_head;
+
+       return (index << compound_order(page_head)) + compound_idx;
+}
+
+static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
+{
+       struct page *page;
+
+       page = alloc_pages_exact_node(nid,
+               htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
+                                               __GFP_REPEAT|__GFP_NOWARN,
+               huge_page_order(h));
+       if (page) {
+               if (arch_prepare_hugepage(page)) {
+                       __free_pages(page, huge_page_order(h));
+                       return NULL;
+               }
+               prep_new_huge_page(h, page, nid);
+       }
+
+       return page;
+}
+
+static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+{
+       struct page *page;
+       int nr_nodes, node;
+       int ret = 0;
+
+       for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+               page = alloc_fresh_huge_page_node(h, node);
+               if (page) {
+                       ret = 1;
+                       break;
+               }
+       }
+
+       if (ret)
+               count_vm_event(HTLB_BUDDY_PGALLOC);
+       else
+               count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
+
+       return ret;
+}
+
+/*
+ * Free huge page from pool from next node to free.
+ * Attempt to keep persistent huge pages more or less
+ * balanced over allowed nodes.
+ * Called with hugetlb_lock locked.
+ */
+static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
+                                                        bool acct_surplus)
+{
+       int nr_nodes, node;
+       int ret = 0;
+
+       for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+               /*
+                * If we're returning unused surplus pages, only examine
+                * nodes with surplus pages.
+                */
+               if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
+                   !list_empty(&h->hugepage_freelists[node])) {
+                       struct page *page =
+                               list_entry(h->hugepage_freelists[node].next,
+                                         struct page, lru);
+                       list_del(&page->lru);
+                       h->free_huge_pages--;
+                       h->free_huge_pages_node[node]--;
+                       if (acct_surplus) {
+                               h->surplus_huge_pages--;
+                               h->surplus_huge_pages_node[node]--;
+                       }
+                       update_and_free_page(h, page);
+                       ret = 1;
+                       break;
+               }
+       }
+
+       return ret;
+}
+
+/*
+ * Dissolve a given free hugepage into free buddy pages. This function does
+ * nothing for in-use (including surplus) hugepages.
+ */
+static void dissolve_free_huge_page(struct page *page)
+{
+       spin_lock(&hugetlb_lock);
+       if (PageHuge(page) && !page_count(page)) {
+               struct hstate *h = page_hstate(page);
+               int nid = page_to_nid(page);
+               list_del(&page->lru);
+               h->free_huge_pages--;
+               h->free_huge_pages_node[nid]--;
+               update_and_free_page(h, page);
+       }
+       spin_unlock(&hugetlb_lock);
+}
+
+/*
+ * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
+ * make specified memory blocks removable from the system.
+ * Note that start_pfn should aligned with (minimum) hugepage size.
+ */
+void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+       unsigned int order = 8 * sizeof(void *);
+       unsigned long pfn;
+       struct hstate *h;
+
+       if (!hugepages_supported())
+               return;
+
+       /* Set scan step to minimum hugepage size */
+       for_each_hstate(h)
+               if (order > huge_page_order(h))
+                       order = huge_page_order(h);
+       VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
+       for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
+               dissolve_free_huge_page(pfn_to_page(pfn));
+}
+
+static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
+{
+       struct page *page;
+       unsigned int r_nid;
+
+       if (hstate_is_gigantic(h))
+               return NULL;
+
+       /*
+        * Assume we will successfully allocate the surplus page to
+        * prevent racing processes from causing the surplus to exceed
+        * overcommit
+        *
+        * This however introduces a different race, where a process B
+        * tries to grow the static hugepage pool while alloc_pages() is
+        * called by process A. B will only examine the per-node
+        * counters in determining if surplus huge pages can be
+        * converted to normal huge pages in adjust_pool_surplus(). A
+        * won't be able to increment the per-node counter, until the
+        * lock is dropped by B, but B doesn't drop hugetlb_lock until
+        * no more huge pages can be converted from surplus to normal
+        * state (and doesn't try to convert again). Thus, we have a
+        * case where a surplus huge page exists, the pool is grown, and
+        * the surplus huge page still exists after, even though it
+        * should just have been converted to a normal huge page. This
+        * does not leak memory, though, as the hugepage will be freed
+        * once it is out of use. It also does not allow the counters to
+        * go out of whack in adjust_pool_surplus() as we don't modify
+        * the node values until we've gotten the hugepage and only the
+        * per-node value is checked there.
+        */
+       spin_lock(&hugetlb_lock);
+       if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
+               spin_unlock(&hugetlb_lock);
+               return NULL;
+       } else {
+               h->nr_huge_pages++;
+               h->surplus_huge_pages++;
+       }
+       spin_unlock(&hugetlb_lock);
+
+       if (nid == NUMA_NO_NODE)
+               page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
+                                  __GFP_REPEAT|__GFP_NOWARN,
+                                  huge_page_order(h));
+       else
+               page = alloc_pages_exact_node(nid,
+                       htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
+                       __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
+
+       if (page && arch_prepare_hugepage(page)) {
+               __free_pages(page, huge_page_order(h));
+               page = NULL;
+       }
+
+       spin_lock(&hugetlb_lock);
+       if (page) {
+               INIT_LIST_HEAD(&page->lru);
+               r_nid = page_to_nid(page);
+               set_compound_page_dtor(page, free_huge_page);
+               set_hugetlb_cgroup(page, NULL);
+               /*
+                * We incremented the global counters already
+                */
+               h->nr_huge_pages_node[r_nid]++;
+               h->surplus_huge_pages_node[r_nid]++;
+               __count_vm_event(HTLB_BUDDY_PGALLOC);
+       } else {
+               h->nr_huge_pages--;
+               h->surplus_huge_pages--;
+               __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
+       }
+       spin_unlock(&hugetlb_lock);
+
+       return page;
+}
+
+/*
+ * This allocation function is useful in the context where vma is irrelevant.
+ * E.g. soft-offlining uses this function because it only cares physical
+ * address of error page.
+ */
+struct page *alloc_huge_page_node(struct hstate *h, int nid)
+{
+       struct page *page = NULL;
+
+       spin_lock(&hugetlb_lock);
+       if (h->free_huge_pages - h->resv_huge_pages > 0)
+               page = dequeue_huge_page_node(h, nid);
+       spin_unlock(&hugetlb_lock);
+
+       if (!page)
+               page = alloc_buddy_huge_page(h, nid);
+
+       return page;
+}
+
+/*
+ * Increase the hugetlb pool such that it can accommodate a reservation
+ * of size 'delta'.
+ */
+static int gather_surplus_pages(struct hstate *h, int delta)
+{
+       struct list_head surplus_list;
+       struct page *page, *tmp;
+       int ret, i;
+       int needed, allocated;
+       bool alloc_ok = true;
+
+       needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
+       if (needed <= 0) {
+               h->resv_huge_pages += delta;
+               return 0;
+       }
+
+       allocated = 0;
+       INIT_LIST_HEAD(&surplus_list);
+
+       ret = -ENOMEM;
+retry:
+       spin_unlock(&hugetlb_lock);
+       for (i = 0; i < needed; i++) {
+               page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
+               if (!page) {
+                       alloc_ok = false;
+                       break;
+               }
+               list_add(&page->lru, &surplus_list);
+       }
+       allocated += i;
+
+       /*
+        * After retaking hugetlb_lock, we need to recalculate 'needed'
+        * because either resv_huge_pages or free_huge_pages may have changed.
+        */
+       spin_lock(&hugetlb_lock);
+       needed = (h->resv_huge_pages + delta) -
+                       (h->free_huge_pages + allocated);
+       if (needed > 0) {
+               if (alloc_ok)
+                       goto retry;
+               /*
+                * We were not able to allocate enough pages to
+                * satisfy the entire reservation so we free what
+                * we've allocated so far.
+                */
+               goto free;
+       }
+       /*
+        * The surplus_list now contains _at_least_ the number of extra pages
+        * needed to accommodate the reservation.  Add the appropriate number
+        * of pages to the hugetlb pool and free the extras back to the buddy
+        * allocator.  Commit the entire reservation here to prevent another
+        * process from stealing the pages as they are added to the pool but
+        * before they are reserved.
+        */
+       needed += allocated;
+       h->resv_huge_pages += delta;
+       ret = 0;
+
+       /* Free the needed pages to the hugetlb pool */
+       list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+               if ((--needed) < 0)
+                       break;
+               /*
+                * This page is now managed by the hugetlb allocator and has
+                * no users -- drop the buddy allocator's reference.
+                */
+               put_page_testzero(page);
+               VM_BUG_ON_PAGE(page_count(page), page);
+               enqueue_huge_page(h, page);
+       }
+free:
+       spin_unlock(&hugetlb_lock);
+
+       /* Free unnecessary surplus pages to the buddy allocator */
+       list_for_each_entry_safe(page, tmp, &surplus_list, lru)
+               put_page(page);
+       spin_lock(&hugetlb_lock);
+
+       return ret;
+}
+
+/*
+ * When releasing a hugetlb pool reservation, any surplus pages that were
+ * allocated to satisfy the reservation must be explicitly freed if they were
+ * never used.
+ * Called with hugetlb_lock held.
+ */
+static void return_unused_surplus_pages(struct hstate *h,
+                                       unsigned long unused_resv_pages)
+{
+       unsigned long nr_pages;
+
+       /* Uncommit the reservation */
+       h->resv_huge_pages -= unused_resv_pages;
+
+       /* Cannot return gigantic pages currently */
+       if (hstate_is_gigantic(h))
+               return;
+
+       nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
+
+       /*
+        * We want to release as many surplus pages as possible, spread
+        * evenly across all nodes with memory. Iterate across these nodes
+        * until we can no longer free unreserved surplus pages. This occurs
+        * when the nodes with surplus pages have no free pages.
+        * free_pool_huge_page() will balance the the freed pages across the
+        * on-line nodes with memory and will handle the hstate accounting.
+        */
+       while (nr_pages--) {
+               if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
+                       break;
+               cond_resched_lock(&hugetlb_lock);
+       }
+}
+
+/*
+ * Determine if the huge page at addr within the vma has an associated
+ * reservation.  Where it does not we will need to logically increase
+ * reservation and actually increase subpool usage before an allocation
+ * can occur.  Where any new reservation would be required the
+ * reservation change is prepared, but not committed.  Once the page
+ * has been allocated from the subpool and instantiated the change should
+ * be committed via vma_commit_reservation.  No action is required on
+ * failure.
+ */
+static long vma_needs_reservation(struct hstate *h,
+                       struct vm_area_struct *vma, unsigned long addr)
+{
+       struct resv_map *resv;
+       pgoff_t idx;
+       long chg;
+
+       resv = vma_resv_map(vma);
+       if (!resv)
+               return 1;
+
+       idx = vma_hugecache_offset(h, vma, addr);
+       chg = region_chg(resv, idx, idx + 1);
+
+       if (vma->vm_flags & VM_MAYSHARE)
+               return chg;
+       else
+               return chg < 0 ? chg : 0;
+}
+static void vma_commit_reservation(struct hstate *h,
+                       struct vm_area_struct *vma, unsigned long addr)
+{
+       struct resv_map *resv;
+       pgoff_t idx;
+
+       resv = vma_resv_map(vma);
+       if (!resv)
+               return;
+
+       idx = vma_hugecache_offset(h, vma, addr);
+       region_add(resv, idx, idx + 1);
+}
+
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+                                   unsigned long addr, int avoid_reserve)
+{
+       struct hugepage_subpool *spool = subpool_vma(vma);
+       struct hstate *h = hstate_vma(vma);
+       struct page *page;
+       long chg;
+       int ret, idx;
+       struct hugetlb_cgroup *h_cg;
+
+       idx = hstate_index(h);
+       /*
+        * Processes that did not create the mapping will have no
+        * reserves and will not have accounted against subpool
+        * limit. Check that the subpool limit can be made before
+        * satisfying the allocation MAP_NORESERVE mappings may also
+        * need pages and subpool limit allocated allocated if no reserve
+        * mapping overlaps.
+        */
+       chg = vma_needs_reservation(h, vma, addr);
+       if (chg < 0)
+               return ERR_PTR(-ENOMEM);
+       if (chg || avoid_reserve)
+               if (hugepage_subpool_get_pages(spool, 1) < 0)
+                       return ERR_PTR(-ENOSPC);
+
+       ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
+       if (ret)
+               goto out_subpool_put;
+
+       spin_lock(&hugetlb_lock);
+       page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
+       if (!page) {
+               spin_unlock(&hugetlb_lock);
+               page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
+               if (!page)
+                       goto out_uncharge_cgroup;
+
+               spin_lock(&hugetlb_lock);
+               list_move(&page->lru, &h->hugepage_activelist);
+               /* Fall through */
+       }
+       hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
+       spin_unlock(&hugetlb_lock);
+
+       set_page_private(page, (unsigned long)spool);
+
+       vma_commit_reservation(h, vma, addr);
+       return page;
+
+out_uncharge_cgroup:
+       hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
+out_subpool_put:
+       if (chg || avoid_reserve)
+               hugepage_subpool_put_pages(spool, 1);
+       return ERR_PTR(-ENOSPC);
+}
+
+/*
+ * alloc_huge_page()'s wrapper which simply returns the page if allocation
+ * succeeds, otherwise NULL. This function is called from new_vma_page(),
+ * where no ERR_VALUE is expected to be returned.
+ */
+struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
+                               unsigned long addr, int avoid_reserve)
+{
+       struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
+       if (IS_ERR(page))
+               page = NULL;
+       return page;
+}
+
+int __weak alloc_bootmem_huge_page(struct hstate *h)
+{
+       struct huge_bootmem_page *m;
+       int nr_nodes, node;
+
+       for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
+               void *addr;
+
+               addr = memblock_virt_alloc_try_nid_nopanic(
+                               huge_page_size(h), huge_page_size(h),
+                               0, BOOTMEM_ALLOC_ACCESSIBLE, node);
+               if (addr) {
+                       /*
+                        * Use the beginning of the huge page to store the
+                        * huge_bootmem_page struct (until gather_bootmem
+                        * puts them into the mem_map).
+                        */
+                       m = addr;
+                       goto found;
+               }
+       }
+       return 0;
+
+found:
+       BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
+       /* Put them into a private list first because mem_map is not up yet */
+       list_add(&m->list, &huge_boot_pages);
+       m->hstate = h;
+       return 1;
+}
+
+static void __init prep_compound_huge_page(struct page *page, int order)
+{
+       if (unlikely(order > (MAX_ORDER - 1)))
+               prep_compound_gigantic_page(page, order);
+       else
+               prep_compound_page(page, order);
+}
+
+/* Put bootmem huge pages into the standard lists after mem_map is up */
+static void __init gather_bootmem_prealloc(void)
+{
+       struct huge_bootmem_page *m;
+
+       list_for_each_entry(m, &huge_boot_pages, list) {
+               struct hstate *h = m->hstate;
+               struct page *page;
+
+#ifdef CONFIG_HIGHMEM
+               page = pfn_to_page(m->phys >> PAGE_SHIFT);
+               memblock_free_late(__pa(m),
+                                  sizeof(struct huge_bootmem_page));
+#else
+               page = virt_to_page(m);
+#endif
+               WARN_ON(page_count(page) != 1);
+               prep_compound_huge_page(page, h->order);
+               WARN_ON(PageReserved(page));
+               prep_new_huge_page(h, page, page_to_nid(page));
+               /*
+                * If we had gigantic hugepages allocated at boot time, we need
+                * to restore the 'stolen' pages to totalram_pages in order to
+                * fix confusing memory reports from free(1) and another
+                * side-effects, like CommitLimit going negative.
+                */
+               if (hstate_is_gigantic(h))
+                       adjust_managed_page_count(page, 1 << h->order);
+       }
+}
+
+static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+{
+       unsigned long i;
+
+       for (i = 0; i < h->max_huge_pages; ++i) {
+               if (hstate_is_gigantic(h)) {
+                       if (!alloc_bootmem_huge_page(h))
+                               break;
+               } else if (!alloc_fresh_huge_page(h,
+                                        &node_states[N_MEMORY]))
+                       break;
+       }
+       h->max_huge_pages = i;
+}
+
+static void __init hugetlb_init_hstates(void)
+{
+       struct hstate *h;
+
+       for_each_hstate(h) {
+               /* oversize hugepages were init'ed in early boot */
+               if (!hstate_is_gigantic(h))
+                       hugetlb_hstate_alloc_pages(h);
+       }
+}
+
+static char * __init memfmt(char *buf, unsigned long n)
+{
+       if (n >= (1UL << 30))
+               sprintf(buf, "%lu GB", n >> 30);
+       else if (n >= (1UL << 20))
+               sprintf(buf, "%lu MB", n >> 20);
+       else
+               sprintf(buf, "%lu KB", n >> 10);
+       return buf;
+}
+
+static void __init report_hugepages(void)
+{
+       struct hstate *h;
+
+       for_each_hstate(h) {
+               char buf[32];
+               pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
+                       memfmt(buf, huge_page_size(h)),
+                       h->free_huge_pages);
+       }
+}
+
+#ifdef CONFIG_HIGHMEM
+static void try_to_free_low(struct hstate *h, unsigned long count,
+                                               nodemask_t *nodes_allowed)
+{
+       int i;
+
+       if (hstate_is_gigantic(h))
+               return;
+
+       for_each_node_mask(i, *nodes_allowed) {
+               struct page *page, *next;
+               struct list_head *freel = &h->hugepage_freelists[i];
+               list_for_each_entry_safe(page, next, freel, lru) {
+                       if (count >= h->nr_huge_pages)
+                               return;
+                       if (PageHighMem(page))
+                               continue;
+                       list_del(&page->lru);
+                       update_and_free_page(h, page);
+                       h->free_huge_pages--;
+                       h->free_huge_pages_node[page_to_nid(page)]--;
+               }
+       }
+}
+#else
+static inline void try_to_free_low(struct hstate *h, unsigned long count,
+                                               nodemask_t *nodes_allowed)
+{
+}
+#endif
+
+/*
+ * Increment or decrement surplus_huge_pages.  Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
+                               int delta)
+{
+       int nr_nodes, node;
+
+       VM_BUG_ON(delta != -1 && delta != 1);
+
+       if (delta < 0) {
+               for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+                       if (h->surplus_huge_pages_node[node])
+                               goto found;
+               }
+       } else {
+               for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+                       if (h->surplus_huge_pages_node[node] <
+                                       h->nr_huge_pages_node[node])
+                               goto found;
+               }
+       }
+       return 0;
+
+found:
+       h->surplus_huge_pages += delta;
+       h->surplus_huge_pages_node[node] += delta;
+       return 1;
+}
+
+#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
+static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
+                                               nodemask_t *nodes_allowed)
+{
+       unsigned long min_count, ret;
+
+       if (hstate_is_gigantic(h) && !gigantic_page_supported())
+               return h->max_huge_pages;
+
+       /*
+        * Increase the pool size
+        * First take pages out of surplus state.  Then make up the
+        * remaining difference by allocating fresh huge pages.
+        *
+        * We might race with alloc_buddy_huge_page() here and be unable
+        * to convert a surplus huge page to a normal huge page. That is
+        * not critical, though, it just means the overall size of the
+        * pool might be one hugepage larger than it needs to be, but
+        * within all the constraints specified by the sysctls.
+        */
+       spin_lock(&hugetlb_lock);
+       while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
+               if (!adjust_pool_surplus(h, nodes_allowed, -1))
+                       break;
+       }
+
+       while (count > persistent_huge_pages(h)) {
+               /*
+                * If this allocation races such that we no longer need the
+                * page, free_huge_page will handle it by freeing the page
+                * and reducing the surplus.
+                */
+               spin_unlock(&hugetlb_lock);
+               if (hstate_is_gigantic(h))
+                       ret = alloc_fresh_gigantic_page(h, nodes_allowed);
+               else
+                       ret = alloc_fresh_huge_page(h, nodes_allowed);
+               spin_lock(&hugetlb_lock);
+               if (!ret)
+                       goto out;
+
+               /* Bail for signals. Probably ctrl-c from user */
+               if (signal_pending(current))
+                       goto out;
+       }
+
+       /*
+        * Decrease the pool size
+        * First return free pages to the buddy allocator (being careful
+        * to keep enough around to satisfy reservations).  Then place
+        * pages into surplus state as needed so the pool will shrink
+        * to the desired size as pages become free.
+        *
+        * By placing pages into the surplus state independent of the
+        * overcommit value, we are allowing the surplus pool size to
+        * exceed overcommit. There are few sane options here. Since
+        * alloc_buddy_huge_page() is checking the global counter,
+        * though, we'll note that we're not allowed to exceed surplus
+        * and won't grow the pool anywhere else. Not until one of the
+        * sysctls are changed, or the surplus pages go out of use.
+        */
+       min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
+       min_count = max(count, min_count);
+       try_to_free_low(h, min_count, nodes_allowed);
+       while (min_count < persistent_huge_pages(h)) {
+               if (!free_pool_huge_page(h, nodes_allowed, 0))
+                       break;
+               cond_resched_lock(&hugetlb_lock);
+       }
+       while (count < persistent_huge_pages(h)) {
+               if (!adjust_pool_surplus(h, nodes_allowed, 1))
+                       break;
+       }
+out:
+       ret = persistent_huge_pages(h);
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+
+#define HSTATE_ATTR_RO(_name) \
+       static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
+
+#define HSTATE_ATTR(_name) \
+       static struct kobj_attribute _name##_attr = \
+               __ATTR(_name, 0644, _name##_show, _name##_store)
+
+static struct kobject *hugepages_kobj;
+static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
+
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
+
+static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
+{
+       int i;
+
+       for (i = 0; i < HUGE_MAX_HSTATE; i++)
+               if (hstate_kobjs[i] == kobj) {
+                       if (nidp)
+                               *nidp = NUMA_NO_NODE;
+                       return &hstates[i];
+               }
+
+       return kobj_to_node_hstate(kobj, nidp);
+}
+
+static ssize_t nr_hugepages_show_common(struct kobject *kobj,
+                                       struct kobj_attribute *attr, char *buf)
+{
+       struct hstate *h;
+       unsigned long nr_huge_pages;
+       int nid;
+
+       h = kobj_to_hstate(kobj, &nid);
+       if (nid == NUMA_NO_NODE)
+               nr_huge_pages = h->nr_huge_pages;
+       else
+               nr_huge_pages = h->nr_huge_pages_node[nid];
+
+       return sprintf(buf, "%lu\n", nr_huge_pages);
+}
+
+static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
+                                          struct hstate *h, int nid,
+                                          unsigned long count, size_t len)
+{
+       int err;
+       NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
+
+       if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
+               err = -EINVAL;
+               goto out;
+       }
+
+       if (nid == NUMA_NO_NODE) {
+               /*
+                * global hstate attribute
+                */
+               if (!(obey_mempolicy &&
+                               init_nodemask_of_mempolicy(nodes_allowed))) {
+                       NODEMASK_FREE(nodes_allowed);
+                       nodes_allowed = &node_states[N_MEMORY];
+               }
+       } else if (nodes_allowed) {
+               /*
+                * per node hstate attribute: adjust count to global,
+                * but restrict alloc/free to the specified node.
+                */
+               count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
+               init_nodemask_of_node(nodes_allowed, nid);
+       } else
+               nodes_allowed = &node_states[N_MEMORY];
+
+       h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
+
+       if (nodes_allowed != &node_states[N_MEMORY])
+               NODEMASK_FREE(nodes_allowed);
+
+       return len;
+out:
+       NODEMASK_FREE(nodes_allowed);
+       return err;
+}
+
+static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
+                                        struct kobject *kobj, const char *buf,
+                                        size_t len)
+{
+       struct hstate *h;
+       unsigned long count;
+       int nid;
+       int err;
+
+       err = kstrtoul(buf, 10, &count);
+       if (err)
+               return err;
+
+       h = kobj_to_hstate(kobj, &nid);
+       return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
+}
+
+static ssize_t nr_hugepages_show(struct kobject *kobj,
+                                      struct kobj_attribute *attr, char *buf)
+{
+       return nr_hugepages_show_common(kobj, attr, buf);
+}
+
+static ssize_t nr_hugepages_store(struct kobject *kobj,
+              struct kobj_attribute *attr, const char *buf, size_t len)
+{
+       return nr_hugepages_store_common(false, kobj, buf, len);
+}
+HSTATE_ATTR(nr_hugepages);
+
+#ifdef CONFIG_NUMA
+
+/*
+ * hstate attribute for optionally mempolicy-based constraint on persistent
+ * huge page alloc/free.
+ */
+static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
+                                      struct kobj_attribute *attr, char *buf)
+{
+       return nr_hugepages_show_common(kobj, attr, buf);
+}
+
+static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
+              struct kobj_attribute *attr, const char *buf, size_t len)
+{
+       return nr_hugepages_store_common(true, kobj, buf, len);
+}
+HSTATE_ATTR(nr_hugepages_mempolicy);
+#endif
+
+
+static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
+                                       struct kobj_attribute *attr, char *buf)
+{
+       struct hstate *h = kobj_to_hstate(kobj, NULL);
+       return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
+}
+
+static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
+               struct kobj_attribute *attr, const char *buf, size_t count)
+{
+       int err;
+       unsigned long input;
+       struct hstate *h = kobj_to_hstate(kobj, NULL);
+
+       if (hstate_is_gigantic(h))
+               return -EINVAL;
+
+       err = kstrtoul(buf, 10, &input);
+       if (err)
+               return err;
+
+       spin_lock(&hugetlb_lock);
+       h->nr_overcommit_huge_pages = input;
+       spin_unlock(&hugetlb_lock);
+
+       return count;
+}
+HSTATE_ATTR(nr_overcommit_hugepages);
+
+static ssize_t free_hugepages_show(struct kobject *kobj,
+                                       struct kobj_attribute *attr, char *buf)
+{
+       struct hstate *h;
+       unsigned long free_huge_pages;
+       int nid;
+
+       h = kobj_to_hstate(kobj, &nid);
+       if (nid == NUMA_NO_NODE)
+               free_huge_pages = h->free_huge_pages;
+       else
+               free_huge_pages = h->free_huge_pages_node[nid];
+
+       return sprintf(buf, "%lu\n", free_huge_pages);
+}
+HSTATE_ATTR_RO(free_hugepages);
+
+static ssize_t resv_hugepages_show(struct kobject *kobj,
+                                       struct kobj_attribute *attr, char *buf)
+{
+       struct hstate *h = kobj_to_hstate(kobj, NULL);
+       return sprintf(buf, "%lu\n", h->resv_huge_pages);
+}
+HSTATE_ATTR_RO(resv_hugepages);
+
+static ssize_t surplus_hugepages_show(struct kobject *kobj,
+                                       struct kobj_attribute *attr, char *buf)
+{
+       struct hstate *h;
+       unsigned long surplus_huge_pages;
+       int nid;
+
+       h = kobj_to_hstate(kobj, &nid);
+       if (nid == NUMA_NO_NODE)
+               surplus_huge_pages = h->surplus_huge_pages;
+       else
+               surplus_huge_pages = h->surplus_huge_pages_node[nid];
+
+       return sprintf(buf, "%lu\n", surplus_huge_pages);
+}
+HSTATE_ATTR_RO(surplus_hugepages);
+
+static struct attribute *hstate_attrs[] = {
+       &nr_hugepages_attr.attr,
+       &nr_overcommit_hugepages_attr.attr,
+       &free_hugepages_attr.attr,
+       &resv_hugepages_attr.attr,
+       &surplus_hugepages_attr.attr,
+#ifdef CONFIG_NUMA
+       &nr_hugepages_mempolicy_attr.attr,
+#endif
+       NULL,
+};
+
+static struct attribute_group hstate_attr_group = {
+       .attrs = hstate_attrs,
+};
+
+static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
+                                   struct kobject **hstate_kobjs,
+                                   struct attribute_group *hstate_attr_group)
+{
+       int retval;
+       int hi = hstate_index(h);
+
+       hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
+       if (!hstate_kobjs[hi])
+               return -ENOMEM;
+
+       retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
+       if (retval)
+               kobject_put(hstate_kobjs[hi]);
+
+       return retval;
+}
+
+static void __init hugetlb_sysfs_init(void)
+{
+       struct hstate *h;
+       int err;
+
+       hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
+       if (!hugepages_kobj)
+               return;
+
+       for_each_hstate(h) {
+               err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
+                                        hstate_kobjs, &hstate_attr_group);
+               if (err)
+                       pr_err("Hugetlb: Unable to add hstate %s", h->name);
+       }
+}
+
+#ifdef CONFIG_NUMA
+
+/*
+ * node_hstate/s - associate per node hstate attributes, via their kobjects,
+ * with node devices in node_devices[] using a parallel array.  The array
+ * index of a node device or _hstate == node id.
+ * This is here to avoid any static dependency of the node device driver, in
+ * the base kernel, on the hugetlb module.
+ */
+struct node_hstate {
+       struct kobject          *hugepages_kobj;
+       struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
+};
+struct node_hstate node_hstates[MAX_NUMNODES];
+
+/*
+ * A subset of global hstate attributes for node devices
+ */
+static struct attribute *per_node_hstate_attrs[] = {
+       &nr_hugepages_attr.attr,
+       &free_hugepages_attr.attr,
+       &surplus_hugepages_attr.attr,
+       NULL,
+};
+
+static struct attribute_group per_node_hstate_attr_group = {
+       .attrs = per_node_hstate_attrs,
+};
+
+/*
+ * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
+ * Returns node id via non-NULL nidp.
+ */
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
+{
+       int nid;
+
+       for (nid = 0; nid < nr_node_ids; nid++) {
+               struct node_hstate *nhs = &node_hstates[nid];
+               int i;
+               for (i = 0; i < HUGE_MAX_HSTATE; i++)
+                       if (nhs->hstate_kobjs[i] == kobj) {
+                               if (nidp)
+                                       *nidp = nid;
+                               return &hstates[i];
+                       }
+       }
+
+       BUG();
+       return NULL;
+}
+
+/*
+ * Unregister hstate attributes from a single node device.
+ * No-op if no hstate attributes attached.
+ */
+static void hugetlb_unregister_node(struct node *node)
+{
+       struct hstate *h;
+       struct node_hstate *nhs = &node_hstates[node->dev.id];
+
+       if (!nhs->hugepages_kobj)
+               return;         /* no hstate attributes */
+
+       for_each_hstate(h) {
+               int idx = hstate_index(h);
+               if (nhs->hstate_kobjs[idx]) {
+                       kobject_put(nhs->hstate_kobjs[idx]);
+                       nhs->hstate_kobjs[idx] = NULL;
+               }
+       }
+
+       kobject_put(nhs->hugepages_kobj);
+       nhs->hugepages_kobj = NULL;
+}
+
+/*
+ * hugetlb module exit:  unregister hstate attributes from node devices
+ * that have them.
+ */
+static void hugetlb_unregister_all_nodes(void)
+{
+       int nid;
+
+       /*
+        * disable node device registrations.
+        */
+       register_hugetlbfs_with_node(NULL, NULL);
+
+       /*
+        * remove hstate attributes from any nodes that have them.
+        */
+       for (nid = 0; nid < nr_node_ids; nid++)
+               hugetlb_unregister_node(node_devices[nid]);
+}
+
+/*
+ * Register hstate attributes for a single node device.
+ * No-op if attributes already registered.
+ */
+static void hugetlb_register_node(struct node *node)
+{
+       struct hstate *h;
+       struct node_hstate *nhs = &node_hstates[node->dev.id];
+       int err;
+
+       if (nhs->hugepages_kobj)
+               return;         /* already allocated */
+
+       nhs->hugepages_kobj = kobject_create_and_add("hugepages",
+                                                       &node->dev.kobj);
+       if (!nhs->hugepages_kobj)
+               return;
+
+       for_each_hstate(h) {
+               err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
+                                               nhs->hstate_kobjs,
+                                               &per_node_hstate_attr_group);
+               if (err) {
+                       pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
+                               h->name, node->dev.id);
+                       hugetlb_unregister_node(node);
+                       break;
+               }
+       }
+}
+
+/*
+ * hugetlb init time:  register hstate attributes for all registered node
+ * devices of nodes that have memory.  All on-line nodes should have
+ * registered their associated device by this time.
+ */
+static void __init hugetlb_register_all_nodes(void)
+{
+       int nid;
+
+       for_each_node_state(nid, N_MEMORY) {
+               struct node *node = node_devices[nid];
+               if (node->dev.id == nid)
+                       hugetlb_register_node(node);
+       }
+
+       /*
+        * Let the node device driver know we're here so it can
+        * [un]register hstate attributes on node hotplug.
+        */
+       register_hugetlbfs_with_node(hugetlb_register_node,
+                                    hugetlb_unregister_node);
+}
+#else  /* !CONFIG_NUMA */
+
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
+{
+       BUG();
+       if (nidp)
+               *nidp = -1;
+       return NULL;
+}
+
+static void hugetlb_unregister_all_nodes(void) { }
+
+static void hugetlb_register_all_nodes(void) { }
+
+#endif
+
+static void __exit hugetlb_exit(void)
+{
+       struct hstate *h;
+
+       hugetlb_unregister_all_nodes();
+
+       for_each_hstate(h) {
+               kobject_put(hstate_kobjs[hstate_index(h)]);
+       }
+
+       kobject_put(hugepages_kobj);
+       kfree(htlb_fault_mutex_table);
+}
+module_exit(hugetlb_exit);
+
+static int __init hugetlb_init(void)
+{
+       int i;
+
+       if (!hugepages_supported())
+               return 0;
+
+       if (!size_to_hstate(default_hstate_size)) {
+               default_hstate_size = HPAGE_SIZE;
+               if (!size_to_hstate(default_hstate_size))
+                       hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
+       }
+       default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
+       if (default_hstate_max_huge_pages)
+               default_hstate.max_huge_pages = default_hstate_max_huge_pages;
+
+       hugetlb_init_hstates();
+       gather_bootmem_prealloc();
+       report_hugepages();
+
+       hugetlb_sysfs_init();
+       hugetlb_register_all_nodes();
+       hugetlb_cgroup_file_init();
+
+#ifdef CONFIG_SMP
+       num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
+#else
+       num_fault_mutexes = 1;
+#endif
+       htlb_fault_mutex_table =
+               kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
+       BUG_ON(!htlb_fault_mutex_table);
+
+       for (i = 0; i < num_fault_mutexes; i++)
+               mutex_init(&htlb_fault_mutex_table[i]);
+       return 0;
+}
+module_init(hugetlb_init);
+
+/* Should be called on processing a hugepagesz=... option */
+void __init hugetlb_add_hstate(unsigned order)
+{
+       struct hstate *h;
+       unsigned long i;
+
+       if (size_to_hstate(PAGE_SIZE << order)) {
+               pr_warning("hugepagesz= specified twice, ignoring\n");
+               return;
+       }
+       BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
+       BUG_ON(order == 0);
+       h = &hstates[hugetlb_max_hstate++];
+       h->order = order;
+       h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
+       h->nr_huge_pages = 0;
+       h->free_huge_pages = 0;
+       for (i = 0; i < MAX_NUMNODES; ++i)
+               INIT_LIST_HEAD(&h->hugepage_freelists[i]);
+       INIT_LIST_HEAD(&h->hugepage_activelist);
+       h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
+       h->next_nid_to_free = first_node(node_states[N_MEMORY]);
+       snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
+                                       huge_page_size(h)/1024);
+
+       parsed_hstate = h;
+}
+
+static int __init hugetlb_nrpages_setup(char *s)
+{
+       unsigned long *mhp;
+       static unsigned long *last_mhp;
+
+       /*
+        * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
+        * so this hugepages= parameter goes to the "default hstate".
+        */
+       if (!hugetlb_max_hstate)
+               mhp = &default_hstate_max_huge_pages;
+       else
+               mhp = &parsed_hstate->max_huge_pages;
+
+       if (mhp == last_mhp) {
+               pr_warning("hugepages= specified twice without "
+                          "interleaving hugepagesz=, ignoring\n");
+               return 1;
+       }
+
+       if (sscanf(s, "%lu", mhp) <= 0)
+               *mhp = 0;
+
+       /*
+        * Global state is always initialized later in hugetlb_init.
+        * But we need to allocate >= MAX_ORDER hstates here early to still
+        * use the bootmem allocator.
+        */
+       if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
+               hugetlb_hstate_alloc_pages(parsed_hstate);
+
+       last_mhp = mhp;
+
+       return 1;
+}
+__setup("hugepages=", hugetlb_nrpages_setup);
+
+static int __init hugetlb_default_setup(char *s)
+{
+       default_hstate_size = memparse(s, &s);
+       return 1;
+}
+__setup("default_hugepagesz=", hugetlb_default_setup);
+
+static unsigned int cpuset_mems_nr(unsigned int *array)
+{
+       int node;
+       unsigned int nr = 0;
+
+       for_each_node_mask(node, cpuset_current_mems_allowed)
+               nr += array[node];
+
+       return nr;
+}
+
+#ifdef CONFIG_SYSCTL
+static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
+                        struct ctl_table *table, int write,
+                        void __user *buffer, size_t *length, loff_t *ppos)
+{
+       struct hstate *h = &default_hstate;
+       unsigned long tmp = h->max_huge_pages;
+       int ret;
+
+       if (!hugepages_supported())
+               return -ENOTSUPP;
+
+       table->data = &tmp;
+       table->maxlen = sizeof(unsigned long);
+       ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
+       if (ret)
+               goto out;
+
+       if (write)
+               ret = __nr_hugepages_store_common(obey_mempolicy, h,
+                                                 NUMA_NO_NODE, tmp, *length);
+out:
+       return ret;
+}
+
+int hugetlb_sysctl_handler(struct ctl_table *table, int write,
+                         void __user *buffer, size_t *length, loff_t *ppos)
+{
+
+       return hugetlb_sysctl_handler_common(false, table, write,
+                                                       buffer, length, ppos);
+}
+
+#ifdef CONFIG_NUMA
+int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
+                         void __user *buffer, size_t *length, loff_t *ppos)
+{
+       return hugetlb_sysctl_handler_common(true, table, write,
+                                                       buffer, length, ppos);
+}
+#endif /* CONFIG_NUMA */
+
+int hugetlb_overcommit_handler(struct ctl_table *table, int write,
+                       void __user *buffer,
+                       size_t *length, loff_t *ppos)
+{
+       struct hstate *h = &default_hstate;
+       unsigned long tmp;
+       int ret;
+
+       if (!hugepages_supported())
+               return -ENOTSUPP;
+
+       tmp = h->nr_overcommit_huge_pages;
+
+       if (write && hstate_is_gigantic(h))
+               return -EINVAL;
+
+       table->data = &tmp;
+       table->maxlen = sizeof(unsigned long);
+       ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
+       if (ret)
+               goto out;
+
+       if (write) {
+               spin_lock(&hugetlb_lock);
+               h->nr_overcommit_huge_pages = tmp;
+               spin_unlock(&hugetlb_lock);
+       }
+out:
+       return ret;
+}
+
+#endif /* CONFIG_SYSCTL */
+
+void hugetlb_report_meminfo(struct seq_file *m)
+{
+       struct hstate *h = &default_hstate;
+       if (!hugepages_supported())
+               return;
+       seq_printf(m,
+                       "HugePages_Total:   %5lu\n"
+                       "HugePages_Free:    %5lu\n"
+                       "HugePages_Rsvd:    %5lu\n"
+                       "HugePages_Surp:    %5lu\n"
+                       "Hugepagesize:   %8lu kB\n",
+                       h->nr_huge_pages,
+                       h->free_huge_pages,
+                       h->resv_huge_pages,
+                       h->surplus_huge_pages,
+                       1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
+}
+
+int hugetlb_report_node_meminfo(int nid, char *buf)
+{
+       struct hstate *h = &default_hstate;
+       if (!hugepages_supported())
+               return 0;
+       return sprintf(buf,
+               "Node %d HugePages_Total: %5u\n"
+               "Node %d HugePages_Free:  %5u\n"
+               "Node %d HugePages_Surp:  %5u\n",
+               nid, h->nr_huge_pages_node[nid],
+               nid, h->free_huge_pages_node[nid],
+               nid, h->surplus_huge_pages_node[nid]);
+}
+
+void hugetlb_show_meminfo(void)
+{
+       struct hstate *h;
+       int nid;
+
+       if (!hugepages_supported())
+               return;
+
+       for_each_node_state(nid, N_MEMORY)
+               for_each_hstate(h)
+                       pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
+                               nid,
+                               h->nr_huge_pages_node[nid],
+                               h->free_huge_pages_node[nid],
+                               h->surplus_huge_pages_node[nid],
+                               1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
+}
+
+/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
+unsigned long hugetlb_total_pages(void)
+{
+       struct hstate *h;
+       unsigned long nr_total_pages = 0;
+
+       for_each_hstate(h)
+               nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
+       return nr_total_pages;
+}
+
+static int hugetlb_acct_memory(struct hstate *h, long delta)
+{
+       int ret = -ENOMEM;
+
+       spin_lock(&hugetlb_lock);
+       /*
+        * When cpuset is configured, it breaks the strict hugetlb page
+        * reservation as the accounting is done on a global variable. Such
+        * reservation is completely rubbish in the presence of cpuset because
+        * the reservation is not checked against page availability for the
+        * current cpuset. Application can still potentially OOM'ed by kernel
+        * with lack of free htlb page in cpuset that the task is in.
+        * Attempt to enforce strict accounting with cpuset is almost
+        * impossible (or too ugly) because cpuset is too fluid that
+        * task or memory node can be dynamically moved between cpusets.
+        *
+        * The change of semantics for shared hugetlb mapping with cpuset is
+        * undesirable. However, in order to preserve some of the semantics,
+        * we fall back to check against current free page availability as
+        * a best attempt and hopefully to minimize the impact of changing
+        * semantics that cpuset has.
+        */
+       if (delta > 0) {
+               if (gather_surplus_pages(h, delta) < 0)
+                       goto out;
+
+               if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
+                       return_unused_surplus_pages(h, delta);
+                       goto out;
+               }
+       }
+
+       ret = 0;
+       if (delta < 0)
+               return_unused_surplus_pages(h, (unsigned long) -delta);
+
+out:
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+
+static void hugetlb_vm_op_open(struct vm_area_struct *vma)
+{
+       struct resv_map *resv = vma_resv_map(vma);
+
+       /*
+        * This new VMA should share its siblings reservation map if present.
+        * The VMA will only ever have a valid reservation map pointer where
+        * it is being copied for another still existing VMA.  As that VMA
+        * has a reference to the reservation map it cannot disappear until
+        * after this open call completes.  It is therefore safe to take a
+        * new reference here without additional locking.
+        */
+       if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+               kref_get(&resv->refs);
+}
+
+static void hugetlb_vm_op_close(struct vm_area_struct *vma)
+{
+       struct hstate *h = hstate_vma(vma);
+       struct resv_map *resv = vma_resv_map(vma);
+       struct hugepage_subpool *spool = subpool_vma(vma);
+       unsigned long reserve, start, end;
+       long gbl_reserve;
+
+       if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+               return;
+
+       start = vma_hugecache_offset(h, vma, vma->vm_start);
+       end = vma_hugecache_offset(h, vma, vma->vm_end);
+
+       reserve = (end - start) - region_count(resv, start, end);
+
+       kref_put(&resv->refs, resv_map_release);
+
+       if (reserve) {
+               /*
+                * Decrement reserve counts.  The global reserve count may be
+                * adjusted if the subpool has a minimum size.
+                */
+               gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
+               hugetlb_acct_memory(h, -gbl_reserve);
+       }
+}
+
+/*
+ * We cannot handle pagefaults against hugetlb pages at all.  They cause
+ * handle_mm_fault() to try to instantiate regular-sized pages in the
+ * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
+ * this far.
+ */
+static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+       BUG();
+       return 0;
+}
+
+const struct vm_operations_struct hugetlb_vm_ops = {
+       .fault = hugetlb_vm_op_fault,
+       .open = hugetlb_vm_op_open,
+       .close = hugetlb_vm_op_close,
+};
+
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
+                               int writable)
+{
+       pte_t entry;
+
+       if (writable) {
+               entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
+                                        vma->vm_page_prot)));
+       } else {
+               entry = huge_pte_wrprotect(mk_huge_pte(page,
+                                          vma->vm_page_prot));
+       }
+       entry = pte_mkyoung(entry);
+       entry = pte_mkhuge(entry);
+       entry = arch_make_huge_pte(entry, vma, page, writable);
+
+       return entry;
+}
+
+static void set_huge_ptep_writable(struct vm_area_struct *vma,
+                                  unsigned long address, pte_t *ptep)
+{
+       pte_t entry;
+
+       entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
+       if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
+               update_mmu_cache(vma, address, ptep);
+}
+
+static int is_hugetlb_entry_migration(pte_t pte)
+{
+       swp_entry_t swp;
+
+       if (huge_pte_none(pte) || pte_present(pte))
+               return 0;
+       swp = pte_to_swp_entry(pte);
+       if (non_swap_entry(swp) && is_migration_entry(swp))
+               return 1;
+       else
+               return 0;
+}
+
+static int is_hugetlb_entry_hwpoisoned(pte_t pte)
+{
+       swp_entry_t swp;
+
+       if (huge_pte_none(pte) || pte_present(pte))
+               return 0;
+       swp = pte_to_swp_entry(pte);
+       if (non_swap_entry(swp) && is_hwpoison_entry(swp))
+               return 1;
+       else
+               return 0;
+}
+
+int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
+                           struct vm_area_struct *vma)
+{
+       pte_t *src_pte, *dst_pte, entry;
+       struct page *ptepage;
+       unsigned long addr;
+       int cow;
+       struct hstate *h = hstate_vma(vma);
+       unsigned long sz = huge_page_size(h);
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+       int ret = 0;
+
+       cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+
+       mmun_start = vma->vm_start;
+       mmun_end = vma->vm_end;
+       if (cow)
+               mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
+
+       for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
+               spinlock_t *src_ptl, *dst_ptl;
+               src_pte = huge_pte_offset(src, addr);
+               if (!src_pte)
+                       continue;
+               dst_pte = huge_pte_alloc(dst, addr, sz);
+               if (!dst_pte) {
+                       ret = -ENOMEM;
+                       break;
+               }
+
+               /* If the pagetables are shared don't copy or take references */
+               if (dst_pte == src_pte)
+                       continue;
+
+               dst_ptl = huge_pte_lock(h, dst, dst_pte);
+               src_ptl = huge_pte_lockptr(h, src, src_pte);
+               spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+               entry = huge_ptep_get(src_pte);
+               if (huge_pte_none(entry)) { /* skip none entry */
+                       ;
+               } else if (unlikely(is_hugetlb_entry_migration(entry) ||
+                                   is_hugetlb_entry_hwpoisoned(entry))) {
+                       swp_entry_t swp_entry = pte_to_swp_entry(entry);
+
+                       if (is_write_migration_entry(swp_entry) && cow) {
+                               /*
+                                * COW mappings require pages in both
+                                * parent and child to be set to read.
+                                */
+                               make_migration_entry_read(&swp_entry);
+                               entry = swp_entry_to_pte(swp_entry);
+                               set_huge_pte_at(src, addr, src_pte, entry);
+                       }
+                       set_huge_pte_at(dst, addr, dst_pte, entry);
+               } else {
+                       if (cow) {
+                               huge_ptep_set_wrprotect(src, addr, src_pte);
+                               mmu_notifier_invalidate_range(src, mmun_start,
+                                                                  mmun_end);
+                       }
+                       entry = huge_ptep_get(src_pte);
+                       ptepage = pte_page(entry);
+                       get_page(ptepage);
+                       page_dup_rmap(ptepage);
+                       set_huge_pte_at(dst, addr, dst_pte, entry);
+               }
+               spin_unlock(src_ptl);
+               spin_unlock(dst_ptl);
+       }
+
+       if (cow)
+               mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
+
+       return ret;
+}
+
+void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
+                           unsigned long start, unsigned long end,
+                           struct page *ref_page)
+{
+       int force_flush = 0;
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long address;
+       pte_t *ptep;
+       pte_t pte;
+       spinlock_t *ptl;
+       struct page *page;
+       struct hstate *h = hstate_vma(vma);
+       unsigned long sz = huge_page_size(h);
+       const unsigned long mmun_start = start; /* For mmu_notifiers */
+       const unsigned long mmun_end   = end;   /* For mmu_notifiers */
+
+       WARN_ON(!is_vm_hugetlb_page(vma));
+       BUG_ON(start & ~huge_page_mask(h));
+       BUG_ON(end & ~huge_page_mask(h));
+
+       tlb_start_vma(tlb, vma);
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+       address = start;
+again:
+       for (; address < end; address += sz) {
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+
+               ptl = huge_pte_lock(h, mm, ptep);
+               if (huge_pmd_unshare(mm, &address, ptep))
+                       goto unlock;
+
+               pte = huge_ptep_get(ptep);
+               if (huge_pte_none(pte))
+                       goto unlock;
+
+               /*
+                * Migrating hugepage or HWPoisoned hugepage is already
+                * unmapped and its refcount is dropped, so just clear pte here.
+                */
+               if (unlikely(!pte_present(pte))) {
+                       huge_pte_clear(mm, address, ptep);
+                       goto unlock;
+               }
+
+               page = pte_page(pte);
+               /*
+                * If a reference page is supplied, it is because a specific
+                * page is being unmapped, not a range. Ensure the page we
+                * are about to unmap is the actual page of interest.
+                */
+               if (ref_page) {
+                       if (page != ref_page)
+                               goto unlock;
+
+                       /*
+                        * Mark the VMA as having unmapped its page so that
+                        * future faults in this VMA will fail rather than
+                        * looking like data was lost
+                        */
+                       set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+               }
+
+               pte = huge_ptep_get_and_clear(mm, address, ptep);
+               tlb_remove_tlb_entry(tlb, ptep, address);
+               if (huge_pte_dirty(pte))
+                       set_page_dirty(page);
+
+               page_remove_rmap(page);
+               force_flush = !__tlb_remove_page(tlb, page);
+               if (force_flush) {
+                       address += sz;
+                       spin_unlock(ptl);
+                       break;
+               }
+               /* Bail out after unmapping reference page if supplied */
+               if (ref_page) {
+                       spin_unlock(ptl);
+                       break;
+               }
+unlock:
+               spin_unlock(ptl);
+       }
+       /*
+        * mmu_gather ran out of room to batch pages, we break out of
+        * the PTE lock to avoid doing the potential expensive TLB invalidate
+        * and page-free while holding it.
+        */
+       if (force_flush) {
+               force_flush = 0;
+               tlb_flush_mmu(tlb);
+               if (address < end && !ref_page)
+                       goto again;
+       }
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+       tlb_end_vma(tlb, vma);
+}
+
+void __unmap_hugepage_range_final(struct mmu_gather *tlb,
+                         struct vm_area_struct *vma, unsigned long start,
+                         unsigned long end, struct page *ref_page)
+{
+       __unmap_hugepage_range(tlb, vma, start, end, ref_page);
+
+       /*
+        * Clear this flag so that x86's huge_pmd_share page_table_shareable
+        * test will fail on a vma being torn down, and not grab a page table
+        * on its way out.  We're lucky that the flag has such an appropriate
+        * name, and can in fact be safely cleared here. We could clear it
+        * before the __unmap_hugepage_range above, but all that's necessary
+        * is to clear it before releasing the i_mmap_rwsem. This works
+        * because in the context this is called, the VMA is about to be
+        * destroyed and the i_mmap_rwsem is held.
+        */
+       vma->vm_flags &= ~VM_MAYSHARE;
+}
+
+void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+                         unsigned long end, struct page *ref_page)
+{
+       struct mm_struct *mm;
+       struct mmu_gather tlb;
+
+       mm = vma->vm_mm;
+
+       tlb_gather_mmu(&tlb, mm, start, end);
+       __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
+       tlb_finish_mmu(&tlb, start, end);
+}
+
+/*
+ * This is called when the original mapper is failing to COW a MAP_PRIVATE
+ * mappping it owns the reserve page for. The intention is to unmap the page
+ * from other VMAs and let the children be SIGKILLed if they are faulting the
+ * same region.
+ */
+static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
+                             struct page *page, unsigned long address)
+{
+       struct hstate *h = hstate_vma(vma);
+       struct vm_area_struct *iter_vma;
+       struct address_space *mapping;
+       pgoff_t pgoff;
+
+       /*
+        * vm_pgoff is in PAGE_SIZE units, hence the different calculation
+        * from page cache lookup which is in HPAGE_SIZE units.
+        */
+       address = address & huge_page_mask(h);
+       pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
+                       vma->vm_pgoff;
+       mapping = file_inode(vma->vm_file)->i_mapping;
+
+       /*
+        * Take the mapping lock for the duration of the table walk. As
+        * this mapping should be shared between all the VMAs,
+        * __unmap_hugepage_range() is called as the lock is already held
+        */
+       i_mmap_lock_write(mapping);
+       vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
+               /* Do not unmap the current VMA */
+               if (iter_vma == vma)
+                       continue;
+
+               /*
+                * Unmap the page from other VMAs without their own reserves.
+                * They get marked to be SIGKILLed if they fault in these
+                * areas. This is because a future no-page fault on this VMA
+                * could insert a zeroed page instead of the data existing
+                * from the time of fork. This would look like data corruption
+                */
+               if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
+                       unmap_hugepage_range(iter_vma, address,
+                                            address + huge_page_size(h), page);
+       }
+       i_mmap_unlock_write(mapping);
+}
+
+/*
+ * Hugetlb_cow() should be called with page lock of the original hugepage held.
+ * Called with hugetlb_instantiation_mutex held and pte_page locked so we
+ * cannot race with other handlers or page migration.
+ * Keep the pte_same checks anyway to make transition from the mutex easier.
+ */
+static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *ptep, pte_t pte,
+                       struct page *pagecache_page, spinlock_t *ptl)
+{
+       struct hstate *h = hstate_vma(vma);
+       struct page *old_page, *new_page;
+       int ret = 0, outside_reserve = 0;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+
+       old_page = pte_page(pte);
+
+retry_avoidcopy:
+       /* If no-one else is actually using this page, avoid the copy
+        * and just make the page writable */
+       if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
+               page_move_anon_rmap(old_page, vma, address);
+               set_huge_ptep_writable(vma, address, ptep);
+               return 0;
+       }
+
+       /*
+        * If the process that created a MAP_PRIVATE mapping is about to
+        * perform a COW due to a shared page count, attempt to satisfy
+        * the allocation without using the existing reserves. The pagecache
+        * page is used to determine if the reserve at this address was
+        * consumed or not. If reserves were used, a partial faulted mapping
+        * at the time of fork() could consume its reserves on COW instead
+        * of the full address range.
+        */
+       if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
+                       old_page != pagecache_page)
+               outside_reserve = 1;
+
+       page_cache_get(old_page);
+
+       /*
+        * Drop page table lock as buddy allocator may be called. It will
+        * be acquired again before returning to the caller, as expected.
+        */
+       spin_unlock(ptl);
+       new_page = alloc_huge_page(vma, address, outside_reserve);
+
+       if (IS_ERR(new_page)) {
+               /*
+                * If a process owning a MAP_PRIVATE mapping fails to COW,
+                * it is due to references held by a child and an insufficient
+                * huge page pool. To guarantee the original mappers
+                * reliability, unmap the page from child processes. The child
+                * may get SIGKILLed if it later faults.
+                */
+               if (outside_reserve) {
+                       page_cache_release(old_page);
+                       BUG_ON(huge_pte_none(pte));
+                       unmap_ref_private(mm, vma, old_page, address);
+                       BUG_ON(huge_pte_none(pte));
+                       spin_lock(ptl);
+                       ptep = huge_pte_offset(mm, address & huge_page_mask(h));
+                       if (likely(ptep &&
+                                  pte_same(huge_ptep_get(ptep), pte)))
+                               goto retry_avoidcopy;
+                       /*
+                        * race occurs while re-acquiring page table
+                        * lock, and our job is done.
+                        */
+                       return 0;
+               }
+
+               ret = (PTR_ERR(new_page) == -ENOMEM) ?
+                       VM_FAULT_OOM : VM_FAULT_SIGBUS;
+               goto out_release_old;
+       }
+
+       /*
+        * When the original hugepage is shared one, it does not have
+        * anon_vma prepared.
+        */
+       if (unlikely(anon_vma_prepare(vma))) {
+               ret = VM_FAULT_OOM;
+               goto out_release_all;
+       }
+
+       copy_user_huge_page(new_page, old_page, address, vma,
+                           pages_per_huge_page(h));
+       __SetPageUptodate(new_page);
+       set_page_huge_active(new_page);
+
+       mmun_start = address & huge_page_mask(h);
+       mmun_end = mmun_start + huge_page_size(h);
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+
+       /*
+        * Retake the page table lock to check for racing updates
+        * before the page tables are altered
+        */
+       spin_lock(ptl);
+       ptep = huge_pte_offset(mm, address & huge_page_mask(h));
+       if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
+               ClearPagePrivate(new_page);
+
+               /* Break COW */
+               huge_ptep_clear_flush(vma, address, ptep);
+               mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
+               set_huge_pte_at(mm, address, ptep,
+                               make_huge_pte(vma, new_page, 1));
+               page_remove_rmap(old_page);
+               hugepage_add_new_anon_rmap(new_page, vma, address);
+               /* Make the old page be freed below */
+               new_page = old_page;
+       }
+       spin_unlock(ptl);
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+out_release_all:
+       page_cache_release(new_page);
+out_release_old:
+       page_cache_release(old_page);
+
+       spin_lock(ptl); /* Caller expects lock to be held */
+       return ret;
+}
+
+/* Return the pagecache page at a given address within a VMA */
+static struct page *hugetlbfs_pagecache_page(struct hstate *h,
+                       struct vm_area_struct *vma, unsigned long address)
+{
+       struct address_space *mapping;
+       pgoff_t idx;
+
+       mapping = vma->vm_file->f_mapping;
+       idx = vma_hugecache_offset(h, vma, address);
+
+       return find_lock_page(mapping, idx);
+}
+
+/*
+ * Return whether there is a pagecache page to back given address within VMA.
+ * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
+ */
+static bool hugetlbfs_pagecache_present(struct hstate *h,
+                       struct vm_area_struct *vma, unsigned long address)
+{
+       struct address_space *mapping;
+       pgoff_t idx;
+       struct page *page;
+
+       mapping = vma->vm_file->f_mapping;
+       idx = vma_hugecache_offset(h, vma, address);
+
+       page = find_get_page(mapping, idx);
+       if (page)
+               put_page(page);
+       return page != NULL;
+}
+
+static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                          struct address_space *mapping, pgoff_t idx,
+                          unsigned long address, pte_t *ptep, unsigned int flags)
+{
+       struct hstate *h = hstate_vma(vma);
+       int ret = VM_FAULT_SIGBUS;
+       int anon_rmap = 0;
+       unsigned long size;
+       struct page *page;
+       pte_t new_pte;
+       spinlock_t *ptl;
+
+       /*
+        * Currently, we are forced to kill the process in the event the
+        * original mapper has unmapped pages from the child due to a failed
+        * COW. Warn that such a situation has occurred as it may not be obvious
+        */
+       if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
+               pr_warning("PID %d killed due to inadequate hugepage pool\n",
+                          current->pid);
+               return ret;
+       }
+
+       /*
+        * Use page lock to guard against racing truncation
+        * before we get page_table_lock.
+        */
+retry:
+       page = find_lock_page(mapping, idx);
+       if (!page) {
+               size = i_size_read(mapping->host) >> huge_page_shift(h);
+               if (idx >= size)
+                       goto out;
+               page = alloc_huge_page(vma, address, 0);
+               if (IS_ERR(page)) {
+                       ret = PTR_ERR(page);
+                       if (ret == -ENOMEM)
+                               ret = VM_FAULT_OOM;
+                       else
+                               ret = VM_FAULT_SIGBUS;
+                       goto out;
+               }
+               clear_huge_page(page, address, pages_per_huge_page(h));
+               __SetPageUptodate(page);
+               set_page_huge_active(page);
+
+               if (vma->vm_flags & VM_MAYSHARE) {
+                       int err;
+                       struct inode *inode = mapping->host;
+
+                       err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
+                       if (err) {
+                               put_page(page);
+                               if (err == -EEXIST)
+                                       goto retry;
+                               goto out;
+                       }
+                       ClearPagePrivate(page);
+
+                       spin_lock(&inode->i_lock);
+                       inode->i_blocks += blocks_per_huge_page(h);
+                       spin_unlock(&inode->i_lock);
+               } else {
+                       lock_page(page);
+                       if (unlikely(anon_vma_prepare(vma))) {
+                               ret = VM_FAULT_OOM;
+                               goto backout_unlocked;
+                       }
+                       anon_rmap = 1;
+               }
+       } else {
+               /*
+                * If memory error occurs between mmap() and fault, some process
+                * don't have hwpoisoned swap entry for errored virtual address.
+                * So we need to block hugepage fault by PG_hwpoison bit check.
+                */
+               if (unlikely(PageHWPoison(page))) {
+                       ret = VM_FAULT_HWPOISON |
+                               VM_FAULT_SET_HINDEX(hstate_index(h));
+                       goto backout_unlocked;
+               }
+       }
+
+       /*
+        * If we are going to COW a private mapping later, we examine the
+        * pending reservations for this page now. This will ensure that
+        * any allocations necessary to record that reservation occur outside
+        * the spinlock.
+        */
+       if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
+               if (vma_needs_reservation(h, vma, address) < 0) {
+                       ret = VM_FAULT_OOM;
+                       goto backout_unlocked;
+               }
+
+       ptl = huge_pte_lockptr(h, mm, ptep);
+       spin_lock(ptl);
+       size = i_size_read(mapping->host) >> huge_page_shift(h);
+       if (idx >= size)
+               goto backout;
+
+       ret = 0;
+       if (!huge_pte_none(huge_ptep_get(ptep)))
+               goto backout;
+
+       if (anon_rmap) {
+               ClearPagePrivate(page);
+               hugepage_add_new_anon_rmap(page, vma, address);
+       } else
+               page_dup_rmap(page);
+       new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
+                               && (vma->vm_flags & VM_SHARED)));
+       set_huge_pte_at(mm, address, ptep, new_pte);
+
+       if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+               /* Optimization, do the COW without a second fault */
+               ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
+       }
+
+       spin_unlock(ptl);
+       unlock_page(page);
+out:
+       return ret;
+
+backout:
+       spin_unlock(ptl);
+backout_unlocked:
+       unlock_page(page);
+       put_page(page);
+       goto out;
+}
+
+#ifdef CONFIG_SMP
+static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
+                           struct vm_area_struct *vma,
+                           struct address_space *mapping,
+                           pgoff_t idx, unsigned long address)
+{
+       unsigned long key[2];
+       u32 hash;
+
+       if (vma->vm_flags & VM_SHARED) {
+               key[0] = (unsigned long) mapping;
+               key[1] = idx;
+       } else {
+               key[0] = (unsigned long) mm;
+               key[1] = address >> huge_page_shift(h);
+       }
+
+       hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
+
+       return hash & (num_fault_mutexes - 1);
+}
+#else
+/*
+ * For uniprocesor systems we always use a single mutex, so just
+ * return 0 and avoid the hashing overhead.
+ */
+static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
+                           struct vm_area_struct *vma,
+                           struct address_space *mapping,
+                           pgoff_t idx, unsigned long address)
+{
+       return 0;
+}
+#endif
+
+int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, unsigned int flags)
+{
+       pte_t *ptep, entry;
+       spinlock_t *ptl;
+       int ret;
+       u32 hash;
+       pgoff_t idx;
+       struct page *page = NULL;
+       struct page *pagecache_page = NULL;
+       struct hstate *h = hstate_vma(vma);
+       struct address_space *mapping;
+       int need_wait_lock = 0;
+
+       address &= huge_page_mask(h);
+
+       ptep = huge_pte_offset(mm, address);
+       if (ptep) {
+               entry = huge_ptep_get(ptep);
+               if (unlikely(is_hugetlb_entry_migration(entry))) {
+                       migration_entry_wait_huge(vma, mm, ptep);
+                       return 0;
+               } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
+                       return VM_FAULT_HWPOISON_LARGE |
+                               VM_FAULT_SET_HINDEX(hstate_index(h));
+       }
+
+       ptep = huge_pte_alloc(mm, address, huge_page_size(h));
+       if (!ptep)
+               return VM_FAULT_OOM;
+
+       mapping = vma->vm_file->f_mapping;
+       idx = vma_hugecache_offset(h, vma, address);
+
+       /*
+        * Serialize hugepage allocation and instantiation, so that we don't
+        * get spurious allocation failures if two CPUs race to instantiate
+        * the same page in the page cache.
+        */
+       hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
+       mutex_lock(&htlb_fault_mutex_table[hash]);
+
+       entry = huge_ptep_get(ptep);
+       if (huge_pte_none(entry)) {
+               ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
+               goto out_mutex;
+       }
+
+       ret = 0;
+
+       /*
+        * entry could be a migration/hwpoison entry at this point, so this
+        * check prevents the kernel from going below assuming that we have
+        * a active hugepage in pagecache. This goto expects the 2nd page fault,
+        * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
+        * handle it.
+        */
+       if (!pte_present(entry))
+               goto out_mutex;
+
+       /*
+        * If we are going to COW the mapping later, we examine the pending
+        * reservations for this page now. This will ensure that any
+        * allocations necessary to record that reservation occur outside the
+        * spinlock. For private mappings, we also lookup the pagecache
+        * page now as it is used to determine if a reservation has been
+        * consumed.
+        */
+       if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
+               if (vma_needs_reservation(h, vma, address) < 0) {
+                       ret = VM_FAULT_OOM;
+                       goto out_mutex;
+               }
+
+               if (!(vma->vm_flags & VM_MAYSHARE))
+                       pagecache_page = hugetlbfs_pagecache_page(h,
+                                                               vma, address);
+       }
+
+       ptl = huge_pte_lock(h, mm, ptep);
+
+       /* Check for a racing update before calling hugetlb_cow */
+       if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+               goto out_ptl;
+
+       /*
+        * hugetlb_cow() requires page locks of pte_page(entry) and
+        * pagecache_page, so here we need take the former one
+        * when page != pagecache_page or !pagecache_page.
+        */
+       page = pte_page(entry);
+       if (page != pagecache_page)
+               if (!trylock_page(page)) {
+                       need_wait_lock = 1;
+                       goto out_ptl;
+               }
+
+       get_page(page);
+
+       if (flags & FAULT_FLAG_WRITE) {
+               if (!huge_pte_write(entry)) {
+                       ret = hugetlb_cow(mm, vma, address, ptep, entry,
+                                       pagecache_page, ptl);
+                       goto out_put_page;
+               }
+               entry = huge_pte_mkdirty(entry);
+       }
+       entry = pte_mkyoung(entry);
+       if (huge_ptep_set_access_flags(vma, address, ptep, entry,
+                                               flags & FAULT_FLAG_WRITE))
+               update_mmu_cache(vma, address, ptep);
+out_put_page:
+       if (page != pagecache_page)
+               unlock_page(page);
+       put_page(page);
+out_ptl:
+       spin_unlock(ptl);
+
+       if (pagecache_page) {
+               unlock_page(pagecache_page);
+               put_page(pagecache_page);
+       }
+out_mutex:
+       mutex_unlock(&htlb_fault_mutex_table[hash]);
+       /*
+        * Generally it's safe to hold refcount during waiting page lock. But
+        * here we just wait to defer the next page fault to avoid busy loop and
+        * the page is not used after unlocked before returning from the current
+        * page fault. So we are safe from accessing freed page, even if we wait
+        * here without taking refcount.
+        */
+       if (need_wait_lock)
+               wait_on_page_locked(page);
+       return ret;
+}
+
+long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                        struct page **pages, struct vm_area_struct **vmas,
+                        unsigned long *position, unsigned long *nr_pages,
+                        long i, unsigned int flags)
+{
+       unsigned long pfn_offset;
+       unsigned long vaddr = *position;
+       unsigned long remainder = *nr_pages;
+       struct hstate *h = hstate_vma(vma);
+
+       while (vaddr < vma->vm_end && remainder) {
+               pte_t *pte;
+               spinlock_t *ptl = NULL;
+               int absent;
+               struct page *page;
+
+               /*
+                * If we have a pending SIGKILL, don't keep faulting pages and
+                * potentially allocating memory.
+                */
+               if (unlikely(fatal_signal_pending(current))) {
+                       remainder = 0;
+                       break;
+               }
+
+               /*
+                * Some archs (sparc64, sh*) have multiple pte_ts to
+                * each hugepage.  We have to make sure we get the
+                * first, for the page indexing below to work.
+                *
+                * Note that page table lock is not held when pte is null.
+                */
+               pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
+               if (pte)
+                       ptl = huge_pte_lock(h, mm, pte);
+               absent = !pte || huge_pte_none(huge_ptep_get(pte));
+
+               /*
+                * When coredumping, it suits get_dump_page if we just return
+                * an error where there's an empty slot with no huge pagecache
+                * to back it.  This way, we avoid allocating a hugepage, and
+                * the sparse dumpfile avoids allocating disk blocks, but its
+                * huge holes still show up with zeroes where they need to be.
+                */
+               if (absent && (flags & FOLL_DUMP) &&
+                   !hugetlbfs_pagecache_present(h, vma, vaddr)) {
+                       if (pte)
+                               spin_unlock(ptl);
+                       remainder = 0;
+                       break;
+               }
+
+               /*
+                * We need call hugetlb_fault for both hugepages under migration
+                * (in which case hugetlb_fault waits for the migration,) and
+                * hwpoisoned hugepages (in which case we need to prevent the
+                * caller from accessing to them.) In order to do this, we use
+                * here is_swap_pte instead of is_hugetlb_entry_migration and
+                * is_hugetlb_entry_hwpoisoned. This is because it simply covers
+                * both cases, and because we can't follow correct pages
+                * directly from any kind of swap entries.
+                */
+               if (absent || is_swap_pte(huge_ptep_get(pte)) ||
+                   ((flags & FOLL_WRITE) &&
+                     !huge_pte_write(huge_ptep_get(pte)))) {
+                       int ret;
+
+                       if (pte)
+                               spin_unlock(ptl);
+                       ret = hugetlb_fault(mm, vma, vaddr,
+                               (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
+                       if (!(ret & VM_FAULT_ERROR))
+                               continue;
+
+                       remainder = 0;
+                       break;
+               }
+
+               pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
+               page = pte_page(huge_ptep_get(pte));
+same_page:
+               if (pages) {
+                       pages[i] = mem_map_offset(page, pfn_offset);
+                       get_page_foll(pages[i]);
+               }
+
+               if (vmas)
+                       vmas[i] = vma;
+
+               vaddr += PAGE_SIZE;
+               ++pfn_offset;
+               --remainder;
+               ++i;
+               if (vaddr < vma->vm_end && remainder &&
+                               pfn_offset < pages_per_huge_page(h)) {
+                       /*
+                        * We use pfn_offset to avoid touching the pageframes
+                        * of this compound page.
+                        */
+                       goto same_page;
+               }
+               spin_unlock(ptl);
+       }
+       *nr_pages = remainder;
+       *position = vaddr;
+
+       return i ? i : -EFAULT;
+}
+
+unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
+               unsigned long address, unsigned long end, pgprot_t newprot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long start = address;
+       pte_t *ptep;
+       pte_t pte;
+       struct hstate *h = hstate_vma(vma);
+       unsigned long pages = 0;
+
+       BUG_ON(address >= end);
+       flush_cache_range(vma, address, end);
+
+       mmu_notifier_invalidate_range_start(mm, start, end);
+       i_mmap_lock_write(vma->vm_file->f_mapping);
+       for (; address < end; address += huge_page_size(h)) {
+               spinlock_t *ptl;
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+               ptl = huge_pte_lock(h, mm, ptep);
+               if (huge_pmd_unshare(mm, &address, ptep)) {
+                       pages++;
+                       spin_unlock(ptl);
+                       continue;
+               }
+               pte = huge_ptep_get(ptep);
+               if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
+                       spin_unlock(ptl);
+                       continue;
+               }
+               if (unlikely(is_hugetlb_entry_migration(pte))) {
+                       swp_entry_t entry = pte_to_swp_entry(pte);
+
+                       if (is_write_migration_entry(entry)) {
+                               pte_t newpte;
+
+                               make_migration_entry_read(&entry);
+                               newpte = swp_entry_to_pte(entry);
+                               set_huge_pte_at(mm, address, ptep, newpte);
+                               pages++;
+                       }
+                       spin_unlock(ptl);
+                       continue;
+               }
+               if (!huge_pte_none(pte)) {
+                       pte = huge_ptep_get_and_clear(mm, address, ptep);
+                       pte = pte_mkhuge(huge_pte_modify(pte, newprot));
+                       pte = arch_make_huge_pte(pte, vma, NULL, 0);
+                       set_huge_pte_at(mm, address, ptep, pte);
+                       pages++;
+               }
+               spin_unlock(ptl);
+       }
+       /*
+        * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
+        * may have cleared our pud entry and done put_page on the page table:
+        * once we release i_mmap_rwsem, another task can do the final put_page
+        * and that page table be reused and filled with junk.
+        */
+       flush_tlb_range(vma, start, end);
+       mmu_notifier_invalidate_range(mm, start, end);
+       i_mmap_unlock_write(vma->vm_file->f_mapping);
+       mmu_notifier_invalidate_range_end(mm, start, end);
+
+       return pages << h->order;
+}
+
+int hugetlb_reserve_pages(struct inode *inode,
+                                       long from, long to,
+                                       struct vm_area_struct *vma,
+                                       vm_flags_t vm_flags)
+{
+       long ret, chg;
+       struct hstate *h = hstate_inode(inode);
+       struct hugepage_subpool *spool = subpool_inode(inode);
+       struct resv_map *resv_map;
+       long gbl_reserve;
+
+       /*
+        * Only apply hugepage reservation if asked. At fault time, an
+        * attempt will be made for VM_NORESERVE to allocate a page
+        * without using reserves
+        */
+       if (vm_flags & VM_NORESERVE)
+               return 0;
+
+       /*
+        * Shared mappings base their reservation on the number of pages that
+        * are already allocated on behalf of the file. Private mappings need
+        * to reserve the full area even if read-only as mprotect() may be
+        * called to make the mapping read-write. Assume !vma is a shm mapping
+        */
+       if (!vma || vma->vm_flags & VM_MAYSHARE) {
+               resv_map = inode_resv_map(inode);
+
+               chg = region_chg(resv_map, from, to);
+
+       } else {
+               resv_map = resv_map_alloc();
+               if (!resv_map)
+                       return -ENOMEM;
+
+               chg = to - from;
+
+               set_vma_resv_map(vma, resv_map);
+               set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
+       }
+
+       if (chg < 0) {
+               ret = chg;
+               goto out_err;
+       }
+
+       /*
+        * There must be enough pages in the subpool for the mapping. If
+        * the subpool has a minimum size, there may be some global
+        * reservations already in place (gbl_reserve).
+        */
+       gbl_reserve = hugepage_subpool_get_pages(spool, chg);
+       if (gbl_reserve < 0) {
+               ret = -ENOSPC;
+               goto out_err;
+       }
+
+       /*
+        * Check enough hugepages are available for the reservation.
+        * Hand the pages back to the subpool if there are not
+        */
+       ret = hugetlb_acct_memory(h, gbl_reserve);
+       if (ret < 0) {
+               /* put back original number of pages, chg */
+               (void)hugepage_subpool_put_pages(spool, chg);
+               goto out_err;
+       }
+
+       /*
+        * Account for the reservations made. Shared mappings record regions
+        * that have reservations as they are shared by multiple VMAs.
+        * When the last VMA disappears, the region map says how much
+        * the reservation was and the page cache tells how much of
+        * the reservation was consumed. Private mappings are per-VMA and
+        * only the consumed reservations are tracked. When the VMA
+        * disappears, the original reservation is the VMA size and the
+        * consumed reservations are stored in the map. Hence, nothing
+        * else has to be done for private mappings here
+        */
+       if (!vma || vma->vm_flags & VM_MAYSHARE)
+               region_add(resv_map, from, to);
+       return 0;
+out_err:
+       if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+               kref_put(&resv_map->refs, resv_map_release);
+       return ret;
+}
+
+void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
+{
+       struct hstate *h = hstate_inode(inode);
+       struct resv_map *resv_map = inode_resv_map(inode);
+       long chg = 0;
+       struct hugepage_subpool *spool = subpool_inode(inode);
+       long gbl_reserve;
+
+       if (resv_map)
+               chg = region_truncate(resv_map, offset);
+       spin_lock(&inode->i_lock);
+       inode->i_blocks -= (blocks_per_huge_page(h) * freed);
+       spin_unlock(&inode->i_lock);
+
+       /*
+        * If the subpool has a minimum size, the number of global
+        * reservations to be released may be adjusted.
+        */
+       gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
+       hugetlb_acct_memory(h, -gbl_reserve);
+}
+
+#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+static unsigned long page_table_shareable(struct vm_area_struct *svma,
+                               struct vm_area_struct *vma,
+                               unsigned long addr, pgoff_t idx)
+{
+       unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
+                               svma->vm_start;
+       unsigned long sbase = saddr & PUD_MASK;
+       unsigned long s_end = sbase + PUD_SIZE;
+
+       /* Allow segments to share if only one is marked locked */
+       unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
+       unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
+
+       /*
+        * match the virtual addresses, permission and the alignment of the
+        * page table page.
+        */
+       if (pmd_index(addr) != pmd_index(saddr) ||
+           vm_flags != svm_flags ||
+           sbase < svma->vm_start || svma->vm_end < s_end)
+               return 0;
+
+       return saddr;
+}
+
+static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
+{
+       unsigned long base = addr & PUD_MASK;
+       unsigned long end = base + PUD_SIZE;
+
+       /*
+        * check on proper vm_flags and page table alignment
+        */
+       if (vma->vm_flags & VM_MAYSHARE &&
+           vma->vm_start <= base && end <= vma->vm_end)
+               return 1;
+       return 0;
+}
+
+/*
+ * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
+ * and returns the corresponding pte. While this is not necessary for the
+ * !shared pmd case because we can allocate the pmd later as well, it makes the
+ * code much cleaner. pmd allocation is essential for the shared case because
+ * pud has to be populated inside the same i_mmap_rwsem section - otherwise
+ * racing tasks could either miss the sharing (see huge_pte_offset) or select a
+ * bad pmd for sharing.
+ */
+pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
+{
+       struct vm_area_struct *vma = find_vma(mm, addr);
+       struct address_space *mapping = vma->vm_file->f_mapping;
+       pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
+                       vma->vm_pgoff;
+       struct vm_area_struct *svma;
+       unsigned long saddr;
+       pte_t *spte = NULL;
+       pte_t *pte;
+       spinlock_t *ptl;
+
+       if (!vma_shareable(vma, addr))
+               return (pte_t *)pmd_alloc(mm, pud, addr);
+
+       i_mmap_lock_write(mapping);
+       vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
+               if (svma == vma)
+                       continue;
+
+               saddr = page_table_shareable(svma, vma, addr, idx);
+               if (saddr) {
+                       spte = huge_pte_offset(svma->vm_mm, saddr);
+                       if (spte) {
+                               mm_inc_nr_pmds(mm);
+                               get_page(virt_to_page(spte));
+                               break;
+                       }
+               }
+       }
+
+       if (!spte)
+               goto out;
+
+       ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
+       spin_lock(ptl);
+       if (pud_none(*pud)) {
+               pud_populate(mm, pud,
+                               (pmd_t *)((unsigned long)spte & PAGE_MASK));
+       } else {
+               put_page(virt_to_page(spte));
+               mm_inc_nr_pmds(mm);
+       }
+       spin_unlock(ptl);
+out:
+       pte = (pte_t *)pmd_alloc(mm, pud, addr);
+       i_mmap_unlock_write(mapping);
+       return pte;
+}
+
+/*
+ * unmap huge page backed by shared pte.
+ *
+ * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
+ * indicated by page_count > 1, unmap is achieved by clearing pud and
+ * decrementing the ref count. If count == 1, the pte page is not shared.
+ *
+ * called with page table lock held.
+ *
+ * returns: 1 successfully unmapped a shared pte page
+ *         0 the underlying pte page is not shared, or it is the last user
+ */
+int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
+{
+       pgd_t *pgd = pgd_offset(mm, *addr);
+       pud_t *pud = pud_offset(pgd, *addr);
+
+       BUG_ON(page_count(virt_to_page(ptep)) == 0);
+       if (page_count(virt_to_page(ptep)) == 1)
+               return 0;
+
+       pud_clear(pud);
+       put_page(virt_to_page(ptep));
+       mm_dec_nr_pmds(mm);
+       *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
+       return 1;
+}
+#define want_pmd_share()       (1)
+#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
+{
+       return NULL;
+}
+#define want_pmd_share()       (0)
+#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+
+#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
+pte_t *huge_pte_alloc(struct mm_struct *mm,
+                       unsigned long addr, unsigned long sz)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pte_t *pte = NULL;
+
+       pgd = pgd_offset(mm, addr);
+       pud = pud_alloc(mm, pgd, addr);
+       if (pud) {
+               if (sz == PUD_SIZE) {
+                       pte = (pte_t *)pud;
+               } else {
+                       BUG_ON(sz != PMD_SIZE);
+                       if (want_pmd_share() && pud_none(*pud))
+                               pte = huge_pmd_share(mm, addr, pud);
+                       else
+                               pte = (pte_t *)pmd_alloc(mm, pud, addr);
+               }
+       }
+       BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
+
+       return pte;
+}
+
+pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd = NULL;
+
+       pgd = pgd_offset(mm, addr);
+       if (pgd_present(*pgd)) {
+               pud = pud_offset(pgd, addr);
+               if (pud_present(*pud)) {
+                       if (pud_huge(*pud))
+                               return (pte_t *)pud;
+                       pmd = pmd_offset(pud, addr);
+               }
+       }
+       return (pte_t *) pmd;
+}
+
+#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
+
+/*
+ * These functions are overwritable if your architecture needs its own
+ * behavior.
+ */
+struct page * __weak
+follow_huge_addr(struct mm_struct *mm, unsigned long address,
+                             int write)
+{
+       return ERR_PTR(-EINVAL);
+}
+
+struct page * __weak
+follow_huge_pmd(struct mm_struct *mm, unsigned long address,
+               pmd_t *pmd, int flags)
+{
+       struct page *page = NULL;
+       spinlock_t *ptl;
+retry:
+       ptl = pmd_lockptr(mm, pmd);
+       spin_lock(ptl);
+       /*
+        * make sure that the address range covered by this pmd is not
+        * unmapped from other threads.
+        */
+       if (!pmd_huge(*pmd))
+               goto out;
+       if (pmd_present(*pmd)) {
+               page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
+               if (flags & FOLL_GET)
+                       get_page(page);
+       } else {
+               if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
+                       spin_unlock(ptl);
+                       __migration_entry_wait(mm, (pte_t *)pmd, ptl);
+                       goto retry;
+               }
+               /*
+                * hwpoisoned entry is treated as no_page_table in
+                * follow_page_mask().
+                */
+       }
+out:
+       spin_unlock(ptl);
+       return page;
+}
+
+struct page * __weak
+follow_huge_pud(struct mm_struct *mm, unsigned long address,
+               pud_t *pud, int flags)
+{
+       if (flags & FOLL_GET)
+               return NULL;
+
+       return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
+}
+
+#ifdef CONFIG_MEMORY_FAILURE
+
+/*
+ * This function is called from memory failure code.
+ * Assume the caller holds page lock of the head page.
+ */
+int dequeue_hwpoisoned_huge_page(struct page *hpage)
+{
+       struct hstate *h = page_hstate(hpage);
+       int nid = page_to_nid(hpage);
+       int ret = -EBUSY;
+
+       spin_lock(&hugetlb_lock);
+       /*
+        * Just checking !page_huge_active is not enough, because that could be
+        * an isolated/hwpoisoned hugepage (which have >0 refcount).
+        */
+       if (!page_huge_active(hpage) && !page_count(hpage)) {
+               /*
+                * Hwpoisoned hugepage isn't linked to activelist or freelist,
+                * but dangling hpage->lru can trigger list-debug warnings
+                * (this happens when we call unpoison_memory() on it),
+                * so let it point to itself with list_del_init().
+                */
+               list_del_init(&hpage->lru);
+               set_page_refcounted(hpage);
+               h->free_huge_pages--;
+               h->free_huge_pages_node[nid]--;
+               ret = 0;
+       }
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+#endif
+
+bool isolate_huge_page(struct page *page, struct list_head *list)
+{
+       bool ret = true;
+
+       VM_BUG_ON_PAGE(!PageHead(page), page);
+       spin_lock(&hugetlb_lock);
+       if (!page_huge_active(page) || !get_page_unless_zero(page)) {
+               ret = false;
+               goto unlock;
+       }
+       clear_page_huge_active(page);
+       list_move_tail(&page->lru, list);
+unlock:
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+
+void putback_active_hugepage(struct page *page)
+{
+       VM_BUG_ON_PAGE(!PageHead(page), page);
+       spin_lock(&hugetlb_lock);
+       set_page_huge_active(page);
+       list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
+       spin_unlock(&hugetlb_lock);
+       put_page(page);
+}