Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / huge_memory.c
diff --git a/kernel/mm/huge_memory.c b/kernel/mm/huge_memory.c
new file mode 100644 (file)
index 0000000..078832c
--- /dev/null
@@ -0,0 +1,3011 @@
+/*
+ *  Copyright (C) 2009  Red Hat, Inc.
+ *
+ *  This work is licensed under the terms of the GNU GPL, version 2. See
+ *  the COPYING file in the top-level directory.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/highmem.h>
+#include <linux/hugetlb.h>
+#include <linux/mmu_notifier.h>
+#include <linux/rmap.h>
+#include <linux/swap.h>
+#include <linux/shrinker.h>
+#include <linux/mm_inline.h>
+#include <linux/kthread.h>
+#include <linux/khugepaged.h>
+#include <linux/freezer.h>
+#include <linux/mman.h>
+#include <linux/pagemap.h>
+#include <linux/migrate.h>
+#include <linux/hashtable.h>
+
+#include <asm/tlb.h>
+#include <asm/pgalloc.h>
+#include "internal.h"
+
+/*
+ * By default transparent hugepage support is disabled in order that avoid
+ * to risk increase the memory footprint of applications without a guaranteed
+ * benefit. When transparent hugepage support is enabled, is for all mappings,
+ * and khugepaged scans all mappings.
+ * Defrag is invoked by khugepaged hugepage allocations and by page faults
+ * for all hugepage allocations.
+ */
+unsigned long transparent_hugepage_flags __read_mostly =
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
+       (1<<TRANSPARENT_HUGEPAGE_FLAG)|
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
+       (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
+#endif
+       (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
+       (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
+       (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+
+/* default scan 8*512 pte (or vmas) every 30 second */
+static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
+static unsigned int khugepaged_pages_collapsed;
+static unsigned int khugepaged_full_scans;
+static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
+/* during fragmentation poll the hugepage allocator once every minute */
+static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
+static struct task_struct *khugepaged_thread __read_mostly;
+static DEFINE_MUTEX(khugepaged_mutex);
+static DEFINE_SPINLOCK(khugepaged_mm_lock);
+static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
+/*
+ * default collapse hugepages if there is at least one pte mapped like
+ * it would have happened if the vma was large enough during page
+ * fault.
+ */
+static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
+
+static int khugepaged(void *none);
+static int khugepaged_slab_init(void);
+static void khugepaged_slab_exit(void);
+
+#define MM_SLOTS_HASH_BITS 10
+static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
+
+static struct kmem_cache *mm_slot_cache __read_mostly;
+
+/**
+ * struct mm_slot - hash lookup from mm to mm_slot
+ * @hash: hash collision list
+ * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
+ * @mm: the mm that this information is valid for
+ */
+struct mm_slot {
+       struct hlist_node hash;
+       struct list_head mm_node;
+       struct mm_struct *mm;
+};
+
+/**
+ * struct khugepaged_scan - cursor for scanning
+ * @mm_head: the head of the mm list to scan
+ * @mm_slot: the current mm_slot we are scanning
+ * @address: the next address inside that to be scanned
+ *
+ * There is only the one khugepaged_scan instance of this cursor structure.
+ */
+struct khugepaged_scan {
+       struct list_head mm_head;
+       struct mm_slot *mm_slot;
+       unsigned long address;
+};
+static struct khugepaged_scan khugepaged_scan = {
+       .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
+};
+
+
+static int set_recommended_min_free_kbytes(void)
+{
+       struct zone *zone;
+       int nr_zones = 0;
+       unsigned long recommended_min;
+
+       for_each_populated_zone(zone)
+               nr_zones++;
+
+       /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
+       recommended_min = pageblock_nr_pages * nr_zones * 2;
+
+       /*
+        * Make sure that on average at least two pageblocks are almost free
+        * of another type, one for a migratetype to fall back to and a
+        * second to avoid subsequent fallbacks of other types There are 3
+        * MIGRATE_TYPES we care about.
+        */
+       recommended_min += pageblock_nr_pages * nr_zones *
+                          MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
+
+       /* don't ever allow to reserve more than 5% of the lowmem */
+       recommended_min = min(recommended_min,
+                             (unsigned long) nr_free_buffer_pages() / 20);
+       recommended_min <<= (PAGE_SHIFT-10);
+
+       if (recommended_min > min_free_kbytes) {
+               if (user_min_free_kbytes >= 0)
+                       pr_info("raising min_free_kbytes from %d to %lu "
+                               "to help transparent hugepage allocations\n",
+                               min_free_kbytes, recommended_min);
+
+               min_free_kbytes = recommended_min;
+       }
+       setup_per_zone_wmarks();
+       return 0;
+}
+
+static int start_stop_khugepaged(void)
+{
+       int err = 0;
+       if (khugepaged_enabled()) {
+               if (!khugepaged_thread)
+                       khugepaged_thread = kthread_run(khugepaged, NULL,
+                                                       "khugepaged");
+               if (unlikely(IS_ERR(khugepaged_thread))) {
+                       pr_err("khugepaged: kthread_run(khugepaged) failed\n");
+                       err = PTR_ERR(khugepaged_thread);
+                       khugepaged_thread = NULL;
+                       goto fail;
+               }
+
+               if (!list_empty(&khugepaged_scan.mm_head))
+                       wake_up_interruptible(&khugepaged_wait);
+
+               set_recommended_min_free_kbytes();
+       } else if (khugepaged_thread) {
+               kthread_stop(khugepaged_thread);
+               khugepaged_thread = NULL;
+       }
+fail:
+       return err;
+}
+
+static atomic_t huge_zero_refcount;
+struct page *huge_zero_page __read_mostly;
+
+static inline bool is_huge_zero_pmd(pmd_t pmd)
+{
+       return is_huge_zero_page(pmd_page(pmd));
+}
+
+static struct page *get_huge_zero_page(void)
+{
+       struct page *zero_page;
+retry:
+       if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
+               return READ_ONCE(huge_zero_page);
+
+       zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
+                       HPAGE_PMD_ORDER);
+       if (!zero_page) {
+               count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
+               return NULL;
+       }
+       count_vm_event(THP_ZERO_PAGE_ALLOC);
+       preempt_disable();
+       if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
+               preempt_enable();
+               __free_pages(zero_page, compound_order(zero_page));
+               goto retry;
+       }
+
+       /* We take additional reference here. It will be put back by shrinker */
+       atomic_set(&huge_zero_refcount, 2);
+       preempt_enable();
+       return READ_ONCE(huge_zero_page);
+}
+
+static void put_huge_zero_page(void)
+{
+       /*
+        * Counter should never go to zero here. Only shrinker can put
+        * last reference.
+        */
+       BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
+}
+
+static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
+                                       struct shrink_control *sc)
+{
+       /* we can free zero page only if last reference remains */
+       return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
+}
+
+static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
+                                      struct shrink_control *sc)
+{
+       if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
+               struct page *zero_page = xchg(&huge_zero_page, NULL);
+               BUG_ON(zero_page == NULL);
+               __free_pages(zero_page, compound_order(zero_page));
+               return HPAGE_PMD_NR;
+       }
+
+       return 0;
+}
+
+static struct shrinker huge_zero_page_shrinker = {
+       .count_objects = shrink_huge_zero_page_count,
+       .scan_objects = shrink_huge_zero_page_scan,
+       .seeks = DEFAULT_SEEKS,
+};
+
+#ifdef CONFIG_SYSFS
+
+static ssize_t double_flag_show(struct kobject *kobj,
+                               struct kobj_attribute *attr, char *buf,
+                               enum transparent_hugepage_flag enabled,
+                               enum transparent_hugepage_flag req_madv)
+{
+       if (test_bit(enabled, &transparent_hugepage_flags)) {
+               VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
+               return sprintf(buf, "[always] madvise never\n");
+       } else if (test_bit(req_madv, &transparent_hugepage_flags))
+               return sprintf(buf, "always [madvise] never\n");
+       else
+               return sprintf(buf, "always madvise [never]\n");
+}
+static ssize_t double_flag_store(struct kobject *kobj,
+                                struct kobj_attribute *attr,
+                                const char *buf, size_t count,
+                                enum transparent_hugepage_flag enabled,
+                                enum transparent_hugepage_flag req_madv)
+{
+       if (!memcmp("always", buf,
+                   min(sizeof("always")-1, count))) {
+               set_bit(enabled, &transparent_hugepage_flags);
+               clear_bit(req_madv, &transparent_hugepage_flags);
+       } else if (!memcmp("madvise", buf,
+                          min(sizeof("madvise")-1, count))) {
+               clear_bit(enabled, &transparent_hugepage_flags);
+               set_bit(req_madv, &transparent_hugepage_flags);
+       } else if (!memcmp("never", buf,
+                          min(sizeof("never")-1, count))) {
+               clear_bit(enabled, &transparent_hugepage_flags);
+               clear_bit(req_madv, &transparent_hugepage_flags);
+       } else
+               return -EINVAL;
+
+       return count;
+}
+
+static ssize_t enabled_show(struct kobject *kobj,
+                           struct kobj_attribute *attr, char *buf)
+{
+       return double_flag_show(kobj, attr, buf,
+                               TRANSPARENT_HUGEPAGE_FLAG,
+                               TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
+}
+static ssize_t enabled_store(struct kobject *kobj,
+                            struct kobj_attribute *attr,
+                            const char *buf, size_t count)
+{
+       ssize_t ret;
+
+       ret = double_flag_store(kobj, attr, buf, count,
+                               TRANSPARENT_HUGEPAGE_FLAG,
+                               TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
+
+       if (ret > 0) {
+               int err;
+
+               mutex_lock(&khugepaged_mutex);
+               err = start_stop_khugepaged();
+               mutex_unlock(&khugepaged_mutex);
+
+               if (err)
+                       ret = err;
+       }
+
+       return ret;
+}
+static struct kobj_attribute enabled_attr =
+       __ATTR(enabled, 0644, enabled_show, enabled_store);
+
+static ssize_t single_flag_show(struct kobject *kobj,
+                               struct kobj_attribute *attr, char *buf,
+                               enum transparent_hugepage_flag flag)
+{
+       return sprintf(buf, "%d\n",
+                      !!test_bit(flag, &transparent_hugepage_flags));
+}
+
+static ssize_t single_flag_store(struct kobject *kobj,
+                                struct kobj_attribute *attr,
+                                const char *buf, size_t count,
+                                enum transparent_hugepage_flag flag)
+{
+       unsigned long value;
+       int ret;
+
+       ret = kstrtoul(buf, 10, &value);
+       if (ret < 0)
+               return ret;
+       if (value > 1)
+               return -EINVAL;
+
+       if (value)
+               set_bit(flag, &transparent_hugepage_flags);
+       else
+               clear_bit(flag, &transparent_hugepage_flags);
+
+       return count;
+}
+
+/*
+ * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
+ * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
+ * memory just to allocate one more hugepage.
+ */
+static ssize_t defrag_show(struct kobject *kobj,
+                          struct kobj_attribute *attr, char *buf)
+{
+       return double_flag_show(kobj, attr, buf,
+                               TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
+                               TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
+}
+static ssize_t defrag_store(struct kobject *kobj,
+                           struct kobj_attribute *attr,
+                           const char *buf, size_t count)
+{
+       return double_flag_store(kobj, attr, buf, count,
+                                TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
+                                TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
+}
+static struct kobj_attribute defrag_attr =
+       __ATTR(defrag, 0644, defrag_show, defrag_store);
+
+static ssize_t use_zero_page_show(struct kobject *kobj,
+               struct kobj_attribute *attr, char *buf)
+{
+       return single_flag_show(kobj, attr, buf,
+                               TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+}
+static ssize_t use_zero_page_store(struct kobject *kobj,
+               struct kobj_attribute *attr, const char *buf, size_t count)
+{
+       return single_flag_store(kobj, attr, buf, count,
+                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
+}
+static struct kobj_attribute use_zero_page_attr =
+       __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
+#ifdef CONFIG_DEBUG_VM
+static ssize_t debug_cow_show(struct kobject *kobj,
+                               struct kobj_attribute *attr, char *buf)
+{
+       return single_flag_show(kobj, attr, buf,
+                               TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static ssize_t debug_cow_store(struct kobject *kobj,
+                              struct kobj_attribute *attr,
+                              const char *buf, size_t count)
+{
+       return single_flag_store(kobj, attr, buf, count,
+                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static struct kobj_attribute debug_cow_attr =
+       __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
+#endif /* CONFIG_DEBUG_VM */
+
+static struct attribute *hugepage_attr[] = {
+       &enabled_attr.attr,
+       &defrag_attr.attr,
+       &use_zero_page_attr.attr,
+#ifdef CONFIG_DEBUG_VM
+       &debug_cow_attr.attr,
+#endif
+       NULL,
+};
+
+static struct attribute_group hugepage_attr_group = {
+       .attrs = hugepage_attr,
+};
+
+static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
+                                        struct kobj_attribute *attr,
+                                        char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
+}
+
+static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
+                                         struct kobj_attribute *attr,
+                                         const char *buf, size_t count)
+{
+       unsigned long msecs;
+       int err;
+
+       err = kstrtoul(buf, 10, &msecs);
+       if (err || msecs > UINT_MAX)
+               return -EINVAL;
+
+       khugepaged_scan_sleep_millisecs = msecs;
+       wake_up_interruptible(&khugepaged_wait);
+
+       return count;
+}
+static struct kobj_attribute scan_sleep_millisecs_attr =
+       __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
+              scan_sleep_millisecs_store);
+
+static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
+                                         struct kobj_attribute *attr,
+                                         char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
+}
+
+static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
+                                          struct kobj_attribute *attr,
+                                          const char *buf, size_t count)
+{
+       unsigned long msecs;
+       int err;
+
+       err = kstrtoul(buf, 10, &msecs);
+       if (err || msecs > UINT_MAX)
+               return -EINVAL;
+
+       khugepaged_alloc_sleep_millisecs = msecs;
+       wake_up_interruptible(&khugepaged_wait);
+
+       return count;
+}
+static struct kobj_attribute alloc_sleep_millisecs_attr =
+       __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
+              alloc_sleep_millisecs_store);
+
+static ssize_t pages_to_scan_show(struct kobject *kobj,
+                                 struct kobj_attribute *attr,
+                                 char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
+}
+static ssize_t pages_to_scan_store(struct kobject *kobj,
+                                  struct kobj_attribute *attr,
+                                  const char *buf, size_t count)
+{
+       int err;
+       unsigned long pages;
+
+       err = kstrtoul(buf, 10, &pages);
+       if (err || !pages || pages > UINT_MAX)
+               return -EINVAL;
+
+       khugepaged_pages_to_scan = pages;
+
+       return count;
+}
+static struct kobj_attribute pages_to_scan_attr =
+       __ATTR(pages_to_scan, 0644, pages_to_scan_show,
+              pages_to_scan_store);
+
+static ssize_t pages_collapsed_show(struct kobject *kobj,
+                                   struct kobj_attribute *attr,
+                                   char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
+}
+static struct kobj_attribute pages_collapsed_attr =
+       __ATTR_RO(pages_collapsed);
+
+static ssize_t full_scans_show(struct kobject *kobj,
+                              struct kobj_attribute *attr,
+                              char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_full_scans);
+}
+static struct kobj_attribute full_scans_attr =
+       __ATTR_RO(full_scans);
+
+static ssize_t khugepaged_defrag_show(struct kobject *kobj,
+                                     struct kobj_attribute *attr, char *buf)
+{
+       return single_flag_show(kobj, attr, buf,
+                               TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
+}
+static ssize_t khugepaged_defrag_store(struct kobject *kobj,
+                                      struct kobj_attribute *attr,
+                                      const char *buf, size_t count)
+{
+       return single_flag_store(kobj, attr, buf, count,
+                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
+}
+static struct kobj_attribute khugepaged_defrag_attr =
+       __ATTR(defrag, 0644, khugepaged_defrag_show,
+              khugepaged_defrag_store);
+
+/*
+ * max_ptes_none controls if khugepaged should collapse hugepages over
+ * any unmapped ptes in turn potentially increasing the memory
+ * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
+ * reduce the available free memory in the system as it
+ * runs. Increasing max_ptes_none will instead potentially reduce the
+ * free memory in the system during the khugepaged scan.
+ */
+static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
+                                            struct kobj_attribute *attr,
+                                            char *buf)
+{
+       return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
+}
+static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
+                                             struct kobj_attribute *attr,
+                                             const char *buf, size_t count)
+{
+       int err;
+       unsigned long max_ptes_none;
+
+       err = kstrtoul(buf, 10, &max_ptes_none);
+       if (err || max_ptes_none > HPAGE_PMD_NR-1)
+               return -EINVAL;
+
+       khugepaged_max_ptes_none = max_ptes_none;
+
+       return count;
+}
+static struct kobj_attribute khugepaged_max_ptes_none_attr =
+       __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
+              khugepaged_max_ptes_none_store);
+
+static struct attribute *khugepaged_attr[] = {
+       &khugepaged_defrag_attr.attr,
+       &khugepaged_max_ptes_none_attr.attr,
+       &pages_to_scan_attr.attr,
+       &pages_collapsed_attr.attr,
+       &full_scans_attr.attr,
+       &scan_sleep_millisecs_attr.attr,
+       &alloc_sleep_millisecs_attr.attr,
+       NULL,
+};
+
+static struct attribute_group khugepaged_attr_group = {
+       .attrs = khugepaged_attr,
+       .name = "khugepaged",
+};
+
+static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
+{
+       int err;
+
+       *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
+       if (unlikely(!*hugepage_kobj)) {
+               pr_err("failed to create transparent hugepage kobject\n");
+               return -ENOMEM;
+       }
+
+       err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
+       if (err) {
+               pr_err("failed to register transparent hugepage group\n");
+               goto delete_obj;
+       }
+
+       err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
+       if (err) {
+               pr_err("failed to register transparent hugepage group\n");
+               goto remove_hp_group;
+       }
+
+       return 0;
+
+remove_hp_group:
+       sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
+delete_obj:
+       kobject_put(*hugepage_kobj);
+       return err;
+}
+
+static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
+{
+       sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
+       sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
+       kobject_put(hugepage_kobj);
+}
+#else
+static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
+{
+       return 0;
+}
+
+static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
+{
+}
+#endif /* CONFIG_SYSFS */
+
+static int __init hugepage_init(void)
+{
+       int err;
+       struct kobject *hugepage_kobj;
+
+       if (!has_transparent_hugepage()) {
+               transparent_hugepage_flags = 0;
+               return -EINVAL;
+       }
+
+       err = hugepage_init_sysfs(&hugepage_kobj);
+       if (err)
+               goto err_sysfs;
+
+       err = khugepaged_slab_init();
+       if (err)
+               goto err_slab;
+
+       err = register_shrinker(&huge_zero_page_shrinker);
+       if (err)
+               goto err_hzp_shrinker;
+
+       /*
+        * By default disable transparent hugepages on smaller systems,
+        * where the extra memory used could hurt more than TLB overhead
+        * is likely to save.  The admin can still enable it through /sys.
+        */
+       if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
+               transparent_hugepage_flags = 0;
+               return 0;
+       }
+
+       err = start_stop_khugepaged();
+       if (err)
+               goto err_khugepaged;
+
+       return 0;
+err_khugepaged:
+       unregister_shrinker(&huge_zero_page_shrinker);
+err_hzp_shrinker:
+       khugepaged_slab_exit();
+err_slab:
+       hugepage_exit_sysfs(hugepage_kobj);
+err_sysfs:
+       return err;
+}
+subsys_initcall(hugepage_init);
+
+static int __init setup_transparent_hugepage(char *str)
+{
+       int ret = 0;
+       if (!str)
+               goto out;
+       if (!strcmp(str, "always")) {
+               set_bit(TRANSPARENT_HUGEPAGE_FLAG,
+                       &transparent_hugepage_flags);
+               clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+                         &transparent_hugepage_flags);
+               ret = 1;
+       } else if (!strcmp(str, "madvise")) {
+               clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+                         &transparent_hugepage_flags);
+               set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+                       &transparent_hugepage_flags);
+               ret = 1;
+       } else if (!strcmp(str, "never")) {
+               clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+                         &transparent_hugepage_flags);
+               clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+                         &transparent_hugepage_flags);
+               ret = 1;
+       }
+out:
+       if (!ret)
+               pr_warn("transparent_hugepage= cannot parse, ignored\n");
+       return ret;
+}
+__setup("transparent_hugepage=", setup_transparent_hugepage);
+
+pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
+{
+       if (likely(vma->vm_flags & VM_WRITE))
+               pmd = pmd_mkwrite(pmd);
+       return pmd;
+}
+
+static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
+{
+       pmd_t entry;
+       entry = mk_pmd(page, prot);
+       entry = pmd_mkhuge(entry);
+       return entry;
+}
+
+static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
+                                       struct vm_area_struct *vma,
+                                       unsigned long haddr, pmd_t *pmd,
+                                       struct page *page, gfp_t gfp)
+{
+       struct mem_cgroup *memcg;
+       pgtable_t pgtable;
+       spinlock_t *ptl;
+
+       VM_BUG_ON_PAGE(!PageCompound(page), page);
+
+       if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
+               return VM_FAULT_OOM;
+
+       pgtable = pte_alloc_one(mm, haddr);
+       if (unlikely(!pgtable)) {
+               mem_cgroup_cancel_charge(page, memcg);
+               return VM_FAULT_OOM;
+       }
+
+       clear_huge_page(page, haddr, HPAGE_PMD_NR);
+       /*
+        * The memory barrier inside __SetPageUptodate makes sure that
+        * clear_huge_page writes become visible before the set_pmd_at()
+        * write.
+        */
+       __SetPageUptodate(page);
+
+       ptl = pmd_lock(mm, pmd);
+       if (unlikely(!pmd_none(*pmd))) {
+               spin_unlock(ptl);
+               mem_cgroup_cancel_charge(page, memcg);
+               put_page(page);
+               pte_free(mm, pgtable);
+       } else {
+               pmd_t entry;
+               entry = mk_huge_pmd(page, vma->vm_page_prot);
+               entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+               page_add_new_anon_rmap(page, vma, haddr);
+               mem_cgroup_commit_charge(page, memcg, false);
+               lru_cache_add_active_or_unevictable(page, vma);
+               pgtable_trans_huge_deposit(mm, pmd, pgtable);
+               set_pmd_at(mm, haddr, pmd, entry);
+               add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
+               atomic_long_inc(&mm->nr_ptes);
+               spin_unlock(ptl);
+       }
+
+       return 0;
+}
+
+static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
+{
+       return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
+}
+
+/* Caller must hold page table lock. */
+static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
+               struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
+               struct page *zero_page)
+{
+       pmd_t entry;
+       if (!pmd_none(*pmd))
+               return false;
+       entry = mk_pmd(zero_page, vma->vm_page_prot);
+       entry = pmd_mkhuge(entry);
+       pgtable_trans_huge_deposit(mm, pmd, pgtable);
+       set_pmd_at(mm, haddr, pmd, entry);
+       atomic_long_inc(&mm->nr_ptes);
+       return true;
+}
+
+int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                              unsigned long address, pmd_t *pmd,
+                              unsigned int flags)
+{
+       gfp_t gfp;
+       struct page *page;
+       unsigned long haddr = address & HPAGE_PMD_MASK;
+
+       if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
+               return VM_FAULT_FALLBACK;
+       if (unlikely(anon_vma_prepare(vma)))
+               return VM_FAULT_OOM;
+       if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
+               return VM_FAULT_OOM;
+       if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
+                       transparent_hugepage_use_zero_page()) {
+               spinlock_t *ptl;
+               pgtable_t pgtable;
+               struct page *zero_page;
+               bool set;
+               pgtable = pte_alloc_one(mm, haddr);
+               if (unlikely(!pgtable))
+                       return VM_FAULT_OOM;
+               zero_page = get_huge_zero_page();
+               if (unlikely(!zero_page)) {
+                       pte_free(mm, pgtable);
+                       count_vm_event(THP_FAULT_FALLBACK);
+                       return VM_FAULT_FALLBACK;
+               }
+               ptl = pmd_lock(mm, pmd);
+               set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
+                               zero_page);
+               spin_unlock(ptl);
+               if (!set) {
+                       pte_free(mm, pgtable);
+                       put_huge_zero_page();
+               }
+               return 0;
+       }
+       gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
+       page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
+       if (unlikely(!page)) {
+               count_vm_event(THP_FAULT_FALLBACK);
+               return VM_FAULT_FALLBACK;
+       }
+       if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
+               put_page(page);
+               count_vm_event(THP_FAULT_FALLBACK);
+               return VM_FAULT_FALLBACK;
+       }
+
+       count_vm_event(THP_FAULT_ALLOC);
+       return 0;
+}
+
+int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+                 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
+                 struct vm_area_struct *vma)
+{
+       spinlock_t *dst_ptl, *src_ptl;
+       struct page *src_page;
+       pmd_t pmd;
+       pgtable_t pgtable;
+       int ret;
+
+       ret = -ENOMEM;
+       pgtable = pte_alloc_one(dst_mm, addr);
+       if (unlikely(!pgtable))
+               goto out;
+
+       dst_ptl = pmd_lock(dst_mm, dst_pmd);
+       src_ptl = pmd_lockptr(src_mm, src_pmd);
+       spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+
+       ret = -EAGAIN;
+       pmd = *src_pmd;
+       if (unlikely(!pmd_trans_huge(pmd))) {
+               pte_free(dst_mm, pgtable);
+               goto out_unlock;
+       }
+       /*
+        * When page table lock is held, the huge zero pmd should not be
+        * under splitting since we don't split the page itself, only pmd to
+        * a page table.
+        */
+       if (is_huge_zero_pmd(pmd)) {
+               struct page *zero_page;
+               bool set;
+               /*
+                * get_huge_zero_page() will never allocate a new page here,
+                * since we already have a zero page to copy. It just takes a
+                * reference.
+                */
+               zero_page = get_huge_zero_page();
+               set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
+                               zero_page);
+               BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
+               ret = 0;
+               goto out_unlock;
+       }
+
+       if (unlikely(pmd_trans_splitting(pmd))) {
+               /* split huge page running from under us */
+               spin_unlock(src_ptl);
+               spin_unlock(dst_ptl);
+               pte_free(dst_mm, pgtable);
+
+               wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
+               goto out;
+       }
+       src_page = pmd_page(pmd);
+       VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
+       get_page(src_page);
+       page_dup_rmap(src_page);
+       add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+
+       pmdp_set_wrprotect(src_mm, addr, src_pmd);
+       pmd = pmd_mkold(pmd_wrprotect(pmd));
+       pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
+       set_pmd_at(dst_mm, addr, dst_pmd, pmd);
+       atomic_long_inc(&dst_mm->nr_ptes);
+
+       ret = 0;
+out_unlock:
+       spin_unlock(src_ptl);
+       spin_unlock(dst_ptl);
+out:
+       return ret;
+}
+
+void huge_pmd_set_accessed(struct mm_struct *mm,
+                          struct vm_area_struct *vma,
+                          unsigned long address,
+                          pmd_t *pmd, pmd_t orig_pmd,
+                          int dirty)
+{
+       spinlock_t *ptl;
+       pmd_t entry;
+       unsigned long haddr;
+
+       ptl = pmd_lock(mm, pmd);
+       if (unlikely(!pmd_same(*pmd, orig_pmd)))
+               goto unlock;
+
+       entry = pmd_mkyoung(orig_pmd);
+       haddr = address & HPAGE_PMD_MASK;
+       if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
+               update_mmu_cache_pmd(vma, address, pmd);
+
+unlock:
+       spin_unlock(ptl);
+}
+
+/*
+ * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
+ * during copy_user_huge_page()'s copy_page_rep(): in the case when
+ * the source page gets split and a tail freed before copy completes.
+ * Called under pmd_lock of checked pmd, so safe from splitting itself.
+ */
+static void get_user_huge_page(struct page *page)
+{
+       if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
+               struct page *endpage = page + HPAGE_PMD_NR;
+
+               atomic_add(HPAGE_PMD_NR, &page->_count);
+               while (++page < endpage)
+                       get_huge_page_tail(page);
+       } else {
+               get_page(page);
+       }
+}
+
+static void put_user_huge_page(struct page *page)
+{
+       if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
+               struct page *endpage = page + HPAGE_PMD_NR;
+
+               while (page < endpage)
+                       put_page(page++);
+       } else {
+               put_page(page);
+       }
+}
+
+static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
+                                       struct vm_area_struct *vma,
+                                       unsigned long address,
+                                       pmd_t *pmd, pmd_t orig_pmd,
+                                       struct page *page,
+                                       unsigned long haddr)
+{
+       struct mem_cgroup *memcg;
+       spinlock_t *ptl;
+       pgtable_t pgtable;
+       pmd_t _pmd;
+       int ret = 0, i;
+       struct page **pages;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+
+       pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
+                       GFP_KERNEL);
+       if (unlikely(!pages)) {
+               ret |= VM_FAULT_OOM;
+               goto out;
+       }
+
+       for (i = 0; i < HPAGE_PMD_NR; i++) {
+               pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
+                                              __GFP_OTHER_NODE,
+                                              vma, address, page_to_nid(page));
+               if (unlikely(!pages[i] ||
+                            mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
+                                                  &memcg))) {
+                       if (pages[i])
+                               put_page(pages[i]);
+                       while (--i >= 0) {
+                               memcg = (void *)page_private(pages[i]);
+                               set_page_private(pages[i], 0);
+                               mem_cgroup_cancel_charge(pages[i], memcg);
+                               put_page(pages[i]);
+                       }
+                       kfree(pages);
+                       ret |= VM_FAULT_OOM;
+                       goto out;
+               }
+               set_page_private(pages[i], (unsigned long)memcg);
+       }
+
+       for (i = 0; i < HPAGE_PMD_NR; i++) {
+               copy_user_highpage(pages[i], page + i,
+                                  haddr + PAGE_SIZE * i, vma);
+               __SetPageUptodate(pages[i]);
+               cond_resched();
+       }
+
+       mmun_start = haddr;
+       mmun_end   = haddr + HPAGE_PMD_SIZE;
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+
+       ptl = pmd_lock(mm, pmd);
+       if (unlikely(!pmd_same(*pmd, orig_pmd)))
+               goto out_free_pages;
+       VM_BUG_ON_PAGE(!PageHead(page), page);
+
+       pmdp_clear_flush_notify(vma, haddr, pmd);
+       /* leave pmd empty until pte is filled */
+
+       pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+       pmd_populate(mm, &_pmd, pgtable);
+
+       for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+               pte_t *pte, entry;
+               entry = mk_pte(pages[i], vma->vm_page_prot);
+               entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+               memcg = (void *)page_private(pages[i]);
+               set_page_private(pages[i], 0);
+               page_add_new_anon_rmap(pages[i], vma, haddr);
+               mem_cgroup_commit_charge(pages[i], memcg, false);
+               lru_cache_add_active_or_unevictable(pages[i], vma);
+               pte = pte_offset_map(&_pmd, haddr);
+               VM_BUG_ON(!pte_none(*pte));
+               set_pte_at(mm, haddr, pte, entry);
+               pte_unmap(pte);
+       }
+       kfree(pages);
+
+       smp_wmb(); /* make pte visible before pmd */
+       pmd_populate(mm, pmd, pgtable);
+       page_remove_rmap(page);
+       spin_unlock(ptl);
+
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+       ret |= VM_FAULT_WRITE;
+       put_page(page);
+
+out:
+       return ret;
+
+out_free_pages:
+       spin_unlock(ptl);
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+       for (i = 0; i < HPAGE_PMD_NR; i++) {
+               memcg = (void *)page_private(pages[i]);
+               set_page_private(pages[i], 0);
+               mem_cgroup_cancel_charge(pages[i], memcg);
+               put_page(pages[i]);
+       }
+       kfree(pages);
+       goto out;
+}
+
+int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
+{
+       spinlock_t *ptl;
+       int ret = 0;
+       struct page *page = NULL, *new_page;
+       struct mem_cgroup *memcg;
+       unsigned long haddr;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+       gfp_t huge_gfp;                 /* for allocation and charge */
+
+       ptl = pmd_lockptr(mm, pmd);
+       VM_BUG_ON_VMA(!vma->anon_vma, vma);
+       haddr = address & HPAGE_PMD_MASK;
+       if (is_huge_zero_pmd(orig_pmd))
+               goto alloc;
+       spin_lock(ptl);
+       if (unlikely(!pmd_same(*pmd, orig_pmd)))
+               goto out_unlock;
+
+       page = pmd_page(orig_pmd);
+       VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
+       if (page_mapcount(page) == 1) {
+               pmd_t entry;
+               entry = pmd_mkyoung(orig_pmd);
+               entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+               if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
+                       update_mmu_cache_pmd(vma, address, pmd);
+               ret |= VM_FAULT_WRITE;
+               goto out_unlock;
+       }
+       get_user_huge_page(page);
+       spin_unlock(ptl);
+alloc:
+       if (transparent_hugepage_enabled(vma) &&
+           !transparent_hugepage_debug_cow()) {
+               huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
+               new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
+       } else
+               new_page = NULL;
+
+       if (unlikely(!new_page)) {
+               if (!page) {
+                       split_huge_page_pmd(vma, address, pmd);
+                       ret |= VM_FAULT_FALLBACK;
+               } else {
+                       ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
+                                       pmd, orig_pmd, page, haddr);
+                       if (ret & VM_FAULT_OOM) {
+                               split_huge_page(page);
+                               ret |= VM_FAULT_FALLBACK;
+                       }
+                       put_user_huge_page(page);
+               }
+               count_vm_event(THP_FAULT_FALLBACK);
+               goto out;
+       }
+
+       if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
+               put_page(new_page);
+               if (page) {
+                       split_huge_page(page);
+                       put_user_huge_page(page);
+               } else
+                       split_huge_page_pmd(vma, address, pmd);
+               ret |= VM_FAULT_FALLBACK;
+               count_vm_event(THP_FAULT_FALLBACK);
+               goto out;
+       }
+
+       count_vm_event(THP_FAULT_ALLOC);
+
+       if (!page)
+               clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
+       else
+               copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
+       __SetPageUptodate(new_page);
+
+       mmun_start = haddr;
+       mmun_end   = haddr + HPAGE_PMD_SIZE;
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+
+       spin_lock(ptl);
+       if (page)
+               put_user_huge_page(page);
+       if (unlikely(!pmd_same(*pmd, orig_pmd))) {
+               spin_unlock(ptl);
+               mem_cgroup_cancel_charge(new_page, memcg);
+               put_page(new_page);
+               goto out_mn;
+       } else {
+               pmd_t entry;
+               entry = mk_huge_pmd(new_page, vma->vm_page_prot);
+               entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+               pmdp_clear_flush_notify(vma, haddr, pmd);
+               page_add_new_anon_rmap(new_page, vma, haddr);
+               mem_cgroup_commit_charge(new_page, memcg, false);
+               lru_cache_add_active_or_unevictable(new_page, vma);
+               set_pmd_at(mm, haddr, pmd, entry);
+               update_mmu_cache_pmd(vma, address, pmd);
+               if (!page) {
+                       add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
+                       put_huge_zero_page();
+               } else {
+                       VM_BUG_ON_PAGE(!PageHead(page), page);
+                       page_remove_rmap(page);
+                       put_page(page);
+               }
+               ret |= VM_FAULT_WRITE;
+       }
+       spin_unlock(ptl);
+out_mn:
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+out:
+       return ret;
+out_unlock:
+       spin_unlock(ptl);
+       return ret;
+}
+
+struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
+                                  unsigned long addr,
+                                  pmd_t *pmd,
+                                  unsigned int flags)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       struct page *page = NULL;
+
+       assert_spin_locked(pmd_lockptr(mm, pmd));
+
+       if (flags & FOLL_WRITE && !pmd_write(*pmd))
+               goto out;
+
+       /* Avoid dumping huge zero page */
+       if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
+               return ERR_PTR(-EFAULT);
+
+       /* Full NUMA hinting faults to serialise migration in fault paths */
+       if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
+               goto out;
+
+       page = pmd_page(*pmd);
+       VM_BUG_ON_PAGE(!PageHead(page), page);
+       if (flags & FOLL_TOUCH) {
+               pmd_t _pmd;
+               /*
+                * We should set the dirty bit only for FOLL_WRITE but
+                * for now the dirty bit in the pmd is meaningless.
+                * And if the dirty bit will become meaningful and
+                * we'll only set it with FOLL_WRITE, an atomic
+                * set_bit will be required on the pmd to set the
+                * young bit, instead of the current set_pmd_at.
+                */
+               _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
+               if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
+                                         pmd, _pmd,  1))
+                       update_mmu_cache_pmd(vma, addr, pmd);
+       }
+       if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
+               if (page->mapping && trylock_page(page)) {
+                       lru_add_drain();
+                       if (page->mapping)
+                               mlock_vma_page(page);
+                       unlock_page(page);
+               }
+       }
+       page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
+       VM_BUG_ON_PAGE(!PageCompound(page), page);
+       if (flags & FOLL_GET)
+               get_page_foll(page);
+
+out:
+       return page;
+}
+
+/* NUMA hinting page fault entry point for trans huge pmds */
+int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                               unsigned long addr, pmd_t pmd, pmd_t *pmdp)
+{
+       spinlock_t *ptl;
+       struct anon_vma *anon_vma = NULL;
+       struct page *page;
+       unsigned long haddr = addr & HPAGE_PMD_MASK;
+       int page_nid = -1, this_nid = numa_node_id();
+       int target_nid, last_cpupid = -1;
+       bool page_locked;
+       bool migrated = false;
+       bool was_writable;
+       int flags = 0;
+
+       /* A PROT_NONE fault should not end up here */
+       BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
+
+       ptl = pmd_lock(mm, pmdp);
+       if (unlikely(!pmd_same(pmd, *pmdp)))
+               goto out_unlock;
+
+       /*
+        * If there are potential migrations, wait for completion and retry
+        * without disrupting NUMA hinting information. Do not relock and
+        * check_same as the page may no longer be mapped.
+        */
+       if (unlikely(pmd_trans_migrating(*pmdp))) {
+               page = pmd_page(*pmdp);
+               spin_unlock(ptl);
+               wait_on_page_locked(page);
+               goto out;
+       }
+
+       page = pmd_page(pmd);
+       BUG_ON(is_huge_zero_page(page));
+       page_nid = page_to_nid(page);
+       last_cpupid = page_cpupid_last(page);
+       count_vm_numa_event(NUMA_HINT_FAULTS);
+       if (page_nid == this_nid) {
+               count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+               flags |= TNF_FAULT_LOCAL;
+       }
+
+       /* See similar comment in do_numa_page for explanation */
+       if (!(vma->vm_flags & VM_WRITE))
+               flags |= TNF_NO_GROUP;
+
+       /*
+        * Acquire the page lock to serialise THP migrations but avoid dropping
+        * page_table_lock if at all possible
+        */
+       page_locked = trylock_page(page);
+       target_nid = mpol_misplaced(page, vma, haddr);
+       if (target_nid == -1) {
+               /* If the page was locked, there are no parallel migrations */
+               if (page_locked)
+                       goto clear_pmdnuma;
+       }
+
+       /* Migration could have started since the pmd_trans_migrating check */
+       if (!page_locked) {
+               spin_unlock(ptl);
+               wait_on_page_locked(page);
+               page_nid = -1;
+               goto out;
+       }
+
+       /*
+        * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
+        * to serialises splits
+        */
+       get_page(page);
+       spin_unlock(ptl);
+       anon_vma = page_lock_anon_vma_read(page);
+
+       /* Confirm the PMD did not change while page_table_lock was released */
+       spin_lock(ptl);
+       if (unlikely(!pmd_same(pmd, *pmdp))) {
+               unlock_page(page);
+               put_page(page);
+               page_nid = -1;
+               goto out_unlock;
+       }
+
+       /* Bail if we fail to protect against THP splits for any reason */
+       if (unlikely(!anon_vma)) {
+               put_page(page);
+               page_nid = -1;
+               goto clear_pmdnuma;
+       }
+
+       /*
+        * Migrate the THP to the requested node, returns with page unlocked
+        * and access rights restored.
+        */
+       spin_unlock(ptl);
+       migrated = migrate_misplaced_transhuge_page(mm, vma,
+                               pmdp, pmd, addr, page, target_nid);
+       if (migrated) {
+               flags |= TNF_MIGRATED;
+               page_nid = target_nid;
+       } else
+               flags |= TNF_MIGRATE_FAIL;
+
+       goto out;
+clear_pmdnuma:
+       BUG_ON(!PageLocked(page));
+       was_writable = pmd_write(pmd);
+       pmd = pmd_modify(pmd, vma->vm_page_prot);
+       pmd = pmd_mkyoung(pmd);
+       if (was_writable)
+               pmd = pmd_mkwrite(pmd);
+       set_pmd_at(mm, haddr, pmdp, pmd);
+       update_mmu_cache_pmd(vma, addr, pmdp);
+       unlock_page(page);
+out_unlock:
+       spin_unlock(ptl);
+
+out:
+       if (anon_vma)
+               page_unlock_anon_vma_read(anon_vma);
+
+       if (page_nid != -1)
+               task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
+
+       return 0;
+}
+
+int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
+                pmd_t *pmd, unsigned long addr)
+{
+       spinlock_t *ptl;
+       int ret = 0;
+
+       if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+               struct page *page;
+               pgtable_t pgtable;
+               pmd_t orig_pmd;
+               /*
+                * For architectures like ppc64 we look at deposited pgtable
+                * when calling pmdp_get_and_clear. So do the
+                * pgtable_trans_huge_withdraw after finishing pmdp related
+                * operations.
+                */
+               orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
+                                                  tlb->fullmm);
+               tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
+               pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
+               if (is_huge_zero_pmd(orig_pmd)) {
+                       atomic_long_dec(&tlb->mm->nr_ptes);
+                       spin_unlock(ptl);
+                       put_huge_zero_page();
+               } else {
+                       page = pmd_page(orig_pmd);
+                       page_remove_rmap(page);
+                       VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
+                       add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
+                       VM_BUG_ON_PAGE(!PageHead(page), page);
+                       atomic_long_dec(&tlb->mm->nr_ptes);
+                       spin_unlock(ptl);
+                       tlb_remove_page(tlb, page);
+               }
+               pte_free(tlb->mm, pgtable);
+               ret = 1;
+       }
+       return ret;
+}
+
+int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
+                 unsigned long old_addr,
+                 unsigned long new_addr, unsigned long old_end,
+                 pmd_t *old_pmd, pmd_t *new_pmd)
+{
+       spinlock_t *old_ptl, *new_ptl;
+       int ret = 0;
+       pmd_t pmd;
+
+       struct mm_struct *mm = vma->vm_mm;
+
+       if ((old_addr & ~HPAGE_PMD_MASK) ||
+           (new_addr & ~HPAGE_PMD_MASK) ||
+           old_end - old_addr < HPAGE_PMD_SIZE ||
+           (new_vma->vm_flags & VM_NOHUGEPAGE))
+               goto out;
+
+       /*
+        * The destination pmd shouldn't be established, free_pgtables()
+        * should have release it.
+        */
+       if (WARN_ON(!pmd_none(*new_pmd))) {
+               VM_BUG_ON(pmd_trans_huge(*new_pmd));
+               goto out;
+       }
+
+       /*
+        * We don't have to worry about the ordering of src and dst
+        * ptlocks because exclusive mmap_sem prevents deadlock.
+        */
+       ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
+       if (ret == 1) {
+               new_ptl = pmd_lockptr(mm, new_pmd);
+               if (new_ptl != old_ptl)
+                       spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
+               pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
+               VM_BUG_ON(!pmd_none(*new_pmd));
+
+               if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
+                       pgtable_t pgtable;
+                       pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
+                       pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
+               }
+               set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
+               if (new_ptl != old_ptl)
+                       spin_unlock(new_ptl);
+               spin_unlock(old_ptl);
+       }
+out:
+       return ret;
+}
+
+/*
+ * Returns
+ *  - 0 if PMD could not be locked
+ *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
+ *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
+ */
+int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+               unsigned long addr, pgprot_t newprot, int prot_numa)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       spinlock_t *ptl;
+       int ret = 0;
+
+       if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+               pmd_t entry;
+               bool preserve_write = prot_numa && pmd_write(*pmd);
+               ret = 1;
+
+               /*
+                * Avoid trapping faults against the zero page. The read-only
+                * data is likely to be read-cached on the local CPU and
+                * local/remote hits to the zero page are not interesting.
+                */
+               if (prot_numa && is_huge_zero_pmd(*pmd)) {
+                       spin_unlock(ptl);
+                       return ret;
+               }
+
+               if (!prot_numa || !pmd_protnone(*pmd)) {
+                       entry = pmdp_get_and_clear_notify(mm, addr, pmd);
+                       entry = pmd_modify(entry, newprot);
+                       if (preserve_write)
+                               entry = pmd_mkwrite(entry);
+                       ret = HPAGE_PMD_NR;
+                       set_pmd_at(mm, addr, pmd, entry);
+                       BUG_ON(!preserve_write && pmd_write(entry));
+               }
+               spin_unlock(ptl);
+       }
+
+       return ret;
+}
+
+/*
+ * Returns 1 if a given pmd maps a stable (not under splitting) thp.
+ * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
+ *
+ * Note that if it returns 1, this routine returns without unlocking page
+ * table locks. So callers must unlock them.
+ */
+int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
+               spinlock_t **ptl)
+{
+       *ptl = pmd_lock(vma->vm_mm, pmd);
+       if (likely(pmd_trans_huge(*pmd))) {
+               if (unlikely(pmd_trans_splitting(*pmd))) {
+                       spin_unlock(*ptl);
+                       wait_split_huge_page(vma->anon_vma, pmd);
+                       return -1;
+               } else {
+                       /* Thp mapped by 'pmd' is stable, so we can
+                        * handle it as it is. */
+                       return 1;
+               }
+       }
+       spin_unlock(*ptl);
+       return 0;
+}
+
+/*
+ * This function returns whether a given @page is mapped onto the @address
+ * in the virtual space of @mm.
+ *
+ * When it's true, this function returns *pmd with holding the page table lock
+ * and passing it back to the caller via @ptl.
+ * If it's false, returns NULL without holding the page table lock.
+ */
+pmd_t *page_check_address_pmd(struct page *page,
+                             struct mm_struct *mm,
+                             unsigned long address,
+                             enum page_check_address_pmd_flag flag,
+                             spinlock_t **ptl)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+
+       if (address & ~HPAGE_PMD_MASK)
+               return NULL;
+
+       pgd = pgd_offset(mm, address);
+       if (!pgd_present(*pgd))
+               return NULL;
+       pud = pud_offset(pgd, address);
+       if (!pud_present(*pud))
+               return NULL;
+       pmd = pmd_offset(pud, address);
+
+       *ptl = pmd_lock(mm, pmd);
+       if (!pmd_present(*pmd))
+               goto unlock;
+       if (pmd_page(*pmd) != page)
+               goto unlock;
+       /*
+        * split_vma() may create temporary aliased mappings. There is
+        * no risk as long as all huge pmd are found and have their
+        * splitting bit set before __split_huge_page_refcount
+        * runs. Finding the same huge pmd more than once during the
+        * same rmap walk is not a problem.
+        */
+       if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
+           pmd_trans_splitting(*pmd))
+               goto unlock;
+       if (pmd_trans_huge(*pmd)) {
+               VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
+                         !pmd_trans_splitting(*pmd));
+               return pmd;
+       }
+unlock:
+       spin_unlock(*ptl);
+       return NULL;
+}
+
+static int __split_huge_page_splitting(struct page *page,
+                                      struct vm_area_struct *vma,
+                                      unsigned long address)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       spinlock_t *ptl;
+       pmd_t *pmd;
+       int ret = 0;
+       /* For mmu_notifiers */
+       const unsigned long mmun_start = address;
+       const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
+
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+       pmd = page_check_address_pmd(page, mm, address,
+                       PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
+       if (pmd) {
+               /*
+                * We can't temporarily set the pmd to null in order
+                * to split it, the pmd must remain marked huge at all
+                * times or the VM won't take the pmd_trans_huge paths
+                * and it won't wait on the anon_vma->root->rwsem to
+                * serialize against split_huge_page*.
+                */
+               pmdp_splitting_flush(vma, address, pmd);
+
+               ret = 1;
+               spin_unlock(ptl);
+       }
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+       return ret;
+}
+
+static void __split_huge_page_refcount(struct page *page,
+                                      struct list_head *list)
+{
+       int i;
+       struct zone *zone = page_zone(page);
+       struct lruvec *lruvec;
+       int tail_count = 0;
+
+       /* prevent PageLRU to go away from under us, and freeze lru stats */
+       spin_lock_irq(&zone->lru_lock);
+       lruvec = mem_cgroup_page_lruvec(page, zone);
+
+       compound_lock(page);
+       /* complete memcg works before add pages to LRU */
+       mem_cgroup_split_huge_fixup(page);
+
+       for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
+               struct page *page_tail = page + i;
+
+               /* tail_page->_mapcount cannot change */
+               BUG_ON(page_mapcount(page_tail) < 0);
+               tail_count += page_mapcount(page_tail);
+               /* check for overflow */
+               BUG_ON(tail_count < 0);
+               BUG_ON(atomic_read(&page_tail->_count) != 0);
+               /*
+                * tail_page->_count is zero and not changing from
+                * under us. But get_page_unless_zero() may be running
+                * from under us on the tail_page. If we used
+                * atomic_set() below instead of atomic_add(), we
+                * would then run atomic_set() concurrently with
+                * get_page_unless_zero(), and atomic_set() is
+                * implemented in C not using locked ops. spin_unlock
+                * on x86 sometime uses locked ops because of PPro
+                * errata 66, 92, so unless somebody can guarantee
+                * atomic_set() here would be safe on all archs (and
+                * not only on x86), it's safer to use atomic_add().
+                */
+               atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
+                          &page_tail->_count);
+
+               /* after clearing PageTail the gup refcount can be released */
+               smp_mb__after_atomic();
+
+               /*
+                * retain hwpoison flag of the poisoned tail page:
+                *   fix for the unsuitable process killed on Guest Machine(KVM)
+                *   by the memory-failure.
+                */
+               page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
+               page_tail->flags |= (page->flags &
+                                    ((1L << PG_referenced) |
+                                     (1L << PG_swapbacked) |
+                                     (1L << PG_mlocked) |
+                                     (1L << PG_uptodate) |
+                                     (1L << PG_active) |
+                                     (1L << PG_unevictable)));
+               page_tail->flags |= (1L << PG_dirty);
+
+               /* clear PageTail before overwriting first_page */
+               smp_wmb();
+
+               /*
+                * __split_huge_page_splitting() already set the
+                * splitting bit in all pmd that could map this
+                * hugepage, that will ensure no CPU can alter the
+                * mapcount on the head page. The mapcount is only
+                * accounted in the head page and it has to be
+                * transferred to all tail pages in the below code. So
+                * for this code to be safe, the split the mapcount
+                * can't change. But that doesn't mean userland can't
+                * keep changing and reading the page contents while
+                * we transfer the mapcount, so the pmd splitting
+                * status is achieved setting a reserved bit in the
+                * pmd, not by clearing the present bit.
+               */
+               page_tail->_mapcount = page->_mapcount;
+
+               BUG_ON(page_tail->mapping);
+               page_tail->mapping = page->mapping;
+
+               page_tail->index = page->index + i;
+               page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
+
+               BUG_ON(!PageAnon(page_tail));
+               BUG_ON(!PageUptodate(page_tail));
+               BUG_ON(!PageDirty(page_tail));
+               BUG_ON(!PageSwapBacked(page_tail));
+
+               lru_add_page_tail(page, page_tail, lruvec, list);
+       }
+       atomic_sub(tail_count, &page->_count);
+       BUG_ON(atomic_read(&page->_count) <= 0);
+
+       __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
+
+       ClearPageCompound(page);
+       compound_unlock(page);
+       spin_unlock_irq(&zone->lru_lock);
+
+       for (i = 1; i < HPAGE_PMD_NR; i++) {
+               struct page *page_tail = page + i;
+               BUG_ON(page_count(page_tail) <= 0);
+               /*
+                * Tail pages may be freed if there wasn't any mapping
+                * like if add_to_swap() is running on a lru page that
+                * had its mapping zapped. And freeing these pages
+                * requires taking the lru_lock so we do the put_page
+                * of the tail pages after the split is complete.
+                */
+               put_page(page_tail);
+       }
+
+       /*
+        * Only the head page (now become a regular page) is required
+        * to be pinned by the caller.
+        */
+       BUG_ON(page_count(page) <= 0);
+}
+
+static int __split_huge_page_map(struct page *page,
+                                struct vm_area_struct *vma,
+                                unsigned long address)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       spinlock_t *ptl;
+       pmd_t *pmd, _pmd;
+       int ret = 0, i;
+       pgtable_t pgtable;
+       unsigned long haddr;
+
+       pmd = page_check_address_pmd(page, mm, address,
+                       PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
+       if (pmd) {
+               pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+               pmd_populate(mm, &_pmd, pgtable);
+               if (pmd_write(*pmd))
+                       BUG_ON(page_mapcount(page) != 1);
+
+               haddr = address;
+               for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+                       pte_t *pte, entry;
+                       BUG_ON(PageCompound(page+i));
+                       /*
+                        * Note that NUMA hinting access restrictions are not
+                        * transferred to avoid any possibility of altering
+                        * permissions across VMAs.
+                        */
+                       entry = mk_pte(page + i, vma->vm_page_prot);
+                       entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+                       if (!pmd_write(*pmd))
+                               entry = pte_wrprotect(entry);
+                       if (!pmd_young(*pmd))
+                               entry = pte_mkold(entry);
+                       pte = pte_offset_map(&_pmd, haddr);
+                       BUG_ON(!pte_none(*pte));
+                       set_pte_at(mm, haddr, pte, entry);
+                       pte_unmap(pte);
+               }
+
+               smp_wmb(); /* make pte visible before pmd */
+               /*
+                * Up to this point the pmd is present and huge and
+                * userland has the whole access to the hugepage
+                * during the split (which happens in place). If we
+                * overwrite the pmd with the not-huge version
+                * pointing to the pte here (which of course we could
+                * if all CPUs were bug free), userland could trigger
+                * a small page size TLB miss on the small sized TLB
+                * while the hugepage TLB entry is still established
+                * in the huge TLB. Some CPU doesn't like that. See
+                * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
+                * Erratum 383 on page 93. Intel should be safe but is
+                * also warns that it's only safe if the permission
+                * and cache attributes of the two entries loaded in
+                * the two TLB is identical (which should be the case
+                * here). But it is generally safer to never allow
+                * small and huge TLB entries for the same virtual
+                * address to be loaded simultaneously. So instead of
+                * doing "pmd_populate(); flush_tlb_range();" we first
+                * mark the current pmd notpresent (atomically because
+                * here the pmd_trans_huge and pmd_trans_splitting
+                * must remain set at all times on the pmd until the
+                * split is complete for this pmd), then we flush the
+                * SMP TLB and finally we write the non-huge version
+                * of the pmd entry with pmd_populate.
+                */
+               pmdp_invalidate(vma, address, pmd);
+               pmd_populate(mm, pmd, pgtable);
+               ret = 1;
+               spin_unlock(ptl);
+       }
+
+       return ret;
+}
+
+/* must be called with anon_vma->root->rwsem held */
+static void __split_huge_page(struct page *page,
+                             struct anon_vma *anon_vma,
+                             struct list_head *list)
+{
+       int mapcount, mapcount2;
+       pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+       struct anon_vma_chain *avc;
+
+       BUG_ON(!PageHead(page));
+       BUG_ON(PageTail(page));
+
+       mapcount = 0;
+       anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
+               struct vm_area_struct *vma = avc->vma;
+               unsigned long addr = vma_address(page, vma);
+               BUG_ON(is_vma_temporary_stack(vma));
+               mapcount += __split_huge_page_splitting(page, vma, addr);
+       }
+       /*
+        * It is critical that new vmas are added to the tail of the
+        * anon_vma list. This guarantes that if copy_huge_pmd() runs
+        * and establishes a child pmd before
+        * __split_huge_page_splitting() freezes the parent pmd (so if
+        * we fail to prevent copy_huge_pmd() from running until the
+        * whole __split_huge_page() is complete), we will still see
+        * the newly established pmd of the child later during the
+        * walk, to be able to set it as pmd_trans_splitting too.
+        */
+       if (mapcount != page_mapcount(page)) {
+               pr_err("mapcount %d page_mapcount %d\n",
+                       mapcount, page_mapcount(page));
+               BUG();
+       }
+
+       __split_huge_page_refcount(page, list);
+
+       mapcount2 = 0;
+       anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
+               struct vm_area_struct *vma = avc->vma;
+               unsigned long addr = vma_address(page, vma);
+               BUG_ON(is_vma_temporary_stack(vma));
+               mapcount2 += __split_huge_page_map(page, vma, addr);
+       }
+       if (mapcount != mapcount2) {
+               pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
+                       mapcount, mapcount2, page_mapcount(page));
+               BUG();
+       }
+}
+
+/*
+ * Split a hugepage into normal pages. This doesn't change the position of head
+ * page. If @list is null, tail pages will be added to LRU list, otherwise, to
+ * @list. Both head page and tail pages will inherit mapping, flags, and so on
+ * from the hugepage.
+ * Return 0 if the hugepage is split successfully otherwise return 1.
+ */
+int split_huge_page_to_list(struct page *page, struct list_head *list)
+{
+       struct anon_vma *anon_vma;
+       int ret = 1;
+
+       BUG_ON(is_huge_zero_page(page));
+       BUG_ON(!PageAnon(page));
+
+       /*
+        * The caller does not necessarily hold an mmap_sem that would prevent
+        * the anon_vma disappearing so we first we take a reference to it
+        * and then lock the anon_vma for write. This is similar to
+        * page_lock_anon_vma_read except the write lock is taken to serialise
+        * against parallel split or collapse operations.
+        */
+       anon_vma = page_get_anon_vma(page);
+       if (!anon_vma)
+               goto out;
+       anon_vma_lock_write(anon_vma);
+
+       ret = 0;
+       if (!PageCompound(page))
+               goto out_unlock;
+
+       BUG_ON(!PageSwapBacked(page));
+       __split_huge_page(page, anon_vma, list);
+       count_vm_event(THP_SPLIT);
+
+       BUG_ON(PageCompound(page));
+out_unlock:
+       anon_vma_unlock_write(anon_vma);
+       put_anon_vma(anon_vma);
+out:
+       return ret;
+}
+
+#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
+
+int hugepage_madvise(struct vm_area_struct *vma,
+                    unsigned long *vm_flags, int advice)
+{
+       switch (advice) {
+       case MADV_HUGEPAGE:
+#ifdef CONFIG_S390
+               /*
+                * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
+                * can't handle this properly after s390_enable_sie, so we simply
+                * ignore the madvise to prevent qemu from causing a SIGSEGV.
+                */
+               if (mm_has_pgste(vma->vm_mm))
+                       return 0;
+#endif
+               /*
+                * Be somewhat over-protective like KSM for now!
+                */
+               if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
+                       return -EINVAL;
+               *vm_flags &= ~VM_NOHUGEPAGE;
+               *vm_flags |= VM_HUGEPAGE;
+               /*
+                * If the vma become good for khugepaged to scan,
+                * register it here without waiting a page fault that
+                * may not happen any time soon.
+                */
+               if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
+                       return -ENOMEM;
+               break;
+       case MADV_NOHUGEPAGE:
+               /*
+                * Be somewhat over-protective like KSM for now!
+                */
+               if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
+                       return -EINVAL;
+               *vm_flags &= ~VM_HUGEPAGE;
+               *vm_flags |= VM_NOHUGEPAGE;
+               /*
+                * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
+                * this vma even if we leave the mm registered in khugepaged if
+                * it got registered before VM_NOHUGEPAGE was set.
+                */
+               break;
+       }
+
+       return 0;
+}
+
+static int __init khugepaged_slab_init(void)
+{
+       mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
+                                         sizeof(struct mm_slot),
+                                         __alignof__(struct mm_slot), 0, NULL);
+       if (!mm_slot_cache)
+               return -ENOMEM;
+
+       return 0;
+}
+
+static void __init khugepaged_slab_exit(void)
+{
+       kmem_cache_destroy(mm_slot_cache);
+}
+
+static inline struct mm_slot *alloc_mm_slot(void)
+{
+       if (!mm_slot_cache)     /* initialization failed */
+               return NULL;
+       return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
+}
+
+static inline void free_mm_slot(struct mm_slot *mm_slot)
+{
+       kmem_cache_free(mm_slot_cache, mm_slot);
+}
+
+static struct mm_slot *get_mm_slot(struct mm_struct *mm)
+{
+       struct mm_slot *mm_slot;
+
+       hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
+               if (mm == mm_slot->mm)
+                       return mm_slot;
+
+       return NULL;
+}
+
+static void insert_to_mm_slots_hash(struct mm_struct *mm,
+                                   struct mm_slot *mm_slot)
+{
+       mm_slot->mm = mm;
+       hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
+}
+
+static inline int khugepaged_test_exit(struct mm_struct *mm)
+{
+       return atomic_read(&mm->mm_users) == 0;
+}
+
+int __khugepaged_enter(struct mm_struct *mm)
+{
+       struct mm_slot *mm_slot;
+       int wakeup;
+
+       mm_slot = alloc_mm_slot();
+       if (!mm_slot)
+               return -ENOMEM;
+
+       /* __khugepaged_exit() must not run from under us */
+       VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
+       if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
+               free_mm_slot(mm_slot);
+               return 0;
+       }
+
+       spin_lock(&khugepaged_mm_lock);
+       insert_to_mm_slots_hash(mm, mm_slot);
+       /*
+        * Insert just behind the scanning cursor, to let the area settle
+        * down a little.
+        */
+       wakeup = list_empty(&khugepaged_scan.mm_head);
+       list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
+       spin_unlock(&khugepaged_mm_lock);
+
+       atomic_inc(&mm->mm_count);
+       if (wakeup)
+               wake_up_interruptible(&khugepaged_wait);
+
+       return 0;
+}
+
+int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
+                              unsigned long vm_flags)
+{
+       unsigned long hstart, hend;
+       if (!vma->anon_vma)
+               /*
+                * Not yet faulted in so we will register later in the
+                * page fault if needed.
+                */
+               return 0;
+       if (vma->vm_ops)
+               /* khugepaged not yet working on file or special mappings */
+               return 0;
+       VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
+       hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+       hend = vma->vm_end & HPAGE_PMD_MASK;
+       if (hstart < hend)
+               return khugepaged_enter(vma, vm_flags);
+       return 0;
+}
+
+void __khugepaged_exit(struct mm_struct *mm)
+{
+       struct mm_slot *mm_slot;
+       int free = 0;
+
+       spin_lock(&khugepaged_mm_lock);
+       mm_slot = get_mm_slot(mm);
+       if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
+               hash_del(&mm_slot->hash);
+               list_del(&mm_slot->mm_node);
+               free = 1;
+       }
+       spin_unlock(&khugepaged_mm_lock);
+
+       if (free) {
+               clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
+               free_mm_slot(mm_slot);
+               mmdrop(mm);
+       } else if (mm_slot) {
+               /*
+                * This is required to serialize against
+                * khugepaged_test_exit() (which is guaranteed to run
+                * under mmap sem read mode). Stop here (after we
+                * return all pagetables will be destroyed) until
+                * khugepaged has finished working on the pagetables
+                * under the mmap_sem.
+                */
+               down_write(&mm->mmap_sem);
+               up_write(&mm->mmap_sem);
+       }
+}
+
+static void release_pte_page(struct page *page)
+{
+       /* 0 stands for page_is_file_cache(page) == false */
+       dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
+       unlock_page(page);
+       putback_lru_page(page);
+}
+
+static void release_pte_pages(pte_t *pte, pte_t *_pte)
+{
+       while (--_pte >= pte) {
+               pte_t pteval = *_pte;
+               if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
+                       release_pte_page(pte_page(pteval));
+       }
+}
+
+static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
+                                       unsigned long address,
+                                       pte_t *pte)
+{
+       struct page *page;
+       pte_t *_pte;
+       int none_or_zero = 0;
+       bool referenced = false, writable = false;
+       for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
+            _pte++, address += PAGE_SIZE) {
+               pte_t pteval = *_pte;
+               if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
+                       if (++none_or_zero <= khugepaged_max_ptes_none)
+                               continue;
+                       else
+                               goto out;
+               }
+               if (!pte_present(pteval))
+                       goto out;
+               page = vm_normal_page(vma, address, pteval);
+               if (unlikely(!page))
+                       goto out;
+
+               VM_BUG_ON_PAGE(PageCompound(page), page);
+               VM_BUG_ON_PAGE(!PageAnon(page), page);
+               VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
+
+               /*
+                * We can do it before isolate_lru_page because the
+                * page can't be freed from under us. NOTE: PG_lock
+                * is needed to serialize against split_huge_page
+                * when invoked from the VM.
+                */
+               if (!trylock_page(page))
+                       goto out;
+
+               /*
+                * cannot use mapcount: can't collapse if there's a gup pin.
+                * The page must only be referenced by the scanned process
+                * and page swap cache.
+                */
+               if (page_count(page) != 1 + !!PageSwapCache(page)) {
+                       unlock_page(page);
+                       goto out;
+               }
+               if (pte_write(pteval)) {
+                       writable = true;
+               } else {
+                       if (PageSwapCache(page) && !reuse_swap_page(page)) {
+                               unlock_page(page);
+                               goto out;
+                       }
+                       /*
+                        * Page is not in the swap cache. It can be collapsed
+                        * into a THP.
+                        */
+               }
+
+               /*
+                * Isolate the page to avoid collapsing an hugepage
+                * currently in use by the VM.
+                */
+               if (isolate_lru_page(page)) {
+                       unlock_page(page);
+                       goto out;
+               }
+               /* 0 stands for page_is_file_cache(page) == false */
+               inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
+               VM_BUG_ON_PAGE(!PageLocked(page), page);
+               VM_BUG_ON_PAGE(PageLRU(page), page);
+
+               /* If there is no mapped pte young don't collapse the page */
+               if (pte_young(pteval) || PageReferenced(page) ||
+                   mmu_notifier_test_young(vma->vm_mm, address))
+                       referenced = true;
+       }
+       if (likely(referenced && writable))
+               return 1;
+out:
+       release_pte_pages(pte, _pte);
+       return 0;
+}
+
+static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
+                                     struct vm_area_struct *vma,
+                                     unsigned long address,
+                                     spinlock_t *ptl)
+{
+       pte_t *_pte;
+       for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
+               pte_t pteval = *_pte;
+               struct page *src_page;
+
+               if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
+                       clear_user_highpage(page, address);
+                       add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
+                       if (is_zero_pfn(pte_pfn(pteval))) {
+                               /*
+                                * ptl mostly unnecessary.
+                                */
+                               spin_lock(ptl);
+                               /*
+                                * paravirt calls inside pte_clear here are
+                                * superfluous.
+                                */
+                               pte_clear(vma->vm_mm, address, _pte);
+                               spin_unlock(ptl);
+                       }
+               } else {
+                       src_page = pte_page(pteval);
+                       copy_user_highpage(page, src_page, address, vma);
+                       VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
+                       release_pte_page(src_page);
+                       /*
+                        * ptl mostly unnecessary, but preempt has to
+                        * be disabled to update the per-cpu stats
+                        * inside page_remove_rmap().
+                        */
+                       spin_lock(ptl);
+                       /*
+                        * paravirt calls inside pte_clear here are
+                        * superfluous.
+                        */
+                       pte_clear(vma->vm_mm, address, _pte);
+                       page_remove_rmap(src_page);
+                       spin_unlock(ptl);
+                       free_page_and_swap_cache(src_page);
+               }
+
+               address += PAGE_SIZE;
+               page++;
+       }
+}
+
+static void khugepaged_alloc_sleep(void)
+{
+       wait_event_freezable_timeout(khugepaged_wait, false,
+                       msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
+}
+
+static int khugepaged_node_load[MAX_NUMNODES];
+
+static bool khugepaged_scan_abort(int nid)
+{
+       int i;
+
+       /*
+        * If zone_reclaim_mode is disabled, then no extra effort is made to
+        * allocate memory locally.
+        */
+       if (!zone_reclaim_mode)
+               return false;
+
+       /* If there is a count for this node already, it must be acceptable */
+       if (khugepaged_node_load[nid])
+               return false;
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               if (!khugepaged_node_load[i])
+                       continue;
+               if (node_distance(nid, i) > RECLAIM_DISTANCE)
+                       return true;
+       }
+       return false;
+}
+
+#ifdef CONFIG_NUMA
+static int khugepaged_find_target_node(void)
+{
+       static int last_khugepaged_target_node = NUMA_NO_NODE;
+       int nid, target_node = 0, max_value = 0;
+
+       /* find first node with max normal pages hit */
+       for (nid = 0; nid < MAX_NUMNODES; nid++)
+               if (khugepaged_node_load[nid] > max_value) {
+                       max_value = khugepaged_node_load[nid];
+                       target_node = nid;
+               }
+
+       /* do some balance if several nodes have the same hit record */
+       if (target_node <= last_khugepaged_target_node)
+               for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
+                               nid++)
+                       if (max_value == khugepaged_node_load[nid]) {
+                               target_node = nid;
+                               break;
+                       }
+
+       last_khugepaged_target_node = target_node;
+       return target_node;
+}
+
+static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
+{
+       if (IS_ERR(*hpage)) {
+               if (!*wait)
+                       return false;
+
+               *wait = false;
+               *hpage = NULL;
+               khugepaged_alloc_sleep();
+       } else if (*hpage) {
+               put_page(*hpage);
+               *hpage = NULL;
+       }
+
+       return true;
+}
+
+static struct page *
+khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
+                      struct vm_area_struct *vma, unsigned long address,
+                      int node)
+{
+       VM_BUG_ON_PAGE(*hpage, *hpage);
+
+       /*
+        * Before allocating the hugepage, release the mmap_sem read lock.
+        * The allocation can take potentially a long time if it involves
+        * sync compaction, and we do not need to hold the mmap_sem during
+        * that. We will recheck the vma after taking it again in write mode.
+        */
+       up_read(&mm->mmap_sem);
+
+       *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
+       if (unlikely(!*hpage)) {
+               count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
+               *hpage = ERR_PTR(-ENOMEM);
+               return NULL;
+       }
+
+       count_vm_event(THP_COLLAPSE_ALLOC);
+       return *hpage;
+}
+#else
+static int khugepaged_find_target_node(void)
+{
+       return 0;
+}
+
+static inline struct page *alloc_hugepage(int defrag)
+{
+       return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
+                          HPAGE_PMD_ORDER);
+}
+
+static struct page *khugepaged_alloc_hugepage(bool *wait)
+{
+       struct page *hpage;
+
+       do {
+               hpage = alloc_hugepage(khugepaged_defrag());
+               if (!hpage) {
+                       count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
+                       if (!*wait)
+                               return NULL;
+
+                       *wait = false;
+                       khugepaged_alloc_sleep();
+               } else
+                       count_vm_event(THP_COLLAPSE_ALLOC);
+       } while (unlikely(!hpage) && likely(khugepaged_enabled()));
+
+       return hpage;
+}
+
+static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
+{
+       if (!*hpage)
+               *hpage = khugepaged_alloc_hugepage(wait);
+
+       if (unlikely(!*hpage))
+               return false;
+
+       return true;
+}
+
+static struct page *
+khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
+                      struct vm_area_struct *vma, unsigned long address,
+                      int node)
+{
+       up_read(&mm->mmap_sem);
+       VM_BUG_ON(!*hpage);
+
+       return  *hpage;
+}
+#endif
+
+static bool hugepage_vma_check(struct vm_area_struct *vma)
+{
+       if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
+           (vma->vm_flags & VM_NOHUGEPAGE))
+               return false;
+
+       if (!vma->anon_vma || vma->vm_ops)
+               return false;
+       if (is_vma_temporary_stack(vma))
+               return false;
+       VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
+       return true;
+}
+
+static void collapse_huge_page(struct mm_struct *mm,
+                                  unsigned long address,
+                                  struct page **hpage,
+                                  struct vm_area_struct *vma,
+                                  int node)
+{
+       pmd_t *pmd, _pmd;
+       pte_t *pte;
+       pgtable_t pgtable;
+       struct page *new_page;
+       spinlock_t *pmd_ptl, *pte_ptl;
+       int isolated;
+       unsigned long hstart, hend;
+       struct mem_cgroup *memcg;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+       gfp_t gfp;
+
+       VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+
+       /* Only allocate from the target node */
+       gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
+               __GFP_THISNODE;
+
+       /* release the mmap_sem read lock. */
+       new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
+       if (!new_page)
+               return;
+
+       if (unlikely(mem_cgroup_try_charge(new_page, mm,
+                                          gfp, &memcg)))
+               return;
+
+       /*
+        * Prevent all access to pagetables with the exception of
+        * gup_fast later hanlded by the ptep_clear_flush and the VM
+        * handled by the anon_vma lock + PG_lock.
+        */
+       down_write(&mm->mmap_sem);
+       if (unlikely(khugepaged_test_exit(mm)))
+               goto out;
+
+       vma = find_vma(mm, address);
+       if (!vma)
+               goto out;
+       hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+       hend = vma->vm_end & HPAGE_PMD_MASK;
+       if (address < hstart || address + HPAGE_PMD_SIZE > hend)
+               goto out;
+       if (!hugepage_vma_check(vma))
+               goto out;
+       pmd = mm_find_pmd(mm, address);
+       if (!pmd)
+               goto out;
+
+       anon_vma_lock_write(vma->anon_vma);
+
+       pte = pte_offset_map(pmd, address);
+       pte_ptl = pte_lockptr(mm, pmd);
+
+       mmun_start = address;
+       mmun_end   = address + HPAGE_PMD_SIZE;
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+       pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
+       /*
+        * After this gup_fast can't run anymore. This also removes
+        * any huge TLB entry from the CPU so we won't allow
+        * huge and small TLB entries for the same virtual address
+        * to avoid the risk of CPU bugs in that area.
+        */
+       _pmd = pmdp_clear_flush(vma, address, pmd);
+       spin_unlock(pmd_ptl);
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+       spin_lock(pte_ptl);
+       isolated = __collapse_huge_page_isolate(vma, address, pte);
+       spin_unlock(pte_ptl);
+
+       if (unlikely(!isolated)) {
+               pte_unmap(pte);
+               spin_lock(pmd_ptl);
+               BUG_ON(!pmd_none(*pmd));
+               /*
+                * We can only use set_pmd_at when establishing
+                * hugepmds and never for establishing regular pmds that
+                * points to regular pagetables. Use pmd_populate for that
+                */
+               pmd_populate(mm, pmd, pmd_pgtable(_pmd));
+               spin_unlock(pmd_ptl);
+               anon_vma_unlock_write(vma->anon_vma);
+               goto out;
+       }
+
+       /*
+        * All pages are isolated and locked so anon_vma rmap
+        * can't run anymore.
+        */
+       anon_vma_unlock_write(vma->anon_vma);
+
+       __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
+       pte_unmap(pte);
+       __SetPageUptodate(new_page);
+       pgtable = pmd_pgtable(_pmd);
+
+       _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
+       _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
+
+       /*
+        * spin_lock() below is not the equivalent of smp_wmb(), so
+        * this is needed to avoid the copy_huge_page writes to become
+        * visible after the set_pmd_at() write.
+        */
+       smp_wmb();
+
+       spin_lock(pmd_ptl);
+       BUG_ON(!pmd_none(*pmd));
+       page_add_new_anon_rmap(new_page, vma, address);
+       mem_cgroup_commit_charge(new_page, memcg, false);
+       lru_cache_add_active_or_unevictable(new_page, vma);
+       pgtable_trans_huge_deposit(mm, pmd, pgtable);
+       set_pmd_at(mm, address, pmd, _pmd);
+       update_mmu_cache_pmd(vma, address, pmd);
+       spin_unlock(pmd_ptl);
+
+       *hpage = NULL;
+
+       khugepaged_pages_collapsed++;
+out_up_write:
+       up_write(&mm->mmap_sem);
+       return;
+
+out:
+       mem_cgroup_cancel_charge(new_page, memcg);
+       goto out_up_write;
+}
+
+static int khugepaged_scan_pmd(struct mm_struct *mm,
+                              struct vm_area_struct *vma,
+                              unsigned long address,
+                              struct page **hpage)
+{
+       pmd_t *pmd;
+       pte_t *pte, *_pte;
+       int ret = 0, none_or_zero = 0;
+       struct page *page;
+       unsigned long _address;
+       spinlock_t *ptl;
+       int node = NUMA_NO_NODE;
+       bool writable = false, referenced = false;
+
+       VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+
+       pmd = mm_find_pmd(mm, address);
+       if (!pmd)
+               goto out;
+
+       memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
+       pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+       for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
+            _pte++, _address += PAGE_SIZE) {
+               pte_t pteval = *_pte;
+               if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
+                       if (++none_or_zero <= khugepaged_max_ptes_none)
+                               continue;
+                       else
+                               goto out_unmap;
+               }
+               if (!pte_present(pteval))
+                       goto out_unmap;
+               if (pte_write(pteval))
+                       writable = true;
+
+               page = vm_normal_page(vma, _address, pteval);
+               if (unlikely(!page))
+                       goto out_unmap;
+               /*
+                * Record which node the original page is from and save this
+                * information to khugepaged_node_load[].
+                * Khupaged will allocate hugepage from the node has the max
+                * hit record.
+                */
+               node = page_to_nid(page);
+               if (khugepaged_scan_abort(node))
+                       goto out_unmap;
+               khugepaged_node_load[node]++;
+               VM_BUG_ON_PAGE(PageCompound(page), page);
+               if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
+                       goto out_unmap;
+               /*
+                * cannot use mapcount: can't collapse if there's a gup pin.
+                * The page must only be referenced by the scanned process
+                * and page swap cache.
+                */
+               if (page_count(page) != 1 + !!PageSwapCache(page))
+                       goto out_unmap;
+               if (pte_young(pteval) || PageReferenced(page) ||
+                   mmu_notifier_test_young(vma->vm_mm, address))
+                       referenced = true;
+       }
+       if (referenced && writable)
+               ret = 1;
+out_unmap:
+       pte_unmap_unlock(pte, ptl);
+       if (ret) {
+               node = khugepaged_find_target_node();
+               /* collapse_huge_page will return with the mmap_sem released */
+               collapse_huge_page(mm, address, hpage, vma, node);
+       }
+out:
+       return ret;
+}
+
+static void collect_mm_slot(struct mm_slot *mm_slot)
+{
+       struct mm_struct *mm = mm_slot->mm;
+
+       VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
+
+       if (khugepaged_test_exit(mm)) {
+               /* free mm_slot */
+               hash_del(&mm_slot->hash);
+               list_del(&mm_slot->mm_node);
+
+               /*
+                * Not strictly needed because the mm exited already.
+                *
+                * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
+                */
+
+               /* khugepaged_mm_lock actually not necessary for the below */
+               free_mm_slot(mm_slot);
+               mmdrop(mm);
+       }
+}
+
+static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
+                                           struct page **hpage)
+       __releases(&khugepaged_mm_lock)
+       __acquires(&khugepaged_mm_lock)
+{
+       struct mm_slot *mm_slot;
+       struct mm_struct *mm;
+       struct vm_area_struct *vma;
+       int progress = 0;
+
+       VM_BUG_ON(!pages);
+       VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
+
+       if (khugepaged_scan.mm_slot)
+               mm_slot = khugepaged_scan.mm_slot;
+       else {
+               mm_slot = list_entry(khugepaged_scan.mm_head.next,
+                                    struct mm_slot, mm_node);
+               khugepaged_scan.address = 0;
+               khugepaged_scan.mm_slot = mm_slot;
+       }
+       spin_unlock(&khugepaged_mm_lock);
+
+       mm = mm_slot->mm;
+       down_read(&mm->mmap_sem);
+       if (unlikely(khugepaged_test_exit(mm)))
+               vma = NULL;
+       else
+               vma = find_vma(mm, khugepaged_scan.address);
+
+       progress++;
+       for (; vma; vma = vma->vm_next) {
+               unsigned long hstart, hend;
+
+               cond_resched();
+               if (unlikely(khugepaged_test_exit(mm))) {
+                       progress++;
+                       break;
+               }
+               if (!hugepage_vma_check(vma)) {
+skip:
+                       progress++;
+                       continue;
+               }
+               hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+               hend = vma->vm_end & HPAGE_PMD_MASK;
+               if (hstart >= hend)
+                       goto skip;
+               if (khugepaged_scan.address > hend)
+                       goto skip;
+               if (khugepaged_scan.address < hstart)
+                       khugepaged_scan.address = hstart;
+               VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
+
+               while (khugepaged_scan.address < hend) {
+                       int ret;
+                       cond_resched();
+                       if (unlikely(khugepaged_test_exit(mm)))
+                               goto breakouterloop;
+
+                       VM_BUG_ON(khugepaged_scan.address < hstart ||
+                                 khugepaged_scan.address + HPAGE_PMD_SIZE >
+                                 hend);
+                       ret = khugepaged_scan_pmd(mm, vma,
+                                                 khugepaged_scan.address,
+                                                 hpage);
+                       /* move to next address */
+                       khugepaged_scan.address += HPAGE_PMD_SIZE;
+                       progress += HPAGE_PMD_NR;
+                       if (ret)
+                               /* we released mmap_sem so break loop */
+                               goto breakouterloop_mmap_sem;
+                       if (progress >= pages)
+                               goto breakouterloop;
+               }
+       }
+breakouterloop:
+       up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
+breakouterloop_mmap_sem:
+
+       spin_lock(&khugepaged_mm_lock);
+       VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
+       /*
+        * Release the current mm_slot if this mm is about to die, or
+        * if we scanned all vmas of this mm.
+        */
+       if (khugepaged_test_exit(mm) || !vma) {
+               /*
+                * Make sure that if mm_users is reaching zero while
+                * khugepaged runs here, khugepaged_exit will find
+                * mm_slot not pointing to the exiting mm.
+                */
+               if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
+                       khugepaged_scan.mm_slot = list_entry(
+                               mm_slot->mm_node.next,
+                               struct mm_slot, mm_node);
+                       khugepaged_scan.address = 0;
+               } else {
+                       khugepaged_scan.mm_slot = NULL;
+                       khugepaged_full_scans++;
+               }
+
+               collect_mm_slot(mm_slot);
+       }
+
+       return progress;
+}
+
+static int khugepaged_has_work(void)
+{
+       return !list_empty(&khugepaged_scan.mm_head) &&
+               khugepaged_enabled();
+}
+
+static int khugepaged_wait_event(void)
+{
+       return !list_empty(&khugepaged_scan.mm_head) ||
+               kthread_should_stop();
+}
+
+static void khugepaged_do_scan(void)
+{
+       struct page *hpage = NULL;
+       unsigned int progress = 0, pass_through_head = 0;
+       unsigned int pages = khugepaged_pages_to_scan;
+       bool wait = true;
+
+       barrier(); /* write khugepaged_pages_to_scan to local stack */
+
+       while (progress < pages) {
+               if (!khugepaged_prealloc_page(&hpage, &wait))
+                       break;
+
+               cond_resched();
+
+               if (unlikely(kthread_should_stop() || freezing(current)))
+                       break;
+
+               spin_lock(&khugepaged_mm_lock);
+               if (!khugepaged_scan.mm_slot)
+                       pass_through_head++;
+               if (khugepaged_has_work() &&
+                   pass_through_head < 2)
+                       progress += khugepaged_scan_mm_slot(pages - progress,
+                                                           &hpage);
+               else
+                       progress = pages;
+               spin_unlock(&khugepaged_mm_lock);
+       }
+
+       if (!IS_ERR_OR_NULL(hpage))
+               put_page(hpage);
+}
+
+static void khugepaged_wait_work(void)
+{
+       try_to_freeze();
+
+       if (khugepaged_has_work()) {
+               if (!khugepaged_scan_sleep_millisecs)
+                       return;
+
+               wait_event_freezable_timeout(khugepaged_wait,
+                                            kthread_should_stop(),
+                       msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
+               return;
+       }
+
+       if (khugepaged_enabled())
+               wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
+}
+
+static int khugepaged(void *none)
+{
+       struct mm_slot *mm_slot;
+
+       set_freezable();
+       set_user_nice(current, MAX_NICE);
+
+       while (!kthread_should_stop()) {
+               khugepaged_do_scan();
+               khugepaged_wait_work();
+       }
+
+       spin_lock(&khugepaged_mm_lock);
+       mm_slot = khugepaged_scan.mm_slot;
+       khugepaged_scan.mm_slot = NULL;
+       if (mm_slot)
+               collect_mm_slot(mm_slot);
+       spin_unlock(&khugepaged_mm_lock);
+       return 0;
+}
+
+static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
+               unsigned long haddr, pmd_t *pmd)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       pgtable_t pgtable;
+       pmd_t _pmd;
+       int i;
+
+       pmdp_clear_flush_notify(vma, haddr, pmd);
+       /* leave pmd empty until pte is filled */
+
+       pgtable = pgtable_trans_huge_withdraw(mm, pmd);
+       pmd_populate(mm, &_pmd, pgtable);
+
+       for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+               pte_t *pte, entry;
+               entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
+               entry = pte_mkspecial(entry);
+               pte = pte_offset_map(&_pmd, haddr);
+               VM_BUG_ON(!pte_none(*pte));
+               set_pte_at(mm, haddr, pte, entry);
+               pte_unmap(pte);
+       }
+       smp_wmb(); /* make pte visible before pmd */
+       pmd_populate(mm, pmd, pgtable);
+       put_huge_zero_page();
+}
+
+void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
+               pmd_t *pmd)
+{
+       spinlock_t *ptl;
+       struct page *page;
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long haddr = address & HPAGE_PMD_MASK;
+       unsigned long mmun_start;       /* For mmu_notifiers */
+       unsigned long mmun_end;         /* For mmu_notifiers */
+
+       BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
+
+       mmun_start = haddr;
+       mmun_end   = haddr + HPAGE_PMD_SIZE;
+again:
+       mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+       ptl = pmd_lock(mm, pmd);
+       if (unlikely(!pmd_trans_huge(*pmd))) {
+               spin_unlock(ptl);
+               mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+               return;
+       }
+       if (is_huge_zero_pmd(*pmd)) {
+               __split_huge_zero_page_pmd(vma, haddr, pmd);
+               spin_unlock(ptl);
+               mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+               return;
+       }
+       page = pmd_page(*pmd);
+       VM_BUG_ON_PAGE(!page_count(page), page);
+       get_page(page);
+       spin_unlock(ptl);
+       mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+
+       split_huge_page(page);
+
+       put_page(page);
+
+       /*
+        * We don't always have down_write of mmap_sem here: a racing
+        * do_huge_pmd_wp_page() might have copied-on-write to another
+        * huge page before our split_huge_page() got the anon_vma lock.
+        */
+       if (unlikely(pmd_trans_huge(*pmd)))
+               goto again;
+}
+
+void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
+               pmd_t *pmd)
+{
+       struct vm_area_struct *vma;
+
+       vma = find_vma(mm, address);
+       BUG_ON(vma == NULL);
+       split_huge_page_pmd(vma, address, pmd);
+}
+
+static void split_huge_page_address(struct mm_struct *mm,
+                                   unsigned long address)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+
+       VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
+
+       pgd = pgd_offset(mm, address);
+       if (!pgd_present(*pgd))
+               return;
+
+       pud = pud_offset(pgd, address);
+       if (!pud_present(*pud))
+               return;
+
+       pmd = pmd_offset(pud, address);
+       if (!pmd_present(*pmd))
+               return;
+       /*
+        * Caller holds the mmap_sem write mode, so a huge pmd cannot
+        * materialize from under us.
+        */
+       split_huge_page_pmd_mm(mm, address, pmd);
+}
+
+void __vma_adjust_trans_huge(struct vm_area_struct *vma,
+                            unsigned long start,
+                            unsigned long end,
+                            long adjust_next)
+{
+       /*
+        * If the new start address isn't hpage aligned and it could
+        * previously contain an hugepage: check if we need to split
+        * an huge pmd.
+        */
+       if (start & ~HPAGE_PMD_MASK &&
+           (start & HPAGE_PMD_MASK) >= vma->vm_start &&
+           (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+               split_huge_page_address(vma->vm_mm, start);
+
+       /*
+        * If the new end address isn't hpage aligned and it could
+        * previously contain an hugepage: check if we need to split
+        * an huge pmd.
+        */
+       if (end & ~HPAGE_PMD_MASK &&
+           (end & HPAGE_PMD_MASK) >= vma->vm_start &&
+           (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+               split_huge_page_address(vma->vm_mm, end);
+
+       /*
+        * If we're also updating the vma->vm_next->vm_start, if the new
+        * vm_next->vm_start isn't page aligned and it could previously
+        * contain an hugepage: check if we need to split an huge pmd.
+        */
+       if (adjust_next > 0) {
+               struct vm_area_struct *next = vma->vm_next;
+               unsigned long nstart = next->vm_start;
+               nstart += adjust_next << PAGE_SHIFT;
+               if (nstart & ~HPAGE_PMD_MASK &&
+                   (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
+                   (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
+                       split_huge_page_address(next->vm_mm, nstart);
+       }
+}