Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / gup.c
diff --git a/kernel/mm/gup.c b/kernel/mm/gup.c
new file mode 100644 (file)
index 0000000..6297f6b
--- /dev/null
@@ -0,0 +1,1379 @@
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/spinlock.h>
+
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/rmap.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+
+#include <linux/sched.h>
+#include <linux/rwsem.h>
+#include <linux/hugetlb.h>
+#include <asm/pgtable.h>
+
+#include "internal.h"
+
+static struct page *no_page_table(struct vm_area_struct *vma,
+               unsigned int flags)
+{
+       /*
+        * When core dumping an enormous anonymous area that nobody
+        * has touched so far, we don't want to allocate unnecessary pages or
+        * page tables.  Return error instead of NULL to skip handle_mm_fault,
+        * then get_dump_page() will return NULL to leave a hole in the dump.
+        * But we can only make this optimization where a hole would surely
+        * be zero-filled if handle_mm_fault() actually did handle it.
+        */
+       if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
+               return ERR_PTR(-EFAULT);
+       return NULL;
+}
+
+static struct page *follow_page_pte(struct vm_area_struct *vma,
+               unsigned long address, pmd_t *pmd, unsigned int flags)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       struct page *page;
+       spinlock_t *ptl;
+       pte_t *ptep, pte;
+
+retry:
+       if (unlikely(pmd_bad(*pmd)))
+               return no_page_table(vma, flags);
+
+       ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
+       pte = *ptep;
+       if (!pte_present(pte)) {
+               swp_entry_t entry;
+               /*
+                * KSM's break_ksm() relies upon recognizing a ksm page
+                * even while it is being migrated, so for that case we
+                * need migration_entry_wait().
+                */
+               if (likely(!(flags & FOLL_MIGRATION)))
+                       goto no_page;
+               if (pte_none(pte))
+                       goto no_page;
+               entry = pte_to_swp_entry(pte);
+               if (!is_migration_entry(entry))
+                       goto no_page;
+               pte_unmap_unlock(ptep, ptl);
+               migration_entry_wait(mm, pmd, address);
+               goto retry;
+       }
+       if ((flags & FOLL_NUMA) && pte_protnone(pte))
+               goto no_page;
+       if ((flags & FOLL_WRITE) && !pte_write(pte)) {
+               pte_unmap_unlock(ptep, ptl);
+               return NULL;
+       }
+
+       page = vm_normal_page(vma, address, pte);
+       if (unlikely(!page)) {
+               if ((flags & FOLL_DUMP) ||
+                   !is_zero_pfn(pte_pfn(pte)))
+                       goto bad_page;
+               page = pte_page(pte);
+       }
+
+       if (flags & FOLL_GET)
+               get_page_foll(page);
+       if (flags & FOLL_TOUCH) {
+               if ((flags & FOLL_WRITE) &&
+                   !pte_dirty(pte) && !PageDirty(page))
+                       set_page_dirty(page);
+               /*
+                * pte_mkyoung() would be more correct here, but atomic care
+                * is needed to avoid losing the dirty bit: it is easier to use
+                * mark_page_accessed().
+                */
+               mark_page_accessed(page);
+       }
+       if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
+               /*
+                * The preliminary mapping check is mainly to avoid the
+                * pointless overhead of lock_page on the ZERO_PAGE
+                * which might bounce very badly if there is contention.
+                *
+                * If the page is already locked, we don't need to
+                * handle it now - vmscan will handle it later if and
+                * when it attempts to reclaim the page.
+                */
+               if (page->mapping && trylock_page(page)) {
+                       lru_add_drain();  /* push cached pages to LRU */
+                       /*
+                        * Because we lock page here, and migration is
+                        * blocked by the pte's page reference, and we
+                        * know the page is still mapped, we don't even
+                        * need to check for file-cache page truncation.
+                        */
+                       mlock_vma_page(page);
+                       unlock_page(page);
+               }
+       }
+       pte_unmap_unlock(ptep, ptl);
+       return page;
+bad_page:
+       pte_unmap_unlock(ptep, ptl);
+       return ERR_PTR(-EFAULT);
+
+no_page:
+       pte_unmap_unlock(ptep, ptl);
+       if (!pte_none(pte))
+               return NULL;
+       return no_page_table(vma, flags);
+}
+
+/**
+ * follow_page_mask - look up a page descriptor from a user-virtual address
+ * @vma: vm_area_struct mapping @address
+ * @address: virtual address to look up
+ * @flags: flags modifying lookup behaviour
+ * @page_mask: on output, *page_mask is set according to the size of the page
+ *
+ * @flags can have FOLL_ flags set, defined in <linux/mm.h>
+ *
+ * Returns the mapped (struct page *), %NULL if no mapping exists, or
+ * an error pointer if there is a mapping to something not represented
+ * by a page descriptor (see also vm_normal_page()).
+ */
+struct page *follow_page_mask(struct vm_area_struct *vma,
+                             unsigned long address, unsigned int flags,
+                             unsigned int *page_mask)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       spinlock_t *ptl;
+       struct page *page;
+       struct mm_struct *mm = vma->vm_mm;
+
+       *page_mask = 0;
+
+       page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
+       if (!IS_ERR(page)) {
+               BUG_ON(flags & FOLL_GET);
+               return page;
+       }
+
+       pgd = pgd_offset(mm, address);
+       if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+               return no_page_table(vma, flags);
+
+       pud = pud_offset(pgd, address);
+       if (pud_none(*pud))
+               return no_page_table(vma, flags);
+       if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
+               page = follow_huge_pud(mm, address, pud, flags);
+               if (page)
+                       return page;
+               return no_page_table(vma, flags);
+       }
+       if (unlikely(pud_bad(*pud)))
+               return no_page_table(vma, flags);
+
+       pmd = pmd_offset(pud, address);
+       if (pmd_none(*pmd))
+               return no_page_table(vma, flags);
+       if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
+               page = follow_huge_pmd(mm, address, pmd, flags);
+               if (page)
+                       return page;
+               return no_page_table(vma, flags);
+       }
+       if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
+               return no_page_table(vma, flags);
+       if (pmd_trans_huge(*pmd)) {
+               if (flags & FOLL_SPLIT) {
+                       split_huge_page_pmd(vma, address, pmd);
+                       return follow_page_pte(vma, address, pmd, flags);
+               }
+               ptl = pmd_lock(mm, pmd);
+               if (likely(pmd_trans_huge(*pmd))) {
+                       if (unlikely(pmd_trans_splitting(*pmd))) {
+                               spin_unlock(ptl);
+                               wait_split_huge_page(vma->anon_vma, pmd);
+                       } else {
+                               page = follow_trans_huge_pmd(vma, address,
+                                                            pmd, flags);
+                               spin_unlock(ptl);
+                               *page_mask = HPAGE_PMD_NR - 1;
+                               return page;
+                       }
+               } else
+                       spin_unlock(ptl);
+       }
+       return follow_page_pte(vma, address, pmd, flags);
+}
+
+static int get_gate_page(struct mm_struct *mm, unsigned long address,
+               unsigned int gup_flags, struct vm_area_struct **vma,
+               struct page **page)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *pte;
+       int ret = -EFAULT;
+
+       /* user gate pages are read-only */
+       if (gup_flags & FOLL_WRITE)
+               return -EFAULT;
+       if (address > TASK_SIZE)
+               pgd = pgd_offset_k(address);
+       else
+               pgd = pgd_offset_gate(mm, address);
+       BUG_ON(pgd_none(*pgd));
+       pud = pud_offset(pgd, address);
+       BUG_ON(pud_none(*pud));
+       pmd = pmd_offset(pud, address);
+       if (pmd_none(*pmd))
+               return -EFAULT;
+       VM_BUG_ON(pmd_trans_huge(*pmd));
+       pte = pte_offset_map(pmd, address);
+       if (pte_none(*pte))
+               goto unmap;
+       *vma = get_gate_vma(mm);
+       if (!page)
+               goto out;
+       *page = vm_normal_page(*vma, address, *pte);
+       if (!*page) {
+               if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
+                       goto unmap;
+               *page = pte_page(*pte);
+       }
+       get_page(*page);
+out:
+       ret = 0;
+unmap:
+       pte_unmap(pte);
+       return ret;
+}
+
+/*
+ * mmap_sem must be held on entry.  If @nonblocking != NULL and
+ * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
+ * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
+ */
+static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
+               unsigned long address, unsigned int *flags, int *nonblocking)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned int fault_flags = 0;
+       int ret;
+
+       /* For mm_populate(), just skip the stack guard page. */
+       if ((*flags & FOLL_POPULATE) &&
+                       (stack_guard_page_start(vma, address) ||
+                        stack_guard_page_end(vma, address + PAGE_SIZE)))
+               return -ENOENT;
+       if (*flags & FOLL_WRITE)
+               fault_flags |= FAULT_FLAG_WRITE;
+       if (nonblocking)
+               fault_flags |= FAULT_FLAG_ALLOW_RETRY;
+       if (*flags & FOLL_NOWAIT)
+               fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
+       if (*flags & FOLL_TRIED) {
+               VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
+               fault_flags |= FAULT_FLAG_TRIED;
+       }
+
+       ret = handle_mm_fault(mm, vma, address, fault_flags);
+       if (ret & VM_FAULT_ERROR) {
+               if (ret & VM_FAULT_OOM)
+                       return -ENOMEM;
+               if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
+                       return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
+               if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
+                       return -EFAULT;
+               BUG();
+       }
+
+       if (tsk) {
+               if (ret & VM_FAULT_MAJOR)
+                       tsk->maj_flt++;
+               else
+                       tsk->min_flt++;
+       }
+
+       if (ret & VM_FAULT_RETRY) {
+               if (nonblocking)
+                       *nonblocking = 0;
+               return -EBUSY;
+       }
+
+       /*
+        * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
+        * necessary, even if maybe_mkwrite decided not to set pte_write. We
+        * can thus safely do subsequent page lookups as if they were reads.
+        * But only do so when looping for pte_write is futile: in some cases
+        * userspace may also be wanting to write to the gotten user page,
+        * which a read fault here might prevent (a readonly page might get
+        * reCOWed by userspace write).
+        */
+       if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
+               *flags &= ~FOLL_WRITE;
+       return 0;
+}
+
+static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
+{
+       vm_flags_t vm_flags = vma->vm_flags;
+
+       if (vm_flags & (VM_IO | VM_PFNMAP))
+               return -EFAULT;
+
+       if (gup_flags & FOLL_WRITE) {
+               if (!(vm_flags & VM_WRITE)) {
+                       if (!(gup_flags & FOLL_FORCE))
+                               return -EFAULT;
+                       /*
+                        * We used to let the write,force case do COW in a
+                        * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
+                        * set a breakpoint in a read-only mapping of an
+                        * executable, without corrupting the file (yet only
+                        * when that file had been opened for writing!).
+                        * Anon pages in shared mappings are surprising: now
+                        * just reject it.
+                        */
+                       if (!is_cow_mapping(vm_flags)) {
+                               WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
+                               return -EFAULT;
+                       }
+               }
+       } else if (!(vm_flags & VM_READ)) {
+               if (!(gup_flags & FOLL_FORCE))
+                       return -EFAULT;
+               /*
+                * Is there actually any vma we can reach here which does not
+                * have VM_MAYREAD set?
+                */
+               if (!(vm_flags & VM_MAYREAD))
+                       return -EFAULT;
+       }
+       return 0;
+}
+
+/**
+ * __get_user_pages() - pin user pages in memory
+ * @tsk:       task_struct of target task
+ * @mm:                mm_struct of target mm
+ * @start:     starting user address
+ * @nr_pages:  number of pages from start to pin
+ * @gup_flags: flags modifying pin behaviour
+ * @pages:     array that receives pointers to the pages pinned.
+ *             Should be at least nr_pages long. Or NULL, if caller
+ *             only intends to ensure the pages are faulted in.
+ * @vmas:      array of pointers to vmas corresponding to each page.
+ *             Or NULL if the caller does not require them.
+ * @nonblocking: whether waiting for disk IO or mmap_sem contention
+ *
+ * Returns number of pages pinned. This may be fewer than the number
+ * requested. If nr_pages is 0 or negative, returns 0. If no pages
+ * were pinned, returns -errno. Each page returned must be released
+ * with a put_page() call when it is finished with. vmas will only
+ * remain valid while mmap_sem is held.
+ *
+ * Must be called with mmap_sem held.  It may be released.  See below.
+ *
+ * __get_user_pages walks a process's page tables and takes a reference to
+ * each struct page that each user address corresponds to at a given
+ * instant. That is, it takes the page that would be accessed if a user
+ * thread accesses the given user virtual address at that instant.
+ *
+ * This does not guarantee that the page exists in the user mappings when
+ * __get_user_pages returns, and there may even be a completely different
+ * page there in some cases (eg. if mmapped pagecache has been invalidated
+ * and subsequently re faulted). However it does guarantee that the page
+ * won't be freed completely. And mostly callers simply care that the page
+ * contains data that was valid *at some point in time*. Typically, an IO
+ * or similar operation cannot guarantee anything stronger anyway because
+ * locks can't be held over the syscall boundary.
+ *
+ * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
+ * the page is written to, set_page_dirty (or set_page_dirty_lock, as
+ * appropriate) must be called after the page is finished with, and
+ * before put_page is called.
+ *
+ * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
+ * or mmap_sem contention, and if waiting is needed to pin all pages,
+ * *@nonblocking will be set to 0.  Further, if @gup_flags does not
+ * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
+ * this case.
+ *
+ * A caller using such a combination of @nonblocking and @gup_flags
+ * must therefore hold the mmap_sem for reading only, and recognize
+ * when it's been released.  Otherwise, it must be held for either
+ * reading or writing and will not be released.
+ *
+ * In most cases, get_user_pages or get_user_pages_fast should be used
+ * instead of __get_user_pages. __get_user_pages should be used only if
+ * you need some special @gup_flags.
+ */
+long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+               unsigned long start, unsigned long nr_pages,
+               unsigned int gup_flags, struct page **pages,
+               struct vm_area_struct **vmas, int *nonblocking)
+{
+       long i = 0;
+       unsigned int page_mask;
+       struct vm_area_struct *vma = NULL;
+
+       if (!nr_pages)
+               return 0;
+
+       VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
+
+       /*
+        * If FOLL_FORCE is set then do not force a full fault as the hinting
+        * fault information is unrelated to the reference behaviour of a task
+        * using the address space
+        */
+       if (!(gup_flags & FOLL_FORCE))
+               gup_flags |= FOLL_NUMA;
+
+       do {
+               struct page *page;
+               unsigned int foll_flags = gup_flags;
+               unsigned int page_increm;
+
+               /* first iteration or cross vma bound */
+               if (!vma || start >= vma->vm_end) {
+                       vma = find_extend_vma(mm, start);
+                       if (!vma && in_gate_area(mm, start)) {
+                               int ret;
+                               ret = get_gate_page(mm, start & PAGE_MASK,
+                                               gup_flags, &vma,
+                                               pages ? &pages[i] : NULL);
+                               if (ret)
+                                       return i ? : ret;
+                               page_mask = 0;
+                               goto next_page;
+                       }
+
+                       if (!vma || check_vma_flags(vma, gup_flags))
+                               return i ? : -EFAULT;
+                       if (is_vm_hugetlb_page(vma)) {
+                               i = follow_hugetlb_page(mm, vma, pages, vmas,
+                                               &start, &nr_pages, i,
+                                               gup_flags);
+                               continue;
+                       }
+               }
+retry:
+               /*
+                * If we have a pending SIGKILL, don't keep faulting pages and
+                * potentially allocating memory.
+                */
+               if (unlikely(fatal_signal_pending(current)))
+                       return i ? i : -ERESTARTSYS;
+               cond_resched();
+               page = follow_page_mask(vma, start, foll_flags, &page_mask);
+               if (!page) {
+                       int ret;
+                       ret = faultin_page(tsk, vma, start, &foll_flags,
+                                       nonblocking);
+                       switch (ret) {
+                       case 0:
+                               goto retry;
+                       case -EFAULT:
+                       case -ENOMEM:
+                       case -EHWPOISON:
+                               return i ? i : ret;
+                       case -EBUSY:
+                               return i;
+                       case -ENOENT:
+                               goto next_page;
+                       }
+                       BUG();
+               }
+               if (IS_ERR(page))
+                       return i ? i : PTR_ERR(page);
+               if (pages) {
+                       pages[i] = page;
+                       flush_anon_page(vma, page, start);
+                       flush_dcache_page(page);
+                       page_mask = 0;
+               }
+next_page:
+               if (vmas) {
+                       vmas[i] = vma;
+                       page_mask = 0;
+               }
+               page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
+               if (page_increm > nr_pages)
+                       page_increm = nr_pages;
+               i += page_increm;
+               start += page_increm * PAGE_SIZE;
+               nr_pages -= page_increm;
+       } while (nr_pages);
+       return i;
+}
+EXPORT_SYMBOL(__get_user_pages);
+
+/*
+ * fixup_user_fault() - manually resolve a user page fault
+ * @tsk:       the task_struct to use for page fault accounting, or
+ *             NULL if faults are not to be recorded.
+ * @mm:                mm_struct of target mm
+ * @address:   user address
+ * @fault_flags:flags to pass down to handle_mm_fault()
+ *
+ * This is meant to be called in the specific scenario where for locking reasons
+ * we try to access user memory in atomic context (within a pagefault_disable()
+ * section), this returns -EFAULT, and we want to resolve the user fault before
+ * trying again.
+ *
+ * Typically this is meant to be used by the futex code.
+ *
+ * The main difference with get_user_pages() is that this function will
+ * unconditionally call handle_mm_fault() which will in turn perform all the
+ * necessary SW fixup of the dirty and young bits in the PTE, while
+ * handle_mm_fault() only guarantees to update these in the struct page.
+ *
+ * This is important for some architectures where those bits also gate the
+ * access permission to the page because they are maintained in software.  On
+ * such architectures, gup() will not be enough to make a subsequent access
+ * succeed.
+ *
+ * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
+ */
+int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
+                    unsigned long address, unsigned int fault_flags)
+{
+       struct vm_area_struct *vma;
+       vm_flags_t vm_flags;
+       int ret;
+
+       vma = find_extend_vma(mm, address);
+       if (!vma || address < vma->vm_start)
+               return -EFAULT;
+
+       vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
+       if (!(vm_flags & vma->vm_flags))
+               return -EFAULT;
+
+       ret = handle_mm_fault(mm, vma, address, fault_flags);
+       if (ret & VM_FAULT_ERROR) {
+               if (ret & VM_FAULT_OOM)
+                       return -ENOMEM;
+               if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
+                       return -EHWPOISON;
+               if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
+                       return -EFAULT;
+               BUG();
+       }
+       if (tsk) {
+               if (ret & VM_FAULT_MAJOR)
+                       tsk->maj_flt++;
+               else
+                       tsk->min_flt++;
+       }
+       return 0;
+}
+
+static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
+                                               struct mm_struct *mm,
+                                               unsigned long start,
+                                               unsigned long nr_pages,
+                                               int write, int force,
+                                               struct page **pages,
+                                               struct vm_area_struct **vmas,
+                                               int *locked, bool notify_drop,
+                                               unsigned int flags)
+{
+       long ret, pages_done;
+       bool lock_dropped;
+
+       if (locked) {
+               /* if VM_FAULT_RETRY can be returned, vmas become invalid */
+               BUG_ON(vmas);
+               /* check caller initialized locked */
+               BUG_ON(*locked != 1);
+       }
+
+       if (pages)
+               flags |= FOLL_GET;
+       if (write)
+               flags |= FOLL_WRITE;
+       if (force)
+               flags |= FOLL_FORCE;
+
+       pages_done = 0;
+       lock_dropped = false;
+       for (;;) {
+               ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
+                                      vmas, locked);
+               if (!locked)
+                       /* VM_FAULT_RETRY couldn't trigger, bypass */
+                       return ret;
+
+               /* VM_FAULT_RETRY cannot return errors */
+               if (!*locked) {
+                       BUG_ON(ret < 0);
+                       BUG_ON(ret >= nr_pages);
+               }
+
+               if (!pages)
+                       /* If it's a prefault don't insist harder */
+                       return ret;
+
+               if (ret > 0) {
+                       nr_pages -= ret;
+                       pages_done += ret;
+                       if (!nr_pages)
+                               break;
+               }
+               if (*locked) {
+                       /* VM_FAULT_RETRY didn't trigger */
+                       if (!pages_done)
+                               pages_done = ret;
+                       break;
+               }
+               /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
+               pages += ret;
+               start += ret << PAGE_SHIFT;
+
+               /*
+                * Repeat on the address that fired VM_FAULT_RETRY
+                * without FAULT_FLAG_ALLOW_RETRY but with
+                * FAULT_FLAG_TRIED.
+                */
+               *locked = 1;
+               lock_dropped = true;
+               down_read(&mm->mmap_sem);
+               ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
+                                      pages, NULL, NULL);
+               if (ret != 1) {
+                       BUG_ON(ret > 1);
+                       if (!pages_done)
+                               pages_done = ret;
+                       break;
+               }
+               nr_pages--;
+               pages_done++;
+               if (!nr_pages)
+                       break;
+               pages++;
+               start += PAGE_SIZE;
+       }
+       if (notify_drop && lock_dropped && *locked) {
+               /*
+                * We must let the caller know we temporarily dropped the lock
+                * and so the critical section protected by it was lost.
+                */
+               up_read(&mm->mmap_sem);
+               *locked = 0;
+       }
+       return pages_done;
+}
+
+/*
+ * We can leverage the VM_FAULT_RETRY functionality in the page fault
+ * paths better by using either get_user_pages_locked() or
+ * get_user_pages_unlocked().
+ *
+ * get_user_pages_locked() is suitable to replace the form:
+ *
+ *      down_read(&mm->mmap_sem);
+ *      do_something()
+ *      get_user_pages(tsk, mm, ..., pages, NULL);
+ *      up_read(&mm->mmap_sem);
+ *
+ *  to:
+ *
+ *      int locked = 1;
+ *      down_read(&mm->mmap_sem);
+ *      do_something()
+ *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
+ *      if (locked)
+ *          up_read(&mm->mmap_sem);
+ */
+long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
+                          unsigned long start, unsigned long nr_pages,
+                          int write, int force, struct page **pages,
+                          int *locked)
+{
+       return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
+                                      pages, NULL, locked, true, FOLL_TOUCH);
+}
+EXPORT_SYMBOL(get_user_pages_locked);
+
+/*
+ * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
+ * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
+ *
+ * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
+ * caller if required (just like with __get_user_pages). "FOLL_GET",
+ * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
+ * according to the parameters "pages", "write", "force"
+ * respectively.
+ */
+__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
+                                              unsigned long start, unsigned long nr_pages,
+                                              int write, int force, struct page **pages,
+                                              unsigned int gup_flags)
+{
+       long ret;
+       int locked = 1;
+       down_read(&mm->mmap_sem);
+       ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
+                                     pages, NULL, &locked, false, gup_flags);
+       if (locked)
+               up_read(&mm->mmap_sem);
+       return ret;
+}
+EXPORT_SYMBOL(__get_user_pages_unlocked);
+
+/*
+ * get_user_pages_unlocked() is suitable to replace the form:
+ *
+ *      down_read(&mm->mmap_sem);
+ *      get_user_pages(tsk, mm, ..., pages, NULL);
+ *      up_read(&mm->mmap_sem);
+ *
+ *  with:
+ *
+ *      get_user_pages_unlocked(tsk, mm, ..., pages);
+ *
+ * It is functionally equivalent to get_user_pages_fast so
+ * get_user_pages_fast should be used instead, if the two parameters
+ * "tsk" and "mm" are respectively equal to current and current->mm,
+ * or if "force" shall be set to 1 (get_user_pages_fast misses the
+ * "force" parameter).
+ */
+long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
+                            unsigned long start, unsigned long nr_pages,
+                            int write, int force, struct page **pages)
+{
+       return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
+                                        force, pages, FOLL_TOUCH);
+}
+EXPORT_SYMBOL(get_user_pages_unlocked);
+
+/*
+ * get_user_pages() - pin user pages in memory
+ * @tsk:       the task_struct to use for page fault accounting, or
+ *             NULL if faults are not to be recorded.
+ * @mm:                mm_struct of target mm
+ * @start:     starting user address
+ * @nr_pages:  number of pages from start to pin
+ * @write:     whether pages will be written to by the caller
+ * @force:     whether to force access even when user mapping is currently
+ *             protected (but never forces write access to shared mapping).
+ * @pages:     array that receives pointers to the pages pinned.
+ *             Should be at least nr_pages long. Or NULL, if caller
+ *             only intends to ensure the pages are faulted in.
+ * @vmas:      array of pointers to vmas corresponding to each page.
+ *             Or NULL if the caller does not require them.
+ *
+ * Returns number of pages pinned. This may be fewer than the number
+ * requested. If nr_pages is 0 or negative, returns 0. If no pages
+ * were pinned, returns -errno. Each page returned must be released
+ * with a put_page() call when it is finished with. vmas will only
+ * remain valid while mmap_sem is held.
+ *
+ * Must be called with mmap_sem held for read or write.
+ *
+ * get_user_pages walks a process's page tables and takes a reference to
+ * each struct page that each user address corresponds to at a given
+ * instant. That is, it takes the page that would be accessed if a user
+ * thread accesses the given user virtual address at that instant.
+ *
+ * This does not guarantee that the page exists in the user mappings when
+ * get_user_pages returns, and there may even be a completely different
+ * page there in some cases (eg. if mmapped pagecache has been invalidated
+ * and subsequently re faulted). However it does guarantee that the page
+ * won't be freed completely. And mostly callers simply care that the page
+ * contains data that was valid *at some point in time*. Typically, an IO
+ * or similar operation cannot guarantee anything stronger anyway because
+ * locks can't be held over the syscall boundary.
+ *
+ * If write=0, the page must not be written to. If the page is written to,
+ * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
+ * after the page is finished with, and before put_page is called.
+ *
+ * get_user_pages is typically used for fewer-copy IO operations, to get a
+ * handle on the memory by some means other than accesses via the user virtual
+ * addresses. The pages may be submitted for DMA to devices or accessed via
+ * their kernel linear mapping (via the kmap APIs). Care should be taken to
+ * use the correct cache flushing APIs.
+ *
+ * See also get_user_pages_fast, for performance critical applications.
+ *
+ * get_user_pages should be phased out in favor of
+ * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
+ * should use get_user_pages because it cannot pass
+ * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
+ */
+long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+               unsigned long start, unsigned long nr_pages, int write,
+               int force, struct page **pages, struct vm_area_struct **vmas)
+{
+       return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
+                                      pages, vmas, NULL, false, FOLL_TOUCH);
+}
+EXPORT_SYMBOL(get_user_pages);
+
+/**
+ * populate_vma_page_range() -  populate a range of pages in the vma.
+ * @vma:   target vma
+ * @start: start address
+ * @end:   end address
+ * @nonblocking:
+ *
+ * This takes care of mlocking the pages too if VM_LOCKED is set.
+ *
+ * return 0 on success, negative error code on error.
+ *
+ * vma->vm_mm->mmap_sem must be held.
+ *
+ * If @nonblocking is NULL, it may be held for read or write and will
+ * be unperturbed.
+ *
+ * If @nonblocking is non-NULL, it must held for read only and may be
+ * released.  If it's released, *@nonblocking will be set to 0.
+ */
+long populate_vma_page_range(struct vm_area_struct *vma,
+               unsigned long start, unsigned long end, int *nonblocking)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long nr_pages = (end - start) / PAGE_SIZE;
+       int gup_flags;
+
+       VM_BUG_ON(start & ~PAGE_MASK);
+       VM_BUG_ON(end   & ~PAGE_MASK);
+       VM_BUG_ON_VMA(start < vma->vm_start, vma);
+       VM_BUG_ON_VMA(end   > vma->vm_end, vma);
+       VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
+
+       gup_flags = FOLL_TOUCH | FOLL_POPULATE;
+       /*
+        * We want to touch writable mappings with a write fault in order
+        * to break COW, except for shared mappings because these don't COW
+        * and we would not want to dirty them for nothing.
+        */
+       if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
+               gup_flags |= FOLL_WRITE;
+
+       /*
+        * We want mlock to succeed for regions that have any permissions
+        * other than PROT_NONE.
+        */
+       if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
+               gup_flags |= FOLL_FORCE;
+
+       /*
+        * We made sure addr is within a VMA, so the following will
+        * not result in a stack expansion that recurses back here.
+        */
+       return __get_user_pages(current, mm, start, nr_pages, gup_flags,
+                               NULL, NULL, nonblocking);
+}
+
+/*
+ * __mm_populate - populate and/or mlock pages within a range of address space.
+ *
+ * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
+ * flags. VMAs must be already marked with the desired vm_flags, and
+ * mmap_sem must not be held.
+ */
+int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
+{
+       struct mm_struct *mm = current->mm;
+       unsigned long end, nstart, nend;
+       struct vm_area_struct *vma = NULL;
+       int locked = 0;
+       long ret = 0;
+
+       VM_BUG_ON(start & ~PAGE_MASK);
+       VM_BUG_ON(len != PAGE_ALIGN(len));
+       end = start + len;
+
+       for (nstart = start; nstart < end; nstart = nend) {
+               /*
+                * We want to fault in pages for [nstart; end) address range.
+                * Find first corresponding VMA.
+                */
+               if (!locked) {
+                       locked = 1;
+                       down_read(&mm->mmap_sem);
+                       vma = find_vma(mm, nstart);
+               } else if (nstart >= vma->vm_end)
+                       vma = vma->vm_next;
+               if (!vma || vma->vm_start >= end)
+                       break;
+               /*
+                * Set [nstart; nend) to intersection of desired address
+                * range with the first VMA. Also, skip undesirable VMA types.
+                */
+               nend = min(end, vma->vm_end);
+               if (vma->vm_flags & (VM_IO | VM_PFNMAP))
+                       continue;
+               if (nstart < vma->vm_start)
+                       nstart = vma->vm_start;
+               /*
+                * Now fault in a range of pages. populate_vma_page_range()
+                * double checks the vma flags, so that it won't mlock pages
+                * if the vma was already munlocked.
+                */
+               ret = populate_vma_page_range(vma, nstart, nend, &locked);
+               if (ret < 0) {
+                       if (ignore_errors) {
+                               ret = 0;
+                               continue;       /* continue at next VMA */
+                       }
+                       break;
+               }
+               nend = nstart + ret * PAGE_SIZE;
+               ret = 0;
+       }
+       if (locked)
+               up_read(&mm->mmap_sem);
+       return ret;     /* 0 or negative error code */
+}
+
+/**
+ * get_dump_page() - pin user page in memory while writing it to core dump
+ * @addr: user address
+ *
+ * Returns struct page pointer of user page pinned for dump,
+ * to be freed afterwards by page_cache_release() or put_page().
+ *
+ * Returns NULL on any kind of failure - a hole must then be inserted into
+ * the corefile, to preserve alignment with its headers; and also returns
+ * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
+ * allowing a hole to be left in the corefile to save diskspace.
+ *
+ * Called without mmap_sem, but after all other threads have been killed.
+ */
+#ifdef CONFIG_ELF_CORE
+struct page *get_dump_page(unsigned long addr)
+{
+       struct vm_area_struct *vma;
+       struct page *page;
+
+       if (__get_user_pages(current, current->mm, addr, 1,
+                            FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
+                            NULL) < 1)
+               return NULL;
+       flush_cache_page(vma, addr, page_to_pfn(page));
+       return page;
+}
+#endif /* CONFIG_ELF_CORE */
+
+/*
+ * Generic RCU Fast GUP
+ *
+ * get_user_pages_fast attempts to pin user pages by walking the page
+ * tables directly and avoids taking locks. Thus the walker needs to be
+ * protected from page table pages being freed from under it, and should
+ * block any THP splits.
+ *
+ * One way to achieve this is to have the walker disable interrupts, and
+ * rely on IPIs from the TLB flushing code blocking before the page table
+ * pages are freed. This is unsuitable for architectures that do not need
+ * to broadcast an IPI when invalidating TLBs.
+ *
+ * Another way to achieve this is to batch up page table containing pages
+ * belonging to more than one mm_user, then rcu_sched a callback to free those
+ * pages. Disabling interrupts will allow the fast_gup walker to both block
+ * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
+ * (which is a relatively rare event). The code below adopts this strategy.
+ *
+ * Before activating this code, please be aware that the following assumptions
+ * are currently made:
+ *
+ *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
+ *      pages containing page tables.
+ *
+ *  *) THP splits will broadcast an IPI, this can be achieved by overriding
+ *      pmdp_splitting_flush.
+ *
+ *  *) ptes can be read atomically by the architecture.
+ *
+ *  *) access_ok is sufficient to validate userspace address ranges.
+ *
+ * The last two assumptions can be relaxed by the addition of helper functions.
+ *
+ * This code is based heavily on the PowerPC implementation by Nick Piggin.
+ */
+#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
+
+#ifdef __HAVE_ARCH_PTE_SPECIAL
+static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
+                        int write, struct page **pages, int *nr)
+{
+       pte_t *ptep, *ptem;
+       int ret = 0;
+
+       ptem = ptep = pte_offset_map(&pmd, addr);
+       do {
+               /*
+                * In the line below we are assuming that the pte can be read
+                * atomically. If this is not the case for your architecture,
+                * please wrap this in a helper function!
+                *
+                * for an example see gup_get_pte in arch/x86/mm/gup.c
+                */
+               pte_t pte = READ_ONCE(*ptep);
+               struct page *page;
+
+               /*
+                * Similar to the PMD case below, NUMA hinting must take slow
+                * path using the pte_protnone check.
+                */
+               if (!pte_present(pte) || pte_special(pte) ||
+                       pte_protnone(pte) || (write && !pte_write(pte)))
+                       goto pte_unmap;
+
+               VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
+               page = pte_page(pte);
+
+               if (!page_cache_get_speculative(page))
+                       goto pte_unmap;
+
+               if (unlikely(pte_val(pte) != pte_val(*ptep))) {
+                       put_page(page);
+                       goto pte_unmap;
+               }
+
+               pages[*nr] = page;
+               (*nr)++;
+
+       } while (ptep++, addr += PAGE_SIZE, addr != end);
+
+       ret = 1;
+
+pte_unmap:
+       pte_unmap(ptem);
+       return ret;
+}
+#else
+
+/*
+ * If we can't determine whether or not a pte is special, then fail immediately
+ * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
+ * to be special.
+ *
+ * For a futex to be placed on a THP tail page, get_futex_key requires a
+ * __get_user_pages_fast implementation that can pin pages. Thus it's still
+ * useful to have gup_huge_pmd even if we can't operate on ptes.
+ */
+static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
+                        int write, struct page **pages, int *nr)
+{
+       return 0;
+}
+#endif /* __HAVE_ARCH_PTE_SPECIAL */
+
+static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
+               unsigned long end, int write, struct page **pages, int *nr)
+{
+       struct page *head, *page, *tail;
+       int refs;
+
+       if (write && !pmd_write(orig))
+               return 0;
+
+       refs = 0;
+       head = pmd_page(orig);
+       page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
+       tail = page;
+       do {
+               VM_BUG_ON_PAGE(compound_head(page) != head, page);
+               pages[*nr] = page;
+               (*nr)++;
+               page++;
+               refs++;
+       } while (addr += PAGE_SIZE, addr != end);
+
+       if (!page_cache_add_speculative(head, refs)) {
+               *nr -= refs;
+               return 0;
+       }
+
+       if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
+               *nr -= refs;
+               while (refs--)
+                       put_page(head);
+               return 0;
+       }
+
+       /*
+        * Any tail pages need their mapcount reference taken before we
+        * return. (This allows the THP code to bump their ref count when
+        * they are split into base pages).
+        */
+       while (refs--) {
+               if (PageTail(tail))
+                       get_huge_page_tail(tail);
+               tail++;
+       }
+
+       return 1;
+}
+
+static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
+               unsigned long end, int write, struct page **pages, int *nr)
+{
+       struct page *head, *page, *tail;
+       int refs;
+
+       if (write && !pud_write(orig))
+               return 0;
+
+       refs = 0;
+       head = pud_page(orig);
+       page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
+       tail = page;
+       do {
+               VM_BUG_ON_PAGE(compound_head(page) != head, page);
+               pages[*nr] = page;
+               (*nr)++;
+               page++;
+               refs++;
+       } while (addr += PAGE_SIZE, addr != end);
+
+       if (!page_cache_add_speculative(head, refs)) {
+               *nr -= refs;
+               return 0;
+       }
+
+       if (unlikely(pud_val(orig) != pud_val(*pudp))) {
+               *nr -= refs;
+               while (refs--)
+                       put_page(head);
+               return 0;
+       }
+
+       while (refs--) {
+               if (PageTail(tail))
+                       get_huge_page_tail(tail);
+               tail++;
+       }
+
+       return 1;
+}
+
+static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
+                       unsigned long end, int write,
+                       struct page **pages, int *nr)
+{
+       int refs;
+       struct page *head, *page, *tail;
+
+       if (write && !pgd_write(orig))
+               return 0;
+
+       refs = 0;
+       head = pgd_page(orig);
+       page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
+       tail = page;
+       do {
+               VM_BUG_ON_PAGE(compound_head(page) != head, page);
+               pages[*nr] = page;
+               (*nr)++;
+               page++;
+               refs++;
+       } while (addr += PAGE_SIZE, addr != end);
+
+       if (!page_cache_add_speculative(head, refs)) {
+               *nr -= refs;
+               return 0;
+       }
+
+       if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
+               *nr -= refs;
+               while (refs--)
+                       put_page(head);
+               return 0;
+       }
+
+       while (refs--) {
+               if (PageTail(tail))
+                       get_huge_page_tail(tail);
+               tail++;
+       }
+
+       return 1;
+}
+
+static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
+               int write, struct page **pages, int *nr)
+{
+       unsigned long next;
+       pmd_t *pmdp;
+
+       pmdp = pmd_offset(&pud, addr);
+       do {
+               pmd_t pmd = READ_ONCE(*pmdp);
+
+               next = pmd_addr_end(addr, end);
+               if (pmd_none(pmd) || pmd_trans_splitting(pmd))
+                       return 0;
+
+               if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
+                       /*
+                        * NUMA hinting faults need to be handled in the GUP
+                        * slowpath for accounting purposes and so that they
+                        * can be serialised against THP migration.
+                        */
+                       if (pmd_protnone(pmd))
+                               return 0;
+
+                       if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
+                               pages, nr))
+                               return 0;
+
+               } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
+                       /*
+                        * architecture have different format for hugetlbfs
+                        * pmd format and THP pmd format
+                        */
+                       if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
+                                        PMD_SHIFT, next, write, pages, nr))
+                               return 0;
+               } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
+                               return 0;
+       } while (pmdp++, addr = next, addr != end);
+
+       return 1;
+}
+
+static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
+                        int write, struct page **pages, int *nr)
+{
+       unsigned long next;
+       pud_t *pudp;
+
+       pudp = pud_offset(&pgd, addr);
+       do {
+               pud_t pud = READ_ONCE(*pudp);
+
+               next = pud_addr_end(addr, end);
+               if (pud_none(pud))
+                       return 0;
+               if (unlikely(pud_huge(pud))) {
+                       if (!gup_huge_pud(pud, pudp, addr, next, write,
+                                         pages, nr))
+                               return 0;
+               } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
+                       if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
+                                        PUD_SHIFT, next, write, pages, nr))
+                               return 0;
+               } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
+                       return 0;
+       } while (pudp++, addr = next, addr != end);
+
+       return 1;
+}
+
+/*
+ * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
+ * the regular GUP. It will only return non-negative values.
+ */
+int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
+                         struct page **pages)
+{
+       struct mm_struct *mm = current->mm;
+       unsigned long addr, len, end;
+       unsigned long next, flags;
+       pgd_t *pgdp;
+       int nr = 0;
+
+       start &= PAGE_MASK;
+       addr = start;
+       len = (unsigned long) nr_pages << PAGE_SHIFT;
+       end = start + len;
+
+       if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
+                                       start, len)))
+               return 0;
+
+       /*
+        * Disable interrupts.  We use the nested form as we can already have
+        * interrupts disabled by get_futex_key.
+        *
+        * With interrupts disabled, we block page table pages from being
+        * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
+        * for more details.
+        *
+        * We do not adopt an rcu_read_lock(.) here as we also want to
+        * block IPIs that come from THPs splitting.
+        */
+
+       local_irq_save(flags);
+       pgdp = pgd_offset(mm, addr);
+       do {
+               pgd_t pgd = READ_ONCE(*pgdp);
+
+               next = pgd_addr_end(addr, end);
+               if (pgd_none(pgd))
+                       break;
+               if (unlikely(pgd_huge(pgd))) {
+                       if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
+                                         pages, &nr))
+                               break;
+               } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
+                       if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
+                                        PGDIR_SHIFT, next, write, pages, &nr))
+                               break;
+               } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
+                       break;
+       } while (pgdp++, addr = next, addr != end);
+       local_irq_restore(flags);
+
+       return nr;
+}
+
+/**
+ * get_user_pages_fast() - pin user pages in memory
+ * @start:     starting user address
+ * @nr_pages:  number of pages from start to pin
+ * @write:     whether pages will be written to
+ * @pages:     array that receives pointers to the pages pinned.
+ *             Should be at least nr_pages long.
+ *
+ * Attempt to pin user pages in memory without taking mm->mmap_sem.
+ * If not successful, it will fall back to taking the lock and
+ * calling get_user_pages().
+ *
+ * Returns number of pages pinned. This may be fewer than the number
+ * requested. If nr_pages is 0 or negative, returns 0. If no pages
+ * were pinned, returns -errno.
+ */
+int get_user_pages_fast(unsigned long start, int nr_pages, int write,
+                       struct page **pages)
+{
+       struct mm_struct *mm = current->mm;
+       int nr, ret;
+
+       start &= PAGE_MASK;
+       nr = __get_user_pages_fast(start, nr_pages, write, pages);
+       ret = nr;
+
+       if (nr < nr_pages) {
+               /* Try to get the remaining pages with get_user_pages */
+               start += nr << PAGE_SHIFT;
+               pages += nr;
+
+               ret = get_user_pages_unlocked(current, mm, start,
+                                             nr_pages - nr, write, 0, pages);
+
+               /* Have to be a bit careful with return values */
+               if (nr > 0) {
+                       if (ret < 0)
+                               ret = nr;
+                       else
+                               ret += nr;
+               }
+       }
+
+       return ret;
+}
+
+#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */