Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / mm / compaction.c
diff --git a/kernel/mm/compaction.c b/kernel/mm/compaction.c
new file mode 100644 (file)
index 0000000..0af17fe
--- /dev/null
@@ -0,0 +1,1719 @@
+/*
+ * linux/mm/compaction.c
+ *
+ * Memory compaction for the reduction of external fragmentation. Note that
+ * this heavily depends upon page migration to do all the real heavy
+ * lifting
+ *
+ * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
+ */
+#include <linux/swap.h>
+#include <linux/migrate.h>
+#include <linux/compaction.h>
+#include <linux/mm_inline.h>
+#include <linux/backing-dev.h>
+#include <linux/sysctl.h>
+#include <linux/sysfs.h>
+#include <linux/balloon_compaction.h>
+#include <linux/page-isolation.h>
+#include <linux/kasan.h>
+#include "internal.h"
+
+#ifdef CONFIG_COMPACTION
+static inline void count_compact_event(enum vm_event_item item)
+{
+       count_vm_event(item);
+}
+
+static inline void count_compact_events(enum vm_event_item item, long delta)
+{
+       count_vm_events(item, delta);
+}
+#else
+#define count_compact_event(item) do { } while (0)
+#define count_compact_events(item, delta) do { } while (0)
+#endif
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+#ifdef CONFIG_TRACEPOINTS
+static const char *const compaction_status_string[] = {
+       "deferred",
+       "skipped",
+       "continue",
+       "partial",
+       "complete",
+       "no_suitable_page",
+       "not_suitable_zone",
+};
+#endif
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/compaction.h>
+
+static unsigned long release_freepages(struct list_head *freelist)
+{
+       struct page *page, *next;
+       unsigned long high_pfn = 0;
+
+       list_for_each_entry_safe(page, next, freelist, lru) {
+               unsigned long pfn = page_to_pfn(page);
+               list_del(&page->lru);
+               __free_page(page);
+               if (pfn > high_pfn)
+                       high_pfn = pfn;
+       }
+
+       return high_pfn;
+}
+
+static void map_pages(struct list_head *list)
+{
+       struct page *page;
+
+       list_for_each_entry(page, list, lru) {
+               arch_alloc_page(page, 0);
+               kernel_map_pages(page, 1, 1);
+               kasan_alloc_pages(page, 0);
+       }
+}
+
+static inline bool migrate_async_suitable(int migratetype)
+{
+       return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
+}
+
+/*
+ * Check that the whole (or subset of) a pageblock given by the interval of
+ * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
+ * with the migration of free compaction scanner. The scanners then need to
+ * use only pfn_valid_within() check for arches that allow holes within
+ * pageblocks.
+ *
+ * Return struct page pointer of start_pfn, or NULL if checks were not passed.
+ *
+ * It's possible on some configurations to have a setup like node0 node1 node0
+ * i.e. it's possible that all pages within a zones range of pages do not
+ * belong to a single zone. We assume that a border between node0 and node1
+ * can occur within a single pageblock, but not a node0 node1 node0
+ * interleaving within a single pageblock. It is therefore sufficient to check
+ * the first and last page of a pageblock and avoid checking each individual
+ * page in a pageblock.
+ */
+static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
+                               unsigned long end_pfn, struct zone *zone)
+{
+       struct page *start_page;
+       struct page *end_page;
+
+       /* end_pfn is one past the range we are checking */
+       end_pfn--;
+
+       if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
+               return NULL;
+
+       start_page = pfn_to_page(start_pfn);
+
+       if (page_zone(start_page) != zone)
+               return NULL;
+
+       end_page = pfn_to_page(end_pfn);
+
+       /* This gives a shorter code than deriving page_zone(end_page) */
+       if (page_zone_id(start_page) != page_zone_id(end_page))
+               return NULL;
+
+       return start_page;
+}
+
+#ifdef CONFIG_COMPACTION
+
+/* Do not skip compaction more than 64 times */
+#define COMPACT_MAX_DEFER_SHIFT 6
+
+/*
+ * Compaction is deferred when compaction fails to result in a page
+ * allocation success. 1 << compact_defer_limit compactions are skipped up
+ * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
+ */
+void defer_compaction(struct zone *zone, int order)
+{
+       zone->compact_considered = 0;
+       zone->compact_defer_shift++;
+
+       if (order < zone->compact_order_failed)
+               zone->compact_order_failed = order;
+
+       if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
+               zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
+
+       trace_mm_compaction_defer_compaction(zone, order);
+}
+
+/* Returns true if compaction should be skipped this time */
+bool compaction_deferred(struct zone *zone, int order)
+{
+       unsigned long defer_limit = 1UL << zone->compact_defer_shift;
+
+       if (order < zone->compact_order_failed)
+               return false;
+
+       /* Avoid possible overflow */
+       if (++zone->compact_considered > defer_limit)
+               zone->compact_considered = defer_limit;
+
+       if (zone->compact_considered >= defer_limit)
+               return false;
+
+       trace_mm_compaction_deferred(zone, order);
+
+       return true;
+}
+
+/*
+ * Update defer tracking counters after successful compaction of given order,
+ * which means an allocation either succeeded (alloc_success == true) or is
+ * expected to succeed.
+ */
+void compaction_defer_reset(struct zone *zone, int order,
+               bool alloc_success)
+{
+       if (alloc_success) {
+               zone->compact_considered = 0;
+               zone->compact_defer_shift = 0;
+       }
+       if (order >= zone->compact_order_failed)
+               zone->compact_order_failed = order + 1;
+
+       trace_mm_compaction_defer_reset(zone, order);
+}
+
+/* Returns true if restarting compaction after many failures */
+bool compaction_restarting(struct zone *zone, int order)
+{
+       if (order < zone->compact_order_failed)
+               return false;
+
+       return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
+               zone->compact_considered >= 1UL << zone->compact_defer_shift;
+}
+
+/* Returns true if the pageblock should be scanned for pages to isolate. */
+static inline bool isolation_suitable(struct compact_control *cc,
+                                       struct page *page)
+{
+       if (cc->ignore_skip_hint)
+               return true;
+
+       return !get_pageblock_skip(page);
+}
+
+/*
+ * This function is called to clear all cached information on pageblocks that
+ * should be skipped for page isolation when the migrate and free page scanner
+ * meet.
+ */
+static void __reset_isolation_suitable(struct zone *zone)
+{
+       unsigned long start_pfn = zone->zone_start_pfn;
+       unsigned long end_pfn = zone_end_pfn(zone);
+       unsigned long pfn;
+
+       zone->compact_cached_migrate_pfn[0] = start_pfn;
+       zone->compact_cached_migrate_pfn[1] = start_pfn;
+       zone->compact_cached_free_pfn = end_pfn;
+       zone->compact_blockskip_flush = false;
+
+       /* Walk the zone and mark every pageblock as suitable for isolation */
+       for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
+               struct page *page;
+
+               cond_resched();
+
+               if (!pfn_valid(pfn))
+                       continue;
+
+               page = pfn_to_page(pfn);
+               if (zone != page_zone(page))
+                       continue;
+
+               clear_pageblock_skip(page);
+       }
+}
+
+void reset_isolation_suitable(pg_data_t *pgdat)
+{
+       int zoneid;
+
+       for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+               struct zone *zone = &pgdat->node_zones[zoneid];
+               if (!populated_zone(zone))
+                       continue;
+
+               /* Only flush if a full compaction finished recently */
+               if (zone->compact_blockskip_flush)
+                       __reset_isolation_suitable(zone);
+       }
+}
+
+/*
+ * If no pages were isolated then mark this pageblock to be skipped in the
+ * future. The information is later cleared by __reset_isolation_suitable().
+ */
+static void update_pageblock_skip(struct compact_control *cc,
+                       struct page *page, unsigned long nr_isolated,
+                       bool migrate_scanner)
+{
+       struct zone *zone = cc->zone;
+       unsigned long pfn;
+
+       if (cc->ignore_skip_hint)
+               return;
+
+       if (!page)
+               return;
+
+       if (nr_isolated)
+               return;
+
+       set_pageblock_skip(page);
+
+       pfn = page_to_pfn(page);
+
+       /* Update where async and sync compaction should restart */
+       if (migrate_scanner) {
+               if (pfn > zone->compact_cached_migrate_pfn[0])
+                       zone->compact_cached_migrate_pfn[0] = pfn;
+               if (cc->mode != MIGRATE_ASYNC &&
+                   pfn > zone->compact_cached_migrate_pfn[1])
+                       zone->compact_cached_migrate_pfn[1] = pfn;
+       } else {
+               if (pfn < zone->compact_cached_free_pfn)
+                       zone->compact_cached_free_pfn = pfn;
+       }
+}
+#else
+static inline bool isolation_suitable(struct compact_control *cc,
+                                       struct page *page)
+{
+       return true;
+}
+
+static void update_pageblock_skip(struct compact_control *cc,
+                       struct page *page, unsigned long nr_isolated,
+                       bool migrate_scanner)
+{
+}
+#endif /* CONFIG_COMPACTION */
+
+/*
+ * Compaction requires the taking of some coarse locks that are potentially
+ * very heavily contended. For async compaction, back out if the lock cannot
+ * be taken immediately. For sync compaction, spin on the lock if needed.
+ *
+ * Returns true if the lock is held
+ * Returns false if the lock is not held and compaction should abort
+ */
+static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
+                                               struct compact_control *cc)
+{
+       if (cc->mode == MIGRATE_ASYNC) {
+               if (!spin_trylock_irqsave(lock, *flags)) {
+                       cc->contended = COMPACT_CONTENDED_LOCK;
+                       return false;
+               }
+       } else {
+               spin_lock_irqsave(lock, *flags);
+       }
+
+       return true;
+}
+
+/*
+ * Compaction requires the taking of some coarse locks that are potentially
+ * very heavily contended. The lock should be periodically unlocked to avoid
+ * having disabled IRQs for a long time, even when there is nobody waiting on
+ * the lock. It might also be that allowing the IRQs will result in
+ * need_resched() becoming true. If scheduling is needed, async compaction
+ * aborts. Sync compaction schedules.
+ * Either compaction type will also abort if a fatal signal is pending.
+ * In either case if the lock was locked, it is dropped and not regained.
+ *
+ * Returns true if compaction should abort due to fatal signal pending, or
+ *             async compaction due to need_resched()
+ * Returns false when compaction can continue (sync compaction might have
+ *             scheduled)
+ */
+static bool compact_unlock_should_abort(spinlock_t *lock,
+               unsigned long flags, bool *locked, struct compact_control *cc)
+{
+       if (*locked) {
+               spin_unlock_irqrestore(lock, flags);
+               *locked = false;
+       }
+
+       if (fatal_signal_pending(current)) {
+               cc->contended = COMPACT_CONTENDED_SCHED;
+               return true;
+       }
+
+       if (need_resched()) {
+               if (cc->mode == MIGRATE_ASYNC) {
+                       cc->contended = COMPACT_CONTENDED_SCHED;
+                       return true;
+               }
+               cond_resched();
+       }
+
+       return false;
+}
+
+/*
+ * Aside from avoiding lock contention, compaction also periodically checks
+ * need_resched() and either schedules in sync compaction or aborts async
+ * compaction. This is similar to what compact_unlock_should_abort() does, but
+ * is used where no lock is concerned.
+ *
+ * Returns false when no scheduling was needed, or sync compaction scheduled.
+ * Returns true when async compaction should abort.
+ */
+static inline bool compact_should_abort(struct compact_control *cc)
+{
+       /* async compaction aborts if contended */
+       if (need_resched()) {
+               if (cc->mode == MIGRATE_ASYNC) {
+                       cc->contended = COMPACT_CONTENDED_SCHED;
+                       return true;
+               }
+
+               cond_resched();
+       }
+
+       return false;
+}
+
+/*
+ * Isolate free pages onto a private freelist. If @strict is true, will abort
+ * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
+ * (even though it may still end up isolating some pages).
+ */
+static unsigned long isolate_freepages_block(struct compact_control *cc,
+                               unsigned long *start_pfn,
+                               unsigned long end_pfn,
+                               struct list_head *freelist,
+                               bool strict)
+{
+       int nr_scanned = 0, total_isolated = 0;
+       struct page *cursor, *valid_page = NULL;
+       unsigned long flags = 0;
+       bool locked = false;
+       unsigned long blockpfn = *start_pfn;
+
+       cursor = pfn_to_page(blockpfn);
+
+       /* Isolate free pages. */
+       for (; blockpfn < end_pfn; blockpfn++, cursor++) {
+               int isolated, i;
+               struct page *page = cursor;
+
+               /*
+                * Periodically drop the lock (if held) regardless of its
+                * contention, to give chance to IRQs. Abort if fatal signal
+                * pending or async compaction detects need_resched()
+                */
+               if (!(blockpfn % SWAP_CLUSTER_MAX)
+                   && compact_unlock_should_abort(&cc->zone->lock, flags,
+                                                               &locked, cc))
+                       break;
+
+               nr_scanned++;
+               if (!pfn_valid_within(blockpfn))
+                       goto isolate_fail;
+
+               if (!valid_page)
+                       valid_page = page;
+               if (!PageBuddy(page))
+                       goto isolate_fail;
+
+               /*
+                * If we already hold the lock, we can skip some rechecking.
+                * Note that if we hold the lock now, checked_pageblock was
+                * already set in some previous iteration (or strict is true),
+                * so it is correct to skip the suitable migration target
+                * recheck as well.
+                */
+               if (!locked) {
+                       /*
+                        * The zone lock must be held to isolate freepages.
+                        * Unfortunately this is a very coarse lock and can be
+                        * heavily contended if there are parallel allocations
+                        * or parallel compactions. For async compaction do not
+                        * spin on the lock and we acquire the lock as late as
+                        * possible.
+                        */
+                       locked = compact_trylock_irqsave(&cc->zone->lock,
+                                                               &flags, cc);
+                       if (!locked)
+                               break;
+
+                       /* Recheck this is a buddy page under lock */
+                       if (!PageBuddy(page))
+                               goto isolate_fail;
+               }
+
+               /* Found a free page, break it into order-0 pages */
+               isolated = split_free_page(page);
+               total_isolated += isolated;
+               for (i = 0; i < isolated; i++) {
+                       list_add(&page->lru, freelist);
+                       page++;
+               }
+
+               /* If a page was split, advance to the end of it */
+               if (isolated) {
+                       cc->nr_freepages += isolated;
+                       if (!strict &&
+                               cc->nr_migratepages <= cc->nr_freepages) {
+                               blockpfn += isolated;
+                               break;
+                       }
+
+                       blockpfn += isolated - 1;
+                       cursor += isolated - 1;
+                       continue;
+               }
+
+isolate_fail:
+               if (strict)
+                       break;
+               else
+                       continue;
+
+       }
+
+       trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
+                                       nr_scanned, total_isolated);
+
+       /* Record how far we have got within the block */
+       *start_pfn = blockpfn;
+
+       /*
+        * If strict isolation is requested by CMA then check that all the
+        * pages requested were isolated. If there were any failures, 0 is
+        * returned and CMA will fail.
+        */
+       if (strict && blockpfn < end_pfn)
+               total_isolated = 0;
+
+       if (locked)
+               spin_unlock_irqrestore(&cc->zone->lock, flags);
+
+       /* Update the pageblock-skip if the whole pageblock was scanned */
+       if (blockpfn == end_pfn)
+               update_pageblock_skip(cc, valid_page, total_isolated, false);
+
+       count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
+       if (total_isolated)
+               count_compact_events(COMPACTISOLATED, total_isolated);
+       return total_isolated;
+}
+
+/**
+ * isolate_freepages_range() - isolate free pages.
+ * @start_pfn: The first PFN to start isolating.
+ * @end_pfn:   The one-past-last PFN.
+ *
+ * Non-free pages, invalid PFNs, or zone boundaries within the
+ * [start_pfn, end_pfn) range are considered errors, cause function to
+ * undo its actions and return zero.
+ *
+ * Otherwise, function returns one-past-the-last PFN of isolated page
+ * (which may be greater then end_pfn if end fell in a middle of
+ * a free page).
+ */
+unsigned long
+isolate_freepages_range(struct compact_control *cc,
+                       unsigned long start_pfn, unsigned long end_pfn)
+{
+       unsigned long isolated, pfn, block_end_pfn;
+       LIST_HEAD(freelist);
+
+       pfn = start_pfn;
+       block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
+
+       for (; pfn < end_pfn; pfn += isolated,
+                               block_end_pfn += pageblock_nr_pages) {
+               /* Protect pfn from changing by isolate_freepages_block */
+               unsigned long isolate_start_pfn = pfn;
+
+               block_end_pfn = min(block_end_pfn, end_pfn);
+
+               /*
+                * pfn could pass the block_end_pfn if isolated freepage
+                * is more than pageblock order. In this case, we adjust
+                * scanning range to right one.
+                */
+               if (pfn >= block_end_pfn) {
+                       block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
+                       block_end_pfn = min(block_end_pfn, end_pfn);
+               }
+
+               if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
+                       break;
+
+               isolated = isolate_freepages_block(cc, &isolate_start_pfn,
+                                               block_end_pfn, &freelist, true);
+
+               /*
+                * In strict mode, isolate_freepages_block() returns 0 if
+                * there are any holes in the block (ie. invalid PFNs or
+                * non-free pages).
+                */
+               if (!isolated)
+                       break;
+
+               /*
+                * If we managed to isolate pages, it is always (1 << n) *
+                * pageblock_nr_pages for some non-negative n.  (Max order
+                * page may span two pageblocks).
+                */
+       }
+
+       /* split_free_page does not map the pages */
+       map_pages(&freelist);
+
+       if (pfn < end_pfn) {
+               /* Loop terminated early, cleanup. */
+               release_freepages(&freelist);
+               return 0;
+       }
+
+       /* We don't use freelists for anything. */
+       return pfn;
+}
+
+/* Update the number of anon and file isolated pages in the zone */
+static void acct_isolated(struct zone *zone, struct compact_control *cc)
+{
+       struct page *page;
+       unsigned int count[2] = { 0, };
+
+       if (list_empty(&cc->migratepages))
+               return;
+
+       list_for_each_entry(page, &cc->migratepages, lru)
+               count[!!page_is_file_cache(page)]++;
+
+       mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
+       mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
+}
+
+/* Similar to reclaim, but different enough that they don't share logic */
+static bool too_many_isolated(struct zone *zone)
+{
+       unsigned long active, inactive, isolated;
+
+       inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
+                                       zone_page_state(zone, NR_INACTIVE_ANON);
+       active = zone_page_state(zone, NR_ACTIVE_FILE) +
+                                       zone_page_state(zone, NR_ACTIVE_ANON);
+       isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
+                                       zone_page_state(zone, NR_ISOLATED_ANON);
+
+       return isolated > (inactive + active) / 2;
+}
+
+/**
+ * isolate_migratepages_block() - isolate all migrate-able pages within
+ *                               a single pageblock
+ * @cc:                Compaction control structure.
+ * @low_pfn:   The first PFN to isolate
+ * @end_pfn:   The one-past-the-last PFN to isolate, within same pageblock
+ * @isolate_mode: Isolation mode to be used.
+ *
+ * Isolate all pages that can be migrated from the range specified by
+ * [low_pfn, end_pfn). The range is expected to be within same pageblock.
+ * Returns zero if there is a fatal signal pending, otherwise PFN of the
+ * first page that was not scanned (which may be both less, equal to or more
+ * than end_pfn).
+ *
+ * The pages are isolated on cc->migratepages list (not required to be empty),
+ * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
+ * is neither read nor updated.
+ */
+static unsigned long
+isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
+                       unsigned long end_pfn, isolate_mode_t isolate_mode)
+{
+       struct zone *zone = cc->zone;
+       unsigned long nr_scanned = 0, nr_isolated = 0;
+       struct list_head *migratelist = &cc->migratepages;
+       struct lruvec *lruvec;
+       unsigned long flags = 0;
+       bool locked = false;
+       struct page *page = NULL, *valid_page = NULL;
+       unsigned long start_pfn = low_pfn;
+
+       /*
+        * Ensure that there are not too many pages isolated from the LRU
+        * list by either parallel reclaimers or compaction. If there are,
+        * delay for some time until fewer pages are isolated
+        */
+       while (unlikely(too_many_isolated(zone))) {
+               /* async migration should just abort */
+               if (cc->mode == MIGRATE_ASYNC)
+                       return 0;
+
+               congestion_wait(BLK_RW_ASYNC, HZ/10);
+
+               if (fatal_signal_pending(current))
+                       return 0;
+       }
+
+       if (compact_should_abort(cc))
+               return 0;
+
+       /* Time to isolate some pages for migration */
+       for (; low_pfn < end_pfn; low_pfn++) {
+               /*
+                * Periodically drop the lock (if held) regardless of its
+                * contention, to give chance to IRQs. Abort async compaction
+                * if contended.
+                */
+               if (!(low_pfn % SWAP_CLUSTER_MAX)
+                   && compact_unlock_should_abort(&zone->lru_lock, flags,
+                                                               &locked, cc))
+                       break;
+
+               if (!pfn_valid_within(low_pfn))
+                       continue;
+               nr_scanned++;
+
+               page = pfn_to_page(low_pfn);
+
+               if (!valid_page)
+                       valid_page = page;
+
+               /*
+                * Skip if free. We read page order here without zone lock
+                * which is generally unsafe, but the race window is small and
+                * the worst thing that can happen is that we skip some
+                * potential isolation targets.
+                */
+               if (PageBuddy(page)) {
+                       unsigned long freepage_order = page_order_unsafe(page);
+
+                       /*
+                        * Without lock, we cannot be sure that what we got is
+                        * a valid page order. Consider only values in the
+                        * valid order range to prevent low_pfn overflow.
+                        */
+                       if (freepage_order > 0 && freepage_order < MAX_ORDER)
+                               low_pfn += (1UL << freepage_order) - 1;
+                       continue;
+               }
+
+               /*
+                * Check may be lockless but that's ok as we recheck later.
+                * It's possible to migrate LRU pages and balloon pages
+                * Skip any other type of page
+                */
+               if (!PageLRU(page)) {
+                       if (unlikely(balloon_page_movable(page))) {
+                               if (balloon_page_isolate(page)) {
+                                       /* Successfully isolated */
+                                       goto isolate_success;
+                               }
+                       }
+                       continue;
+               }
+
+               /*
+                * PageLRU is set. lru_lock normally excludes isolation
+                * splitting and collapsing (collapsing has already happened
+                * if PageLRU is set) but the lock is not necessarily taken
+                * here and it is wasteful to take it just to check transhuge.
+                * Check TransHuge without lock and skip the whole pageblock if
+                * it's either a transhuge or hugetlbfs page, as calling
+                * compound_order() without preventing THP from splitting the
+                * page underneath us may return surprising results.
+                */
+               if (PageTransHuge(page)) {
+                       if (!locked)
+                               low_pfn = ALIGN(low_pfn + 1,
+                                               pageblock_nr_pages) - 1;
+                       else
+                               low_pfn += (1 << compound_order(page)) - 1;
+
+                       continue;
+               }
+
+               /*
+                * Migration will fail if an anonymous page is pinned in memory,
+                * so avoid taking lru_lock and isolating it unnecessarily in an
+                * admittedly racy check.
+                */
+               if (!page_mapping(page) &&
+                   page_count(page) > page_mapcount(page))
+                       continue;
+
+               /* If we already hold the lock, we can skip some rechecking */
+               if (!locked) {
+                       locked = compact_trylock_irqsave(&zone->lru_lock,
+                                                               &flags, cc);
+                       if (!locked)
+                               break;
+
+                       /* Recheck PageLRU and PageTransHuge under lock */
+                       if (!PageLRU(page))
+                               continue;
+                       if (PageTransHuge(page)) {
+                               low_pfn += (1 << compound_order(page)) - 1;
+                               continue;
+                       }
+               }
+
+               lruvec = mem_cgroup_page_lruvec(page, zone);
+
+               /* Try isolate the page */
+               if (__isolate_lru_page(page, isolate_mode) != 0)
+                       continue;
+
+               VM_BUG_ON_PAGE(PageTransCompound(page), page);
+
+               /* Successfully isolated */
+               del_page_from_lru_list(page, lruvec, page_lru(page));
+
+isolate_success:
+               list_add(&page->lru, migratelist);
+               cc->nr_migratepages++;
+               nr_isolated++;
+
+               /* Avoid isolating too much */
+               if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
+                       ++low_pfn;
+                       break;
+               }
+       }
+
+       /*
+        * The PageBuddy() check could have potentially brought us outside
+        * the range to be scanned.
+        */
+       if (unlikely(low_pfn > end_pfn))
+               low_pfn = end_pfn;
+
+       if (locked)
+               spin_unlock_irqrestore(&zone->lru_lock, flags);
+
+       /*
+        * Update the pageblock-skip information and cached scanner pfn,
+        * if the whole pageblock was scanned without isolating any page.
+        */
+       if (low_pfn == end_pfn)
+               update_pageblock_skip(cc, valid_page, nr_isolated, true);
+
+       trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
+                                               nr_scanned, nr_isolated);
+
+       count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
+       if (nr_isolated)
+               count_compact_events(COMPACTISOLATED, nr_isolated);
+
+       return low_pfn;
+}
+
+/**
+ * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
+ * @cc:        Compaction control structure.
+ * @start_pfn: The first PFN to start isolating.
+ * @end_pfn:   The one-past-last PFN.
+ *
+ * Returns zero if isolation fails fatally due to e.g. pending signal.
+ * Otherwise, function returns one-past-the-last PFN of isolated page
+ * (which may be greater than end_pfn if end fell in a middle of a THP page).
+ */
+unsigned long
+isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
+                                                       unsigned long end_pfn)
+{
+       unsigned long pfn, block_end_pfn;
+
+       /* Scan block by block. First and last block may be incomplete */
+       pfn = start_pfn;
+       block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
+
+       for (; pfn < end_pfn; pfn = block_end_pfn,
+                               block_end_pfn += pageblock_nr_pages) {
+
+               block_end_pfn = min(block_end_pfn, end_pfn);
+
+               if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
+                       continue;
+
+               pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
+                                                       ISOLATE_UNEVICTABLE);
+
+               /*
+                * In case of fatal failure, release everything that might
+                * have been isolated in the previous iteration, and signal
+                * the failure back to caller.
+                */
+               if (!pfn) {
+                       putback_movable_pages(&cc->migratepages);
+                       cc->nr_migratepages = 0;
+                       break;
+               }
+
+               if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
+                       break;
+       }
+       acct_isolated(cc->zone, cc);
+
+       return pfn;
+}
+
+#endif /* CONFIG_COMPACTION || CONFIG_CMA */
+#ifdef CONFIG_COMPACTION
+
+/* Returns true if the page is within a block suitable for migration to */
+static bool suitable_migration_target(struct page *page)
+{
+       /* If the page is a large free page, then disallow migration */
+       if (PageBuddy(page)) {
+               /*
+                * We are checking page_order without zone->lock taken. But
+                * the only small danger is that we skip a potentially suitable
+                * pageblock, so it's not worth to check order for valid range.
+                */
+               if (page_order_unsafe(page) >= pageblock_order)
+                       return false;
+       }
+
+       /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
+       if (migrate_async_suitable(get_pageblock_migratetype(page)))
+               return true;
+
+       /* Otherwise skip the block */
+       return false;
+}
+
+/*
+ * Based on information in the current compact_control, find blocks
+ * suitable for isolating free pages from and then isolate them.
+ */
+static void isolate_freepages(struct compact_control *cc)
+{
+       struct zone *zone = cc->zone;
+       struct page *page;
+       unsigned long block_start_pfn;  /* start of current pageblock */
+       unsigned long isolate_start_pfn; /* exact pfn we start at */
+       unsigned long block_end_pfn;    /* end of current pageblock */
+       unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
+       struct list_head *freelist = &cc->freepages;
+
+       /*
+        * Initialise the free scanner. The starting point is where we last
+        * successfully isolated from, zone-cached value, or the end of the
+        * zone when isolating for the first time. For looping we also need
+        * this pfn aligned down to the pageblock boundary, because we do
+        * block_start_pfn -= pageblock_nr_pages in the for loop.
+        * For ending point, take care when isolating in last pageblock of a
+        * a zone which ends in the middle of a pageblock.
+        * The low boundary is the end of the pageblock the migration scanner
+        * is using.
+        */
+       isolate_start_pfn = cc->free_pfn;
+       block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
+       block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
+                                               zone_end_pfn(zone));
+       low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
+
+       /*
+        * Isolate free pages until enough are available to migrate the
+        * pages on cc->migratepages. We stop searching if the migrate
+        * and free page scanners meet or enough free pages are isolated.
+        */
+       for (; block_start_pfn >= low_pfn &&
+                       cc->nr_migratepages > cc->nr_freepages;
+                               block_end_pfn = block_start_pfn,
+                               block_start_pfn -= pageblock_nr_pages,
+                               isolate_start_pfn = block_start_pfn) {
+
+               /*
+                * This can iterate a massively long zone without finding any
+                * suitable migration targets, so periodically check if we need
+                * to schedule, or even abort async compaction.
+                */
+               if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
+                                               && compact_should_abort(cc))
+                       break;
+
+               page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
+                                                                       zone);
+               if (!page)
+                       continue;
+
+               /* Check the block is suitable for migration */
+               if (!suitable_migration_target(page))
+                       continue;
+
+               /* If isolation recently failed, do not retry */
+               if (!isolation_suitable(cc, page))
+                       continue;
+
+               /* Found a block suitable for isolating free pages from. */
+               isolate_freepages_block(cc, &isolate_start_pfn,
+                                       block_end_pfn, freelist, false);
+
+               /*
+                * Remember where the free scanner should restart next time,
+                * which is where isolate_freepages_block() left off.
+                * But if it scanned the whole pageblock, isolate_start_pfn
+                * now points at block_end_pfn, which is the start of the next
+                * pageblock.
+                * In that case we will however want to restart at the start
+                * of the previous pageblock.
+                */
+               cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
+                               isolate_start_pfn :
+                               block_start_pfn - pageblock_nr_pages;
+
+               /*
+                * isolate_freepages_block() might have aborted due to async
+                * compaction being contended
+                */
+               if (cc->contended)
+                       break;
+       }
+
+       /* split_free_page does not map the pages */
+       map_pages(freelist);
+
+       /*
+        * If we crossed the migrate scanner, we want to keep it that way
+        * so that compact_finished() may detect this
+        */
+       if (block_start_pfn < low_pfn)
+               cc->free_pfn = cc->migrate_pfn;
+}
+
+/*
+ * This is a migrate-callback that "allocates" freepages by taking pages
+ * from the isolated freelists in the block we are migrating to.
+ */
+static struct page *compaction_alloc(struct page *migratepage,
+                                       unsigned long data,
+                                       int **result)
+{
+       struct compact_control *cc = (struct compact_control *)data;
+       struct page *freepage;
+
+       /*
+        * Isolate free pages if necessary, and if we are not aborting due to
+        * contention.
+        */
+       if (list_empty(&cc->freepages)) {
+               if (!cc->contended)
+                       isolate_freepages(cc);
+
+               if (list_empty(&cc->freepages))
+                       return NULL;
+       }
+
+       freepage = list_entry(cc->freepages.next, struct page, lru);
+       list_del(&freepage->lru);
+       cc->nr_freepages--;
+
+       return freepage;
+}
+
+/*
+ * This is a migrate-callback that "frees" freepages back to the isolated
+ * freelist.  All pages on the freelist are from the same zone, so there is no
+ * special handling needed for NUMA.
+ */
+static void compaction_free(struct page *page, unsigned long data)
+{
+       struct compact_control *cc = (struct compact_control *)data;
+
+       list_add(&page->lru, &cc->freepages);
+       cc->nr_freepages++;
+}
+
+/* possible outcome of isolate_migratepages */
+typedef enum {
+       ISOLATE_ABORT,          /* Abort compaction now */
+       ISOLATE_NONE,           /* No pages isolated, continue scanning */
+       ISOLATE_SUCCESS,        /* Pages isolated, migrate */
+} isolate_migrate_t;
+
+/*
+ * Allow userspace to control policy on scanning the unevictable LRU for
+ * compactable pages.
+ */
+int sysctl_compact_unevictable_allowed __read_mostly = 1;
+
+/*
+ * Isolate all pages that can be migrated from the first suitable block,
+ * starting at the block pointed to by the migrate scanner pfn within
+ * compact_control.
+ */
+static isolate_migrate_t isolate_migratepages(struct zone *zone,
+                                       struct compact_control *cc)
+{
+       unsigned long low_pfn, end_pfn;
+       struct page *page;
+       const isolate_mode_t isolate_mode =
+               (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
+               (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
+
+       /*
+        * Start at where we last stopped, or beginning of the zone as
+        * initialized by compact_zone()
+        */
+       low_pfn = cc->migrate_pfn;
+
+       /* Only scan within a pageblock boundary */
+       end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
+
+       /*
+        * Iterate over whole pageblocks until we find the first suitable.
+        * Do not cross the free scanner.
+        */
+       for (; end_pfn <= cc->free_pfn;
+                       low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
+
+               /*
+                * This can potentially iterate a massively long zone with
+                * many pageblocks unsuitable, so periodically check if we
+                * need to schedule, or even abort async compaction.
+                */
+               if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
+                                               && compact_should_abort(cc))
+                       break;
+
+               page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
+               if (!page)
+                       continue;
+
+               /* If isolation recently failed, do not retry */
+               if (!isolation_suitable(cc, page))
+                       continue;
+
+               /*
+                * For async compaction, also only scan in MOVABLE blocks.
+                * Async compaction is optimistic to see if the minimum amount
+                * of work satisfies the allocation.
+                */
+               if (cc->mode == MIGRATE_ASYNC &&
+                   !migrate_async_suitable(get_pageblock_migratetype(page)))
+                       continue;
+
+               /* Perform the isolation */
+               low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
+                                                               isolate_mode);
+
+               if (!low_pfn || cc->contended) {
+                       acct_isolated(zone, cc);
+                       return ISOLATE_ABORT;
+               }
+
+               /*
+                * Either we isolated something and proceed with migration. Or
+                * we failed and compact_zone should decide if we should
+                * continue or not.
+                */
+               break;
+       }
+
+       acct_isolated(zone, cc);
+       /*
+        * Record where migration scanner will be restarted. If we end up in
+        * the same pageblock as the free scanner, make the scanners fully
+        * meet so that compact_finished() terminates compaction.
+        */
+       cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
+
+       return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
+}
+
+static int __compact_finished(struct zone *zone, struct compact_control *cc,
+                           const int migratetype)
+{
+       unsigned int order;
+       unsigned long watermark;
+
+       if (cc->contended || fatal_signal_pending(current))
+               return COMPACT_PARTIAL;
+
+       /* Compaction run completes if the migrate and free scanner meet */
+       if (cc->free_pfn <= cc->migrate_pfn) {
+               /* Let the next compaction start anew. */
+               zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
+               zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
+               zone->compact_cached_free_pfn = zone_end_pfn(zone);
+
+               /*
+                * Mark that the PG_migrate_skip information should be cleared
+                * by kswapd when it goes to sleep. kswapd does not set the
+                * flag itself as the decision to be clear should be directly
+                * based on an allocation request.
+                */
+               if (!current_is_kswapd())
+                       zone->compact_blockskip_flush = true;
+
+               return COMPACT_COMPLETE;
+       }
+
+       /*
+        * order == -1 is expected when compacting via
+        * /proc/sys/vm/compact_memory
+        */
+       if (cc->order == -1)
+               return COMPACT_CONTINUE;
+
+       /* Compaction run is not finished if the watermark is not met */
+       watermark = low_wmark_pages(zone);
+
+       if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
+                                                       cc->alloc_flags))
+               return COMPACT_CONTINUE;
+
+       /* Direct compactor: Is a suitable page free? */
+       for (order = cc->order; order < MAX_ORDER; order++) {
+               struct free_area *area = &zone->free_area[order];
+               bool can_steal;
+
+               /* Job done if page is free of the right migratetype */
+               if (!list_empty(&area->free_list[migratetype]))
+                       return COMPACT_PARTIAL;
+
+#ifdef CONFIG_CMA
+               /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
+               if (migratetype == MIGRATE_MOVABLE &&
+                       !list_empty(&area->free_list[MIGRATE_CMA]))
+                       return COMPACT_PARTIAL;
+#endif
+               /*
+                * Job done if allocation would steal freepages from
+                * other migratetype buddy lists.
+                */
+               if (find_suitable_fallback(area, order, migratetype,
+                                               true, &can_steal) != -1)
+                       return COMPACT_PARTIAL;
+       }
+
+       return COMPACT_NO_SUITABLE_PAGE;
+}
+
+static int compact_finished(struct zone *zone, struct compact_control *cc,
+                           const int migratetype)
+{
+       int ret;
+
+       ret = __compact_finished(zone, cc, migratetype);
+       trace_mm_compaction_finished(zone, cc->order, ret);
+       if (ret == COMPACT_NO_SUITABLE_PAGE)
+               ret = COMPACT_CONTINUE;
+
+       return ret;
+}
+
+/*
+ * compaction_suitable: Is this suitable to run compaction on this zone now?
+ * Returns
+ *   COMPACT_SKIPPED  - If there are too few free pages for compaction
+ *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
+ *   COMPACT_CONTINUE - If compaction should run now
+ */
+static unsigned long __compaction_suitable(struct zone *zone, int order,
+                                       int alloc_flags, int classzone_idx)
+{
+       int fragindex;
+       unsigned long watermark;
+
+       /*
+        * order == -1 is expected when compacting via
+        * /proc/sys/vm/compact_memory
+        */
+       if (order == -1)
+               return COMPACT_CONTINUE;
+
+       watermark = low_wmark_pages(zone);
+       /*
+        * If watermarks for high-order allocation are already met, there
+        * should be no need for compaction at all.
+        */
+       if (zone_watermark_ok(zone, order, watermark, classzone_idx,
+                                                               alloc_flags))
+               return COMPACT_PARTIAL;
+
+       /*
+        * Watermarks for order-0 must be met for compaction. Note the 2UL.
+        * This is because during migration, copies of pages need to be
+        * allocated and for a short time, the footprint is higher
+        */
+       watermark += (2UL << order);
+       if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
+               return COMPACT_SKIPPED;
+
+       /*
+        * fragmentation index determines if allocation failures are due to
+        * low memory or external fragmentation
+        *
+        * index of -1000 would imply allocations might succeed depending on
+        * watermarks, but we already failed the high-order watermark check
+        * index towards 0 implies failure is due to lack of memory
+        * index towards 1000 implies failure is due to fragmentation
+        *
+        * Only compact if a failure would be due to fragmentation.
+        */
+       fragindex = fragmentation_index(zone, order);
+       if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
+               return COMPACT_NOT_SUITABLE_ZONE;
+
+       return COMPACT_CONTINUE;
+}
+
+unsigned long compaction_suitable(struct zone *zone, int order,
+                                       int alloc_flags, int classzone_idx)
+{
+       unsigned long ret;
+
+       ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
+       trace_mm_compaction_suitable(zone, order, ret);
+       if (ret == COMPACT_NOT_SUITABLE_ZONE)
+               ret = COMPACT_SKIPPED;
+
+       return ret;
+}
+
+static int compact_zone(struct zone *zone, struct compact_control *cc)
+{
+       int ret;
+       unsigned long start_pfn = zone->zone_start_pfn;
+       unsigned long end_pfn = zone_end_pfn(zone);
+       const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
+       const bool sync = cc->mode != MIGRATE_ASYNC;
+       unsigned long last_migrated_pfn = 0;
+
+       ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
+                                                       cc->classzone_idx);
+       switch (ret) {
+       case COMPACT_PARTIAL:
+       case COMPACT_SKIPPED:
+               /* Compaction is likely to fail */
+               return ret;
+       case COMPACT_CONTINUE:
+               /* Fall through to compaction */
+               ;
+       }
+
+       /*
+        * Clear pageblock skip if there were failures recently and compaction
+        * is about to be retried after being deferred. kswapd does not do
+        * this reset as it'll reset the cached information when going to sleep.
+        */
+       if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
+               __reset_isolation_suitable(zone);
+
+       /*
+        * Setup to move all movable pages to the end of the zone. Used cached
+        * information on where the scanners should start but check that it
+        * is initialised by ensuring the values are within zone boundaries.
+        */
+       cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
+       cc->free_pfn = zone->compact_cached_free_pfn;
+       if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
+               cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
+               zone->compact_cached_free_pfn = cc->free_pfn;
+       }
+       if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
+               cc->migrate_pfn = start_pfn;
+               zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
+               zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
+       }
+
+       trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
+                               cc->free_pfn, end_pfn, sync);
+
+       migrate_prep_local();
+
+       while ((ret = compact_finished(zone, cc, migratetype)) ==
+                                               COMPACT_CONTINUE) {
+               int err;
+               unsigned long isolate_start_pfn = cc->migrate_pfn;
+
+               switch (isolate_migratepages(zone, cc)) {
+               case ISOLATE_ABORT:
+                       ret = COMPACT_PARTIAL;
+                       putback_movable_pages(&cc->migratepages);
+                       cc->nr_migratepages = 0;
+                       goto out;
+               case ISOLATE_NONE:
+                       /*
+                        * We haven't isolated and migrated anything, but
+                        * there might still be unflushed migrations from
+                        * previous cc->order aligned block.
+                        */
+                       goto check_drain;
+               case ISOLATE_SUCCESS:
+                       ;
+               }
+
+               err = migrate_pages(&cc->migratepages, compaction_alloc,
+                               compaction_free, (unsigned long)cc, cc->mode,
+                               MR_COMPACTION);
+
+               trace_mm_compaction_migratepages(cc->nr_migratepages, err,
+                                                       &cc->migratepages);
+
+               /* All pages were either migrated or will be released */
+               cc->nr_migratepages = 0;
+               if (err) {
+                       putback_movable_pages(&cc->migratepages);
+                       /*
+                        * migrate_pages() may return -ENOMEM when scanners meet
+                        * and we want compact_finished() to detect it
+                        */
+                       if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
+                               ret = COMPACT_PARTIAL;
+                               goto out;
+                       }
+               }
+
+               /*
+                * Record where we could have freed pages by migration and not
+                * yet flushed them to buddy allocator. We use the pfn that
+                * isolate_migratepages() started from in this loop iteration
+                * - this is the lowest page that could have been isolated and
+                * then freed by migration.
+                */
+               if (!last_migrated_pfn)
+                       last_migrated_pfn = isolate_start_pfn;
+
+check_drain:
+               /*
+                * Has the migration scanner moved away from the previous
+                * cc->order aligned block where we migrated from? If yes,
+                * flush the pages that were freed, so that they can merge and
+                * compact_finished() can detect immediately if allocation
+                * would succeed.
+                */
+               if (cc->order > 0 && last_migrated_pfn) {
+                       int cpu;
+                       unsigned long current_block_start =
+                               cc->migrate_pfn & ~((1UL << cc->order) - 1);
+
+                       if (last_migrated_pfn < current_block_start) {
+                               cpu = get_cpu_light();
+                               local_lock_irq(swapvec_lock);
+                               lru_add_drain_cpu(cpu);
+                               local_unlock_irq(swapvec_lock);
+                               drain_local_pages(zone);
+                               put_cpu_light();
+                               /* No more flushing until we migrate again */
+                               last_migrated_pfn = 0;
+                       }
+               }
+
+       }
+
+out:
+       /*
+        * Release free pages and update where the free scanner should restart,
+        * so we don't leave any returned pages behind in the next attempt.
+        */
+       if (cc->nr_freepages > 0) {
+               unsigned long free_pfn = release_freepages(&cc->freepages);
+
+               cc->nr_freepages = 0;
+               VM_BUG_ON(free_pfn == 0);
+               /* The cached pfn is always the first in a pageblock */
+               free_pfn &= ~(pageblock_nr_pages-1);
+               /*
+                * Only go back, not forward. The cached pfn might have been
+                * already reset to zone end in compact_finished()
+                */
+               if (free_pfn > zone->compact_cached_free_pfn)
+                       zone->compact_cached_free_pfn = free_pfn;
+       }
+
+       trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
+                               cc->free_pfn, end_pfn, sync, ret);
+
+       return ret;
+}
+
+static unsigned long compact_zone_order(struct zone *zone, int order,
+               gfp_t gfp_mask, enum migrate_mode mode, int *contended,
+               int alloc_flags, int classzone_idx)
+{
+       unsigned long ret;
+       struct compact_control cc = {
+               .nr_freepages = 0,
+               .nr_migratepages = 0,
+               .order = order,
+               .gfp_mask = gfp_mask,
+               .zone = zone,
+               .mode = mode,
+               .alloc_flags = alloc_flags,
+               .classzone_idx = classzone_idx,
+       };
+       INIT_LIST_HEAD(&cc.freepages);
+       INIT_LIST_HEAD(&cc.migratepages);
+
+       ret = compact_zone(zone, &cc);
+
+       VM_BUG_ON(!list_empty(&cc.freepages));
+       VM_BUG_ON(!list_empty(&cc.migratepages));
+
+       *contended = cc.contended;
+       return ret;
+}
+
+int sysctl_extfrag_threshold = 500;
+
+/**
+ * try_to_compact_pages - Direct compact to satisfy a high-order allocation
+ * @gfp_mask: The GFP mask of the current allocation
+ * @order: The order of the current allocation
+ * @alloc_flags: The allocation flags of the current allocation
+ * @ac: The context of current allocation
+ * @mode: The migration mode for async, sync light, or sync migration
+ * @contended: Return value that determines if compaction was aborted due to
+ *            need_resched() or lock contention
+ *
+ * This is the main entry point for direct page compaction.
+ */
+unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
+                       int alloc_flags, const struct alloc_context *ac,
+                       enum migrate_mode mode, int *contended)
+{
+       int may_enter_fs = gfp_mask & __GFP_FS;
+       int may_perform_io = gfp_mask & __GFP_IO;
+       struct zoneref *z;
+       struct zone *zone;
+       int rc = COMPACT_DEFERRED;
+       int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
+
+       *contended = COMPACT_CONTENDED_NONE;
+
+       /* Check if the GFP flags allow compaction */
+       if (!order || !may_enter_fs || !may_perform_io)
+               return COMPACT_SKIPPED;
+
+       trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
+
+       /* Compact each zone in the list */
+       for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
+                                                               ac->nodemask) {
+               int status;
+               int zone_contended;
+
+               if (compaction_deferred(zone, order))
+                       continue;
+
+               status = compact_zone_order(zone, order, gfp_mask, mode,
+                               &zone_contended, alloc_flags,
+                               ac->classzone_idx);
+               rc = max(status, rc);
+               /*
+                * It takes at least one zone that wasn't lock contended
+                * to clear all_zones_contended.
+                */
+               all_zones_contended &= zone_contended;
+
+               /* If a normal allocation would succeed, stop compacting */
+               if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
+                                       ac->classzone_idx, alloc_flags)) {
+                       /*
+                        * We think the allocation will succeed in this zone,
+                        * but it is not certain, hence the false. The caller
+                        * will repeat this with true if allocation indeed
+                        * succeeds in this zone.
+                        */
+                       compaction_defer_reset(zone, order, false);
+                       /*
+                        * It is possible that async compaction aborted due to
+                        * need_resched() and the watermarks were ok thanks to
+                        * somebody else freeing memory. The allocation can
+                        * however still fail so we better signal the
+                        * need_resched() contention anyway (this will not
+                        * prevent the allocation attempt).
+                        */
+                       if (zone_contended == COMPACT_CONTENDED_SCHED)
+                               *contended = COMPACT_CONTENDED_SCHED;
+
+                       goto break_loop;
+               }
+
+               if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
+                       /*
+                        * We think that allocation won't succeed in this zone
+                        * so we defer compaction there. If it ends up
+                        * succeeding after all, it will be reset.
+                        */
+                       defer_compaction(zone, order);
+               }
+
+               /*
+                * We might have stopped compacting due to need_resched() in
+                * async compaction, or due to a fatal signal detected. In that
+                * case do not try further zones and signal need_resched()
+                * contention.
+                */
+               if ((zone_contended == COMPACT_CONTENDED_SCHED)
+                                       || fatal_signal_pending(current)) {
+                       *contended = COMPACT_CONTENDED_SCHED;
+                       goto break_loop;
+               }
+
+               continue;
+break_loop:
+               /*
+                * We might not have tried all the zones, so  be conservative
+                * and assume they are not all lock contended.
+                */
+               all_zones_contended = 0;
+               break;
+       }
+
+       /*
+        * If at least one zone wasn't deferred or skipped, we report if all
+        * zones that were tried were lock contended.
+        */
+       if (rc > COMPACT_SKIPPED && all_zones_contended)
+               *contended = COMPACT_CONTENDED_LOCK;
+
+       return rc;
+}
+
+
+/* Compact all zones within a node */
+static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
+{
+       int zoneid;
+       struct zone *zone;
+
+       for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+
+               zone = &pgdat->node_zones[zoneid];
+               if (!populated_zone(zone))
+                       continue;
+
+               cc->nr_freepages = 0;
+               cc->nr_migratepages = 0;
+               cc->zone = zone;
+               INIT_LIST_HEAD(&cc->freepages);
+               INIT_LIST_HEAD(&cc->migratepages);
+
+               /*
+                * When called via /proc/sys/vm/compact_memory
+                * this makes sure we compact the whole zone regardless of
+                * cached scanner positions.
+                */
+               if (cc->order == -1)
+                       __reset_isolation_suitable(zone);
+
+               if (cc->order == -1 || !compaction_deferred(zone, cc->order))
+                       compact_zone(zone, cc);
+
+               if (cc->order > 0) {
+                       if (zone_watermark_ok(zone, cc->order,
+                                               low_wmark_pages(zone), 0, 0))
+                               compaction_defer_reset(zone, cc->order, false);
+               }
+
+               VM_BUG_ON(!list_empty(&cc->freepages));
+               VM_BUG_ON(!list_empty(&cc->migratepages));
+       }
+}
+
+void compact_pgdat(pg_data_t *pgdat, int order)
+{
+       struct compact_control cc = {
+               .order = order,
+               .mode = MIGRATE_ASYNC,
+       };
+
+       if (!order)
+               return;
+
+       __compact_pgdat(pgdat, &cc);
+}
+
+static void compact_node(int nid)
+{
+       struct compact_control cc = {
+               .order = -1,
+               .mode = MIGRATE_SYNC,
+               .ignore_skip_hint = true,
+       };
+
+       __compact_pgdat(NODE_DATA(nid), &cc);
+}
+
+/* Compact all nodes in the system */
+static void compact_nodes(void)
+{
+       int nid;
+
+       /* Flush pending updates to the LRU lists */
+       lru_add_drain_all();
+
+       for_each_online_node(nid)
+               compact_node(nid);
+}
+
+/* The written value is actually unused, all memory is compacted */
+int sysctl_compact_memory;
+
+/* This is the entry point for compacting all nodes via /proc/sys/vm */
+int sysctl_compaction_handler(struct ctl_table *table, int write,
+                       void __user *buffer, size_t *length, loff_t *ppos)
+{
+       if (write)
+               compact_nodes();
+
+       return 0;
+}
+
+int sysctl_extfrag_handler(struct ctl_table *table, int write,
+                       void __user *buffer, size_t *length, loff_t *ppos)
+{
+       proc_dointvec_minmax(table, write, buffer, length, ppos);
+
+       return 0;
+}
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
+static ssize_t sysfs_compact_node(struct device *dev,
+                       struct device_attribute *attr,
+                       const char *buf, size_t count)
+{
+       int nid = dev->id;
+
+       if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
+               /* Flush pending updates to the LRU lists */
+               lru_add_drain_all();
+
+               compact_node(nid);
+       }
+
+       return count;
+}
+static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
+
+int compaction_register_node(struct node *node)
+{
+       return device_create_file(&node->dev, &dev_attr_compact);
+}
+
+void compaction_unregister_node(struct node *node)
+{
+       return device_remove_file(&node->dev, &dev_attr_compact);
+}
+#endif /* CONFIG_SYSFS && CONFIG_NUMA */
+
+#endif /* CONFIG_COMPACTION */