Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / workqueue.c
diff --git a/kernel/kernel/workqueue.c b/kernel/kernel/workqueue.c
new file mode 100644 (file)
index 0000000..21daecd
--- /dev/null
@@ -0,0 +1,5180 @@
+/*
+ * kernel/workqueue.c - generic async execution with shared worker pool
+ *
+ * Copyright (C) 2002          Ingo Molnar
+ *
+ *   Derived from the taskqueue/keventd code by:
+ *     David Woodhouse <dwmw2@infradead.org>
+ *     Andrew Morton
+ *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
+ *     Theodore Ts'o <tytso@mit.edu>
+ *
+ * Made to use alloc_percpu by Christoph Lameter.
+ *
+ * Copyright (C) 2010          SUSE Linux Products GmbH
+ * Copyright (C) 2010          Tejun Heo <tj@kernel.org>
+ *
+ * This is the generic async execution mechanism.  Work items as are
+ * executed in process context.  The worker pool is shared and
+ * automatically managed.  There are two worker pools for each CPU (one for
+ * normal work items and the other for high priority ones) and some extra
+ * pools for workqueues which are not bound to any specific CPU - the
+ * number of these backing pools is dynamic.
+ *
+ * Please read Documentation/workqueue.txt for details.
+ */
+
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/signal.h>
+#include <linux/completion.h>
+#include <linux/workqueue.h>
+#include <linux/slab.h>
+#include <linux/cpu.h>
+#include <linux/notifier.h>
+#include <linux/kthread.h>
+#include <linux/hardirq.h>
+#include <linux/mempolicy.h>
+#include <linux/freezer.h>
+#include <linux/kallsyms.h>
+#include <linux/debug_locks.h>
+#include <linux/lockdep.h>
+#include <linux/idr.h>
+#include <linux/jhash.h>
+#include <linux/hashtable.h>
+#include <linux/rculist.h>
+#include <linux/nodemask.h>
+#include <linux/moduleparam.h>
+#include <linux/uaccess.h>
+#include <linux/locallock.h>
+#include <linux/delay.h>
+
+#include "workqueue_internal.h"
+
+enum {
+       /*
+        * worker_pool flags
+        *
+        * A bound pool is either associated or disassociated with its CPU.
+        * While associated (!DISASSOCIATED), all workers are bound to the
+        * CPU and none has %WORKER_UNBOUND set and concurrency management
+        * is in effect.
+        *
+        * While DISASSOCIATED, the cpu may be offline and all workers have
+        * %WORKER_UNBOUND set and concurrency management disabled, and may
+        * be executing on any CPU.  The pool behaves as an unbound one.
+        *
+        * Note that DISASSOCIATED should be flipped only while holding
+        * attach_mutex to avoid changing binding state while
+        * worker_attach_to_pool() is in progress.
+        */
+       POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
+
+       /* worker flags */
+       WORKER_DIE              = 1 << 1,       /* die die die */
+       WORKER_IDLE             = 1 << 2,       /* is idle */
+       WORKER_PREP             = 1 << 3,       /* preparing to run works */
+       WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
+       WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
+       WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
+
+       WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
+                                 WORKER_UNBOUND | WORKER_REBOUND,
+
+       NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
+
+       UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
+       BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
+
+       MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
+       IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
+
+       MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
+                                               /* call for help after 10ms
+                                                  (min two ticks) */
+       MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
+       CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
+
+       /*
+        * Rescue workers are used only on emergencies and shared by
+        * all cpus.  Give MIN_NICE.
+        */
+       RESCUER_NICE_LEVEL      = MIN_NICE,
+       HIGHPRI_NICE_LEVEL      = MIN_NICE,
+
+       WQ_NAME_LEN             = 24,
+};
+
+/*
+ * Structure fields follow one of the following exclusion rules.
+ *
+ * I: Modifiable by initialization/destruction paths and read-only for
+ *    everyone else.
+ *
+ * P: Preemption protected.  Disabling preemption is enough and should
+ *    only be modified and accessed from the local cpu.
+ *
+ * L: pool->lock protected.  Access with pool->lock held.
+ *
+ * X: During normal operation, modification requires pool->lock and should
+ *    be done only from local cpu.  Either disabling preemption on local
+ *    cpu or grabbing pool->lock is enough for read access.  If
+ *    POOL_DISASSOCIATED is set, it's identical to L.
+ *
+ *    On RT we need the extra protection via rt_lock_idle_list() for
+ *    the list manipulations against read access from
+ *    wq_worker_sleeping(). All other places are nicely serialized via
+ *    pool->lock.
+ *
+ * A: pool->attach_mutex protected.
+ *
+ * PL: wq_pool_mutex protected.
+ *
+ * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
+ *
+ * WQ: wq->mutex protected.
+ *
+ * WR: wq->mutex protected for writes.  RCU protected for reads.
+ *
+ * MD: wq_mayday_lock protected.
+ */
+
+/* struct worker is defined in workqueue_internal.h */
+
+struct worker_pool {
+       spinlock_t              lock;           /* the pool lock */
+       int                     cpu;            /* I: the associated cpu */
+       int                     node;           /* I: the associated node ID */
+       int                     id;             /* I: pool ID */
+       unsigned int            flags;          /* X: flags */
+
+       struct list_head        worklist;       /* L: list of pending works */
+       int                     nr_workers;     /* L: total number of workers */
+
+       /* nr_idle includes the ones off idle_list for rebinding */
+       int                     nr_idle;        /* L: currently idle ones */
+
+       struct list_head        idle_list;      /* X: list of idle workers */
+       struct timer_list       idle_timer;     /* L: worker idle timeout */
+       struct timer_list       mayday_timer;   /* L: SOS timer for workers */
+
+       /* a workers is either on busy_hash or idle_list, or the manager */
+       DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
+                                               /* L: hash of busy workers */
+
+       /* see manage_workers() for details on the two manager mutexes */
+       struct mutex            manager_arb;    /* manager arbitration */
+       struct worker           *manager;       /* L: purely informational */
+       struct mutex            attach_mutex;   /* attach/detach exclusion */
+       struct list_head        workers;        /* A: attached workers */
+       struct completion       *detach_completion; /* all workers detached */
+
+       struct ida              worker_ida;     /* worker IDs for task name */
+
+       struct workqueue_attrs  *attrs;         /* I: worker attributes */
+       struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
+       int                     refcnt;         /* PL: refcnt for unbound pools */
+
+       /*
+        * The current concurrency level.  As it's likely to be accessed
+        * from other CPUs during try_to_wake_up(), put it in a separate
+        * cacheline.
+        */
+       atomic_t                nr_running ____cacheline_aligned_in_smp;
+
+       /*
+        * Destruction of pool is RCU protected to allow dereferences
+        * from get_work_pool().
+        */
+       struct rcu_head         rcu;
+} ____cacheline_aligned_in_smp;
+
+/*
+ * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
+ * of work_struct->data are used for flags and the remaining high bits
+ * point to the pwq; thus, pwqs need to be aligned at two's power of the
+ * number of flag bits.
+ */
+struct pool_workqueue {
+       struct worker_pool      *pool;          /* I: the associated pool */
+       struct workqueue_struct *wq;            /* I: the owning workqueue */
+       int                     work_color;     /* L: current color */
+       int                     flush_color;    /* L: flushing color */
+       int                     refcnt;         /* L: reference count */
+       int                     nr_in_flight[WORK_NR_COLORS];
+                                               /* L: nr of in_flight works */
+       int                     nr_active;      /* L: nr of active works */
+       int                     max_active;     /* L: max active works */
+       struct list_head        delayed_works;  /* L: delayed works */
+       struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
+       struct list_head        mayday_node;    /* MD: node on wq->maydays */
+
+       /*
+        * Release of unbound pwq is punted to system_wq.  See put_pwq()
+        * and pwq_unbound_release_workfn() for details.  pool_workqueue
+        * itself is also RCU protected so that the first pwq can be
+        * determined without grabbing wq->mutex.
+        */
+       struct work_struct      unbound_release_work;
+       struct rcu_head         rcu;
+} __aligned(1 << WORK_STRUCT_FLAG_BITS);
+
+/*
+ * Structure used to wait for workqueue flush.
+ */
+struct wq_flusher {
+       struct list_head        list;           /* WQ: list of flushers */
+       int                     flush_color;    /* WQ: flush color waiting for */
+       struct completion       done;           /* flush completion */
+};
+
+struct wq_device;
+
+/*
+ * The externally visible workqueue.  It relays the issued work items to
+ * the appropriate worker_pool through its pool_workqueues.
+ */
+struct workqueue_struct {
+       struct list_head        pwqs;           /* WR: all pwqs of this wq */
+       struct list_head        list;           /* PR: list of all workqueues */
+
+       struct mutex            mutex;          /* protects this wq */
+       int                     work_color;     /* WQ: current work color */
+       int                     flush_color;    /* WQ: current flush color */
+       atomic_t                nr_pwqs_to_flush; /* flush in progress */
+       struct wq_flusher       *first_flusher; /* WQ: first flusher */
+       struct list_head        flusher_queue;  /* WQ: flush waiters */
+       struct list_head        flusher_overflow; /* WQ: flush overflow list */
+
+       struct list_head        maydays;        /* MD: pwqs requesting rescue */
+       struct worker           *rescuer;       /* I: rescue worker */
+
+       int                     nr_drainers;    /* WQ: drain in progress */
+       int                     saved_max_active; /* WQ: saved pwq max_active */
+
+       struct workqueue_attrs  *unbound_attrs; /* WQ: only for unbound wqs */
+       struct pool_workqueue   *dfl_pwq;       /* WQ: only for unbound wqs */
+
+#ifdef CONFIG_SYSFS
+       struct wq_device        *wq_dev;        /* I: for sysfs interface */
+#endif
+#ifdef CONFIG_LOCKDEP
+       struct lockdep_map      lockdep_map;
+#endif
+       char                    name[WQ_NAME_LEN]; /* I: workqueue name */
+
+       /*
+        * Destruction of workqueue_struct is sched-RCU protected to allow
+        * walking the workqueues list without grabbing wq_pool_mutex.
+        * This is used to dump all workqueues from sysrq.
+        */
+       struct rcu_head         rcu;
+
+       /* hot fields used during command issue, aligned to cacheline */
+       unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
+       struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
+       struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
+};
+
+static struct kmem_cache *pwq_cache;
+
+static cpumask_var_t *wq_numa_possible_cpumask;
+                                       /* possible CPUs of each node */
+
+static bool wq_disable_numa;
+module_param_named(disable_numa, wq_disable_numa, bool, 0444);
+
+/* see the comment above the definition of WQ_POWER_EFFICIENT */
+#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
+static bool wq_power_efficient = true;
+#else
+static bool wq_power_efficient;
+#endif
+
+module_param_named(power_efficient, wq_power_efficient, bool, 0444);
+
+static bool wq_numa_enabled;           /* unbound NUMA affinity enabled */
+
+/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
+static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
+
+static DEFINE_MUTEX(wq_pool_mutex);    /* protects pools and workqueues list */
+static DEFINE_SPINLOCK(wq_mayday_lock);        /* protects wq->maydays list */
+
+static LIST_HEAD(workqueues);          /* PR: list of all workqueues */
+static bool workqueue_freezing;                /* PL: have wqs started freezing? */
+
+/* the per-cpu worker pools */
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
+                                    cpu_worker_pools);
+
+static DEFINE_IDR(worker_pool_idr);    /* PR: idr of all pools */
+
+/* PL: hash of all unbound pools keyed by pool->attrs */
+static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
+
+/* I: attributes used when instantiating standard unbound pools on demand */
+static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
+
+/* I: attributes used when instantiating ordered pools on demand */
+static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
+
+struct workqueue_struct *system_wq __read_mostly;
+EXPORT_SYMBOL(system_wq);
+struct workqueue_struct *system_highpri_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_highpri_wq);
+struct workqueue_struct *system_long_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_long_wq);
+struct workqueue_struct *system_unbound_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_unbound_wq);
+struct workqueue_struct *system_freezable_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_freezable_wq);
+struct workqueue_struct *system_power_efficient_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_power_efficient_wq);
+struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
+
+static DEFINE_LOCAL_IRQ_LOCK(pendingb_lock);
+
+static int worker_thread(void *__worker);
+static void copy_workqueue_attrs(struct workqueue_attrs *to,
+                                const struct workqueue_attrs *from);
+static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/workqueue.h>
+
+#define assert_rcu_or_pool_mutex()                                     \
+       rcu_lockdep_assert(rcu_read_lock_held() ||                      \
+                          lockdep_is_held(&wq_pool_mutex),             \
+                          "RCU or wq_pool_mutex should be held")
+
+#define assert_rcu_or_wq_mutex(wq)                                     \
+       rcu_lockdep_assert(rcu_read_lock_held() ||                      \
+                          lockdep_is_held(&wq->mutex),                 \
+                          "RCU or wq->mutex should be held")
+
+#define for_each_cpu_worker_pool(pool, cpu)                            \
+       for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
+            (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
+            (pool)++)
+
+/**
+ * for_each_pool - iterate through all worker_pools in the system
+ * @pool: iteration cursor
+ * @pi: integer used for iteration
+ *
+ * This must be called either with wq_pool_mutex held or RCU read
+ * locked.  If the pool needs to be used beyond the locking in effect, the
+ * caller is responsible for guaranteeing that the pool stays online.
+ *
+ * The if/else clause exists only for the lockdep assertion and can be
+ * ignored.
+ */
+#define for_each_pool(pool, pi)                                                \
+       idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
+               if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
+               else
+
+/**
+ * for_each_pool_worker - iterate through all workers of a worker_pool
+ * @worker: iteration cursor
+ * @pool: worker_pool to iterate workers of
+ *
+ * This must be called with @pool->attach_mutex.
+ *
+ * The if/else clause exists only for the lockdep assertion and can be
+ * ignored.
+ */
+#define for_each_pool_worker(worker, pool)                             \
+       list_for_each_entry((worker), &(pool)->workers, node)           \
+               if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
+               else
+
+/**
+ * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
+ * @pwq: iteration cursor
+ * @wq: the target workqueue
+ *
+ * This must be called either with wq->mutex held or RCU read locked.
+ * If the pwq needs to be used beyond the locking in effect, the caller is
+ * responsible for guaranteeing that the pwq stays online.
+ *
+ * The if/else clause exists only for the lockdep assertion and can be
+ * ignored.
+ */
+#define for_each_pwq(pwq, wq)                                          \
+       list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
+               if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
+               else
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+static inline void rt_lock_idle_list(struct worker_pool *pool)
+{
+       preempt_disable();
+}
+static inline void rt_unlock_idle_list(struct worker_pool *pool)
+{
+       preempt_enable();
+}
+static inline void sched_lock_idle_list(struct worker_pool *pool) { }
+static inline void sched_unlock_idle_list(struct worker_pool *pool) { }
+#else
+static inline void rt_lock_idle_list(struct worker_pool *pool) { }
+static inline void rt_unlock_idle_list(struct worker_pool *pool) { }
+static inline void sched_lock_idle_list(struct worker_pool *pool)
+{
+       spin_lock_irq(&pool->lock);
+}
+static inline void sched_unlock_idle_list(struct worker_pool *pool)
+{
+       spin_unlock_irq(&pool->lock);
+}
+#endif
+
+
+#ifdef CONFIG_DEBUG_OBJECTS_WORK
+
+static struct debug_obj_descr work_debug_descr;
+
+static void *work_debug_hint(void *addr)
+{
+       return ((struct work_struct *) addr)->func;
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int work_fixup_init(void *addr, enum debug_obj_state state)
+{
+       struct work_struct *work = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               cancel_work_sync(work);
+               debug_object_init(work, &work_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int work_fixup_activate(void *addr, enum debug_obj_state state)
+{
+       struct work_struct *work = addr;
+
+       switch (state) {
+
+       case ODEBUG_STATE_NOTAVAILABLE:
+               /*
+                * This is not really a fixup. The work struct was
+                * statically initialized. We just make sure that it
+                * is tracked in the object tracker.
+                */
+               if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
+                       debug_object_init(work, &work_debug_descr);
+                       debug_object_activate(work, &work_debug_descr);
+                       return 0;
+               }
+               WARN_ON_ONCE(1);
+               return 0;
+
+       case ODEBUG_STATE_ACTIVE:
+               WARN_ON(1);
+
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int work_fixup_free(void *addr, enum debug_obj_state state)
+{
+       struct work_struct *work = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               cancel_work_sync(work);
+               debug_object_free(work, &work_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+static struct debug_obj_descr work_debug_descr = {
+       .name           = "work_struct",
+       .debug_hint     = work_debug_hint,
+       .fixup_init     = work_fixup_init,
+       .fixup_activate = work_fixup_activate,
+       .fixup_free     = work_fixup_free,
+};
+
+static inline void debug_work_activate(struct work_struct *work)
+{
+       debug_object_activate(work, &work_debug_descr);
+}
+
+static inline void debug_work_deactivate(struct work_struct *work)
+{
+       debug_object_deactivate(work, &work_debug_descr);
+}
+
+void __init_work(struct work_struct *work, int onstack)
+{
+       if (onstack)
+               debug_object_init_on_stack(work, &work_debug_descr);
+       else
+               debug_object_init(work, &work_debug_descr);
+}
+EXPORT_SYMBOL_GPL(__init_work);
+
+void destroy_work_on_stack(struct work_struct *work)
+{
+       debug_object_free(work, &work_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_work_on_stack);
+
+void destroy_delayed_work_on_stack(struct delayed_work *work)
+{
+       destroy_timer_on_stack(&work->timer);
+       debug_object_free(&work->work, &work_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
+
+#else
+static inline void debug_work_activate(struct work_struct *work) { }
+static inline void debug_work_deactivate(struct work_struct *work) { }
+#endif
+
+/**
+ * worker_pool_assign_id - allocate ID and assing it to @pool
+ * @pool: the pool pointer of interest
+ *
+ * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
+ * successfully, -errno on failure.
+ */
+static int worker_pool_assign_id(struct worker_pool *pool)
+{
+       int ret;
+
+       lockdep_assert_held(&wq_pool_mutex);
+
+       ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
+                       GFP_KERNEL);
+       if (ret >= 0) {
+               pool->id = ret;
+               return 0;
+       }
+       return ret;
+}
+
+/**
+ * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
+ * @wq: the target workqueue
+ * @node: the node ID
+ *
+ * This must be called either with pwq_lock held or RCU read locked.
+ * If the pwq needs to be used beyond the locking in effect, the caller is
+ * responsible for guaranteeing that the pwq stays online.
+ *
+ * Return: The unbound pool_workqueue for @node.
+ */
+static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
+                                                 int node)
+{
+       assert_rcu_or_wq_mutex(wq);
+       return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
+}
+
+static unsigned int work_color_to_flags(int color)
+{
+       return color << WORK_STRUCT_COLOR_SHIFT;
+}
+
+static int get_work_color(struct work_struct *work)
+{
+       return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
+               ((1 << WORK_STRUCT_COLOR_BITS) - 1);
+}
+
+static int work_next_color(int color)
+{
+       return (color + 1) % WORK_NR_COLORS;
+}
+
+/*
+ * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
+ * contain the pointer to the queued pwq.  Once execution starts, the flag
+ * is cleared and the high bits contain OFFQ flags and pool ID.
+ *
+ * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
+ * and clear_work_data() can be used to set the pwq, pool or clear
+ * work->data.  These functions should only be called while the work is
+ * owned - ie. while the PENDING bit is set.
+ *
+ * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
+ * corresponding to a work.  Pool is available once the work has been
+ * queued anywhere after initialization until it is sync canceled.  pwq is
+ * available only while the work item is queued.
+ *
+ * %WORK_OFFQ_CANCELING is used to mark a work item which is being
+ * canceled.  While being canceled, a work item may have its PENDING set
+ * but stay off timer and worklist for arbitrarily long and nobody should
+ * try to steal the PENDING bit.
+ */
+static inline void set_work_data(struct work_struct *work, unsigned long data,
+                                unsigned long flags)
+{
+       WARN_ON_ONCE(!work_pending(work));
+       atomic_long_set(&work->data, data | flags | work_static(work));
+}
+
+static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
+                        unsigned long extra_flags)
+{
+       set_work_data(work, (unsigned long)pwq,
+                     WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
+}
+
+static void set_work_pool_and_keep_pending(struct work_struct *work,
+                                          int pool_id)
+{
+       set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
+                     WORK_STRUCT_PENDING);
+}
+
+static void set_work_pool_and_clear_pending(struct work_struct *work,
+                                           int pool_id)
+{
+       /*
+        * The following wmb is paired with the implied mb in
+        * test_and_set_bit(PENDING) and ensures all updates to @work made
+        * here are visible to and precede any updates by the next PENDING
+        * owner.
+        */
+       smp_wmb();
+       set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
+}
+
+static void clear_work_data(struct work_struct *work)
+{
+       smp_wmb();      /* see set_work_pool_and_clear_pending() */
+       set_work_data(work, WORK_STRUCT_NO_POOL, 0);
+}
+
+static struct pool_workqueue *get_work_pwq(struct work_struct *work)
+{
+       unsigned long data = atomic_long_read(&work->data);
+
+       if (data & WORK_STRUCT_PWQ)
+               return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
+       else
+               return NULL;
+}
+
+/**
+ * get_work_pool - return the worker_pool a given work was associated with
+ * @work: the work item of interest
+ *
+ * Pools are created and destroyed under wq_pool_mutex, and allows read
+ * access under RCU read lock.  As such, this function should be
+ * called under wq_pool_mutex or inside of a rcu_read_lock() region.
+ *
+ * All fields of the returned pool are accessible as long as the above
+ * mentioned locking is in effect.  If the returned pool needs to be used
+ * beyond the critical section, the caller is responsible for ensuring the
+ * returned pool is and stays online.
+ *
+ * Return: The worker_pool @work was last associated with.  %NULL if none.
+ */
+static struct worker_pool *get_work_pool(struct work_struct *work)
+{
+       unsigned long data = atomic_long_read(&work->data);
+       int pool_id;
+
+       assert_rcu_or_pool_mutex();
+
+       if (data & WORK_STRUCT_PWQ)
+               return ((struct pool_workqueue *)
+                       (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
+
+       pool_id = data >> WORK_OFFQ_POOL_SHIFT;
+       if (pool_id == WORK_OFFQ_POOL_NONE)
+               return NULL;
+
+       return idr_find(&worker_pool_idr, pool_id);
+}
+
+/**
+ * get_work_pool_id - return the worker pool ID a given work is associated with
+ * @work: the work item of interest
+ *
+ * Return: The worker_pool ID @work was last associated with.
+ * %WORK_OFFQ_POOL_NONE if none.
+ */
+static int get_work_pool_id(struct work_struct *work)
+{
+       unsigned long data = atomic_long_read(&work->data);
+
+       if (data & WORK_STRUCT_PWQ)
+               return ((struct pool_workqueue *)
+                       (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
+
+       return data >> WORK_OFFQ_POOL_SHIFT;
+}
+
+static void mark_work_canceling(struct work_struct *work)
+{
+       unsigned long pool_id = get_work_pool_id(work);
+
+       pool_id <<= WORK_OFFQ_POOL_SHIFT;
+       set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
+}
+
+static bool work_is_canceling(struct work_struct *work)
+{
+       unsigned long data = atomic_long_read(&work->data);
+
+       return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
+}
+
+/*
+ * Policy functions.  These define the policies on how the global worker
+ * pools are managed.  Unless noted otherwise, these functions assume that
+ * they're being called with pool->lock held.
+ */
+
+static bool __need_more_worker(struct worker_pool *pool)
+{
+       return !atomic_read(&pool->nr_running);
+}
+
+/*
+ * Need to wake up a worker?  Called from anything but currently
+ * running workers.
+ *
+ * Note that, because unbound workers never contribute to nr_running, this
+ * function will always return %true for unbound pools as long as the
+ * worklist isn't empty.
+ */
+static bool need_more_worker(struct worker_pool *pool)
+{
+       return !list_empty(&pool->worklist) && __need_more_worker(pool);
+}
+
+/* Can I start working?  Called from busy but !running workers. */
+static bool may_start_working(struct worker_pool *pool)
+{
+       return pool->nr_idle;
+}
+
+/* Do I need to keep working?  Called from currently running workers. */
+static bool keep_working(struct worker_pool *pool)
+{
+       return !list_empty(&pool->worklist) &&
+               atomic_read(&pool->nr_running) <= 1;
+}
+
+/* Do we need a new worker?  Called from manager. */
+static bool need_to_create_worker(struct worker_pool *pool)
+{
+       return need_more_worker(pool) && !may_start_working(pool);
+}
+
+/* Do we have too many workers and should some go away? */
+static bool too_many_workers(struct worker_pool *pool)
+{
+       bool managing = mutex_is_locked(&pool->manager_arb);
+       int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
+       int nr_busy = pool->nr_workers - nr_idle;
+
+       return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
+}
+
+/*
+ * Wake up functions.
+ */
+
+/* Return the first idle worker.  Safe with preemption disabled */
+static struct worker *first_idle_worker(struct worker_pool *pool)
+{
+       if (unlikely(list_empty(&pool->idle_list)))
+               return NULL;
+
+       return list_first_entry(&pool->idle_list, struct worker, entry);
+}
+
+/**
+ * wake_up_worker - wake up an idle worker
+ * @pool: worker pool to wake worker from
+ *
+ * Wake up the first idle worker of @pool.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void wake_up_worker(struct worker_pool *pool)
+{
+       struct worker *worker;
+
+       rt_lock_idle_list(pool);
+
+       worker = first_idle_worker(pool);
+
+       if (likely(worker))
+               wake_up_process(worker->task);
+
+       rt_unlock_idle_list(pool);
+}
+
+/**
+ * wq_worker_running - a worker is running again
+ * @task: task returning from sleep
+ *
+ * This function is called when a worker returns from schedule()
+ */
+void wq_worker_running(struct task_struct *task)
+{
+       struct worker *worker = kthread_data(task);
+
+       if (!worker->sleeping)
+               return;
+       if (!(worker->flags & WORKER_NOT_RUNNING))
+               atomic_inc(&worker->pool->nr_running);
+       worker->sleeping = 0;
+}
+
+/**
+ * wq_worker_sleeping - a worker is going to sleep
+ * @task: task going to sleep
+ * This function is called from schedule() when a busy worker is
+ * going to sleep.
+ */
+void wq_worker_sleeping(struct task_struct *task)
+{
+       struct worker *worker = kthread_data(task);
+       struct worker_pool *pool;
+
+       /*
+        * Rescuers, which may not have all the fields set up like normal
+        * workers, also reach here, let's not access anything before
+        * checking NOT_RUNNING.
+        */
+       if (worker->flags & WORKER_NOT_RUNNING)
+               return;
+
+       pool = worker->pool;
+
+       if (WARN_ON_ONCE(worker->sleeping))
+               return;
+
+       worker->sleeping = 1;
+
+       /*
+        * The counterpart of the following dec_and_test, implied mb,
+        * worklist not empty test sequence is in insert_work().
+        * Please read comment there.
+        */
+       if (atomic_dec_and_test(&pool->nr_running) &&
+           !list_empty(&pool->worklist)) {
+               sched_lock_idle_list(pool);
+               wake_up_worker(pool);
+               sched_unlock_idle_list(pool);
+       }
+}
+
+/**
+ * worker_set_flags - set worker flags and adjust nr_running accordingly
+ * @worker: self
+ * @flags: flags to set
+ *
+ * Set @flags in @worker->flags and adjust nr_running accordingly.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock)
+ */
+static inline void worker_set_flags(struct worker *worker, unsigned int flags)
+{
+       struct worker_pool *pool = worker->pool;
+
+       WARN_ON_ONCE(worker->task != current);
+
+       /* If transitioning into NOT_RUNNING, adjust nr_running. */
+       if ((flags & WORKER_NOT_RUNNING) &&
+           !(worker->flags & WORKER_NOT_RUNNING)) {
+               atomic_dec(&pool->nr_running);
+       }
+
+       worker->flags |= flags;
+}
+
+/**
+ * worker_clr_flags - clear worker flags and adjust nr_running accordingly
+ * @worker: self
+ * @flags: flags to clear
+ *
+ * Clear @flags in @worker->flags and adjust nr_running accordingly.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock)
+ */
+static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
+{
+       struct worker_pool *pool = worker->pool;
+       unsigned int oflags = worker->flags;
+
+       WARN_ON_ONCE(worker->task != current);
+
+       worker->flags &= ~flags;
+
+       /*
+        * If transitioning out of NOT_RUNNING, increment nr_running.  Note
+        * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
+        * of multiple flags, not a single flag.
+        */
+       if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
+               if (!(worker->flags & WORKER_NOT_RUNNING))
+                       atomic_inc(&pool->nr_running);
+}
+
+/**
+ * find_worker_executing_work - find worker which is executing a work
+ * @pool: pool of interest
+ * @work: work to find worker for
+ *
+ * Find a worker which is executing @work on @pool by searching
+ * @pool->busy_hash which is keyed by the address of @work.  For a worker
+ * to match, its current execution should match the address of @work and
+ * its work function.  This is to avoid unwanted dependency between
+ * unrelated work executions through a work item being recycled while still
+ * being executed.
+ *
+ * This is a bit tricky.  A work item may be freed once its execution
+ * starts and nothing prevents the freed area from being recycled for
+ * another work item.  If the same work item address ends up being reused
+ * before the original execution finishes, workqueue will identify the
+ * recycled work item as currently executing and make it wait until the
+ * current execution finishes, introducing an unwanted dependency.
+ *
+ * This function checks the work item address and work function to avoid
+ * false positives.  Note that this isn't complete as one may construct a
+ * work function which can introduce dependency onto itself through a
+ * recycled work item.  Well, if somebody wants to shoot oneself in the
+ * foot that badly, there's only so much we can do, and if such deadlock
+ * actually occurs, it should be easy to locate the culprit work function.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ *
+ * Return:
+ * Pointer to worker which is executing @work if found, %NULL
+ * otherwise.
+ */
+static struct worker *find_worker_executing_work(struct worker_pool *pool,
+                                                struct work_struct *work)
+{
+       struct worker *worker;
+
+       hash_for_each_possible(pool->busy_hash, worker, hentry,
+                              (unsigned long)work)
+               if (worker->current_work == work &&
+                   worker->current_func == work->func)
+                       return worker;
+
+       return NULL;
+}
+
+/**
+ * move_linked_works - move linked works to a list
+ * @work: start of series of works to be scheduled
+ * @head: target list to append @work to
+ * @nextp: out paramter for nested worklist walking
+ *
+ * Schedule linked works starting from @work to @head.  Work series to
+ * be scheduled starts at @work and includes any consecutive work with
+ * WORK_STRUCT_LINKED set in its predecessor.
+ *
+ * If @nextp is not NULL, it's updated to point to the next work of
+ * the last scheduled work.  This allows move_linked_works() to be
+ * nested inside outer list_for_each_entry_safe().
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void move_linked_works(struct work_struct *work, struct list_head *head,
+                             struct work_struct **nextp)
+{
+       struct work_struct *n;
+
+       /*
+        * Linked worklist will always end before the end of the list,
+        * use NULL for list head.
+        */
+       list_for_each_entry_safe_from(work, n, NULL, entry) {
+               list_move_tail(&work->entry, head);
+               if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
+                       break;
+       }
+
+       /*
+        * If we're already inside safe list traversal and have moved
+        * multiple works to the scheduled queue, the next position
+        * needs to be updated.
+        */
+       if (nextp)
+               *nextp = n;
+}
+
+/**
+ * get_pwq - get an extra reference on the specified pool_workqueue
+ * @pwq: pool_workqueue to get
+ *
+ * Obtain an extra reference on @pwq.  The caller should guarantee that
+ * @pwq has positive refcnt and be holding the matching pool->lock.
+ */
+static void get_pwq(struct pool_workqueue *pwq)
+{
+       lockdep_assert_held(&pwq->pool->lock);
+       WARN_ON_ONCE(pwq->refcnt <= 0);
+       pwq->refcnt++;
+}
+
+/**
+ * put_pwq - put a pool_workqueue reference
+ * @pwq: pool_workqueue to put
+ *
+ * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
+ * destruction.  The caller should be holding the matching pool->lock.
+ */
+static void put_pwq(struct pool_workqueue *pwq)
+{
+       lockdep_assert_held(&pwq->pool->lock);
+       if (likely(--pwq->refcnt))
+               return;
+       if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
+               return;
+       /*
+        * @pwq can't be released under pool->lock, bounce to
+        * pwq_unbound_release_workfn().  This never recurses on the same
+        * pool->lock as this path is taken only for unbound workqueues and
+        * the release work item is scheduled on a per-cpu workqueue.  To
+        * avoid lockdep warning, unbound pool->locks are given lockdep
+        * subclass of 1 in get_unbound_pool().
+        */
+       schedule_work(&pwq->unbound_release_work);
+}
+
+/**
+ * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
+ * @pwq: pool_workqueue to put (can be %NULL)
+ *
+ * put_pwq() with locking.  This function also allows %NULL @pwq.
+ */
+static void put_pwq_unlocked(struct pool_workqueue *pwq)
+{
+       if (pwq) {
+               /*
+                * As both pwqs and pools are RCU protected, the
+                * following lock operations are safe.
+                */
+               local_spin_lock_irq(pendingb_lock, &pwq->pool->lock);
+               put_pwq(pwq);
+               local_spin_unlock_irq(pendingb_lock, &pwq->pool->lock);
+       }
+}
+
+static void pwq_activate_delayed_work(struct work_struct *work)
+{
+       struct pool_workqueue *pwq = get_work_pwq(work);
+
+       trace_workqueue_activate_work(work);
+       move_linked_works(work, &pwq->pool->worklist, NULL);
+       __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
+       pwq->nr_active++;
+}
+
+static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
+{
+       struct work_struct *work = list_first_entry(&pwq->delayed_works,
+                                                   struct work_struct, entry);
+
+       pwq_activate_delayed_work(work);
+}
+
+/**
+ * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
+ * @pwq: pwq of interest
+ * @color: color of work which left the queue
+ *
+ * A work either has completed or is removed from pending queue,
+ * decrement nr_in_flight of its pwq and handle workqueue flushing.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
+{
+       /* uncolored work items don't participate in flushing or nr_active */
+       if (color == WORK_NO_COLOR)
+               goto out_put;
+
+       pwq->nr_in_flight[color]--;
+
+       pwq->nr_active--;
+       if (!list_empty(&pwq->delayed_works)) {
+               /* one down, submit a delayed one */
+               if (pwq->nr_active < pwq->max_active)
+                       pwq_activate_first_delayed(pwq);
+       }
+
+       /* is flush in progress and are we at the flushing tip? */
+       if (likely(pwq->flush_color != color))
+               goto out_put;
+
+       /* are there still in-flight works? */
+       if (pwq->nr_in_flight[color])
+               goto out_put;
+
+       /* this pwq is done, clear flush_color */
+       pwq->flush_color = -1;
+
+       /*
+        * If this was the last pwq, wake up the first flusher.  It
+        * will handle the rest.
+        */
+       if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
+               complete(&pwq->wq->first_flusher->done);
+out_put:
+       put_pwq(pwq);
+}
+
+/**
+ * try_to_grab_pending - steal work item from worklist and disable irq
+ * @work: work item to steal
+ * @is_dwork: @work is a delayed_work
+ * @flags: place to store irq state
+ *
+ * Try to grab PENDING bit of @work.  This function can handle @work in any
+ * stable state - idle, on timer or on worklist.
+ *
+ * Return:
+ *  1          if @work was pending and we successfully stole PENDING
+ *  0          if @work was idle and we claimed PENDING
+ *  -EAGAIN    if PENDING couldn't be grabbed at the moment, safe to busy-retry
+ *  -ENOENT    if someone else is canceling @work, this state may persist
+ *             for arbitrarily long
+ *
+ * Note:
+ * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
+ * interrupted while holding PENDING and @work off queue, irq must be
+ * disabled on entry.  This, combined with delayed_work->timer being
+ * irqsafe, ensures that we return -EAGAIN for finite short period of time.
+ *
+ * On successful return, >= 0, irq is disabled and the caller is
+ * responsible for releasing it using local_irq_restore(*@flags).
+ *
+ * This function is safe to call from any context including IRQ handler.
+ */
+static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
+                              unsigned long *flags)
+{
+       struct worker_pool *pool;
+       struct pool_workqueue *pwq;
+
+       local_lock_irqsave(pendingb_lock, *flags);
+
+       /* try to steal the timer if it exists */
+       if (is_dwork) {
+               struct delayed_work *dwork = to_delayed_work(work);
+
+               /*
+                * dwork->timer is irqsafe.  If del_timer() fails, it's
+                * guaranteed that the timer is not queued anywhere and not
+                * running on the local CPU.
+                */
+               if (likely(del_timer(&dwork->timer)))
+                       return 1;
+       }
+
+       /* try to claim PENDING the normal way */
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
+               return 0;
+
+       rcu_read_lock();
+       /*
+        * The queueing is in progress, or it is already queued. Try to
+        * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
+        */
+       pool = get_work_pool(work);
+       if (!pool)
+               goto fail;
+
+       spin_lock(&pool->lock);
+       /*
+        * work->data is guaranteed to point to pwq only while the work
+        * item is queued on pwq->wq, and both updating work->data to point
+        * to pwq on queueing and to pool on dequeueing are done under
+        * pwq->pool->lock.  This in turn guarantees that, if work->data
+        * points to pwq which is associated with a locked pool, the work
+        * item is currently queued on that pool.
+        */
+       pwq = get_work_pwq(work);
+       if (pwq && pwq->pool == pool) {
+               debug_work_deactivate(work);
+
+               /*
+                * A delayed work item cannot be grabbed directly because
+                * it might have linked NO_COLOR work items which, if left
+                * on the delayed_list, will confuse pwq->nr_active
+                * management later on and cause stall.  Make sure the work
+                * item is activated before grabbing.
+                */
+               if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
+                       pwq_activate_delayed_work(work);
+
+               list_del_init(&work->entry);
+               pwq_dec_nr_in_flight(pwq, get_work_color(work));
+
+               /* work->data points to pwq iff queued, point to pool */
+               set_work_pool_and_keep_pending(work, pool->id);
+
+               spin_unlock(&pool->lock);
+               rcu_read_unlock();
+               return 1;
+       }
+       spin_unlock(&pool->lock);
+fail:
+       rcu_read_unlock();
+       local_unlock_irqrestore(pendingb_lock, *flags);
+       if (work_is_canceling(work))
+               return -ENOENT;
+       cpu_chill();
+       return -EAGAIN;
+}
+
+/**
+ * insert_work - insert a work into a pool
+ * @pwq: pwq @work belongs to
+ * @work: work to insert
+ * @head: insertion point
+ * @extra_flags: extra WORK_STRUCT_* flags to set
+ *
+ * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
+ * work_struct flags.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
+                       struct list_head *head, unsigned int extra_flags)
+{
+       struct worker_pool *pool = pwq->pool;
+
+       /* we own @work, set data and link */
+       set_work_pwq(work, pwq, extra_flags);
+       list_add_tail(&work->entry, head);
+       get_pwq(pwq);
+
+       /*
+        * Ensure either wq_worker_sleeping() sees the above
+        * list_add_tail() or we see zero nr_running to avoid workers lying
+        * around lazily while there are works to be processed.
+        */
+       smp_mb();
+
+       if (__need_more_worker(pool))
+               wake_up_worker(pool);
+}
+
+/*
+ * Test whether @work is being queued from another work executing on the
+ * same workqueue.
+ */
+static bool is_chained_work(struct workqueue_struct *wq)
+{
+       struct worker *worker;
+
+       worker = current_wq_worker();
+       /*
+        * Return %true iff I'm a worker execuing a work item on @wq.  If
+        * I'm @worker, it's safe to dereference it without locking.
+        */
+       return worker && worker->current_pwq->wq == wq;
+}
+
+static void __queue_work(int cpu, struct workqueue_struct *wq,
+                        struct work_struct *work)
+{
+       struct pool_workqueue *pwq;
+       struct worker_pool *last_pool;
+       struct list_head *worklist;
+       unsigned int work_flags;
+       unsigned int req_cpu = cpu;
+
+       /*
+        * While a work item is PENDING && off queue, a task trying to
+        * steal the PENDING will busy-loop waiting for it to either get
+        * queued or lose PENDING.  Grabbing PENDING and queueing should
+        * happen with IRQ disabled.
+        */
+       WARN_ON_ONCE_NONRT(!irqs_disabled());
+
+       debug_work_activate(work);
+
+       /* if draining, only works from the same workqueue are allowed */
+       if (unlikely(wq->flags & __WQ_DRAINING) &&
+           WARN_ON_ONCE(!is_chained_work(wq)))
+               return;
+
+       rcu_read_lock();
+retry:
+       if (req_cpu == WORK_CPU_UNBOUND)
+               cpu = raw_smp_processor_id();
+
+       /* pwq which will be used unless @work is executing elsewhere */
+       if (!(wq->flags & WQ_UNBOUND))
+               pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
+       else
+               pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
+
+       /*
+        * If @work was previously on a different pool, it might still be
+        * running there, in which case the work needs to be queued on that
+        * pool to guarantee non-reentrancy.
+        */
+       last_pool = get_work_pool(work);
+       if (last_pool && last_pool != pwq->pool) {
+               struct worker *worker;
+
+               spin_lock(&last_pool->lock);
+
+               worker = find_worker_executing_work(last_pool, work);
+
+               if (worker && worker->current_pwq->wq == wq) {
+                       pwq = worker->current_pwq;
+               } else {
+                       /* meh... not running there, queue here */
+                       spin_unlock(&last_pool->lock);
+                       spin_lock(&pwq->pool->lock);
+               }
+       } else {
+               spin_lock(&pwq->pool->lock);
+       }
+
+       /*
+        * pwq is determined and locked.  For unbound pools, we could have
+        * raced with pwq release and it could already be dead.  If its
+        * refcnt is zero, repeat pwq selection.  Note that pwqs never die
+        * without another pwq replacing it in the numa_pwq_tbl or while
+        * work items are executing on it, so the retrying is guaranteed to
+        * make forward-progress.
+        */
+       if (unlikely(!pwq->refcnt)) {
+               if (wq->flags & WQ_UNBOUND) {
+                       spin_unlock(&pwq->pool->lock);
+                       cpu_relax();
+                       goto retry;
+               }
+               /* oops */
+               WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
+                         wq->name, cpu);
+       }
+
+       /* pwq determined, queue */
+       trace_workqueue_queue_work(req_cpu, pwq, work);
+
+       if (WARN_ON(!list_empty(&work->entry)))
+               goto out;
+
+       pwq->nr_in_flight[pwq->work_color]++;
+       work_flags = work_color_to_flags(pwq->work_color);
+
+       if (likely(pwq->nr_active < pwq->max_active)) {
+               trace_workqueue_activate_work(work);
+               pwq->nr_active++;
+               worklist = &pwq->pool->worklist;
+       } else {
+               work_flags |= WORK_STRUCT_DELAYED;
+               worklist = &pwq->delayed_works;
+       }
+
+       insert_work(pwq, work, worklist, work_flags);
+
+out:
+       spin_unlock(&pwq->pool->lock);
+       rcu_read_unlock();
+}
+
+/**
+ * queue_work_on - queue work on specific cpu
+ * @cpu: CPU number to execute work on
+ * @wq: workqueue to use
+ * @work: work to queue
+ *
+ * We queue the work to a specific CPU, the caller must ensure it
+ * can't go away.
+ *
+ * Return: %false if @work was already on a queue, %true otherwise.
+ */
+bool queue_work_on(int cpu, struct workqueue_struct *wq,
+                  struct work_struct *work)
+{
+       bool ret = false;
+       unsigned long flags;
+
+       local_lock_irqsave(pendingb_lock,flags);
+
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
+               __queue_work(cpu, wq, work);
+               ret = true;
+       }
+
+       local_unlock_irqrestore(pendingb_lock, flags);
+       return ret;
+}
+EXPORT_SYMBOL(queue_work_on);
+
+void delayed_work_timer_fn(unsigned long __data)
+{
+       struct delayed_work *dwork = (struct delayed_work *)__data;
+
+       /* should have been called from irqsafe timer with irq already off */
+       __queue_work(dwork->cpu, dwork->wq, &dwork->work);
+}
+EXPORT_SYMBOL(delayed_work_timer_fn);
+
+static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
+                               struct delayed_work *dwork, unsigned long delay)
+{
+       struct timer_list *timer = &dwork->timer;
+       struct work_struct *work = &dwork->work;
+
+       WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
+                    timer->data != (unsigned long)dwork);
+       WARN_ON_ONCE(timer_pending(timer));
+       WARN_ON_ONCE(!list_empty(&work->entry));
+
+       /*
+        * If @delay is 0, queue @dwork->work immediately.  This is for
+        * both optimization and correctness.  The earliest @timer can
+        * expire is on the closest next tick and delayed_work users depend
+        * on that there's no such delay when @delay is 0.
+        */
+       if (!delay) {
+               __queue_work(cpu, wq, &dwork->work);
+               return;
+       }
+
+       timer_stats_timer_set_start_info(&dwork->timer);
+
+       dwork->wq = wq;
+       dwork->cpu = cpu;
+       timer->expires = jiffies + delay;
+
+       if (unlikely(cpu != WORK_CPU_UNBOUND))
+               add_timer_on(timer, cpu);
+       else
+               add_timer(timer);
+}
+
+/**
+ * queue_delayed_work_on - queue work on specific CPU after delay
+ * @cpu: CPU number to execute work on
+ * @wq: workqueue to use
+ * @dwork: work to queue
+ * @delay: number of jiffies to wait before queueing
+ *
+ * Return: %false if @work was already on a queue, %true otherwise.  If
+ * @delay is zero and @dwork is idle, it will be scheduled for immediate
+ * execution.
+ */
+bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
+                          struct delayed_work *dwork, unsigned long delay)
+{
+       struct work_struct *work = &dwork->work;
+       bool ret = false;
+       unsigned long flags;
+
+       /* read the comment in __queue_work() */
+       local_lock_irqsave(pendingb_lock, flags);
+
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
+               __queue_delayed_work(cpu, wq, dwork, delay);
+               ret = true;
+       }
+
+       local_unlock_irqrestore(pendingb_lock, flags);
+       return ret;
+}
+EXPORT_SYMBOL(queue_delayed_work_on);
+
+/**
+ * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
+ * @cpu: CPU number to execute work on
+ * @wq: workqueue to use
+ * @dwork: work to queue
+ * @delay: number of jiffies to wait before queueing
+ *
+ * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
+ * modify @dwork's timer so that it expires after @delay.  If @delay is
+ * zero, @work is guaranteed to be scheduled immediately regardless of its
+ * current state.
+ *
+ * Return: %false if @dwork was idle and queued, %true if @dwork was
+ * pending and its timer was modified.
+ *
+ * This function is safe to call from any context including IRQ handler.
+ * See try_to_grab_pending() for details.
+ */
+bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
+                        struct delayed_work *dwork, unsigned long delay)
+{
+       unsigned long flags;
+       int ret;
+
+       do {
+               ret = try_to_grab_pending(&dwork->work, true, &flags);
+       } while (unlikely(ret == -EAGAIN));
+
+       if (likely(ret >= 0)) {
+               __queue_delayed_work(cpu, wq, dwork, delay);
+               local_unlock_irqrestore(pendingb_lock, flags);
+       }
+
+       /* -ENOENT from try_to_grab_pending() becomes %true */
+       return ret;
+}
+EXPORT_SYMBOL_GPL(mod_delayed_work_on);
+
+/**
+ * worker_enter_idle - enter idle state
+ * @worker: worker which is entering idle state
+ *
+ * @worker is entering idle state.  Update stats and idle timer if
+ * necessary.
+ *
+ * LOCKING:
+ * spin_lock_irq(pool->lock).
+ */
+static void worker_enter_idle(struct worker *worker)
+{
+       struct worker_pool *pool = worker->pool;
+
+       if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
+           WARN_ON_ONCE(!list_empty(&worker->entry) &&
+                        (worker->hentry.next || worker->hentry.pprev)))
+               return;
+
+       /* can't use worker_set_flags(), also called from create_worker() */
+       worker->flags |= WORKER_IDLE;
+       pool->nr_idle++;
+       worker->last_active = jiffies;
+
+       /* idle_list is LIFO */
+       rt_lock_idle_list(pool);
+       list_add(&worker->entry, &pool->idle_list);
+       rt_unlock_idle_list(pool);
+
+       if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
+               mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
+
+       /*
+        * Sanity check nr_running.  Because wq_unbind_fn() releases
+        * pool->lock between setting %WORKER_UNBOUND and zapping
+        * nr_running, the warning may trigger spuriously.  Check iff
+        * unbind is not in progress.
+        */
+       WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
+                    pool->nr_workers == pool->nr_idle &&
+                    atomic_read(&pool->nr_running));
+}
+
+/**
+ * worker_leave_idle - leave idle state
+ * @worker: worker which is leaving idle state
+ *
+ * @worker is leaving idle state.  Update stats.
+ *
+ * LOCKING:
+ * spin_lock_irq(pool->lock).
+ */
+static void worker_leave_idle(struct worker *worker)
+{
+       struct worker_pool *pool = worker->pool;
+
+       if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
+               return;
+       worker_clr_flags(worker, WORKER_IDLE);
+       pool->nr_idle--;
+       rt_lock_idle_list(pool);
+       list_del_init(&worker->entry);
+       rt_unlock_idle_list(pool);
+}
+
+static struct worker *alloc_worker(int node)
+{
+       struct worker *worker;
+
+       worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
+       if (worker) {
+               INIT_LIST_HEAD(&worker->entry);
+               INIT_LIST_HEAD(&worker->scheduled);
+               INIT_LIST_HEAD(&worker->node);
+               /* on creation a worker is in !idle && prep state */
+               worker->flags = WORKER_PREP;
+       }
+       return worker;
+}
+
+/**
+ * worker_attach_to_pool() - attach a worker to a pool
+ * @worker: worker to be attached
+ * @pool: the target pool
+ *
+ * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
+ * cpu-binding of @worker are kept coordinated with the pool across
+ * cpu-[un]hotplugs.
+ */
+static void worker_attach_to_pool(struct worker *worker,
+                                  struct worker_pool *pool)
+{
+       mutex_lock(&pool->attach_mutex);
+
+       /*
+        * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
+        * online CPUs.  It'll be re-applied when any of the CPUs come up.
+        */
+       set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
+
+       /*
+        * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
+        * stable across this function.  See the comments above the
+        * flag definition for details.
+        */
+       if (pool->flags & POOL_DISASSOCIATED)
+               worker->flags |= WORKER_UNBOUND;
+
+       list_add_tail(&worker->node, &pool->workers);
+
+       mutex_unlock(&pool->attach_mutex);
+}
+
+/**
+ * worker_detach_from_pool() - detach a worker from its pool
+ * @worker: worker which is attached to its pool
+ * @pool: the pool @worker is attached to
+ *
+ * Undo the attaching which had been done in worker_attach_to_pool().  The
+ * caller worker shouldn't access to the pool after detached except it has
+ * other reference to the pool.
+ */
+static void worker_detach_from_pool(struct worker *worker,
+                                   struct worker_pool *pool)
+{
+       struct completion *detach_completion = NULL;
+
+       mutex_lock(&pool->attach_mutex);
+       list_del(&worker->node);
+       if (list_empty(&pool->workers))
+               detach_completion = pool->detach_completion;
+       mutex_unlock(&pool->attach_mutex);
+
+       /* clear leftover flags without pool->lock after it is detached */
+       worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
+
+       if (detach_completion)
+               complete(detach_completion);
+}
+
+/**
+ * create_worker - create a new workqueue worker
+ * @pool: pool the new worker will belong to
+ *
+ * Create and start a new worker which is attached to @pool.
+ *
+ * CONTEXT:
+ * Might sleep.  Does GFP_KERNEL allocations.
+ *
+ * Return:
+ * Pointer to the newly created worker.
+ */
+static struct worker *create_worker(struct worker_pool *pool)
+{
+       struct worker *worker = NULL;
+       int id = -1;
+       char id_buf[16];
+
+       /* ID is needed to determine kthread name */
+       id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
+       if (id < 0)
+               goto fail;
+
+       worker = alloc_worker(pool->node);
+       if (!worker)
+               goto fail;
+
+       worker->pool = pool;
+       worker->id = id;
+
+       if (pool->cpu >= 0)
+               snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
+                        pool->attrs->nice < 0  ? "H" : "");
+       else
+               snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
+
+       worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
+                                             "kworker/%s", id_buf);
+       if (IS_ERR(worker->task))
+               goto fail;
+
+       set_user_nice(worker->task, pool->attrs->nice);
+
+       /* prevent userland from meddling with cpumask of workqueue workers */
+       worker->task->flags |= PF_NO_SETAFFINITY;
+
+       /* successful, attach the worker to the pool */
+       worker_attach_to_pool(worker, pool);
+
+       /* start the newly created worker */
+       spin_lock_irq(&pool->lock);
+       worker->pool->nr_workers++;
+       worker_enter_idle(worker);
+       wake_up_process(worker->task);
+       spin_unlock_irq(&pool->lock);
+
+       return worker;
+
+fail:
+       if (id >= 0)
+               ida_simple_remove(&pool->worker_ida, id);
+       kfree(worker);
+       return NULL;
+}
+
+/**
+ * destroy_worker - destroy a workqueue worker
+ * @worker: worker to be destroyed
+ *
+ * Destroy @worker and adjust @pool stats accordingly.  The worker should
+ * be idle.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void destroy_worker(struct worker *worker)
+{
+       struct worker_pool *pool = worker->pool;
+
+       lockdep_assert_held(&pool->lock);
+
+       /* sanity check frenzy */
+       if (WARN_ON(worker->current_work) ||
+           WARN_ON(!list_empty(&worker->scheduled)) ||
+           WARN_ON(!(worker->flags & WORKER_IDLE)))
+               return;
+
+       pool->nr_workers--;
+       pool->nr_idle--;
+
+       rt_lock_idle_list(pool);
+       list_del_init(&worker->entry);
+       rt_unlock_idle_list(pool);
+       worker->flags |= WORKER_DIE;
+       wake_up_process(worker->task);
+}
+
+static void idle_worker_timeout(unsigned long __pool)
+{
+       struct worker_pool *pool = (void *)__pool;
+
+       spin_lock_irq(&pool->lock);
+
+       while (too_many_workers(pool)) {
+               struct worker *worker;
+               unsigned long expires;
+
+               /* idle_list is kept in LIFO order, check the last one */
+               worker = list_entry(pool->idle_list.prev, struct worker, entry);
+               expires = worker->last_active + IDLE_WORKER_TIMEOUT;
+
+               if (time_before(jiffies, expires)) {
+                       mod_timer(&pool->idle_timer, expires);
+                       break;
+               }
+
+               destroy_worker(worker);
+       }
+
+       spin_unlock_irq(&pool->lock);
+}
+
+static void send_mayday(struct work_struct *work)
+{
+       struct pool_workqueue *pwq = get_work_pwq(work);
+       struct workqueue_struct *wq = pwq->wq;
+
+       lockdep_assert_held(&wq_mayday_lock);
+
+       if (!wq->rescuer)
+               return;
+
+       /* mayday mayday mayday */
+       if (list_empty(&pwq->mayday_node)) {
+               /*
+                * If @pwq is for an unbound wq, its base ref may be put at
+                * any time due to an attribute change.  Pin @pwq until the
+                * rescuer is done with it.
+                */
+               get_pwq(pwq);
+               list_add_tail(&pwq->mayday_node, &wq->maydays);
+               wake_up_process(wq->rescuer->task);
+       }
+}
+
+static void pool_mayday_timeout(unsigned long __pool)
+{
+       struct worker_pool *pool = (void *)__pool;
+       struct work_struct *work;
+
+       spin_lock_irq(&pool->lock);
+       spin_lock(&wq_mayday_lock);             /* for wq->maydays */
+
+       if (need_to_create_worker(pool)) {
+               /*
+                * We've been trying to create a new worker but
+                * haven't been successful.  We might be hitting an
+                * allocation deadlock.  Send distress signals to
+                * rescuers.
+                */
+               list_for_each_entry(work, &pool->worklist, entry)
+                       send_mayday(work);
+       }
+
+       spin_unlock(&wq_mayday_lock);
+       spin_unlock_irq(&pool->lock);
+
+       mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
+}
+
+/**
+ * maybe_create_worker - create a new worker if necessary
+ * @pool: pool to create a new worker for
+ *
+ * Create a new worker for @pool if necessary.  @pool is guaranteed to
+ * have at least one idle worker on return from this function.  If
+ * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
+ * sent to all rescuers with works scheduled on @pool to resolve
+ * possible allocation deadlock.
+ *
+ * On return, need_to_create_worker() is guaranteed to be %false and
+ * may_start_working() %true.
+ *
+ * LOCKING:
+ * spin_lock_irq(pool->lock) which may be released and regrabbed
+ * multiple times.  Does GFP_KERNEL allocations.  Called only from
+ * manager.
+ */
+static void maybe_create_worker(struct worker_pool *pool)
+__releases(&pool->lock)
+__acquires(&pool->lock)
+{
+restart:
+       spin_unlock_irq(&pool->lock);
+
+       /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
+       mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
+
+       while (true) {
+               if (create_worker(pool) || !need_to_create_worker(pool))
+                       break;
+
+               schedule_timeout_interruptible(CREATE_COOLDOWN);
+
+               if (!need_to_create_worker(pool))
+                       break;
+       }
+
+       del_timer_sync(&pool->mayday_timer);
+       spin_lock_irq(&pool->lock);
+       /*
+        * This is necessary even after a new worker was just successfully
+        * created as @pool->lock was dropped and the new worker might have
+        * already become busy.
+        */
+       if (need_to_create_worker(pool))
+               goto restart;
+}
+
+/**
+ * manage_workers - manage worker pool
+ * @worker: self
+ *
+ * Assume the manager role and manage the worker pool @worker belongs
+ * to.  At any given time, there can be only zero or one manager per
+ * pool.  The exclusion is handled automatically by this function.
+ *
+ * The caller can safely start processing works on false return.  On
+ * true return, it's guaranteed that need_to_create_worker() is false
+ * and may_start_working() is true.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock) which may be released and regrabbed
+ * multiple times.  Does GFP_KERNEL allocations.
+ *
+ * Return:
+ * %false if the pool doesn't need management and the caller can safely
+ * start processing works, %true if management function was performed and
+ * the conditions that the caller verified before calling the function may
+ * no longer be true.
+ */
+static bool manage_workers(struct worker *worker)
+{
+       struct worker_pool *pool = worker->pool;
+
+       /*
+        * Anyone who successfully grabs manager_arb wins the arbitration
+        * and becomes the manager.  mutex_trylock() on pool->manager_arb
+        * failure while holding pool->lock reliably indicates that someone
+        * else is managing the pool and the worker which failed trylock
+        * can proceed to executing work items.  This means that anyone
+        * grabbing manager_arb is responsible for actually performing
+        * manager duties.  If manager_arb is grabbed and released without
+        * actual management, the pool may stall indefinitely.
+        */
+       if (!mutex_trylock(&pool->manager_arb))
+               return false;
+       pool->manager = worker;
+
+       maybe_create_worker(pool);
+
+       pool->manager = NULL;
+       mutex_unlock(&pool->manager_arb);
+       return true;
+}
+
+/**
+ * process_one_work - process single work
+ * @worker: self
+ * @work: work to process
+ *
+ * Process @work.  This function contains all the logics necessary to
+ * process a single work including synchronization against and
+ * interaction with other workers on the same cpu, queueing and
+ * flushing.  As long as context requirement is met, any worker can
+ * call this function to process a work.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock) which is released and regrabbed.
+ */
+static void process_one_work(struct worker *worker, struct work_struct *work)
+__releases(&pool->lock)
+__acquires(&pool->lock)
+{
+       struct pool_workqueue *pwq = get_work_pwq(work);
+       struct worker_pool *pool = worker->pool;
+       bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
+       int work_color;
+       struct worker *collision;
+#ifdef CONFIG_LOCKDEP
+       /*
+        * It is permissible to free the struct work_struct from
+        * inside the function that is called from it, this we need to
+        * take into account for lockdep too.  To avoid bogus "held
+        * lock freed" warnings as well as problems when looking into
+        * work->lockdep_map, make a copy and use that here.
+        */
+       struct lockdep_map lockdep_map;
+
+       lockdep_copy_map(&lockdep_map, &work->lockdep_map);
+#endif
+       /* ensure we're on the correct CPU */
+       WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
+                    raw_smp_processor_id() != pool->cpu);
+
+       /*
+        * A single work shouldn't be executed concurrently by
+        * multiple workers on a single cpu.  Check whether anyone is
+        * already processing the work.  If so, defer the work to the
+        * currently executing one.
+        */
+       collision = find_worker_executing_work(pool, work);
+       if (unlikely(collision)) {
+               move_linked_works(work, &collision->scheduled, NULL);
+               return;
+       }
+
+       /* claim and dequeue */
+       debug_work_deactivate(work);
+       hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
+       worker->current_work = work;
+       worker->current_func = work->func;
+       worker->current_pwq = pwq;
+       work_color = get_work_color(work);
+
+       list_del_init(&work->entry);
+
+       /*
+        * CPU intensive works don't participate in concurrency management.
+        * They're the scheduler's responsibility.  This takes @worker out
+        * of concurrency management and the next code block will chain
+        * execution of the pending work items.
+        */
+       if (unlikely(cpu_intensive))
+               worker_set_flags(worker, WORKER_CPU_INTENSIVE);
+
+       /*
+        * Wake up another worker if necessary.  The condition is always
+        * false for normal per-cpu workers since nr_running would always
+        * be >= 1 at this point.  This is used to chain execution of the
+        * pending work items for WORKER_NOT_RUNNING workers such as the
+        * UNBOUND and CPU_INTENSIVE ones.
+        */
+       if (need_more_worker(pool))
+               wake_up_worker(pool);
+
+       /*
+        * Record the last pool and clear PENDING which should be the last
+        * update to @work.  Also, do this inside @pool->lock so that
+        * PENDING and queued state changes happen together while IRQ is
+        * disabled.
+        */
+       set_work_pool_and_clear_pending(work, pool->id);
+
+       spin_unlock_irq(&pool->lock);
+
+       lock_map_acquire_read(&pwq->wq->lockdep_map);
+       lock_map_acquire(&lockdep_map);
+       trace_workqueue_execute_start(work);
+       worker->current_func(work);
+       /*
+        * While we must be careful to not use "work" after this, the trace
+        * point will only record its address.
+        */
+       trace_workqueue_execute_end(work);
+       lock_map_release(&lockdep_map);
+       lock_map_release(&pwq->wq->lockdep_map);
+
+       if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
+               pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
+                      "     last function: %pf\n",
+                      current->comm, preempt_count(), task_pid_nr(current),
+                      worker->current_func);
+               debug_show_held_locks(current);
+               dump_stack();
+       }
+
+       /*
+        * The following prevents a kworker from hogging CPU on !PREEMPT
+        * kernels, where a requeueing work item waiting for something to
+        * happen could deadlock with stop_machine as such work item could
+        * indefinitely requeue itself while all other CPUs are trapped in
+        * stop_machine. At the same time, report a quiescent RCU state so
+        * the same condition doesn't freeze RCU.
+        */
+       cond_resched_rcu_qs();
+
+       spin_lock_irq(&pool->lock);
+
+       /* clear cpu intensive status */
+       if (unlikely(cpu_intensive))
+               worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
+
+       /* we're done with it, release */
+       hash_del(&worker->hentry);
+       worker->current_work = NULL;
+       worker->current_func = NULL;
+       worker->current_pwq = NULL;
+       worker->desc_valid = false;
+       pwq_dec_nr_in_flight(pwq, work_color);
+}
+
+/**
+ * process_scheduled_works - process scheduled works
+ * @worker: self
+ *
+ * Process all scheduled works.  Please note that the scheduled list
+ * may change while processing a work, so this function repeatedly
+ * fetches a work from the top and executes it.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock) which may be released and regrabbed
+ * multiple times.
+ */
+static void process_scheduled_works(struct worker *worker)
+{
+       while (!list_empty(&worker->scheduled)) {
+               struct work_struct *work = list_first_entry(&worker->scheduled,
+                                               struct work_struct, entry);
+               process_one_work(worker, work);
+       }
+}
+
+/**
+ * worker_thread - the worker thread function
+ * @__worker: self
+ *
+ * The worker thread function.  All workers belong to a worker_pool -
+ * either a per-cpu one or dynamic unbound one.  These workers process all
+ * work items regardless of their specific target workqueue.  The only
+ * exception is work items which belong to workqueues with a rescuer which
+ * will be explained in rescuer_thread().
+ *
+ * Return: 0
+ */
+static int worker_thread(void *__worker)
+{
+       struct worker *worker = __worker;
+       struct worker_pool *pool = worker->pool;
+
+       /* tell the scheduler that this is a workqueue worker */
+       worker->task->flags |= PF_WQ_WORKER;
+woke_up:
+       spin_lock_irq(&pool->lock);
+
+       /* am I supposed to die? */
+       if (unlikely(worker->flags & WORKER_DIE)) {
+               spin_unlock_irq(&pool->lock);
+               WARN_ON_ONCE(!list_empty(&worker->entry));
+               worker->task->flags &= ~PF_WQ_WORKER;
+
+               set_task_comm(worker->task, "kworker/dying");
+               ida_simple_remove(&pool->worker_ida, worker->id);
+               worker_detach_from_pool(worker, pool);
+               kfree(worker);
+               return 0;
+       }
+
+       worker_leave_idle(worker);
+recheck:
+       /* no more worker necessary? */
+       if (!need_more_worker(pool))
+               goto sleep;
+
+       /* do we need to manage? */
+       if (unlikely(!may_start_working(pool)) && manage_workers(worker))
+               goto recheck;
+
+       /*
+        * ->scheduled list can only be filled while a worker is
+        * preparing to process a work or actually processing it.
+        * Make sure nobody diddled with it while I was sleeping.
+        */
+       WARN_ON_ONCE(!list_empty(&worker->scheduled));
+
+       /*
+        * Finish PREP stage.  We're guaranteed to have at least one idle
+        * worker or that someone else has already assumed the manager
+        * role.  This is where @worker starts participating in concurrency
+        * management if applicable and concurrency management is restored
+        * after being rebound.  See rebind_workers() for details.
+        */
+       worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
+
+       do {
+               struct work_struct *work =
+                       list_first_entry(&pool->worklist,
+                                        struct work_struct, entry);
+
+               if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
+                       /* optimization path, not strictly necessary */
+                       process_one_work(worker, work);
+                       if (unlikely(!list_empty(&worker->scheduled)))
+                               process_scheduled_works(worker);
+               } else {
+                       move_linked_works(work, &worker->scheduled, NULL);
+                       process_scheduled_works(worker);
+               }
+       } while (keep_working(pool));
+
+       worker_set_flags(worker, WORKER_PREP);
+sleep:
+       /*
+        * pool->lock is held and there's no work to process and no need to
+        * manage, sleep.  Workers are woken up only while holding
+        * pool->lock or from local cpu, so setting the current state
+        * before releasing pool->lock is enough to prevent losing any
+        * event.
+        */
+       worker_enter_idle(worker);
+       __set_current_state(TASK_INTERRUPTIBLE);
+       spin_unlock_irq(&pool->lock);
+       schedule();
+       goto woke_up;
+}
+
+/**
+ * rescuer_thread - the rescuer thread function
+ * @__rescuer: self
+ *
+ * Workqueue rescuer thread function.  There's one rescuer for each
+ * workqueue which has WQ_MEM_RECLAIM set.
+ *
+ * Regular work processing on a pool may block trying to create a new
+ * worker which uses GFP_KERNEL allocation which has slight chance of
+ * developing into deadlock if some works currently on the same queue
+ * need to be processed to satisfy the GFP_KERNEL allocation.  This is
+ * the problem rescuer solves.
+ *
+ * When such condition is possible, the pool summons rescuers of all
+ * workqueues which have works queued on the pool and let them process
+ * those works so that forward progress can be guaranteed.
+ *
+ * This should happen rarely.
+ *
+ * Return: 0
+ */
+static int rescuer_thread(void *__rescuer)
+{
+       struct worker *rescuer = __rescuer;
+       struct workqueue_struct *wq = rescuer->rescue_wq;
+       struct list_head *scheduled = &rescuer->scheduled;
+       bool should_stop;
+
+       set_user_nice(current, RESCUER_NICE_LEVEL);
+
+       /*
+        * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
+        * doesn't participate in concurrency management.
+        */
+       rescuer->task->flags |= PF_WQ_WORKER;
+repeat:
+       set_current_state(TASK_INTERRUPTIBLE);
+
+       /*
+        * By the time the rescuer is requested to stop, the workqueue
+        * shouldn't have any work pending, but @wq->maydays may still have
+        * pwq(s) queued.  This can happen by non-rescuer workers consuming
+        * all the work items before the rescuer got to them.  Go through
+        * @wq->maydays processing before acting on should_stop so that the
+        * list is always empty on exit.
+        */
+       should_stop = kthread_should_stop();
+
+       /* see whether any pwq is asking for help */
+       spin_lock_irq(&wq_mayday_lock);
+
+       while (!list_empty(&wq->maydays)) {
+               struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
+                                       struct pool_workqueue, mayday_node);
+               struct worker_pool *pool = pwq->pool;
+               struct work_struct *work, *n;
+
+               __set_current_state(TASK_RUNNING);
+               list_del_init(&pwq->mayday_node);
+
+               spin_unlock_irq(&wq_mayday_lock);
+
+               worker_attach_to_pool(rescuer, pool);
+
+               spin_lock_irq(&pool->lock);
+               rescuer->pool = pool;
+
+               /*
+                * Slurp in all works issued via this workqueue and
+                * process'em.
+                */
+               WARN_ON_ONCE(!list_empty(scheduled));
+               list_for_each_entry_safe(work, n, &pool->worklist, entry)
+                       if (get_work_pwq(work) == pwq)
+                               move_linked_works(work, scheduled, &n);
+
+               if (!list_empty(scheduled)) {
+                       process_scheduled_works(rescuer);
+
+                       /*
+                        * The above execution of rescued work items could
+                        * have created more to rescue through
+                        * pwq_activate_first_delayed() or chained
+                        * queueing.  Let's put @pwq back on mayday list so
+                        * that such back-to-back work items, which may be
+                        * being used to relieve memory pressure, don't
+                        * incur MAYDAY_INTERVAL delay inbetween.
+                        */
+                       if (need_to_create_worker(pool)) {
+                               spin_lock(&wq_mayday_lock);
+                               get_pwq(pwq);
+                               list_move_tail(&pwq->mayday_node, &wq->maydays);
+                               spin_unlock(&wq_mayday_lock);
+                       }
+               }
+
+               /*
+                * Put the reference grabbed by send_mayday().  @pool won't
+                * go away while we're still attached to it.
+                */
+               put_pwq(pwq);
+
+               /*
+                * Leave this pool.  If need_more_worker() is %true, notify a
+                * regular worker; otherwise, we end up with 0 concurrency
+                * and stalling the execution.
+                */
+               if (need_more_worker(pool))
+                       wake_up_worker(pool);
+
+               rescuer->pool = NULL;
+               spin_unlock_irq(&pool->lock);
+
+               worker_detach_from_pool(rescuer, pool);
+
+               spin_lock_irq(&wq_mayday_lock);
+       }
+
+       spin_unlock_irq(&wq_mayday_lock);
+
+       if (should_stop) {
+               __set_current_state(TASK_RUNNING);
+               rescuer->task->flags &= ~PF_WQ_WORKER;
+               return 0;
+       }
+
+       /* rescuers should never participate in concurrency management */
+       WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
+       schedule();
+       goto repeat;
+}
+
+struct wq_barrier {
+       struct work_struct      work;
+       struct completion       done;
+       struct task_struct      *task;  /* purely informational */
+};
+
+static void wq_barrier_func(struct work_struct *work)
+{
+       struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
+       complete(&barr->done);
+}
+
+/**
+ * insert_wq_barrier - insert a barrier work
+ * @pwq: pwq to insert barrier into
+ * @barr: wq_barrier to insert
+ * @target: target work to attach @barr to
+ * @worker: worker currently executing @target, NULL if @target is not executing
+ *
+ * @barr is linked to @target such that @barr is completed only after
+ * @target finishes execution.  Please note that the ordering
+ * guarantee is observed only with respect to @target and on the local
+ * cpu.
+ *
+ * Currently, a queued barrier can't be canceled.  This is because
+ * try_to_grab_pending() can't determine whether the work to be
+ * grabbed is at the head of the queue and thus can't clear LINKED
+ * flag of the previous work while there must be a valid next work
+ * after a work with LINKED flag set.
+ *
+ * Note that when @worker is non-NULL, @target may be modified
+ * underneath us, so we can't reliably determine pwq from @target.
+ *
+ * CONTEXT:
+ * spin_lock_irq(pool->lock).
+ */
+static void insert_wq_barrier(struct pool_workqueue *pwq,
+                             struct wq_barrier *barr,
+                             struct work_struct *target, struct worker *worker)
+{
+       struct list_head *head;
+       unsigned int linked = 0;
+
+       /*
+        * debugobject calls are safe here even with pool->lock locked
+        * as we know for sure that this will not trigger any of the
+        * checks and call back into the fixup functions where we
+        * might deadlock.
+        */
+       INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
+       __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
+       init_completion(&barr->done);
+       barr->task = current;
+
+       /*
+        * If @target is currently being executed, schedule the
+        * barrier to the worker; otherwise, put it after @target.
+        */
+       if (worker)
+               head = worker->scheduled.next;
+       else {
+               unsigned long *bits = work_data_bits(target);
+
+               head = target->entry.next;
+               /* there can already be other linked works, inherit and set */
+               linked = *bits & WORK_STRUCT_LINKED;
+               __set_bit(WORK_STRUCT_LINKED_BIT, bits);
+       }
+
+       debug_work_activate(&barr->work);
+       insert_work(pwq, &barr->work, head,
+                   work_color_to_flags(WORK_NO_COLOR) | linked);
+}
+
+/**
+ * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
+ * @wq: workqueue being flushed
+ * @flush_color: new flush color, < 0 for no-op
+ * @work_color: new work color, < 0 for no-op
+ *
+ * Prepare pwqs for workqueue flushing.
+ *
+ * If @flush_color is non-negative, flush_color on all pwqs should be
+ * -1.  If no pwq has in-flight commands at the specified color, all
+ * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
+ * has in flight commands, its pwq->flush_color is set to
+ * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
+ * wakeup logic is armed and %true is returned.
+ *
+ * The caller should have initialized @wq->first_flusher prior to
+ * calling this function with non-negative @flush_color.  If
+ * @flush_color is negative, no flush color update is done and %false
+ * is returned.
+ *
+ * If @work_color is non-negative, all pwqs should have the same
+ * work_color which is previous to @work_color and all will be
+ * advanced to @work_color.
+ *
+ * CONTEXT:
+ * mutex_lock(wq->mutex).
+ *
+ * Return:
+ * %true if @flush_color >= 0 and there's something to flush.  %false
+ * otherwise.
+ */
+static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
+                                     int flush_color, int work_color)
+{
+       bool wait = false;
+       struct pool_workqueue *pwq;
+
+       if (flush_color >= 0) {
+               WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
+               atomic_set(&wq->nr_pwqs_to_flush, 1);
+       }
+
+       for_each_pwq(pwq, wq) {
+               struct worker_pool *pool = pwq->pool;
+
+               spin_lock_irq(&pool->lock);
+
+               if (flush_color >= 0) {
+                       WARN_ON_ONCE(pwq->flush_color != -1);
+
+                       if (pwq->nr_in_flight[flush_color]) {
+                               pwq->flush_color = flush_color;
+                               atomic_inc(&wq->nr_pwqs_to_flush);
+                               wait = true;
+                       }
+               }
+
+               if (work_color >= 0) {
+                       WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
+                       pwq->work_color = work_color;
+               }
+
+               spin_unlock_irq(&pool->lock);
+       }
+
+       if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
+               complete(&wq->first_flusher->done);
+
+       return wait;
+}
+
+/**
+ * flush_workqueue - ensure that any scheduled work has run to completion.
+ * @wq: workqueue to flush
+ *
+ * This function sleeps until all work items which were queued on entry
+ * have finished execution, but it is not livelocked by new incoming ones.
+ */
+void flush_workqueue(struct workqueue_struct *wq)
+{
+       struct wq_flusher this_flusher = {
+               .list = LIST_HEAD_INIT(this_flusher.list),
+               .flush_color = -1,
+               .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
+       };
+       int next_color;
+
+       lock_map_acquire(&wq->lockdep_map);
+       lock_map_release(&wq->lockdep_map);
+
+       mutex_lock(&wq->mutex);
+
+       /*
+        * Start-to-wait phase
+        */
+       next_color = work_next_color(wq->work_color);
+
+       if (next_color != wq->flush_color) {
+               /*
+                * Color space is not full.  The current work_color
+                * becomes our flush_color and work_color is advanced
+                * by one.
+                */
+               WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
+               this_flusher.flush_color = wq->work_color;
+               wq->work_color = next_color;
+
+               if (!wq->first_flusher) {
+                       /* no flush in progress, become the first flusher */
+                       WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
+
+                       wq->first_flusher = &this_flusher;
+
+                       if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
+                                                      wq->work_color)) {
+                               /* nothing to flush, done */
+                               wq->flush_color = next_color;
+                               wq->first_flusher = NULL;
+                               goto out_unlock;
+                       }
+               } else {
+                       /* wait in queue */
+                       WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
+                       list_add_tail(&this_flusher.list, &wq->flusher_queue);
+                       flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
+               }
+       } else {
+               /*
+                * Oops, color space is full, wait on overflow queue.
+                * The next flush completion will assign us
+                * flush_color and transfer to flusher_queue.
+                */
+               list_add_tail(&this_flusher.list, &wq->flusher_overflow);
+       }
+
+       mutex_unlock(&wq->mutex);
+
+       wait_for_completion(&this_flusher.done);
+
+       /*
+        * Wake-up-and-cascade phase
+        *
+        * First flushers are responsible for cascading flushes and
+        * handling overflow.  Non-first flushers can simply return.
+        */
+       if (wq->first_flusher != &this_flusher)
+               return;
+
+       mutex_lock(&wq->mutex);
+
+       /* we might have raced, check again with mutex held */
+       if (wq->first_flusher != &this_flusher)
+               goto out_unlock;
+
+       wq->first_flusher = NULL;
+
+       WARN_ON_ONCE(!list_empty(&this_flusher.list));
+       WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
+
+       while (true) {
+               struct wq_flusher *next, *tmp;
+
+               /* complete all the flushers sharing the current flush color */
+               list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
+                       if (next->flush_color != wq->flush_color)
+                               break;
+                       list_del_init(&next->list);
+                       complete(&next->done);
+               }
+
+               WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
+                            wq->flush_color != work_next_color(wq->work_color));
+
+               /* this flush_color is finished, advance by one */
+               wq->flush_color = work_next_color(wq->flush_color);
+
+               /* one color has been freed, handle overflow queue */
+               if (!list_empty(&wq->flusher_overflow)) {
+                       /*
+                        * Assign the same color to all overflowed
+                        * flushers, advance work_color and append to
+                        * flusher_queue.  This is the start-to-wait
+                        * phase for these overflowed flushers.
+                        */
+                       list_for_each_entry(tmp, &wq->flusher_overflow, list)
+                               tmp->flush_color = wq->work_color;
+
+                       wq->work_color = work_next_color(wq->work_color);
+
+                       list_splice_tail_init(&wq->flusher_overflow,
+                                             &wq->flusher_queue);
+                       flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
+               }
+
+               if (list_empty(&wq->flusher_queue)) {
+                       WARN_ON_ONCE(wq->flush_color != wq->work_color);
+                       break;
+               }
+
+               /*
+                * Need to flush more colors.  Make the next flusher
+                * the new first flusher and arm pwqs.
+                */
+               WARN_ON_ONCE(wq->flush_color == wq->work_color);
+               WARN_ON_ONCE(wq->flush_color != next->flush_color);
+
+               list_del_init(&next->list);
+               wq->first_flusher = next;
+
+               if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
+                       break;
+
+               /*
+                * Meh... this color is already done, clear first
+                * flusher and repeat cascading.
+                */
+               wq->first_flusher = NULL;
+       }
+
+out_unlock:
+       mutex_unlock(&wq->mutex);
+}
+EXPORT_SYMBOL_GPL(flush_workqueue);
+
+/**
+ * drain_workqueue - drain a workqueue
+ * @wq: workqueue to drain
+ *
+ * Wait until the workqueue becomes empty.  While draining is in progress,
+ * only chain queueing is allowed.  IOW, only currently pending or running
+ * work items on @wq can queue further work items on it.  @wq is flushed
+ * repeatedly until it becomes empty.  The number of flushing is detemined
+ * by the depth of chaining and should be relatively short.  Whine if it
+ * takes too long.
+ */
+void drain_workqueue(struct workqueue_struct *wq)
+{
+       unsigned int flush_cnt = 0;
+       struct pool_workqueue *pwq;
+
+       /*
+        * __queue_work() needs to test whether there are drainers, is much
+        * hotter than drain_workqueue() and already looks at @wq->flags.
+        * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
+        */
+       mutex_lock(&wq->mutex);
+       if (!wq->nr_drainers++)
+               wq->flags |= __WQ_DRAINING;
+       mutex_unlock(&wq->mutex);
+reflush:
+       flush_workqueue(wq);
+
+       mutex_lock(&wq->mutex);
+
+       for_each_pwq(pwq, wq) {
+               bool drained;
+
+               spin_lock_irq(&pwq->pool->lock);
+               drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
+               spin_unlock_irq(&pwq->pool->lock);
+
+               if (drained)
+                       continue;
+
+               if (++flush_cnt == 10 ||
+                   (flush_cnt % 100 == 0 && flush_cnt <= 1000))
+                       pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
+                               wq->name, flush_cnt);
+
+               mutex_unlock(&wq->mutex);
+               goto reflush;
+       }
+
+       if (!--wq->nr_drainers)
+               wq->flags &= ~__WQ_DRAINING;
+       mutex_unlock(&wq->mutex);
+}
+EXPORT_SYMBOL_GPL(drain_workqueue);
+
+static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
+{
+       struct worker *worker = NULL;
+       struct worker_pool *pool;
+       struct pool_workqueue *pwq;
+
+       might_sleep();
+
+       rcu_read_lock();
+       pool = get_work_pool(work);
+       if (!pool) {
+               rcu_read_unlock();
+               return false;
+       }
+
+       spin_lock_irq(&pool->lock);
+       /* see the comment in try_to_grab_pending() with the same code */
+       pwq = get_work_pwq(work);
+       if (pwq) {
+               if (unlikely(pwq->pool != pool))
+                       goto already_gone;
+       } else {
+               worker = find_worker_executing_work(pool, work);
+               if (!worker)
+                       goto already_gone;
+               pwq = worker->current_pwq;
+       }
+
+       insert_wq_barrier(pwq, barr, work, worker);
+       spin_unlock_irq(&pool->lock);
+
+       /*
+        * If @max_active is 1 or rescuer is in use, flushing another work
+        * item on the same workqueue may lead to deadlock.  Make sure the
+        * flusher is not running on the same workqueue by verifying write
+        * access.
+        */
+       if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
+               lock_map_acquire(&pwq->wq->lockdep_map);
+       else
+               lock_map_acquire_read(&pwq->wq->lockdep_map);
+       lock_map_release(&pwq->wq->lockdep_map);
+       rcu_read_unlock();
+       return true;
+already_gone:
+       spin_unlock_irq(&pool->lock);
+       rcu_read_unlock();
+       return false;
+}
+
+/**
+ * flush_work - wait for a work to finish executing the last queueing instance
+ * @work: the work to flush
+ *
+ * Wait until @work has finished execution.  @work is guaranteed to be idle
+ * on return if it hasn't been requeued since flush started.
+ *
+ * Return:
+ * %true if flush_work() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_work(struct work_struct *work)
+{
+       struct wq_barrier barr;
+
+       lock_map_acquire(&work->lockdep_map);
+       lock_map_release(&work->lockdep_map);
+
+       if (start_flush_work(work, &barr)) {
+               wait_for_completion(&barr.done);
+               destroy_work_on_stack(&barr.work);
+               return true;
+       } else {
+               return false;
+       }
+}
+EXPORT_SYMBOL_GPL(flush_work);
+
+struct cwt_wait {
+       wait_queue_t            wait;
+       struct work_struct      *work;
+};
+
+static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
+{
+       struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
+
+       if (cwait->work != key)
+               return 0;
+       return autoremove_wake_function(wait, mode, sync, key);
+}
+
+static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
+{
+       static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
+       unsigned long flags;
+       int ret;
+
+       do {
+               ret = try_to_grab_pending(work, is_dwork, &flags);
+               /*
+                * If someone else is already canceling, wait for it to
+                * finish.  flush_work() doesn't work for PREEMPT_NONE
+                * because we may get scheduled between @work's completion
+                * and the other canceling task resuming and clearing
+                * CANCELING - flush_work() will return false immediately
+                * as @work is no longer busy, try_to_grab_pending() will
+                * return -ENOENT as @work is still being canceled and the
+                * other canceling task won't be able to clear CANCELING as
+                * we're hogging the CPU.
+                *
+                * Let's wait for completion using a waitqueue.  As this
+                * may lead to the thundering herd problem, use a custom
+                * wake function which matches @work along with exclusive
+                * wait and wakeup.
+                */
+               if (unlikely(ret == -ENOENT)) {
+                       struct cwt_wait cwait;
+
+                       init_wait(&cwait.wait);
+                       cwait.wait.func = cwt_wakefn;
+                       cwait.work = work;
+
+                       prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
+                                                 TASK_UNINTERRUPTIBLE);
+                       if (work_is_canceling(work))
+                               schedule();
+                       finish_wait(&cancel_waitq, &cwait.wait);
+               }
+       } while (unlikely(ret < 0));
+
+       /* tell other tasks trying to grab @work to back off */
+       mark_work_canceling(work);
+       local_unlock_irqrestore(pendingb_lock, flags);
+
+       flush_work(work);
+       clear_work_data(work);
+
+       /*
+        * Paired with prepare_to_wait() above so that either
+        * waitqueue_active() is visible here or !work_is_canceling() is
+        * visible there.
+        */
+       smp_mb();
+       if (waitqueue_active(&cancel_waitq))
+               __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
+
+       return ret;
+}
+
+/**
+ * cancel_work_sync - cancel a work and wait for it to finish
+ * @work: the work to cancel
+ *
+ * Cancel @work and wait for its execution to finish.  This function
+ * can be used even if the work re-queues itself or migrates to
+ * another workqueue.  On return from this function, @work is
+ * guaranteed to be not pending or executing on any CPU.
+ *
+ * cancel_work_sync(&delayed_work->work) must not be used for
+ * delayed_work's.  Use cancel_delayed_work_sync() instead.
+ *
+ * The caller must ensure that the workqueue on which @work was last
+ * queued can't be destroyed before this function returns.
+ *
+ * Return:
+ * %true if @work was pending, %false otherwise.
+ */
+bool cancel_work_sync(struct work_struct *work)
+{
+       return __cancel_work_timer(work, false);
+}
+EXPORT_SYMBOL_GPL(cancel_work_sync);
+
+/**
+ * flush_delayed_work - wait for a dwork to finish executing the last queueing
+ * @dwork: the delayed work to flush
+ *
+ * Delayed timer is cancelled and the pending work is queued for
+ * immediate execution.  Like flush_work(), this function only
+ * considers the last queueing instance of @dwork.
+ *
+ * Return:
+ * %true if flush_work() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_delayed_work(struct delayed_work *dwork)
+{
+       local_lock_irq(pendingb_lock);
+       if (del_timer_sync(&dwork->timer))
+               __queue_work(dwork->cpu, dwork->wq, &dwork->work);
+       local_unlock_irq(pendingb_lock);
+       return flush_work(&dwork->work);
+}
+EXPORT_SYMBOL(flush_delayed_work);
+
+/**
+ * cancel_delayed_work - cancel a delayed work
+ * @dwork: delayed_work to cancel
+ *
+ * Kill off a pending delayed_work.
+ *
+ * Return: %true if @dwork was pending and canceled; %false if it wasn't
+ * pending.
+ *
+ * Note:
+ * The work callback function may still be running on return, unless
+ * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
+ * use cancel_delayed_work_sync() to wait on it.
+ *
+ * This function is safe to call from any context including IRQ handler.
+ */
+bool cancel_delayed_work(struct delayed_work *dwork)
+{
+       unsigned long flags;
+       int ret;
+
+       do {
+               ret = try_to_grab_pending(&dwork->work, true, &flags);
+       } while (unlikely(ret == -EAGAIN));
+
+       if (unlikely(ret < 0))
+               return false;
+
+       set_work_pool_and_clear_pending(&dwork->work,
+                                       get_work_pool_id(&dwork->work));
+       local_unlock_irqrestore(pendingb_lock, flags);
+       return ret;
+}
+EXPORT_SYMBOL(cancel_delayed_work);
+
+/**
+ * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
+ * @dwork: the delayed work cancel
+ *
+ * This is cancel_work_sync() for delayed works.
+ *
+ * Return:
+ * %true if @dwork was pending, %false otherwise.
+ */
+bool cancel_delayed_work_sync(struct delayed_work *dwork)
+{
+       return __cancel_work_timer(&dwork->work, true);
+}
+EXPORT_SYMBOL(cancel_delayed_work_sync);
+
+/**
+ * schedule_on_each_cpu - execute a function synchronously on each online CPU
+ * @func: the function to call
+ *
+ * schedule_on_each_cpu() executes @func on each online CPU using the
+ * system workqueue and blocks until all CPUs have completed.
+ * schedule_on_each_cpu() is very slow.
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
+int schedule_on_each_cpu(work_func_t func)
+{
+       int cpu;
+       struct work_struct __percpu *works;
+
+       works = alloc_percpu(struct work_struct);
+       if (!works)
+               return -ENOMEM;
+
+       get_online_cpus();
+
+       for_each_online_cpu(cpu) {
+               struct work_struct *work = per_cpu_ptr(works, cpu);
+
+               INIT_WORK(work, func);
+               schedule_work_on(cpu, work);
+       }
+
+       for_each_online_cpu(cpu)
+               flush_work(per_cpu_ptr(works, cpu));
+
+       put_online_cpus();
+       free_percpu(works);
+       return 0;
+}
+
+/**
+ * flush_scheduled_work - ensure that any scheduled work has run to completion.
+ *
+ * Forces execution of the kernel-global workqueue and blocks until its
+ * completion.
+ *
+ * Think twice before calling this function!  It's very easy to get into
+ * trouble if you don't take great care.  Either of the following situations
+ * will lead to deadlock:
+ *
+ *     One of the work items currently on the workqueue needs to acquire
+ *     a lock held by your code or its caller.
+ *
+ *     Your code is running in the context of a work routine.
+ *
+ * They will be detected by lockdep when they occur, but the first might not
+ * occur very often.  It depends on what work items are on the workqueue and
+ * what locks they need, which you have no control over.
+ *
+ * In most situations flushing the entire workqueue is overkill; you merely
+ * need to know that a particular work item isn't queued and isn't running.
+ * In such cases you should use cancel_delayed_work_sync() or
+ * cancel_work_sync() instead.
+ */
+void flush_scheduled_work(void)
+{
+       flush_workqueue(system_wq);
+}
+EXPORT_SYMBOL(flush_scheduled_work);
+
+/**
+ * execute_in_process_context - reliably execute the routine with user context
+ * @fn:                the function to execute
+ * @ew:                guaranteed storage for the execute work structure (must
+ *             be available when the work executes)
+ *
+ * Executes the function immediately if process context is available,
+ * otherwise schedules the function for delayed execution.
+ *
+ * Return:     0 - function was executed
+ *             1 - function was scheduled for execution
+ */
+int execute_in_process_context(work_func_t fn, struct execute_work *ew)
+{
+       if (!in_interrupt()) {
+               fn(&ew->work);
+               return 0;
+       }
+
+       INIT_WORK(&ew->work, fn);
+       schedule_work(&ew->work);
+
+       return 1;
+}
+EXPORT_SYMBOL_GPL(execute_in_process_context);
+
+/**
+ * free_workqueue_attrs - free a workqueue_attrs
+ * @attrs: workqueue_attrs to free
+ *
+ * Undo alloc_workqueue_attrs().
+ */
+void free_workqueue_attrs(struct workqueue_attrs *attrs)
+{
+       if (attrs) {
+               free_cpumask_var(attrs->cpumask);
+               kfree(attrs);
+       }
+}
+
+/**
+ * alloc_workqueue_attrs - allocate a workqueue_attrs
+ * @gfp_mask: allocation mask to use
+ *
+ * Allocate a new workqueue_attrs, initialize with default settings and
+ * return it.
+ *
+ * Return: The allocated new workqueue_attr on success. %NULL on failure.
+ */
+struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
+{
+       struct workqueue_attrs *attrs;
+
+       attrs = kzalloc(sizeof(*attrs), gfp_mask);
+       if (!attrs)
+               goto fail;
+       if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
+               goto fail;
+
+       cpumask_copy(attrs->cpumask, cpu_possible_mask);
+       return attrs;
+fail:
+       free_workqueue_attrs(attrs);
+       return NULL;
+}
+
+static void copy_workqueue_attrs(struct workqueue_attrs *to,
+                                const struct workqueue_attrs *from)
+{
+       to->nice = from->nice;
+       cpumask_copy(to->cpumask, from->cpumask);
+       /*
+        * Unlike hash and equality test, this function doesn't ignore
+        * ->no_numa as it is used for both pool and wq attrs.  Instead,
+        * get_unbound_pool() explicitly clears ->no_numa after copying.
+        */
+       to->no_numa = from->no_numa;
+}
+
+/* hash value of the content of @attr */
+static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
+{
+       u32 hash = 0;
+
+       hash = jhash_1word(attrs->nice, hash);
+       hash = jhash(cpumask_bits(attrs->cpumask),
+                    BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
+       return hash;
+}
+
+/* content equality test */
+static bool wqattrs_equal(const struct workqueue_attrs *a,
+                         const struct workqueue_attrs *b)
+{
+       if (a->nice != b->nice)
+               return false;
+       if (!cpumask_equal(a->cpumask, b->cpumask))
+               return false;
+       return true;
+}
+
+/**
+ * init_worker_pool - initialize a newly zalloc'd worker_pool
+ * @pool: worker_pool to initialize
+ *
+ * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
+ *
+ * Return: 0 on success, -errno on failure.  Even on failure, all fields
+ * inside @pool proper are initialized and put_unbound_pool() can be called
+ * on @pool safely to release it.
+ */
+static int init_worker_pool(struct worker_pool *pool)
+{
+       spin_lock_init(&pool->lock);
+       pool->id = -1;
+       pool->cpu = -1;
+       pool->node = NUMA_NO_NODE;
+       pool->flags |= POOL_DISASSOCIATED;
+       INIT_LIST_HEAD(&pool->worklist);
+       INIT_LIST_HEAD(&pool->idle_list);
+       hash_init(pool->busy_hash);
+
+       init_timer_deferrable(&pool->idle_timer);
+       pool->idle_timer.function = idle_worker_timeout;
+       pool->idle_timer.data = (unsigned long)pool;
+
+       setup_timer(&pool->mayday_timer, pool_mayday_timeout,
+                   (unsigned long)pool);
+
+       mutex_init(&pool->manager_arb);
+       mutex_init(&pool->attach_mutex);
+       INIT_LIST_HEAD(&pool->workers);
+
+       ida_init(&pool->worker_ida);
+       INIT_HLIST_NODE(&pool->hash_node);
+       pool->refcnt = 1;
+
+       /* shouldn't fail above this point */
+       pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
+       if (!pool->attrs)
+               return -ENOMEM;
+       return 0;
+}
+
+static void rcu_free_wq(struct rcu_head *rcu)
+{
+       struct workqueue_struct *wq =
+               container_of(rcu, struct workqueue_struct, rcu);
+
+       if (!(wq->flags & WQ_UNBOUND))
+               free_percpu(wq->cpu_pwqs);
+       else
+               free_workqueue_attrs(wq->unbound_attrs);
+
+       kfree(wq->rescuer);
+       kfree(wq);
+}
+
+static void rcu_free_pool(struct rcu_head *rcu)
+{
+       struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
+
+       ida_destroy(&pool->worker_ida);
+       free_workqueue_attrs(pool->attrs);
+       kfree(pool);
+}
+
+/**
+ * put_unbound_pool - put a worker_pool
+ * @pool: worker_pool to put
+ *
+ * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
+ * safe manner.  get_unbound_pool() calls this function on its failure path
+ * and this function should be able to release pools which went through,
+ * successfully or not, init_worker_pool().
+ *
+ * Should be called with wq_pool_mutex held.
+ */
+static void put_unbound_pool(struct worker_pool *pool)
+{
+       DECLARE_COMPLETION_ONSTACK(detach_completion);
+       struct worker *worker;
+
+       lockdep_assert_held(&wq_pool_mutex);
+
+       if (--pool->refcnt)
+               return;
+
+       /* sanity checks */
+       if (WARN_ON(!(pool->cpu < 0)) ||
+           WARN_ON(!list_empty(&pool->worklist)))
+               return;
+
+       /* release id and unhash */
+       if (pool->id >= 0)
+               idr_remove(&worker_pool_idr, pool->id);
+       hash_del(&pool->hash_node);
+
+       /*
+        * Become the manager and destroy all workers.  Grabbing
+        * manager_arb prevents @pool's workers from blocking on
+        * attach_mutex.
+        */
+       mutex_lock(&pool->manager_arb);
+
+       spin_lock_irq(&pool->lock);
+       while ((worker = first_idle_worker(pool)))
+               destroy_worker(worker);
+       WARN_ON(pool->nr_workers || pool->nr_idle);
+       spin_unlock_irq(&pool->lock);
+
+       mutex_lock(&pool->attach_mutex);
+       if (!list_empty(&pool->workers))
+               pool->detach_completion = &detach_completion;
+       mutex_unlock(&pool->attach_mutex);
+
+       if (pool->detach_completion)
+               wait_for_completion(pool->detach_completion);
+
+       mutex_unlock(&pool->manager_arb);
+
+       /* shut down the timers */
+       del_timer_sync(&pool->idle_timer);
+       del_timer_sync(&pool->mayday_timer);
+
+       /* RCU protected to allow dereferences from get_work_pool() */
+       call_rcu(&pool->rcu, rcu_free_pool);
+}
+
+/**
+ * get_unbound_pool - get a worker_pool with the specified attributes
+ * @attrs: the attributes of the worker_pool to get
+ *
+ * Obtain a worker_pool which has the same attributes as @attrs, bump the
+ * reference count and return it.  If there already is a matching
+ * worker_pool, it will be used; otherwise, this function attempts to
+ * create a new one.
+ *
+ * Should be called with wq_pool_mutex held.
+ *
+ * Return: On success, a worker_pool with the same attributes as @attrs.
+ * On failure, %NULL.
+ */
+static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
+{
+       u32 hash = wqattrs_hash(attrs);
+       struct worker_pool *pool;
+       int node;
+
+       lockdep_assert_held(&wq_pool_mutex);
+
+       /* do we already have a matching pool? */
+       hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
+               if (wqattrs_equal(pool->attrs, attrs)) {
+                       pool->refcnt++;
+                       return pool;
+               }
+       }
+
+       /* nope, create a new one */
+       pool = kzalloc(sizeof(*pool), GFP_KERNEL);
+       if (!pool || init_worker_pool(pool) < 0)
+               goto fail;
+
+       lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
+       copy_workqueue_attrs(pool->attrs, attrs);
+
+       /*
+        * no_numa isn't a worker_pool attribute, always clear it.  See
+        * 'struct workqueue_attrs' comments for detail.
+        */
+       pool->attrs->no_numa = false;
+
+       /* if cpumask is contained inside a NUMA node, we belong to that node */
+       if (wq_numa_enabled) {
+               for_each_node(node) {
+                       if (cpumask_subset(pool->attrs->cpumask,
+                                          wq_numa_possible_cpumask[node])) {
+                               pool->node = node;
+                               break;
+                       }
+               }
+       }
+
+       if (worker_pool_assign_id(pool) < 0)
+               goto fail;
+
+       /* create and start the initial worker */
+       if (!create_worker(pool))
+               goto fail;
+
+       /* install */
+       hash_add(unbound_pool_hash, &pool->hash_node, hash);
+
+       return pool;
+fail:
+       if (pool)
+               put_unbound_pool(pool);
+       return NULL;
+}
+
+static void rcu_free_pwq(struct rcu_head *rcu)
+{
+       kmem_cache_free(pwq_cache,
+                       container_of(rcu, struct pool_workqueue, rcu));
+}
+
+/*
+ * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
+ * and needs to be destroyed.
+ */
+static void pwq_unbound_release_workfn(struct work_struct *work)
+{
+       struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
+                                                 unbound_release_work);
+       struct workqueue_struct *wq = pwq->wq;
+       struct worker_pool *pool = pwq->pool;
+       bool is_last;
+
+       if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
+               return;
+
+       mutex_lock(&wq->mutex);
+       list_del_rcu(&pwq->pwqs_node);
+       is_last = list_empty(&wq->pwqs);
+       mutex_unlock(&wq->mutex);
+
+       mutex_lock(&wq_pool_mutex);
+       put_unbound_pool(pool);
+       mutex_unlock(&wq_pool_mutex);
+
+       call_rcu(&pwq->rcu, rcu_free_pwq);
+
+       /*
+        * If we're the last pwq going away, @wq is already dead and no one
+        * is gonna access it anymore.  Schedule RCU free.
+        */
+       if (is_last)
+               call_rcu(&wq->rcu, rcu_free_wq);
+}
+
+/**
+ * pwq_adjust_max_active - update a pwq's max_active to the current setting
+ * @pwq: target pool_workqueue
+ *
+ * If @pwq isn't freezing, set @pwq->max_active to the associated
+ * workqueue's saved_max_active and activate delayed work items
+ * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
+ */
+static void pwq_adjust_max_active(struct pool_workqueue *pwq)
+{
+       struct workqueue_struct *wq = pwq->wq;
+       bool freezable = wq->flags & WQ_FREEZABLE;
+
+       /* for @wq->saved_max_active */
+       lockdep_assert_held(&wq->mutex);
+
+       /* fast exit for non-freezable wqs */
+       if (!freezable && pwq->max_active == wq->saved_max_active)
+               return;
+
+       spin_lock_irq(&pwq->pool->lock);
+
+       /*
+        * During [un]freezing, the caller is responsible for ensuring that
+        * this function is called at least once after @workqueue_freezing
+        * is updated and visible.
+        */
+       if (!freezable || !workqueue_freezing) {
+               pwq->max_active = wq->saved_max_active;
+
+               while (!list_empty(&pwq->delayed_works) &&
+                      pwq->nr_active < pwq->max_active)
+                       pwq_activate_first_delayed(pwq);
+
+               /*
+                * Need to kick a worker after thawed or an unbound wq's
+                * max_active is bumped.  It's a slow path.  Do it always.
+                */
+               wake_up_worker(pwq->pool);
+       } else {
+               pwq->max_active = 0;
+       }
+
+       spin_unlock_irq(&pwq->pool->lock);
+}
+
+/* initialize newly alloced @pwq which is associated with @wq and @pool */
+static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
+                    struct worker_pool *pool)
+{
+       BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
+
+       memset(pwq, 0, sizeof(*pwq));
+
+       pwq->pool = pool;
+       pwq->wq = wq;
+       pwq->flush_color = -1;
+       pwq->refcnt = 1;
+       INIT_LIST_HEAD(&pwq->delayed_works);
+       INIT_LIST_HEAD(&pwq->pwqs_node);
+       INIT_LIST_HEAD(&pwq->mayday_node);
+       INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
+}
+
+/* sync @pwq with the current state of its associated wq and link it */
+static void link_pwq(struct pool_workqueue *pwq)
+{
+       struct workqueue_struct *wq = pwq->wq;
+
+       lockdep_assert_held(&wq->mutex);
+
+       /* may be called multiple times, ignore if already linked */
+       if (!list_empty(&pwq->pwqs_node))
+               return;
+
+       /* set the matching work_color */
+       pwq->work_color = wq->work_color;
+
+       /* sync max_active to the current setting */
+       pwq_adjust_max_active(pwq);
+
+       /* link in @pwq */
+       list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
+}
+
+/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
+static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
+                                       const struct workqueue_attrs *attrs)
+{
+       struct worker_pool *pool;
+       struct pool_workqueue *pwq;
+
+       lockdep_assert_held(&wq_pool_mutex);
+
+       pool = get_unbound_pool(attrs);
+       if (!pool)
+               return NULL;
+
+       pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
+       if (!pwq) {
+               put_unbound_pool(pool);
+               return NULL;
+       }
+
+       init_pwq(pwq, wq, pool);
+       return pwq;
+}
+
+/* undo alloc_unbound_pwq(), used only in the error path */
+static void free_unbound_pwq(struct pool_workqueue *pwq)
+{
+       lockdep_assert_held(&wq_pool_mutex);
+
+       if (pwq) {
+               put_unbound_pool(pwq->pool);
+               kmem_cache_free(pwq_cache, pwq);
+       }
+}
+
+/**
+ * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
+ * @attrs: the wq_attrs of interest
+ * @node: the target NUMA node
+ * @cpu_going_down: if >= 0, the CPU to consider as offline
+ * @cpumask: outarg, the resulting cpumask
+ *
+ * Calculate the cpumask a workqueue with @attrs should use on @node.  If
+ * @cpu_going_down is >= 0, that cpu is considered offline during
+ * calculation.  The result is stored in @cpumask.
+ *
+ * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
+ * enabled and @node has online CPUs requested by @attrs, the returned
+ * cpumask is the intersection of the possible CPUs of @node and
+ * @attrs->cpumask.
+ *
+ * The caller is responsible for ensuring that the cpumask of @node stays
+ * stable.
+ *
+ * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
+ * %false if equal.
+ */
+static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
+                                int cpu_going_down, cpumask_t *cpumask)
+{
+       if (!wq_numa_enabled || attrs->no_numa)
+               goto use_dfl;
+
+       /* does @node have any online CPUs @attrs wants? */
+       cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
+       if (cpu_going_down >= 0)
+               cpumask_clear_cpu(cpu_going_down, cpumask);
+
+       if (cpumask_empty(cpumask))
+               goto use_dfl;
+
+       /* yeap, return possible CPUs in @node that @attrs wants */
+       cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
+       return !cpumask_equal(cpumask, attrs->cpumask);
+
+use_dfl:
+       cpumask_copy(cpumask, attrs->cpumask);
+       return false;
+}
+
+/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
+static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
+                                                  int node,
+                                                  struct pool_workqueue *pwq)
+{
+       struct pool_workqueue *old_pwq;
+
+       lockdep_assert_held(&wq->mutex);
+
+       /* link_pwq() can handle duplicate calls */
+       link_pwq(pwq);
+
+       old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
+       rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
+       return old_pwq;
+}
+
+/**
+ * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
+ * @wq: the target workqueue
+ * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
+ *
+ * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
+ * machines, this function maps a separate pwq to each NUMA node with
+ * possibles CPUs in @attrs->cpumask so that work items are affine to the
+ * NUMA node it was issued on.  Older pwqs are released as in-flight work
+ * items finish.  Note that a work item which repeatedly requeues itself
+ * back-to-back will stay on its current pwq.
+ *
+ * Performs GFP_KERNEL allocations.
+ *
+ * Return: 0 on success and -errno on failure.
+ */
+int apply_workqueue_attrs(struct workqueue_struct *wq,
+                         const struct workqueue_attrs *attrs)
+{
+       struct workqueue_attrs *new_attrs, *tmp_attrs;
+       struct pool_workqueue **pwq_tbl, *dfl_pwq;
+       int node, ret;
+
+       /* only unbound workqueues can change attributes */
+       if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
+               return -EINVAL;
+
+       /* creating multiple pwqs breaks ordering guarantee */
+       if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
+               return -EINVAL;
+
+       pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
+       new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
+       tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
+       if (!pwq_tbl || !new_attrs || !tmp_attrs)
+               goto enomem;
+
+       /* make a copy of @attrs and sanitize it */
+       copy_workqueue_attrs(new_attrs, attrs);
+       cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
+
+       /*
+        * We may create multiple pwqs with differing cpumasks.  Make a
+        * copy of @new_attrs which will be modified and used to obtain
+        * pools.
+        */
+       copy_workqueue_attrs(tmp_attrs, new_attrs);
+
+       /*
+        * CPUs should stay stable across pwq creations and installations.
+        * Pin CPUs, determine the target cpumask for each node and create
+        * pwqs accordingly.
+        */
+       get_online_cpus();
+
+       mutex_lock(&wq_pool_mutex);
+
+       /*
+        * If something goes wrong during CPU up/down, we'll fall back to
+        * the default pwq covering whole @attrs->cpumask.  Always create
+        * it even if we don't use it immediately.
+        */
+       dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
+       if (!dfl_pwq)
+               goto enomem_pwq;
+
+       for_each_node(node) {
+               if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
+                       pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
+                       if (!pwq_tbl[node])
+                               goto enomem_pwq;
+               } else {
+                       dfl_pwq->refcnt++;
+                       pwq_tbl[node] = dfl_pwq;
+               }
+       }
+
+       mutex_unlock(&wq_pool_mutex);
+
+       /* all pwqs have been created successfully, let's install'em */
+       mutex_lock(&wq->mutex);
+
+       copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
+
+       /* save the previous pwq and install the new one */
+       for_each_node(node)
+               pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
+
+       /* @dfl_pwq might not have been used, ensure it's linked */
+       link_pwq(dfl_pwq);
+       swap(wq->dfl_pwq, dfl_pwq);
+
+       mutex_unlock(&wq->mutex);
+
+       /* put the old pwqs */
+       for_each_node(node)
+               put_pwq_unlocked(pwq_tbl[node]);
+       put_pwq_unlocked(dfl_pwq);
+
+       put_online_cpus();
+       ret = 0;
+       /* fall through */
+out_free:
+       free_workqueue_attrs(tmp_attrs);
+       free_workqueue_attrs(new_attrs);
+       kfree(pwq_tbl);
+       return ret;
+
+enomem_pwq:
+       free_unbound_pwq(dfl_pwq);
+       for_each_node(node)
+               if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
+                       free_unbound_pwq(pwq_tbl[node]);
+       mutex_unlock(&wq_pool_mutex);
+       put_online_cpus();
+enomem:
+       ret = -ENOMEM;
+       goto out_free;
+}
+
+/**
+ * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
+ * @wq: the target workqueue
+ * @cpu: the CPU coming up or going down
+ * @online: whether @cpu is coming up or going down
+ *
+ * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
+ * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
+ * @wq accordingly.
+ *
+ * If NUMA affinity can't be adjusted due to memory allocation failure, it
+ * falls back to @wq->dfl_pwq which may not be optimal but is always
+ * correct.
+ *
+ * Note that when the last allowed CPU of a NUMA node goes offline for a
+ * workqueue with a cpumask spanning multiple nodes, the workers which were
+ * already executing the work items for the workqueue will lose their CPU
+ * affinity and may execute on any CPU.  This is similar to how per-cpu
+ * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
+ * affinity, it's the user's responsibility to flush the work item from
+ * CPU_DOWN_PREPARE.
+ */
+static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
+                                  bool online)
+{
+       int node = cpu_to_node(cpu);
+       int cpu_off = online ? -1 : cpu;
+       struct pool_workqueue *old_pwq = NULL, *pwq;
+       struct workqueue_attrs *target_attrs;
+       cpumask_t *cpumask;
+
+       lockdep_assert_held(&wq_pool_mutex);
+
+       if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
+               return;
+
+       /*
+        * We don't wanna alloc/free wq_attrs for each wq for each CPU.
+        * Let's use a preallocated one.  The following buf is protected by
+        * CPU hotplug exclusion.
+        */
+       target_attrs = wq_update_unbound_numa_attrs_buf;
+       cpumask = target_attrs->cpumask;
+
+       mutex_lock(&wq->mutex);
+       if (wq->unbound_attrs->no_numa)
+               goto out_unlock;
+
+       copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
+       pwq = unbound_pwq_by_node(wq, node);
+
+       /*
+        * Let's determine what needs to be done.  If the target cpumask is
+        * different from wq's, we need to compare it to @pwq's and create
+        * a new one if they don't match.  If the target cpumask equals
+        * wq's, the default pwq should be used.
+        */
+       if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
+               if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
+                       goto out_unlock;
+       } else {
+               goto use_dfl_pwq;
+       }
+
+       mutex_unlock(&wq->mutex);
+
+       /* create a new pwq */
+       pwq = alloc_unbound_pwq(wq, target_attrs);
+       if (!pwq) {
+               pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
+                       wq->name);
+               mutex_lock(&wq->mutex);
+               goto use_dfl_pwq;
+       }
+
+       /*
+        * Install the new pwq.  As this function is called only from CPU
+        * hotplug callbacks and applying a new attrs is wrapped with
+        * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
+        * inbetween.
+        */
+       mutex_lock(&wq->mutex);
+       old_pwq = numa_pwq_tbl_install(wq, node, pwq);
+       goto out_unlock;
+
+use_dfl_pwq:
+       spin_lock_irq(&wq->dfl_pwq->pool->lock);
+       get_pwq(wq->dfl_pwq);
+       spin_unlock_irq(&wq->dfl_pwq->pool->lock);
+       old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
+out_unlock:
+       mutex_unlock(&wq->mutex);
+       put_pwq_unlocked(old_pwq);
+}
+
+static int alloc_and_link_pwqs(struct workqueue_struct *wq)
+{
+       bool highpri = wq->flags & WQ_HIGHPRI;
+       int cpu, ret;
+
+       if (!(wq->flags & WQ_UNBOUND)) {
+               wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
+               if (!wq->cpu_pwqs)
+                       return -ENOMEM;
+
+               for_each_possible_cpu(cpu) {
+                       struct pool_workqueue *pwq =
+                               per_cpu_ptr(wq->cpu_pwqs, cpu);
+                       struct worker_pool *cpu_pools =
+                               per_cpu(cpu_worker_pools, cpu);
+
+                       init_pwq(pwq, wq, &cpu_pools[highpri]);
+
+                       mutex_lock(&wq->mutex);
+                       link_pwq(pwq);
+                       mutex_unlock(&wq->mutex);
+               }
+               return 0;
+       } else if (wq->flags & __WQ_ORDERED) {
+               ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
+               /* there should only be single pwq for ordering guarantee */
+               WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
+                             wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
+                    "ordering guarantee broken for workqueue %s\n", wq->name);
+               return ret;
+       } else {
+               return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
+       }
+}
+
+static int wq_clamp_max_active(int max_active, unsigned int flags,
+                              const char *name)
+{
+       int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
+
+       if (max_active < 1 || max_active > lim)
+               pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
+                       max_active, name, 1, lim);
+
+       return clamp_val(max_active, 1, lim);
+}
+
+struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
+                                              unsigned int flags,
+                                              int max_active,
+                                              struct lock_class_key *key,
+                                              const char *lock_name, ...)
+{
+       size_t tbl_size = 0;
+       va_list args;
+       struct workqueue_struct *wq;
+       struct pool_workqueue *pwq;
+
+       /* see the comment above the definition of WQ_POWER_EFFICIENT */
+       if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
+               flags |= WQ_UNBOUND;
+
+       /* allocate wq and format name */
+       if (flags & WQ_UNBOUND)
+               tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
+
+       wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
+       if (!wq)
+               return NULL;
+
+       if (flags & WQ_UNBOUND) {
+               wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
+               if (!wq->unbound_attrs)
+                       goto err_free_wq;
+       }
+
+       va_start(args, lock_name);
+       vsnprintf(wq->name, sizeof(wq->name), fmt, args);
+       va_end(args);
+
+       max_active = max_active ?: WQ_DFL_ACTIVE;
+       max_active = wq_clamp_max_active(max_active, flags, wq->name);
+
+       /* init wq */
+       wq->flags = flags;
+       wq->saved_max_active = max_active;
+       mutex_init(&wq->mutex);
+       atomic_set(&wq->nr_pwqs_to_flush, 0);
+       INIT_LIST_HEAD(&wq->pwqs);
+       INIT_LIST_HEAD(&wq->flusher_queue);
+       INIT_LIST_HEAD(&wq->flusher_overflow);
+       INIT_LIST_HEAD(&wq->maydays);
+
+       lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
+       INIT_LIST_HEAD(&wq->list);
+
+       if (alloc_and_link_pwqs(wq) < 0)
+               goto err_free_wq;
+
+       /*
+        * Workqueues which may be used during memory reclaim should
+        * have a rescuer to guarantee forward progress.
+        */
+       if (flags & WQ_MEM_RECLAIM) {
+               struct worker *rescuer;
+
+               rescuer = alloc_worker(NUMA_NO_NODE);
+               if (!rescuer)
+                       goto err_destroy;
+
+               rescuer->rescue_wq = wq;
+               rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
+                                              wq->name);
+               if (IS_ERR(rescuer->task)) {
+                       kfree(rescuer);
+                       goto err_destroy;
+               }
+
+               wq->rescuer = rescuer;
+               rescuer->task->flags |= PF_NO_SETAFFINITY;
+               wake_up_process(rescuer->task);
+       }
+
+       if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
+               goto err_destroy;
+
+       /*
+        * wq_pool_mutex protects global freeze state and workqueues list.
+        * Grab it, adjust max_active and add the new @wq to workqueues
+        * list.
+        */
+       mutex_lock(&wq_pool_mutex);
+
+       mutex_lock(&wq->mutex);
+       for_each_pwq(pwq, wq)
+               pwq_adjust_max_active(pwq);
+       mutex_unlock(&wq->mutex);
+
+       list_add_tail_rcu(&wq->list, &workqueues);
+
+       mutex_unlock(&wq_pool_mutex);
+
+       return wq;
+
+err_free_wq:
+       free_workqueue_attrs(wq->unbound_attrs);
+       kfree(wq);
+       return NULL;
+err_destroy:
+       destroy_workqueue(wq);
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
+
+/**
+ * destroy_workqueue - safely terminate a workqueue
+ * @wq: target workqueue
+ *
+ * Safely destroy a workqueue. All work currently pending will be done first.
+ */
+void destroy_workqueue(struct workqueue_struct *wq)
+{
+       struct pool_workqueue *pwq;
+       int node;
+
+       /* drain it before proceeding with destruction */
+       drain_workqueue(wq);
+
+       /* sanity checks */
+       mutex_lock(&wq->mutex);
+       for_each_pwq(pwq, wq) {
+               int i;
+
+               for (i = 0; i < WORK_NR_COLORS; i++) {
+                       if (WARN_ON(pwq->nr_in_flight[i])) {
+                               mutex_unlock(&wq->mutex);
+                               return;
+                       }
+               }
+
+               if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
+                   WARN_ON(pwq->nr_active) ||
+                   WARN_ON(!list_empty(&pwq->delayed_works))) {
+                       mutex_unlock(&wq->mutex);
+                       return;
+               }
+       }
+       mutex_unlock(&wq->mutex);
+
+       /*
+        * wq list is used to freeze wq, remove from list after
+        * flushing is complete in case freeze races us.
+        */
+       mutex_lock(&wq_pool_mutex);
+       list_del_rcu(&wq->list);
+       mutex_unlock(&wq_pool_mutex);
+
+       workqueue_sysfs_unregister(wq);
+
+       if (wq->rescuer)
+               kthread_stop(wq->rescuer->task);
+
+       if (!(wq->flags & WQ_UNBOUND)) {
+               /*
+                * The base ref is never dropped on per-cpu pwqs.  Directly
+                * schedule RCU free.
+                */
+               call_rcu(&wq->rcu, rcu_free_wq);
+       } else {
+               /*
+                * We're the sole accessor of @wq at this point.  Directly
+                * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
+                * @wq will be freed when the last pwq is released.
+                */
+               for_each_node(node) {
+                       pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
+                       RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
+                       put_pwq_unlocked(pwq);
+               }
+
+               /*
+                * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
+                * put.  Don't access it afterwards.
+                */
+               pwq = wq->dfl_pwq;
+               wq->dfl_pwq = NULL;
+               put_pwq_unlocked(pwq);
+       }
+}
+EXPORT_SYMBOL_GPL(destroy_workqueue);
+
+/**
+ * workqueue_set_max_active - adjust max_active of a workqueue
+ * @wq: target workqueue
+ * @max_active: new max_active value.
+ *
+ * Set max_active of @wq to @max_active.
+ *
+ * CONTEXT:
+ * Don't call from IRQ context.
+ */
+void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
+{
+       struct pool_workqueue *pwq;
+
+       /* disallow meddling with max_active for ordered workqueues */
+       if (WARN_ON(wq->flags & __WQ_ORDERED))
+               return;
+
+       max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
+
+       mutex_lock(&wq->mutex);
+
+       wq->saved_max_active = max_active;
+
+       for_each_pwq(pwq, wq)
+               pwq_adjust_max_active(pwq);
+
+       mutex_unlock(&wq->mutex);
+}
+EXPORT_SYMBOL_GPL(workqueue_set_max_active);
+
+/**
+ * current_is_workqueue_rescuer - is %current workqueue rescuer?
+ *
+ * Determine whether %current is a workqueue rescuer.  Can be used from
+ * work functions to determine whether it's being run off the rescuer task.
+ *
+ * Return: %true if %current is a workqueue rescuer. %false otherwise.
+ */
+bool current_is_workqueue_rescuer(void)
+{
+       struct worker *worker = current_wq_worker();
+
+       return worker && worker->rescue_wq;
+}
+
+/**
+ * workqueue_congested - test whether a workqueue is congested
+ * @cpu: CPU in question
+ * @wq: target workqueue
+ *
+ * Test whether @wq's cpu workqueue for @cpu is congested.  There is
+ * no synchronization around this function and the test result is
+ * unreliable and only useful as advisory hints or for debugging.
+ *
+ * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
+ * Note that both per-cpu and unbound workqueues may be associated with
+ * multiple pool_workqueues which have separate congested states.  A
+ * workqueue being congested on one CPU doesn't mean the workqueue is also
+ * contested on other CPUs / NUMA nodes.
+ *
+ * Return:
+ * %true if congested, %false otherwise.
+ */
+bool workqueue_congested(int cpu, struct workqueue_struct *wq)
+{
+       struct pool_workqueue *pwq;
+       bool ret;
+
+       rcu_read_lock();
+       preempt_disable();
+
+       if (cpu == WORK_CPU_UNBOUND)
+               cpu = smp_processor_id();
+
+       if (!(wq->flags & WQ_UNBOUND))
+               pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
+       else
+               pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
+
+       ret = !list_empty(&pwq->delayed_works);
+       preempt_enable();
+       rcu_read_unlock();
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(workqueue_congested);
+
+/**
+ * work_busy - test whether a work is currently pending or running
+ * @work: the work to be tested
+ *
+ * Test whether @work is currently pending or running.  There is no
+ * synchronization around this function and the test result is
+ * unreliable and only useful as advisory hints or for debugging.
+ *
+ * Return:
+ * OR'd bitmask of WORK_BUSY_* bits.
+ */
+unsigned int work_busy(struct work_struct *work)
+{
+       struct worker_pool *pool;
+       unsigned long flags;
+       unsigned int ret = 0;
+
+       if (work_pending(work))
+               ret |= WORK_BUSY_PENDING;
+
+       rcu_read_lock();
+       pool = get_work_pool(work);
+       if (pool) {
+               spin_lock_irqsave(&pool->lock, flags);
+               if (find_worker_executing_work(pool, work))
+                       ret |= WORK_BUSY_RUNNING;
+               spin_unlock_irqrestore(&pool->lock, flags);
+       }
+       rcu_read_unlock();
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(work_busy);
+
+/**
+ * set_worker_desc - set description for the current work item
+ * @fmt: printf-style format string
+ * @...: arguments for the format string
+ *
+ * This function can be called by a running work function to describe what
+ * the work item is about.  If the worker task gets dumped, this
+ * information will be printed out together to help debugging.  The
+ * description can be at most WORKER_DESC_LEN including the trailing '\0'.
+ */
+void set_worker_desc(const char *fmt, ...)
+{
+       struct worker *worker = current_wq_worker();
+       va_list args;
+
+       if (worker) {
+               va_start(args, fmt);
+               vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
+               va_end(args);
+               worker->desc_valid = true;
+       }
+}
+
+/**
+ * print_worker_info - print out worker information and description
+ * @log_lvl: the log level to use when printing
+ * @task: target task
+ *
+ * If @task is a worker and currently executing a work item, print out the
+ * name of the workqueue being serviced and worker description set with
+ * set_worker_desc() by the currently executing work item.
+ *
+ * This function can be safely called on any task as long as the
+ * task_struct itself is accessible.  While safe, this function isn't
+ * synchronized and may print out mixups or garbages of limited length.
+ */
+void print_worker_info(const char *log_lvl, struct task_struct *task)
+{
+       work_func_t *fn = NULL;
+       char name[WQ_NAME_LEN] = { };
+       char desc[WORKER_DESC_LEN] = { };
+       struct pool_workqueue *pwq = NULL;
+       struct workqueue_struct *wq = NULL;
+       bool desc_valid = false;
+       struct worker *worker;
+
+       if (!(task->flags & PF_WQ_WORKER))
+               return;
+
+       /*
+        * This function is called without any synchronization and @task
+        * could be in any state.  Be careful with dereferences.
+        */
+       worker = probe_kthread_data(task);
+
+       /*
+        * Carefully copy the associated workqueue's workfn and name.  Keep
+        * the original last '\0' in case the original contains garbage.
+        */
+       probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
+       probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
+       probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
+       probe_kernel_read(name, wq->name, sizeof(name) - 1);
+
+       /* copy worker description */
+       probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
+       if (desc_valid)
+               probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
+
+       if (fn || name[0] || desc[0]) {
+               printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
+               if (desc[0])
+                       pr_cont(" (%s)", desc);
+               pr_cont("\n");
+       }
+}
+
+static void pr_cont_pool_info(struct worker_pool *pool)
+{
+       pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
+       if (pool->node != NUMA_NO_NODE)
+               pr_cont(" node=%d", pool->node);
+       pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
+}
+
+static void pr_cont_work(bool comma, struct work_struct *work)
+{
+       if (work->func == wq_barrier_func) {
+               struct wq_barrier *barr;
+
+               barr = container_of(work, struct wq_barrier, work);
+
+               pr_cont("%s BAR(%d)", comma ? "," : "",
+                       task_pid_nr(barr->task));
+       } else {
+               pr_cont("%s %pf", comma ? "," : "", work->func);
+       }
+}
+
+static void show_pwq(struct pool_workqueue *pwq)
+{
+       struct worker_pool *pool = pwq->pool;
+       struct work_struct *work;
+       struct worker *worker;
+       bool has_in_flight = false, has_pending = false;
+       int bkt;
+
+       pr_info("  pwq %d:", pool->id);
+       pr_cont_pool_info(pool);
+
+       pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
+               !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
+
+       hash_for_each(pool->busy_hash, bkt, worker, hentry) {
+               if (worker->current_pwq == pwq) {
+                       has_in_flight = true;
+                       break;
+               }
+       }
+       if (has_in_flight) {
+               bool comma = false;
+
+               pr_info("    in-flight:");
+               hash_for_each(pool->busy_hash, bkt, worker, hentry) {
+                       if (worker->current_pwq != pwq)
+                               continue;
+
+                       pr_cont("%s %d%s:%pf", comma ? "," : "",
+                               task_pid_nr(worker->task),
+                               worker == pwq->wq->rescuer ? "(RESCUER)" : "",
+                               worker->current_func);
+                       list_for_each_entry(work, &worker->scheduled, entry)
+                               pr_cont_work(false, work);
+                       comma = true;
+               }
+               pr_cont("\n");
+       }
+
+       list_for_each_entry(work, &pool->worklist, entry) {
+               if (get_work_pwq(work) == pwq) {
+                       has_pending = true;
+                       break;
+               }
+       }
+       if (has_pending) {
+               bool comma = false;
+
+               pr_info("    pending:");
+               list_for_each_entry(work, &pool->worklist, entry) {
+                       if (get_work_pwq(work) != pwq)
+                               continue;
+
+                       pr_cont_work(comma, work);
+                       comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
+               }
+               pr_cont("\n");
+       }
+
+       if (!list_empty(&pwq->delayed_works)) {
+               bool comma = false;
+
+               pr_info("    delayed:");
+               list_for_each_entry(work, &pwq->delayed_works, entry) {
+                       pr_cont_work(comma, work);
+                       comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
+               }
+               pr_cont("\n");
+       }
+}
+
+/**
+ * show_workqueue_state - dump workqueue state
+ *
+ * Called from a sysrq handler and prints out all busy workqueues and
+ * pools.
+ */
+void show_workqueue_state(void)
+{
+       struct workqueue_struct *wq;
+       struct worker_pool *pool;
+       unsigned long flags;
+       int pi;
+
+       rcu_read_lock();
+
+       pr_info("Showing busy workqueues and worker pools:\n");
+
+       list_for_each_entry_rcu(wq, &workqueues, list) {
+               struct pool_workqueue *pwq;
+               bool idle = true;
+
+               for_each_pwq(pwq, wq) {
+                       if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
+                               idle = false;
+                               break;
+                       }
+               }
+               if (idle)
+                       continue;
+
+               pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
+
+               for_each_pwq(pwq, wq) {
+                       spin_lock_irqsave(&pwq->pool->lock, flags);
+                       if (pwq->nr_active || !list_empty(&pwq->delayed_works))
+                               show_pwq(pwq);
+                       spin_unlock_irqrestore(&pwq->pool->lock, flags);
+               }
+       }
+
+       for_each_pool(pool, pi) {
+               struct worker *worker;
+               bool first = true;
+
+               spin_lock_irqsave(&pool->lock, flags);
+               if (pool->nr_workers == pool->nr_idle)
+                       goto next_pool;
+
+               pr_info("pool %d:", pool->id);
+               pr_cont_pool_info(pool);
+               pr_cont(" workers=%d", pool->nr_workers);
+               if (pool->manager)
+                       pr_cont(" manager: %d",
+                               task_pid_nr(pool->manager->task));
+               list_for_each_entry(worker, &pool->idle_list, entry) {
+                       pr_cont(" %s%d", first ? "idle: " : "",
+                               task_pid_nr(worker->task));
+                       first = false;
+               }
+               pr_cont("\n");
+       next_pool:
+               spin_unlock_irqrestore(&pool->lock, flags);
+       }
+
+       rcu_read_unlock();
+}
+
+/*
+ * CPU hotplug.
+ *
+ * There are two challenges in supporting CPU hotplug.  Firstly, there
+ * are a lot of assumptions on strong associations among work, pwq and
+ * pool which make migrating pending and scheduled works very
+ * difficult to implement without impacting hot paths.  Secondly,
+ * worker pools serve mix of short, long and very long running works making
+ * blocked draining impractical.
+ *
+ * This is solved by allowing the pools to be disassociated from the CPU
+ * running as an unbound one and allowing it to be reattached later if the
+ * cpu comes back online.
+ */
+
+static void wq_unbind_fn(struct work_struct *work)
+{
+       int cpu = smp_processor_id();
+       struct worker_pool *pool;
+       struct worker *worker;
+
+       for_each_cpu_worker_pool(pool, cpu) {
+               mutex_lock(&pool->attach_mutex);
+               spin_lock_irq(&pool->lock);
+
+               /*
+                * We've blocked all attach/detach operations. Make all workers
+                * unbound and set DISASSOCIATED.  Before this, all workers
+                * except for the ones which are still executing works from
+                * before the last CPU down must be on the cpu.  After
+                * this, they may become diasporas.
+                */
+               for_each_pool_worker(worker, pool)
+                       worker->flags |= WORKER_UNBOUND;
+
+               pool->flags |= POOL_DISASSOCIATED;
+
+               spin_unlock_irq(&pool->lock);
+               mutex_unlock(&pool->attach_mutex);
+
+               /*
+                * Call schedule() so that we cross rq->lock and thus can
+                * guarantee sched callbacks see the %WORKER_UNBOUND flag.
+                * This is necessary as scheduler callbacks may be invoked
+                * from other cpus.
+                */
+               schedule();
+
+               /*
+                * Sched callbacks are disabled now.  Zap nr_running.
+                * After this, nr_running stays zero and need_more_worker()
+                * and keep_working() are always true as long as the
+                * worklist is not empty.  This pool now behaves as an
+                * unbound (in terms of concurrency management) pool which
+                * are served by workers tied to the pool.
+                */
+               atomic_set(&pool->nr_running, 0);
+
+               /*
+                * With concurrency management just turned off, a busy
+                * worker blocking could lead to lengthy stalls.  Kick off
+                * unbound chain execution of currently pending work items.
+                */
+               spin_lock_irq(&pool->lock);
+               wake_up_worker(pool);
+               spin_unlock_irq(&pool->lock);
+       }
+}
+
+/**
+ * rebind_workers - rebind all workers of a pool to the associated CPU
+ * @pool: pool of interest
+ *
+ * @pool->cpu is coming online.  Rebind all workers to the CPU.
+ */
+static void rebind_workers(struct worker_pool *pool)
+{
+       struct worker *worker;
+
+       lockdep_assert_held(&pool->attach_mutex);
+
+       /*
+        * Restore CPU affinity of all workers.  As all idle workers should
+        * be on the run-queue of the associated CPU before any local
+        * wake-ups for concurrency management happen, restore CPU affinty
+        * of all workers first and then clear UNBOUND.  As we're called
+        * from CPU_ONLINE, the following shouldn't fail.
+        */
+       for_each_pool_worker(worker, pool)
+               WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
+                                                 pool->attrs->cpumask) < 0);
+
+       spin_lock_irq(&pool->lock);
+       pool->flags &= ~POOL_DISASSOCIATED;
+
+       for_each_pool_worker(worker, pool) {
+               unsigned int worker_flags = worker->flags;
+
+               /*
+                * A bound idle worker should actually be on the runqueue
+                * of the associated CPU for local wake-ups targeting it to
+                * work.  Kick all idle workers so that they migrate to the
+                * associated CPU.  Doing this in the same loop as
+                * replacing UNBOUND with REBOUND is safe as no worker will
+                * be bound before @pool->lock is released.
+                */
+               if (worker_flags & WORKER_IDLE)
+                       wake_up_process(worker->task);
+
+               /*
+                * We want to clear UNBOUND but can't directly call
+                * worker_clr_flags() or adjust nr_running.  Atomically
+                * replace UNBOUND with another NOT_RUNNING flag REBOUND.
+                * @worker will clear REBOUND using worker_clr_flags() when
+                * it initiates the next execution cycle thus restoring
+                * concurrency management.  Note that when or whether
+                * @worker clears REBOUND doesn't affect correctness.
+                *
+                * ACCESS_ONCE() is necessary because @worker->flags may be
+                * tested without holding any lock in
+                * wq_worker_waking_up().  Without it, NOT_RUNNING test may
+                * fail incorrectly leading to premature concurrency
+                * management operations.
+                */
+               WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
+               worker_flags |= WORKER_REBOUND;
+               worker_flags &= ~WORKER_UNBOUND;
+               ACCESS_ONCE(worker->flags) = worker_flags;
+       }
+
+       spin_unlock_irq(&pool->lock);
+}
+
+/**
+ * restore_unbound_workers_cpumask - restore cpumask of unbound workers
+ * @pool: unbound pool of interest
+ * @cpu: the CPU which is coming up
+ *
+ * An unbound pool may end up with a cpumask which doesn't have any online
+ * CPUs.  When a worker of such pool get scheduled, the scheduler resets
+ * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
+ * online CPU before, cpus_allowed of all its workers should be restored.
+ */
+static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
+{
+       static cpumask_t cpumask;
+       struct worker *worker;
+
+       lockdep_assert_held(&pool->attach_mutex);
+
+       /* is @cpu allowed for @pool? */
+       if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
+               return;
+
+       /* is @cpu the only online CPU? */
+       cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
+       if (cpumask_weight(&cpumask) != 1)
+               return;
+
+       /* as we're called from CPU_ONLINE, the following shouldn't fail */
+       for_each_pool_worker(worker, pool)
+               WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
+                                                 pool->attrs->cpumask) < 0);
+}
+
+/*
+ * Workqueues should be brought up before normal priority CPU notifiers.
+ * This will be registered high priority CPU notifier.
+ */
+static int workqueue_cpu_up_callback(struct notifier_block *nfb,
+                                              unsigned long action,
+                                              void *hcpu)
+{
+       int cpu = (unsigned long)hcpu;
+       struct worker_pool *pool;
+       struct workqueue_struct *wq;
+       int pi;
+
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_UP_PREPARE:
+               for_each_cpu_worker_pool(pool, cpu) {
+                       if (pool->nr_workers)
+                               continue;
+                       if (!create_worker(pool))
+                               return NOTIFY_BAD;
+               }
+               break;
+
+       case CPU_DOWN_FAILED:
+       case CPU_ONLINE:
+               mutex_lock(&wq_pool_mutex);
+
+               for_each_pool(pool, pi) {
+                       mutex_lock(&pool->attach_mutex);
+
+                       if (pool->cpu == cpu)
+                               rebind_workers(pool);
+                       else if (pool->cpu < 0)
+                               restore_unbound_workers_cpumask(pool, cpu);
+
+                       mutex_unlock(&pool->attach_mutex);
+               }
+
+               /* update NUMA affinity of unbound workqueues */
+               list_for_each_entry(wq, &workqueues, list)
+                       wq_update_unbound_numa(wq, cpu, true);
+
+               mutex_unlock(&wq_pool_mutex);
+               break;
+       }
+       return NOTIFY_OK;
+}
+
+/*
+ * Workqueues should be brought down after normal priority CPU notifiers.
+ * This will be registered as low priority CPU notifier.
+ */
+static int workqueue_cpu_down_callback(struct notifier_block *nfb,
+                                                unsigned long action,
+                                                void *hcpu)
+{
+       int cpu = (unsigned long)hcpu;
+       struct work_struct unbind_work;
+       struct workqueue_struct *wq;
+
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_DOWN_PREPARE:
+               /* unbinding per-cpu workers should happen on the local CPU */
+               INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
+               queue_work_on(cpu, system_highpri_wq, &unbind_work);
+
+               /* update NUMA affinity of unbound workqueues */
+               mutex_lock(&wq_pool_mutex);
+               list_for_each_entry(wq, &workqueues, list)
+                       wq_update_unbound_numa(wq, cpu, false);
+               mutex_unlock(&wq_pool_mutex);
+
+               /* wait for per-cpu unbinding to finish */
+               flush_work(&unbind_work);
+               destroy_work_on_stack(&unbind_work);
+               break;
+       }
+       return NOTIFY_OK;
+}
+
+#ifdef CONFIG_SMP
+
+struct work_for_cpu {
+       struct work_struct work;
+       long (*fn)(void *);
+       void *arg;
+       long ret;
+};
+
+static void work_for_cpu_fn(struct work_struct *work)
+{
+       struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
+
+       wfc->ret = wfc->fn(wfc->arg);
+}
+
+/**
+ * work_on_cpu - run a function in user context on a particular cpu
+ * @cpu: the cpu to run on
+ * @fn: the function to run
+ * @arg: the function arg
+ *
+ * It is up to the caller to ensure that the cpu doesn't go offline.
+ * The caller must not hold any locks which would prevent @fn from completing.
+ *
+ * Return: The value @fn returns.
+ */
+long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
+{
+       struct work_for_cpu wfc = { .fn = fn, .arg = arg };
+
+       INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
+       schedule_work_on(cpu, &wfc.work);
+       flush_work(&wfc.work);
+       destroy_work_on_stack(&wfc.work);
+       return wfc.ret;
+}
+EXPORT_SYMBOL_GPL(work_on_cpu);
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FREEZER
+
+/**
+ * freeze_workqueues_begin - begin freezing workqueues
+ *
+ * Start freezing workqueues.  After this function returns, all freezable
+ * workqueues will queue new works to their delayed_works list instead of
+ * pool->worklist.
+ *
+ * CONTEXT:
+ * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
+ */
+void freeze_workqueues_begin(void)
+{
+       struct workqueue_struct *wq;
+       struct pool_workqueue *pwq;
+
+       mutex_lock(&wq_pool_mutex);
+
+       WARN_ON_ONCE(workqueue_freezing);
+       workqueue_freezing = true;
+
+       list_for_each_entry(wq, &workqueues, list) {
+               mutex_lock(&wq->mutex);
+               for_each_pwq(pwq, wq)
+                       pwq_adjust_max_active(pwq);
+               mutex_unlock(&wq->mutex);
+       }
+
+       mutex_unlock(&wq_pool_mutex);
+}
+
+/**
+ * freeze_workqueues_busy - are freezable workqueues still busy?
+ *
+ * Check whether freezing is complete.  This function must be called
+ * between freeze_workqueues_begin() and thaw_workqueues().
+ *
+ * CONTEXT:
+ * Grabs and releases wq_pool_mutex.
+ *
+ * Return:
+ * %true if some freezable workqueues are still busy.  %false if freezing
+ * is complete.
+ */
+bool freeze_workqueues_busy(void)
+{
+       bool busy = false;
+       struct workqueue_struct *wq;
+       struct pool_workqueue *pwq;
+
+       mutex_lock(&wq_pool_mutex);
+
+       WARN_ON_ONCE(!workqueue_freezing);
+
+       list_for_each_entry(wq, &workqueues, list) {
+               if (!(wq->flags & WQ_FREEZABLE))
+                       continue;
+               /*
+                * nr_active is monotonically decreasing.  It's safe
+                * to peek without lock.
+                */
+               rcu_read_lock();
+               for_each_pwq(pwq, wq) {
+                       WARN_ON_ONCE(pwq->nr_active < 0);
+                       if (pwq->nr_active) {
+                               busy = true;
+                               rcu_read_unlock();
+                               goto out_unlock;
+                       }
+               }
+               rcu_read_unlock();
+       }
+out_unlock:
+       mutex_unlock(&wq_pool_mutex);
+       return busy;
+}
+
+/**
+ * thaw_workqueues - thaw workqueues
+ *
+ * Thaw workqueues.  Normal queueing is restored and all collected
+ * frozen works are transferred to their respective pool worklists.
+ *
+ * CONTEXT:
+ * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
+ */
+void thaw_workqueues(void)
+{
+       struct workqueue_struct *wq;
+       struct pool_workqueue *pwq;
+
+       mutex_lock(&wq_pool_mutex);
+
+       if (!workqueue_freezing)
+               goto out_unlock;
+
+       workqueue_freezing = false;
+
+       /* restore max_active and repopulate worklist */
+       list_for_each_entry(wq, &workqueues, list) {
+               mutex_lock(&wq->mutex);
+               for_each_pwq(pwq, wq)
+                       pwq_adjust_max_active(pwq);
+               mutex_unlock(&wq->mutex);
+       }
+
+out_unlock:
+       mutex_unlock(&wq_pool_mutex);
+}
+#endif /* CONFIG_FREEZER */
+
+#ifdef CONFIG_SYSFS
+/*
+ * Workqueues with WQ_SYSFS flag set is visible to userland via
+ * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
+ * following attributes.
+ *
+ *  per_cpu    RO bool : whether the workqueue is per-cpu or unbound
+ *  max_active RW int  : maximum number of in-flight work items
+ *
+ * Unbound workqueues have the following extra attributes.
+ *
+ *  id         RO int  : the associated pool ID
+ *  nice       RW int  : nice value of the workers
+ *  cpumask    RW mask : bitmask of allowed CPUs for the workers
+ */
+struct wq_device {
+       struct workqueue_struct         *wq;
+       struct device                   dev;
+};
+
+static struct workqueue_struct *dev_to_wq(struct device *dev)
+{
+       struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
+
+       return wq_dev->wq;
+}
+
+static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
+                           char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+
+       return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
+}
+static DEVICE_ATTR_RO(per_cpu);
+
+static ssize_t max_active_show(struct device *dev,
+                              struct device_attribute *attr, char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+
+       return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
+}
+
+static ssize_t max_active_store(struct device *dev,
+                               struct device_attribute *attr, const char *buf,
+                               size_t count)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       int val;
+
+       if (sscanf(buf, "%d", &val) != 1 || val <= 0)
+               return -EINVAL;
+
+       workqueue_set_max_active(wq, val);
+       return count;
+}
+static DEVICE_ATTR_RW(max_active);
+
+static struct attribute *wq_sysfs_attrs[] = {
+       &dev_attr_per_cpu.attr,
+       &dev_attr_max_active.attr,
+       NULL,
+};
+ATTRIBUTE_GROUPS(wq_sysfs);
+
+static ssize_t wq_pool_ids_show(struct device *dev,
+                               struct device_attribute *attr, char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       const char *delim = "";
+       int node, written = 0;
+
+       get_online_cpus();
+       rcu_read_lock();
+       for_each_node(node) {
+               written += scnprintf(buf + written, PAGE_SIZE - written,
+                                    "%s%d:%d", delim, node,
+                                    unbound_pwq_by_node(wq, node)->pool->id);
+               delim = " ";
+       }
+       written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
+       rcu_read_unlock();
+       put_online_cpus();
+
+       return written;
+}
+
+static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
+                           char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       int written;
+
+       mutex_lock(&wq->mutex);
+       written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
+       mutex_unlock(&wq->mutex);
+
+       return written;
+}
+
+/* prepare workqueue_attrs for sysfs store operations */
+static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
+{
+       struct workqueue_attrs *attrs;
+
+       attrs = alloc_workqueue_attrs(GFP_KERNEL);
+       if (!attrs)
+               return NULL;
+
+       mutex_lock(&wq->mutex);
+       copy_workqueue_attrs(attrs, wq->unbound_attrs);
+       mutex_unlock(&wq->mutex);
+       return attrs;
+}
+
+static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
+                            const char *buf, size_t count)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       struct workqueue_attrs *attrs;
+       int ret;
+
+       attrs = wq_sysfs_prep_attrs(wq);
+       if (!attrs)
+               return -ENOMEM;
+
+       if (sscanf(buf, "%d", &attrs->nice) == 1 &&
+           attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
+               ret = apply_workqueue_attrs(wq, attrs);
+       else
+               ret = -EINVAL;
+
+       free_workqueue_attrs(attrs);
+       return ret ?: count;
+}
+
+static ssize_t wq_cpumask_show(struct device *dev,
+                              struct device_attribute *attr, char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       int written;
+
+       mutex_lock(&wq->mutex);
+       written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
+                           cpumask_pr_args(wq->unbound_attrs->cpumask));
+       mutex_unlock(&wq->mutex);
+       return written;
+}
+
+static ssize_t wq_cpumask_store(struct device *dev,
+                               struct device_attribute *attr,
+                               const char *buf, size_t count)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       struct workqueue_attrs *attrs;
+       int ret;
+
+       attrs = wq_sysfs_prep_attrs(wq);
+       if (!attrs)
+               return -ENOMEM;
+
+       ret = cpumask_parse(buf, attrs->cpumask);
+       if (!ret)
+               ret = apply_workqueue_attrs(wq, attrs);
+
+       free_workqueue_attrs(attrs);
+       return ret ?: count;
+}
+
+static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
+                           char *buf)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       int written;
+
+       mutex_lock(&wq->mutex);
+       written = scnprintf(buf, PAGE_SIZE, "%d\n",
+                           !wq->unbound_attrs->no_numa);
+       mutex_unlock(&wq->mutex);
+
+       return written;
+}
+
+static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
+                            const char *buf, size_t count)
+{
+       struct workqueue_struct *wq = dev_to_wq(dev);
+       struct workqueue_attrs *attrs;
+       int v, ret;
+
+       attrs = wq_sysfs_prep_attrs(wq);
+       if (!attrs)
+               return -ENOMEM;
+
+       ret = -EINVAL;
+       if (sscanf(buf, "%d", &v) == 1) {
+               attrs->no_numa = !v;
+               ret = apply_workqueue_attrs(wq, attrs);
+       }
+
+       free_workqueue_attrs(attrs);
+       return ret ?: count;
+}
+
+static struct device_attribute wq_sysfs_unbound_attrs[] = {
+       __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
+       __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
+       __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
+       __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
+       __ATTR_NULL,
+};
+
+static struct bus_type wq_subsys = {
+       .name                           = "workqueue",
+       .dev_groups                     = wq_sysfs_groups,
+};
+
+static int __init wq_sysfs_init(void)
+{
+       return subsys_virtual_register(&wq_subsys, NULL);
+}
+core_initcall(wq_sysfs_init);
+
+static void wq_device_release(struct device *dev)
+{
+       struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
+
+       kfree(wq_dev);
+}
+
+/**
+ * workqueue_sysfs_register - make a workqueue visible in sysfs
+ * @wq: the workqueue to register
+ *
+ * Expose @wq in sysfs under /sys/bus/workqueue/devices.
+ * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
+ * which is the preferred method.
+ *
+ * Workqueue user should use this function directly iff it wants to apply
+ * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
+ * apply_workqueue_attrs() may race against userland updating the
+ * attributes.
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int workqueue_sysfs_register(struct workqueue_struct *wq)
+{
+       struct wq_device *wq_dev;
+       int ret;
+
+       /*
+        * Adjusting max_active or creating new pwqs by applyting
+        * attributes breaks ordering guarantee.  Disallow exposing ordered
+        * workqueues.
+        */
+       if (WARN_ON(wq->flags & __WQ_ORDERED))
+               return -EINVAL;
+
+       wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
+       if (!wq_dev)
+               return -ENOMEM;
+
+       wq_dev->wq = wq;
+       wq_dev->dev.bus = &wq_subsys;
+       wq_dev->dev.init_name = wq->name;
+       wq_dev->dev.release = wq_device_release;
+
+       /*
+        * unbound_attrs are created separately.  Suppress uevent until
+        * everything is ready.
+        */
+       dev_set_uevent_suppress(&wq_dev->dev, true);
+
+       ret = device_register(&wq_dev->dev);
+       if (ret) {
+               kfree(wq_dev);
+               wq->wq_dev = NULL;
+               return ret;
+       }
+
+       if (wq->flags & WQ_UNBOUND) {
+               struct device_attribute *attr;
+
+               for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
+                       ret = device_create_file(&wq_dev->dev, attr);
+                       if (ret) {
+                               device_unregister(&wq_dev->dev);
+                               wq->wq_dev = NULL;
+                               return ret;
+                       }
+               }
+       }
+
+       dev_set_uevent_suppress(&wq_dev->dev, false);
+       kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
+       return 0;
+}
+
+/**
+ * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
+ * @wq: the workqueue to unregister
+ *
+ * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
+ */
+static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
+{
+       struct wq_device *wq_dev = wq->wq_dev;
+
+       if (!wq->wq_dev)
+               return;
+
+       wq->wq_dev = NULL;
+       device_unregister(&wq_dev->dev);
+}
+#else  /* CONFIG_SYSFS */
+static void workqueue_sysfs_unregister(struct workqueue_struct *wq)    { }
+#endif /* CONFIG_SYSFS */
+
+static void __init wq_numa_init(void)
+{
+       cpumask_var_t *tbl;
+       int node, cpu;
+
+       if (num_possible_nodes() <= 1)
+               return;
+
+       if (wq_disable_numa) {
+               pr_info("workqueue: NUMA affinity support disabled\n");
+               return;
+       }
+
+       wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
+       BUG_ON(!wq_update_unbound_numa_attrs_buf);
+
+       /*
+        * We want masks of possible CPUs of each node which isn't readily
+        * available.  Build one from cpu_to_node() which should have been
+        * fully initialized by now.
+        */
+       tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
+       BUG_ON(!tbl);
+
+       for_each_node(node)
+               BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
+                               node_online(node) ? node : NUMA_NO_NODE));
+
+       for_each_possible_cpu(cpu) {
+               node = cpu_to_node(cpu);
+               if (WARN_ON(node == NUMA_NO_NODE)) {
+                       pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
+                       /* happens iff arch is bonkers, let's just proceed */
+                       return;
+               }
+               cpumask_set_cpu(cpu, tbl[node]);
+       }
+
+       wq_numa_possible_cpumask = tbl;
+       wq_numa_enabled = true;
+}
+
+static int __init init_workqueues(void)
+{
+       int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
+       int i, cpu;
+
+       WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
+
+       pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
+
+       cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
+       hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
+
+       wq_numa_init();
+
+       /* initialize CPU pools */
+       for_each_possible_cpu(cpu) {
+               struct worker_pool *pool;
+
+               i = 0;
+               for_each_cpu_worker_pool(pool, cpu) {
+                       BUG_ON(init_worker_pool(pool));
+                       pool->cpu = cpu;
+                       cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
+                       pool->attrs->nice = std_nice[i++];
+                       pool->node = cpu_to_node(cpu);
+
+                       /* alloc pool ID */
+                       mutex_lock(&wq_pool_mutex);
+                       BUG_ON(worker_pool_assign_id(pool));
+                       mutex_unlock(&wq_pool_mutex);
+               }
+       }
+
+       /* create the initial worker */
+       for_each_online_cpu(cpu) {
+               struct worker_pool *pool;
+
+               for_each_cpu_worker_pool(pool, cpu) {
+                       pool->flags &= ~POOL_DISASSOCIATED;
+                       BUG_ON(!create_worker(pool));
+               }
+       }
+
+       /* create default unbound and ordered wq attrs */
+       for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
+               struct workqueue_attrs *attrs;
+
+               BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
+               attrs->nice = std_nice[i];
+               unbound_std_wq_attrs[i] = attrs;
+
+               /*
+                * An ordered wq should have only one pwq as ordering is
+                * guaranteed by max_active which is enforced by pwqs.
+                * Turn off NUMA so that dfl_pwq is used for all nodes.
+                */
+               BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
+               attrs->nice = std_nice[i];
+               attrs->no_numa = true;
+               ordered_wq_attrs[i] = attrs;
+       }
+
+       system_wq = alloc_workqueue("events", 0, 0);
+       system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
+       system_long_wq = alloc_workqueue("events_long", 0, 0);
+       system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
+                                           WQ_UNBOUND_MAX_ACTIVE);
+       system_freezable_wq = alloc_workqueue("events_freezable",
+                                             WQ_FREEZABLE, 0);
+       system_power_efficient_wq = alloc_workqueue("events_power_efficient",
+                                             WQ_POWER_EFFICIENT, 0);
+       system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
+                                             WQ_FREEZABLE | WQ_POWER_EFFICIENT,
+                                             0);
+       BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
+              !system_unbound_wq || !system_freezable_wq ||
+              !system_power_efficient_wq ||
+              !system_freezable_power_efficient_wq);
+       return 0;
+}
+early_initcall(init_workqueues);