Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / trace / ring_buffer.c
diff --git a/kernel/kernel/trace/ring_buffer.c b/kernel/kernel/trace/ring_buffer.c
new file mode 100644 (file)
index 0000000..0315d43
--- /dev/null
@@ -0,0 +1,5014 @@
+/*
+ * Generic ring buffer
+ *
+ * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
+ */
+#include <linux/ftrace_event.h>
+#include <linux/ring_buffer.h>
+#include <linux/trace_clock.h>
+#include <linux/trace_seq.h>
+#include <linux/spinlock.h>
+#include <linux/irq_work.h>
+#include <linux/uaccess.h>
+#include <linux/hardirq.h>
+#include <linux/kthread.h>     /* for self test */
+#include <linux/kmemcheck.h>
+#include <linux/module.h>
+#include <linux/percpu.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/hash.h>
+#include <linux/list.h>
+#include <linux/cpu.h>
+
+#include <asm/local.h>
+
+static void update_pages_handler(struct work_struct *work);
+
+/*
+ * The ring buffer header is special. We must manually up keep it.
+ */
+int ring_buffer_print_entry_header(struct trace_seq *s)
+{
+       trace_seq_puts(s, "# compressed entry header\n");
+       trace_seq_puts(s, "\ttype_len    :    5 bits\n");
+       trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
+       trace_seq_puts(s, "\tarray       :   32 bits\n");
+       trace_seq_putc(s, '\n');
+       trace_seq_printf(s, "\tpadding     : type == %d\n",
+                        RINGBUF_TYPE_PADDING);
+       trace_seq_printf(s, "\ttime_extend : type == %d\n",
+                        RINGBUF_TYPE_TIME_EXTEND);
+       trace_seq_printf(s, "\tdata max type_len  == %d\n",
+                        RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
+
+       return !trace_seq_has_overflowed(s);
+}
+
+/*
+ * The ring buffer is made up of a list of pages. A separate list of pages is
+ * allocated for each CPU. A writer may only write to a buffer that is
+ * associated with the CPU it is currently executing on.  A reader may read
+ * from any per cpu buffer.
+ *
+ * The reader is special. For each per cpu buffer, the reader has its own
+ * reader page. When a reader has read the entire reader page, this reader
+ * page is swapped with another page in the ring buffer.
+ *
+ * Now, as long as the writer is off the reader page, the reader can do what
+ * ever it wants with that page. The writer will never write to that page
+ * again (as long as it is out of the ring buffer).
+ *
+ * Here's some silly ASCII art.
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |
+ *   +------+        +---+   +---+   +---+
+ *                   |   |-->|   |-->|   |
+ *                   +---+   +---+   +---+
+ *                     ^               |
+ *                     |               |
+ *                     +---------------+
+ *
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *                   |   |-->|   |-->|   |
+ *                   +---+   +---+   +---+
+ *                     ^               |
+ *                     |               |
+ *                     +---------------+
+ *
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *      ^            |   |-->|   |-->|   |
+ *      |            +---+   +---+   +---+
+ *      |                              |
+ *      |                              |
+ *      +------------------------------+
+ *
+ *
+ *   +------+
+ *   |buffer|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *      ^            |   |   |   |-->|   |
+ *      |   New      +---+   +---+   +---+
+ *      |  Reader------^               |
+ *      |   page                       |
+ *      +------------------------------+
+ *
+ *
+ * After we make this swap, the reader can hand this page off to the splice
+ * code and be done with it. It can even allocate a new page if it needs to
+ * and swap that into the ring buffer.
+ *
+ * We will be using cmpxchg soon to make all this lockless.
+ *
+ */
+
+/*
+ * A fast way to enable or disable all ring buffers is to
+ * call tracing_on or tracing_off. Turning off the ring buffers
+ * prevents all ring buffers from being recorded to.
+ * Turning this switch on, makes it OK to write to the
+ * ring buffer, if the ring buffer is enabled itself.
+ *
+ * There's three layers that must be on in order to write
+ * to the ring buffer.
+ *
+ * 1) This global flag must be set.
+ * 2) The ring buffer must be enabled for recording.
+ * 3) The per cpu buffer must be enabled for recording.
+ *
+ * In case of an anomaly, this global flag has a bit set that
+ * will permantly disable all ring buffers.
+ */
+
+/*
+ * Global flag to disable all recording to ring buffers
+ *  This has two bits: ON, DISABLED
+ *
+ *  ON   DISABLED
+ * ---- ----------
+ *   0      0        : ring buffers are off
+ *   1      0        : ring buffers are on
+ *   X      1        : ring buffers are permanently disabled
+ */
+
+enum {
+       RB_BUFFERS_ON_BIT       = 0,
+       RB_BUFFERS_DISABLED_BIT = 1,
+};
+
+enum {
+       RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
+       RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
+};
+
+static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
+
+/* Used for individual buffers (after the counter) */
+#define RB_BUFFER_OFF          (1 << 20)
+
+#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
+
+/**
+ * tracing_off_permanent - permanently disable ring buffers
+ *
+ * This function, once called, will disable all ring buffers
+ * permanently.
+ */
+void tracing_off_permanent(void)
+{
+       set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
+}
+
+#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
+#define RB_ALIGNMENT           4U
+#define RB_MAX_SMALL_DATA      (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+#define RB_EVNT_MIN_SIZE       8U      /* two 32bit words */
+
+#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
+# define RB_FORCE_8BYTE_ALIGNMENT      0
+# define RB_ARCH_ALIGNMENT             RB_ALIGNMENT
+#else
+# define RB_FORCE_8BYTE_ALIGNMENT      1
+# define RB_ARCH_ALIGNMENT             8U
+#endif
+
+#define RB_ALIGN_DATA          __aligned(RB_ARCH_ALIGNMENT)
+
+/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
+#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
+
+enum {
+       RB_LEN_TIME_EXTEND = 8,
+       RB_LEN_TIME_STAMP = 16,
+};
+
+#define skip_time_extend(event) \
+       ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
+
+static inline int rb_null_event(struct ring_buffer_event *event)
+{
+       return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
+}
+
+static void rb_event_set_padding(struct ring_buffer_event *event)
+{
+       /* padding has a NULL time_delta */
+       event->type_len = RINGBUF_TYPE_PADDING;
+       event->time_delta = 0;
+}
+
+static unsigned
+rb_event_data_length(struct ring_buffer_event *event)
+{
+       unsigned length;
+
+       if (event->type_len)
+               length = event->type_len * RB_ALIGNMENT;
+       else
+               length = event->array[0];
+       return length + RB_EVNT_HDR_SIZE;
+}
+
+/*
+ * Return the length of the given event. Will return
+ * the length of the time extend if the event is a
+ * time extend.
+ */
+static inline unsigned
+rb_event_length(struct ring_buffer_event *event)
+{
+       switch (event->type_len) {
+       case RINGBUF_TYPE_PADDING:
+               if (rb_null_event(event))
+                       /* undefined */
+                       return -1;
+               return  event->array[0] + RB_EVNT_HDR_SIZE;
+
+       case RINGBUF_TYPE_TIME_EXTEND:
+               return RB_LEN_TIME_EXTEND;
+
+       case RINGBUF_TYPE_TIME_STAMP:
+               return RB_LEN_TIME_STAMP;
+
+       case RINGBUF_TYPE_DATA:
+               return rb_event_data_length(event);
+       default:
+               BUG();
+       }
+       /* not hit */
+       return 0;
+}
+
+/*
+ * Return total length of time extend and data,
+ *   or just the event length for all other events.
+ */
+static inline unsigned
+rb_event_ts_length(struct ring_buffer_event *event)
+{
+       unsigned len = 0;
+
+       if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
+               /* time extends include the data event after it */
+               len = RB_LEN_TIME_EXTEND;
+               event = skip_time_extend(event);
+       }
+       return len + rb_event_length(event);
+}
+
+/**
+ * ring_buffer_event_length - return the length of the event
+ * @event: the event to get the length of
+ *
+ * Returns the size of the data load of a data event.
+ * If the event is something other than a data event, it
+ * returns the size of the event itself. With the exception
+ * of a TIME EXTEND, where it still returns the size of the
+ * data load of the data event after it.
+ */
+unsigned ring_buffer_event_length(struct ring_buffer_event *event)
+{
+       unsigned length;
+
+       if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+               event = skip_time_extend(event);
+
+       length = rb_event_length(event);
+       if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+               return length;
+       length -= RB_EVNT_HDR_SIZE;
+       if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
+                length -= sizeof(event->array[0]);
+       return length;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_event_length);
+
+/* inline for ring buffer fast paths */
+static void *
+rb_event_data(struct ring_buffer_event *event)
+{
+       if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+               event = skip_time_extend(event);
+       BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
+       /* If length is in len field, then array[0] has the data */
+       if (event->type_len)
+               return (void *)&event->array[0];
+       /* Otherwise length is in array[0] and array[1] has the data */
+       return (void *)&event->array[1];
+}
+
+/**
+ * ring_buffer_event_data - return the data of the event
+ * @event: the event to get the data from
+ */
+void *ring_buffer_event_data(struct ring_buffer_event *event)
+{
+       return rb_event_data(event);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_event_data);
+
+#define for_each_buffer_cpu(buffer, cpu)               \
+       for_each_cpu(cpu, buffer->cpumask)
+
+#define TS_SHIFT       27
+#define TS_MASK                ((1ULL << TS_SHIFT) - 1)
+#define TS_DELTA_TEST  (~TS_MASK)
+
+/* Flag when events were overwritten */
+#define RB_MISSED_EVENTS       (1 << 31)
+/* Missed count stored at end */
+#define RB_MISSED_STORED       (1 << 30)
+
+struct buffer_data_page {
+       u64              time_stamp;    /* page time stamp */
+       local_t          commit;        /* write committed index */
+       unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
+};
+
+/*
+ * Note, the buffer_page list must be first. The buffer pages
+ * are allocated in cache lines, which means that each buffer
+ * page will be at the beginning of a cache line, and thus
+ * the least significant bits will be zero. We use this to
+ * add flags in the list struct pointers, to make the ring buffer
+ * lockless.
+ */
+struct buffer_page {
+       struct list_head list;          /* list of buffer pages */
+       local_t          write;         /* index for next write */
+       unsigned         read;          /* index for next read */
+       local_t          entries;       /* entries on this page */
+       unsigned long    real_end;      /* real end of data */
+       struct buffer_data_page *page;  /* Actual data page */
+};
+
+/*
+ * The buffer page counters, write and entries, must be reset
+ * atomically when crossing page boundaries. To synchronize this
+ * update, two counters are inserted into the number. One is
+ * the actual counter for the write position or count on the page.
+ *
+ * The other is a counter of updaters. Before an update happens
+ * the update partition of the counter is incremented. This will
+ * allow the updater to update the counter atomically.
+ *
+ * The counter is 20 bits, and the state data is 12.
+ */
+#define RB_WRITE_MASK          0xfffff
+#define RB_WRITE_INTCNT                (1 << 20)
+
+static void rb_init_page(struct buffer_data_page *bpage)
+{
+       local_set(&bpage->commit, 0);
+}
+
+/**
+ * ring_buffer_page_len - the size of data on the page.
+ * @page: The page to read
+ *
+ * Returns the amount of data on the page, including buffer page header.
+ */
+size_t ring_buffer_page_len(void *page)
+{
+       return local_read(&((struct buffer_data_page *)page)->commit)
+               + BUF_PAGE_HDR_SIZE;
+}
+
+/*
+ * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
+ * this issue out.
+ */
+static void free_buffer_page(struct buffer_page *bpage)
+{
+       free_page((unsigned long)bpage->page);
+       kfree(bpage);
+}
+
+/*
+ * We need to fit the time_stamp delta into 27 bits.
+ */
+static inline int test_time_stamp(u64 delta)
+{
+       if (delta & TS_DELTA_TEST)
+               return 1;
+       return 0;
+}
+
+#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
+
+/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
+#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
+
+int ring_buffer_print_page_header(struct trace_seq *s)
+{
+       struct buffer_data_page field;
+
+       trace_seq_printf(s, "\tfield: u64 timestamp;\t"
+                        "offset:0;\tsize:%u;\tsigned:%u;\n",
+                        (unsigned int)sizeof(field.time_stamp),
+                        (unsigned int)is_signed_type(u64));
+
+       trace_seq_printf(s, "\tfield: local_t commit;\t"
+                        "offset:%u;\tsize:%u;\tsigned:%u;\n",
+                        (unsigned int)offsetof(typeof(field), commit),
+                        (unsigned int)sizeof(field.commit),
+                        (unsigned int)is_signed_type(long));
+
+       trace_seq_printf(s, "\tfield: int overwrite;\t"
+                        "offset:%u;\tsize:%u;\tsigned:%u;\n",
+                        (unsigned int)offsetof(typeof(field), commit),
+                        1,
+                        (unsigned int)is_signed_type(long));
+
+       trace_seq_printf(s, "\tfield: char data;\t"
+                        "offset:%u;\tsize:%u;\tsigned:%u;\n",
+                        (unsigned int)offsetof(typeof(field), data),
+                        (unsigned int)BUF_PAGE_SIZE,
+                        (unsigned int)is_signed_type(char));
+
+       return !trace_seq_has_overflowed(s);
+}
+
+struct rb_irq_work {
+       struct irq_work                 work;
+       wait_queue_head_t               waiters;
+       wait_queue_head_t               full_waiters;
+       bool                            waiters_pending;
+       bool                            full_waiters_pending;
+       bool                            wakeup_full;
+};
+
+/*
+ * head_page == tail_page && head == tail then buffer is empty.
+ */
+struct ring_buffer_per_cpu {
+       int                             cpu;
+       atomic_t                        record_disabled;
+       struct ring_buffer              *buffer;
+       raw_spinlock_t                  reader_lock;    /* serialize readers */
+       arch_spinlock_t                 lock;
+       struct lock_class_key           lock_key;
+       unsigned int                    nr_pages;
+       struct list_head                *pages;
+       struct buffer_page              *head_page;     /* read from head */
+       struct buffer_page              *tail_page;     /* write to tail */
+       struct buffer_page              *commit_page;   /* committed pages */
+       struct buffer_page              *reader_page;
+       unsigned long                   lost_events;
+       unsigned long                   last_overrun;
+       local_t                         entries_bytes;
+       local_t                         entries;
+       local_t                         overrun;
+       local_t                         commit_overrun;
+       local_t                         dropped_events;
+       local_t                         committing;
+       local_t                         commits;
+       unsigned long                   read;
+       unsigned long                   read_bytes;
+       u64                             write_stamp;
+       u64                             read_stamp;
+       /* ring buffer pages to update, > 0 to add, < 0 to remove */
+       int                             nr_pages_to_update;
+       struct list_head                new_pages; /* new pages to add */
+       struct work_struct              update_pages_work;
+       struct completion               update_done;
+
+       struct rb_irq_work              irq_work;
+};
+
+struct ring_buffer {
+       unsigned                        flags;
+       int                             cpus;
+       atomic_t                        record_disabled;
+       atomic_t                        resize_disabled;
+       cpumask_var_t                   cpumask;
+
+       struct lock_class_key           *reader_lock_key;
+
+       struct mutex                    mutex;
+
+       struct ring_buffer_per_cpu      **buffers;
+
+#ifdef CONFIG_HOTPLUG_CPU
+       struct notifier_block           cpu_notify;
+#endif
+       u64                             (*clock)(void);
+
+       struct rb_irq_work              irq_work;
+};
+
+struct ring_buffer_iter {
+       struct ring_buffer_per_cpu      *cpu_buffer;
+       unsigned long                   head;
+       struct buffer_page              *head_page;
+       struct buffer_page              *cache_reader_page;
+       unsigned long                   cache_read;
+       u64                             read_stamp;
+};
+
+/*
+ * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
+ *
+ * Schedules a delayed work to wake up any task that is blocked on the
+ * ring buffer waiters queue.
+ */
+static void rb_wake_up_waiters(struct irq_work *work)
+{
+       struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
+
+       wake_up_all(&rbwork->waiters);
+       if (rbwork->wakeup_full) {
+               rbwork->wakeup_full = false;
+               wake_up_all(&rbwork->full_waiters);
+       }
+}
+
+/**
+ * ring_buffer_wait - wait for input to the ring buffer
+ * @buffer: buffer to wait on
+ * @cpu: the cpu buffer to wait on
+ * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
+ *
+ * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
+ * as data is added to any of the @buffer's cpu buffers. Otherwise
+ * it will wait for data to be added to a specific cpu buffer.
+ */
+int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
+{
+       struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
+       DEFINE_WAIT(wait);
+       struct rb_irq_work *work;
+       int ret = 0;
+
+       /*
+        * Depending on what the caller is waiting for, either any
+        * data in any cpu buffer, or a specific buffer, put the
+        * caller on the appropriate wait queue.
+        */
+       if (cpu == RING_BUFFER_ALL_CPUS) {
+               work = &buffer->irq_work;
+               /* Full only makes sense on per cpu reads */
+               full = false;
+       } else {
+               if (!cpumask_test_cpu(cpu, buffer->cpumask))
+                       return -ENODEV;
+               cpu_buffer = buffer->buffers[cpu];
+               work = &cpu_buffer->irq_work;
+       }
+
+
+       while (true) {
+               if (full)
+                       prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
+               else
+                       prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
+
+               /*
+                * The events can happen in critical sections where
+                * checking a work queue can cause deadlocks.
+                * After adding a task to the queue, this flag is set
+                * only to notify events to try to wake up the queue
+                * using irq_work.
+                *
+                * We don't clear it even if the buffer is no longer
+                * empty. The flag only causes the next event to run
+                * irq_work to do the work queue wake up. The worse
+                * that can happen if we race with !trace_empty() is that
+                * an event will cause an irq_work to try to wake up
+                * an empty queue.
+                *
+                * There's no reason to protect this flag either, as
+                * the work queue and irq_work logic will do the necessary
+                * synchronization for the wake ups. The only thing
+                * that is necessary is that the wake up happens after
+                * a task has been queued. It's OK for spurious wake ups.
+                */
+               if (full)
+                       work->full_waiters_pending = true;
+               else
+                       work->waiters_pending = true;
+
+               if (signal_pending(current)) {
+                       ret = -EINTR;
+                       break;
+               }
+
+               if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
+                       break;
+
+               if (cpu != RING_BUFFER_ALL_CPUS &&
+                   !ring_buffer_empty_cpu(buffer, cpu)) {
+                       unsigned long flags;
+                       bool pagebusy;
+
+                       if (!full)
+                               break;
+
+                       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+                       pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
+                       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+                       if (!pagebusy)
+                               break;
+               }
+
+               schedule();
+       }
+
+       if (full)
+               finish_wait(&work->full_waiters, &wait);
+       else
+               finish_wait(&work->waiters, &wait);
+
+       return ret;
+}
+
+/**
+ * ring_buffer_poll_wait - poll on buffer input
+ * @buffer: buffer to wait on
+ * @cpu: the cpu buffer to wait on
+ * @filp: the file descriptor
+ * @poll_table: The poll descriptor
+ *
+ * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
+ * as data is added to any of the @buffer's cpu buffers. Otherwise
+ * it will wait for data to be added to a specific cpu buffer.
+ *
+ * Returns POLLIN | POLLRDNORM if data exists in the buffers,
+ * zero otherwise.
+ */
+int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
+                         struct file *filp, poll_table *poll_table)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct rb_irq_work *work;
+
+       if (cpu == RING_BUFFER_ALL_CPUS)
+               work = &buffer->irq_work;
+       else {
+               if (!cpumask_test_cpu(cpu, buffer->cpumask))
+                       return -EINVAL;
+
+               cpu_buffer = buffer->buffers[cpu];
+               work = &cpu_buffer->irq_work;
+       }
+
+       poll_wait(filp, &work->waiters, poll_table);
+       work->waiters_pending = true;
+       /*
+        * There's a tight race between setting the waiters_pending and
+        * checking if the ring buffer is empty.  Once the waiters_pending bit
+        * is set, the next event will wake the task up, but we can get stuck
+        * if there's only a single event in.
+        *
+        * FIXME: Ideally, we need a memory barrier on the writer side as well,
+        * but adding a memory barrier to all events will cause too much of a
+        * performance hit in the fast path.  We only need a memory barrier when
+        * the buffer goes from empty to having content.  But as this race is
+        * extremely small, and it's not a problem if another event comes in, we
+        * will fix it later.
+        */
+       smp_mb();
+
+       if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
+           (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
+               return POLLIN | POLLRDNORM;
+       return 0;
+}
+
+/* buffer may be either ring_buffer or ring_buffer_per_cpu */
+#define RB_WARN_ON(b, cond)                                            \
+       ({                                                              \
+               int _____ret = unlikely(cond);                          \
+               if (_____ret) {                                         \
+                       if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
+                               struct ring_buffer_per_cpu *__b =       \
+                                       (void *)b;                      \
+                               atomic_inc(&__b->buffer->record_disabled); \
+                       } else                                          \
+                               atomic_inc(&b->record_disabled);        \
+                       WARN_ON(1);                                     \
+               }                                                       \
+               _____ret;                                               \
+       })
+
+/* Up this if you want to test the TIME_EXTENTS and normalization */
+#define DEBUG_SHIFT 0
+
+static inline u64 rb_time_stamp(struct ring_buffer *buffer)
+{
+       /* shift to debug/test normalization and TIME_EXTENTS */
+       return buffer->clock() << DEBUG_SHIFT;
+}
+
+u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
+{
+       u64 time;
+
+       preempt_disable_notrace();
+       time = rb_time_stamp(buffer);
+       preempt_enable_no_resched_notrace();
+
+       return time;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
+
+void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
+                                     int cpu, u64 *ts)
+{
+       /* Just stupid testing the normalize function and deltas */
+       *ts >>= DEBUG_SHIFT;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
+
+/*
+ * Making the ring buffer lockless makes things tricky.
+ * Although writes only happen on the CPU that they are on,
+ * and they only need to worry about interrupts. Reads can
+ * happen on any CPU.
+ *
+ * The reader page is always off the ring buffer, but when the
+ * reader finishes with a page, it needs to swap its page with
+ * a new one from the buffer. The reader needs to take from
+ * the head (writes go to the tail). But if a writer is in overwrite
+ * mode and wraps, it must push the head page forward.
+ *
+ * Here lies the problem.
+ *
+ * The reader must be careful to replace only the head page, and
+ * not another one. As described at the top of the file in the
+ * ASCII art, the reader sets its old page to point to the next
+ * page after head. It then sets the page after head to point to
+ * the old reader page. But if the writer moves the head page
+ * during this operation, the reader could end up with the tail.
+ *
+ * We use cmpxchg to help prevent this race. We also do something
+ * special with the page before head. We set the LSB to 1.
+ *
+ * When the writer must push the page forward, it will clear the
+ * bit that points to the head page, move the head, and then set
+ * the bit that points to the new head page.
+ *
+ * We also don't want an interrupt coming in and moving the head
+ * page on another writer. Thus we use the second LSB to catch
+ * that too. Thus:
+ *
+ * head->list->prev->next        bit 1          bit 0
+ *                              -------        -------
+ * Normal page                     0              0
+ * Points to head page             0              1
+ * New head page                   1              0
+ *
+ * Note we can not trust the prev pointer of the head page, because:
+ *
+ * +----+       +-----+        +-----+
+ * |    |------>|  T  |---X--->|  N  |
+ * |    |<------|     |        |     |
+ * +----+       +-----+        +-----+
+ *   ^                           ^ |
+ *   |          +-----+          | |
+ *   +----------|  R  |----------+ |
+ *              |     |<-----------+
+ *              +-----+
+ *
+ * Key:  ---X-->  HEAD flag set in pointer
+ *         T      Tail page
+ *         R      Reader page
+ *         N      Next page
+ *
+ * (see __rb_reserve_next() to see where this happens)
+ *
+ *  What the above shows is that the reader just swapped out
+ *  the reader page with a page in the buffer, but before it
+ *  could make the new header point back to the new page added
+ *  it was preempted by a writer. The writer moved forward onto
+ *  the new page added by the reader and is about to move forward
+ *  again.
+ *
+ *  You can see, it is legitimate for the previous pointer of
+ *  the head (or any page) not to point back to itself. But only
+ *  temporarially.
+ */
+
+#define RB_PAGE_NORMAL         0UL
+#define RB_PAGE_HEAD           1UL
+#define RB_PAGE_UPDATE         2UL
+
+
+#define RB_FLAG_MASK           3UL
+
+/* PAGE_MOVED is not part of the mask */
+#define RB_PAGE_MOVED          4UL
+
+/*
+ * rb_list_head - remove any bit
+ */
+static struct list_head *rb_list_head(struct list_head *list)
+{
+       unsigned long val = (unsigned long)list;
+
+       return (struct list_head *)(val & ~RB_FLAG_MASK);
+}
+
+/*
+ * rb_is_head_page - test if the given page is the head page
+ *
+ * Because the reader may move the head_page pointer, we can
+ * not trust what the head page is (it may be pointing to
+ * the reader page). But if the next page is a header page,
+ * its flags will be non zero.
+ */
+static inline int
+rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
+               struct buffer_page *page, struct list_head *list)
+{
+       unsigned long val;
+
+       val = (unsigned long)list->next;
+
+       if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
+               return RB_PAGE_MOVED;
+
+       return val & RB_FLAG_MASK;
+}
+
+/*
+ * rb_is_reader_page
+ *
+ * The unique thing about the reader page, is that, if the
+ * writer is ever on it, the previous pointer never points
+ * back to the reader page.
+ */
+static int rb_is_reader_page(struct buffer_page *page)
+{
+       struct list_head *list = page->list.prev;
+
+       return rb_list_head(list->next) != &page->list;
+}
+
+/*
+ * rb_set_list_to_head - set a list_head to be pointing to head.
+ */
+static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
+                               struct list_head *list)
+{
+       unsigned long *ptr;
+
+       ptr = (unsigned long *)&list->next;
+       *ptr |= RB_PAGE_HEAD;
+       *ptr &= ~RB_PAGE_UPDATE;
+}
+
+/*
+ * rb_head_page_activate - sets up head page
+ */
+static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct buffer_page *head;
+
+       head = cpu_buffer->head_page;
+       if (!head)
+               return;
+
+       /*
+        * Set the previous list pointer to have the HEAD flag.
+        */
+       rb_set_list_to_head(cpu_buffer, head->list.prev);
+}
+
+static void rb_list_head_clear(struct list_head *list)
+{
+       unsigned long *ptr = (unsigned long *)&list->next;
+
+       *ptr &= ~RB_FLAG_MASK;
+}
+
+/*
+ * rb_head_page_dactivate - clears head page ptr (for free list)
+ */
+static void
+rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct list_head *hd;
+
+       /* Go through the whole list and clear any pointers found. */
+       rb_list_head_clear(cpu_buffer->pages);
+
+       list_for_each(hd, cpu_buffer->pages)
+               rb_list_head_clear(hd);
+}
+
+static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
+                           struct buffer_page *head,
+                           struct buffer_page *prev,
+                           int old_flag, int new_flag)
+{
+       struct list_head *list;
+       unsigned long val = (unsigned long)&head->list;
+       unsigned long ret;
+
+       list = &prev->list;
+
+       val &= ~RB_FLAG_MASK;
+
+       ret = cmpxchg((unsigned long *)&list->next,
+                     val | old_flag, val | new_flag);
+
+       /* check if the reader took the page */
+       if ((ret & ~RB_FLAG_MASK) != val)
+               return RB_PAGE_MOVED;
+
+       return ret & RB_FLAG_MASK;
+}
+
+static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
+                                  struct buffer_page *head,
+                                  struct buffer_page *prev,
+                                  int old_flag)
+{
+       return rb_head_page_set(cpu_buffer, head, prev,
+                               old_flag, RB_PAGE_UPDATE);
+}
+
+static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
+                                struct buffer_page *head,
+                                struct buffer_page *prev,
+                                int old_flag)
+{
+       return rb_head_page_set(cpu_buffer, head, prev,
+                               old_flag, RB_PAGE_HEAD);
+}
+
+static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
+                                  struct buffer_page *head,
+                                  struct buffer_page *prev,
+                                  int old_flag)
+{
+       return rb_head_page_set(cpu_buffer, head, prev,
+                               old_flag, RB_PAGE_NORMAL);
+}
+
+static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
+                              struct buffer_page **bpage)
+{
+       struct list_head *p = rb_list_head((*bpage)->list.next);
+
+       *bpage = list_entry(p, struct buffer_page, list);
+}
+
+static struct buffer_page *
+rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct buffer_page *head;
+       struct buffer_page *page;
+       struct list_head *list;
+       int i;
+
+       if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
+               return NULL;
+
+       /* sanity check */
+       list = cpu_buffer->pages;
+       if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
+               return NULL;
+
+       page = head = cpu_buffer->head_page;
+       /*
+        * It is possible that the writer moves the header behind
+        * where we started, and we miss in one loop.
+        * A second loop should grab the header, but we'll do
+        * three loops just because I'm paranoid.
+        */
+       for (i = 0; i < 3; i++) {
+               do {
+                       if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
+                               cpu_buffer->head_page = page;
+                               return page;
+                       }
+                       rb_inc_page(cpu_buffer, &page);
+               } while (page != head);
+       }
+
+       RB_WARN_ON(cpu_buffer, 1);
+
+       return NULL;
+}
+
+static int rb_head_page_replace(struct buffer_page *old,
+                               struct buffer_page *new)
+{
+       unsigned long *ptr = (unsigned long *)&old->list.prev->next;
+       unsigned long val;
+       unsigned long ret;
+
+       val = *ptr & ~RB_FLAG_MASK;
+       val |= RB_PAGE_HEAD;
+
+       ret = cmpxchg(ptr, val, (unsigned long)&new->list);
+
+       return ret == val;
+}
+
+/*
+ * rb_tail_page_update - move the tail page forward
+ *
+ * Returns 1 if moved tail page, 0 if someone else did.
+ */
+static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
+                              struct buffer_page *tail_page,
+                              struct buffer_page *next_page)
+{
+       struct buffer_page *old_tail;
+       unsigned long old_entries;
+       unsigned long old_write;
+       int ret = 0;
+
+       /*
+        * The tail page now needs to be moved forward.
+        *
+        * We need to reset the tail page, but without messing
+        * with possible erasing of data brought in by interrupts
+        * that have moved the tail page and are currently on it.
+        *
+        * We add a counter to the write field to denote this.
+        */
+       old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
+       old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
+
+       /*
+        * Just make sure we have seen our old_write and synchronize
+        * with any interrupts that come in.
+        */
+       barrier();
+
+       /*
+        * If the tail page is still the same as what we think
+        * it is, then it is up to us to update the tail
+        * pointer.
+        */
+       if (tail_page == cpu_buffer->tail_page) {
+               /* Zero the write counter */
+               unsigned long val = old_write & ~RB_WRITE_MASK;
+               unsigned long eval = old_entries & ~RB_WRITE_MASK;
+
+               /*
+                * This will only succeed if an interrupt did
+                * not come in and change it. In which case, we
+                * do not want to modify it.
+                *
+                * We add (void) to let the compiler know that we do not care
+                * about the return value of these functions. We use the
+                * cmpxchg to only update if an interrupt did not already
+                * do it for us. If the cmpxchg fails, we don't care.
+                */
+               (void)local_cmpxchg(&next_page->write, old_write, val);
+               (void)local_cmpxchg(&next_page->entries, old_entries, eval);
+
+               /*
+                * No need to worry about races with clearing out the commit.
+                * it only can increment when a commit takes place. But that
+                * only happens in the outer most nested commit.
+                */
+               local_set(&next_page->page->commit, 0);
+
+               old_tail = cmpxchg(&cpu_buffer->tail_page,
+                                  tail_page, next_page);
+
+               if (old_tail == tail_page)
+                       ret = 1;
+       }
+
+       return ret;
+}
+
+static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
+                         struct buffer_page *bpage)
+{
+       unsigned long val = (unsigned long)bpage;
+
+       if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
+               return 1;
+
+       return 0;
+}
+
+/**
+ * rb_check_list - make sure a pointer to a list has the last bits zero
+ */
+static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
+                        struct list_head *list)
+{
+       if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
+               return 1;
+       if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
+               return 1;
+       return 0;
+}
+
+/**
+ * rb_check_pages - integrity check of buffer pages
+ * @cpu_buffer: CPU buffer with pages to test
+ *
+ * As a safety measure we check to make sure the data pages have not
+ * been corrupted.
+ */
+static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct list_head *head = cpu_buffer->pages;
+       struct buffer_page *bpage, *tmp;
+
+       /* Reset the head page if it exists */
+       if (cpu_buffer->head_page)
+               rb_set_head_page(cpu_buffer);
+
+       rb_head_page_deactivate(cpu_buffer);
+
+       if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
+               return -1;
+       if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
+               return -1;
+
+       if (rb_check_list(cpu_buffer, head))
+               return -1;
+
+       list_for_each_entry_safe(bpage, tmp, head, list) {
+               if (RB_WARN_ON(cpu_buffer,
+                              bpage->list.next->prev != &bpage->list))
+                       return -1;
+               if (RB_WARN_ON(cpu_buffer,
+                              bpage->list.prev->next != &bpage->list))
+                       return -1;
+               if (rb_check_list(cpu_buffer, &bpage->list))
+                       return -1;
+       }
+
+       rb_head_page_activate(cpu_buffer);
+
+       return 0;
+}
+
+static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
+{
+       int i;
+       struct buffer_page *bpage, *tmp;
+
+       for (i = 0; i < nr_pages; i++) {
+               struct page *page;
+               /*
+                * __GFP_NORETRY flag makes sure that the allocation fails
+                * gracefully without invoking oom-killer and the system is
+                * not destabilized.
+                */
+               bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
+                                   GFP_KERNEL | __GFP_NORETRY,
+                                   cpu_to_node(cpu));
+               if (!bpage)
+                       goto free_pages;
+
+               list_add(&bpage->list, pages);
+
+               page = alloc_pages_node(cpu_to_node(cpu),
+                                       GFP_KERNEL | __GFP_NORETRY, 0);
+               if (!page)
+                       goto free_pages;
+               bpage->page = page_address(page);
+               rb_init_page(bpage->page);
+       }
+
+       return 0;
+
+free_pages:
+       list_for_each_entry_safe(bpage, tmp, pages, list) {
+               list_del_init(&bpage->list);
+               free_buffer_page(bpage);
+       }
+
+       return -ENOMEM;
+}
+
+static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
+                            unsigned nr_pages)
+{
+       LIST_HEAD(pages);
+
+       WARN_ON(!nr_pages);
+
+       if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
+               return -ENOMEM;
+
+       /*
+        * The ring buffer page list is a circular list that does not
+        * start and end with a list head. All page list items point to
+        * other pages.
+        */
+       cpu_buffer->pages = pages.next;
+       list_del(&pages);
+
+       cpu_buffer->nr_pages = nr_pages;
+
+       rb_check_pages(cpu_buffer);
+
+       return 0;
+}
+
+static struct ring_buffer_per_cpu *
+rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct buffer_page *bpage;
+       struct page *page;
+       int ret;
+
+       cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
+                                 GFP_KERNEL, cpu_to_node(cpu));
+       if (!cpu_buffer)
+               return NULL;
+
+       cpu_buffer->cpu = cpu;
+       cpu_buffer->buffer = buffer;
+       raw_spin_lock_init(&cpu_buffer->reader_lock);
+       lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
+       cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
+       INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
+       init_completion(&cpu_buffer->update_done);
+       init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
+       init_waitqueue_head(&cpu_buffer->irq_work.waiters);
+       init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
+
+       bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
+                           GFP_KERNEL, cpu_to_node(cpu));
+       if (!bpage)
+               goto fail_free_buffer;
+
+       rb_check_bpage(cpu_buffer, bpage);
+
+       cpu_buffer->reader_page = bpage;
+       page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
+       if (!page)
+               goto fail_free_reader;
+       bpage->page = page_address(page);
+       rb_init_page(bpage->page);
+
+       INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
+       INIT_LIST_HEAD(&cpu_buffer->new_pages);
+
+       ret = rb_allocate_pages(cpu_buffer, nr_pages);
+       if (ret < 0)
+               goto fail_free_reader;
+
+       cpu_buffer->head_page
+               = list_entry(cpu_buffer->pages, struct buffer_page, list);
+       cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
+
+       rb_head_page_activate(cpu_buffer);
+
+       return cpu_buffer;
+
+ fail_free_reader:
+       free_buffer_page(cpu_buffer->reader_page);
+
+ fail_free_buffer:
+       kfree(cpu_buffer);
+       return NULL;
+}
+
+static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct list_head *head = cpu_buffer->pages;
+       struct buffer_page *bpage, *tmp;
+
+       free_buffer_page(cpu_buffer->reader_page);
+
+       rb_head_page_deactivate(cpu_buffer);
+
+       if (head) {
+               list_for_each_entry_safe(bpage, tmp, head, list) {
+                       list_del_init(&bpage->list);
+                       free_buffer_page(bpage);
+               }
+               bpage = list_entry(head, struct buffer_page, list);
+               free_buffer_page(bpage);
+       }
+
+       kfree(cpu_buffer);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static int rb_cpu_notify(struct notifier_block *self,
+                        unsigned long action, void *hcpu);
+#endif
+
+/**
+ * __ring_buffer_alloc - allocate a new ring_buffer
+ * @size: the size in bytes per cpu that is needed.
+ * @flags: attributes to set for the ring buffer.
+ *
+ * Currently the only flag that is available is the RB_FL_OVERWRITE
+ * flag. This flag means that the buffer will overwrite old data
+ * when the buffer wraps. If this flag is not set, the buffer will
+ * drop data when the tail hits the head.
+ */
+struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
+                                       struct lock_class_key *key)
+{
+       struct ring_buffer *buffer;
+       int bsize;
+       int cpu, nr_pages;
+
+       /* keep it in its own cache line */
+       buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
+                        GFP_KERNEL);
+       if (!buffer)
+               return NULL;
+
+       if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
+               goto fail_free_buffer;
+
+       nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+       buffer->flags = flags;
+       buffer->clock = trace_clock_local;
+       buffer->reader_lock_key = key;
+
+       init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
+       init_waitqueue_head(&buffer->irq_work.waiters);
+
+       /* need at least two pages */
+       if (nr_pages < 2)
+               nr_pages = 2;
+
+       /*
+        * In case of non-hotplug cpu, if the ring-buffer is allocated
+        * in early initcall, it will not be notified of secondary cpus.
+        * In that off case, we need to allocate for all possible cpus.
+        */
+#ifdef CONFIG_HOTPLUG_CPU
+       cpu_notifier_register_begin();
+       cpumask_copy(buffer->cpumask, cpu_online_mask);
+#else
+       cpumask_copy(buffer->cpumask, cpu_possible_mask);
+#endif
+       buffer->cpus = nr_cpu_ids;
+
+       bsize = sizeof(void *) * nr_cpu_ids;
+       buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
+                                 GFP_KERNEL);
+       if (!buffer->buffers)
+               goto fail_free_cpumask;
+
+       for_each_buffer_cpu(buffer, cpu) {
+               buffer->buffers[cpu] =
+                       rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
+               if (!buffer->buffers[cpu])
+                       goto fail_free_buffers;
+       }
+
+#ifdef CONFIG_HOTPLUG_CPU
+       buffer->cpu_notify.notifier_call = rb_cpu_notify;
+       buffer->cpu_notify.priority = 0;
+       __register_cpu_notifier(&buffer->cpu_notify);
+       cpu_notifier_register_done();
+#endif
+
+       mutex_init(&buffer->mutex);
+
+       return buffer;
+
+ fail_free_buffers:
+       for_each_buffer_cpu(buffer, cpu) {
+               if (buffer->buffers[cpu])
+                       rb_free_cpu_buffer(buffer->buffers[cpu]);
+       }
+       kfree(buffer->buffers);
+
+ fail_free_cpumask:
+       free_cpumask_var(buffer->cpumask);
+#ifdef CONFIG_HOTPLUG_CPU
+       cpu_notifier_register_done();
+#endif
+
+ fail_free_buffer:
+       kfree(buffer);
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
+
+/**
+ * ring_buffer_free - free a ring buffer.
+ * @buffer: the buffer to free.
+ */
+void
+ring_buffer_free(struct ring_buffer *buffer)
+{
+       int cpu;
+
+#ifdef CONFIG_HOTPLUG_CPU
+       cpu_notifier_register_begin();
+       __unregister_cpu_notifier(&buffer->cpu_notify);
+#endif
+
+       for_each_buffer_cpu(buffer, cpu)
+               rb_free_cpu_buffer(buffer->buffers[cpu]);
+
+#ifdef CONFIG_HOTPLUG_CPU
+       cpu_notifier_register_done();
+#endif
+
+       kfree(buffer->buffers);
+       free_cpumask_var(buffer->cpumask);
+
+       kfree(buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_free);
+
+void ring_buffer_set_clock(struct ring_buffer *buffer,
+                          u64 (*clock)(void))
+{
+       buffer->clock = clock;
+}
+
+static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
+
+static inline unsigned long rb_page_entries(struct buffer_page *bpage)
+{
+       return local_read(&bpage->entries) & RB_WRITE_MASK;
+}
+
+static inline unsigned long rb_page_write(struct buffer_page *bpage)
+{
+       return local_read(&bpage->write) & RB_WRITE_MASK;
+}
+
+static int
+rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
+{
+       struct list_head *tail_page, *to_remove, *next_page;
+       struct buffer_page *to_remove_page, *tmp_iter_page;
+       struct buffer_page *last_page, *first_page;
+       unsigned int nr_removed;
+       unsigned long head_bit;
+       int page_entries;
+
+       head_bit = 0;
+
+       raw_spin_lock_irq(&cpu_buffer->reader_lock);
+       atomic_inc(&cpu_buffer->record_disabled);
+       /*
+        * We don't race with the readers since we have acquired the reader
+        * lock. We also don't race with writers after disabling recording.
+        * This makes it easy to figure out the first and the last page to be
+        * removed from the list. We unlink all the pages in between including
+        * the first and last pages. This is done in a busy loop so that we
+        * lose the least number of traces.
+        * The pages are freed after we restart recording and unlock readers.
+        */
+       tail_page = &cpu_buffer->tail_page->list;
+
+       /*
+        * tail page might be on reader page, we remove the next page
+        * from the ring buffer
+        */
+       if (cpu_buffer->tail_page == cpu_buffer->reader_page)
+               tail_page = rb_list_head(tail_page->next);
+       to_remove = tail_page;
+
+       /* start of pages to remove */
+       first_page = list_entry(rb_list_head(to_remove->next),
+                               struct buffer_page, list);
+
+       for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
+               to_remove = rb_list_head(to_remove)->next;
+               head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
+       }
+
+       next_page = rb_list_head(to_remove)->next;
+
+       /*
+        * Now we remove all pages between tail_page and next_page.
+        * Make sure that we have head_bit value preserved for the
+        * next page
+        */
+       tail_page->next = (struct list_head *)((unsigned long)next_page |
+                                               head_bit);
+       next_page = rb_list_head(next_page);
+       next_page->prev = tail_page;
+
+       /* make sure pages points to a valid page in the ring buffer */
+       cpu_buffer->pages = next_page;
+
+       /* update head page */
+       if (head_bit)
+               cpu_buffer->head_page = list_entry(next_page,
+                                               struct buffer_page, list);
+
+       /*
+        * change read pointer to make sure any read iterators reset
+        * themselves
+        */
+       cpu_buffer->read = 0;
+
+       /* pages are removed, resume tracing and then free the pages */
+       atomic_dec(&cpu_buffer->record_disabled);
+       raw_spin_unlock_irq(&cpu_buffer->reader_lock);
+
+       RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
+
+       /* last buffer page to remove */
+       last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
+                               list);
+       tmp_iter_page = first_page;
+
+       do {
+               to_remove_page = tmp_iter_page;
+               rb_inc_page(cpu_buffer, &tmp_iter_page);
+
+               /* update the counters */
+               page_entries = rb_page_entries(to_remove_page);
+               if (page_entries) {
+                       /*
+                        * If something was added to this page, it was full
+                        * since it is not the tail page. So we deduct the
+                        * bytes consumed in ring buffer from here.
+                        * Increment overrun to account for the lost events.
+                        */
+                       local_add(page_entries, &cpu_buffer->overrun);
+                       local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
+               }
+
+               /*
+                * We have already removed references to this list item, just
+                * free up the buffer_page and its page
+                */
+               free_buffer_page(to_remove_page);
+               nr_removed--;
+
+       } while (to_remove_page != last_page);
+
+       RB_WARN_ON(cpu_buffer, nr_removed);
+
+       return nr_removed == 0;
+}
+
+static int
+rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct list_head *pages = &cpu_buffer->new_pages;
+       int retries, success;
+
+       raw_spin_lock_irq(&cpu_buffer->reader_lock);
+       /*
+        * We are holding the reader lock, so the reader page won't be swapped
+        * in the ring buffer. Now we are racing with the writer trying to
+        * move head page and the tail page.
+        * We are going to adapt the reader page update process where:
+        * 1. We first splice the start and end of list of new pages between
+        *    the head page and its previous page.
+        * 2. We cmpxchg the prev_page->next to point from head page to the
+        *    start of new pages list.
+        * 3. Finally, we update the head->prev to the end of new list.
+        *
+        * We will try this process 10 times, to make sure that we don't keep
+        * spinning.
+        */
+       retries = 10;
+       success = 0;
+       while (retries--) {
+               struct list_head *head_page, *prev_page, *r;
+               struct list_head *last_page, *first_page;
+               struct list_head *head_page_with_bit;
+
+               head_page = &rb_set_head_page(cpu_buffer)->list;
+               if (!head_page)
+                       break;
+               prev_page = head_page->prev;
+
+               first_page = pages->next;
+               last_page  = pages->prev;
+
+               head_page_with_bit = (struct list_head *)
+                                    ((unsigned long)head_page | RB_PAGE_HEAD);
+
+               last_page->next = head_page_with_bit;
+               first_page->prev = prev_page;
+
+               r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
+
+               if (r == head_page_with_bit) {
+                       /*
+                        * yay, we replaced the page pointer to our new list,
+                        * now, we just have to update to head page's prev
+                        * pointer to point to end of list
+                        */
+                       head_page->prev = last_page;
+                       success = 1;
+                       break;
+               }
+       }
+
+       if (success)
+               INIT_LIST_HEAD(pages);
+       /*
+        * If we weren't successful in adding in new pages, warn and stop
+        * tracing
+        */
+       RB_WARN_ON(cpu_buffer, !success);
+       raw_spin_unlock_irq(&cpu_buffer->reader_lock);
+
+       /* free pages if they weren't inserted */
+       if (!success) {
+               struct buffer_page *bpage, *tmp;
+               list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
+                                        list) {
+                       list_del_init(&bpage->list);
+                       free_buffer_page(bpage);
+               }
+       }
+       return success;
+}
+
+static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       int success;
+
+       if (cpu_buffer->nr_pages_to_update > 0)
+               success = rb_insert_pages(cpu_buffer);
+       else
+               success = rb_remove_pages(cpu_buffer,
+                                       -cpu_buffer->nr_pages_to_update);
+
+       if (success)
+               cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
+}
+
+static void update_pages_handler(struct work_struct *work)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
+                       struct ring_buffer_per_cpu, update_pages_work);
+       rb_update_pages(cpu_buffer);
+       complete(&cpu_buffer->update_done);
+}
+
+/**
+ * ring_buffer_resize - resize the ring buffer
+ * @buffer: the buffer to resize.
+ * @size: the new size.
+ * @cpu_id: the cpu buffer to resize
+ *
+ * Minimum size is 2 * BUF_PAGE_SIZE.
+ *
+ * Returns 0 on success and < 0 on failure.
+ */
+int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
+                       int cpu_id)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned nr_pages;
+       int cpu, err = 0;
+
+       /*
+        * Always succeed at resizing a non-existent buffer:
+        */
+       if (!buffer)
+               return size;
+
+       /* Make sure the requested buffer exists */
+       if (cpu_id != RING_BUFFER_ALL_CPUS &&
+           !cpumask_test_cpu(cpu_id, buffer->cpumask))
+               return size;
+
+       size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+       size *= BUF_PAGE_SIZE;
+
+       /* we need a minimum of two pages */
+       if (size < BUF_PAGE_SIZE * 2)
+               size = BUF_PAGE_SIZE * 2;
+
+       nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+
+       /*
+        * Don't succeed if resizing is disabled, as a reader might be
+        * manipulating the ring buffer and is expecting a sane state while
+        * this is true.
+        */
+       if (atomic_read(&buffer->resize_disabled))
+               return -EBUSY;
+
+       /* prevent another thread from changing buffer sizes */
+       mutex_lock(&buffer->mutex);
+
+       if (cpu_id == RING_BUFFER_ALL_CPUS) {
+               /* calculate the pages to update */
+               for_each_buffer_cpu(buffer, cpu) {
+                       cpu_buffer = buffer->buffers[cpu];
+
+                       cpu_buffer->nr_pages_to_update = nr_pages -
+                                                       cpu_buffer->nr_pages;
+                       /*
+                        * nothing more to do for removing pages or no update
+                        */
+                       if (cpu_buffer->nr_pages_to_update <= 0)
+                               continue;
+                       /*
+                        * to add pages, make sure all new pages can be
+                        * allocated without receiving ENOMEM
+                        */
+                       INIT_LIST_HEAD(&cpu_buffer->new_pages);
+                       if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
+                                               &cpu_buffer->new_pages, cpu)) {
+                               /* not enough memory for new pages */
+                               err = -ENOMEM;
+                               goto out_err;
+                       }
+               }
+
+               get_online_cpus();
+               /*
+                * Fire off all the required work handlers
+                * We can't schedule on offline CPUs, but it's not necessary
+                * since we can change their buffer sizes without any race.
+                */
+               for_each_buffer_cpu(buffer, cpu) {
+                       cpu_buffer = buffer->buffers[cpu];
+                       if (!cpu_buffer->nr_pages_to_update)
+                               continue;
+
+                       /* Can't run something on an offline CPU. */
+                       if (!cpu_online(cpu)) {
+                               rb_update_pages(cpu_buffer);
+                               cpu_buffer->nr_pages_to_update = 0;
+                       } else {
+                               schedule_work_on(cpu,
+                                               &cpu_buffer->update_pages_work);
+                       }
+               }
+
+               /* wait for all the updates to complete */
+               for_each_buffer_cpu(buffer, cpu) {
+                       cpu_buffer = buffer->buffers[cpu];
+                       if (!cpu_buffer->nr_pages_to_update)
+                               continue;
+
+                       if (cpu_online(cpu))
+                               wait_for_completion(&cpu_buffer->update_done);
+                       cpu_buffer->nr_pages_to_update = 0;
+               }
+
+               put_online_cpus();
+       } else {
+               /* Make sure this CPU has been intitialized */
+               if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
+                       goto out;
+
+               cpu_buffer = buffer->buffers[cpu_id];
+
+               if (nr_pages == cpu_buffer->nr_pages)
+                       goto out;
+
+               cpu_buffer->nr_pages_to_update = nr_pages -
+                                               cpu_buffer->nr_pages;
+
+               INIT_LIST_HEAD(&cpu_buffer->new_pages);
+               if (cpu_buffer->nr_pages_to_update > 0 &&
+                       __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
+                                           &cpu_buffer->new_pages, cpu_id)) {
+                       err = -ENOMEM;
+                       goto out_err;
+               }
+
+               get_online_cpus();
+
+               /* Can't run something on an offline CPU. */
+               if (!cpu_online(cpu_id))
+                       rb_update_pages(cpu_buffer);
+               else {
+                       schedule_work_on(cpu_id,
+                                        &cpu_buffer->update_pages_work);
+                       wait_for_completion(&cpu_buffer->update_done);
+               }
+
+               cpu_buffer->nr_pages_to_update = 0;
+               put_online_cpus();
+       }
+
+ out:
+       /*
+        * The ring buffer resize can happen with the ring buffer
+        * enabled, so that the update disturbs the tracing as little
+        * as possible. But if the buffer is disabled, we do not need
+        * to worry about that, and we can take the time to verify
+        * that the buffer is not corrupt.
+        */
+       if (atomic_read(&buffer->record_disabled)) {
+               atomic_inc(&buffer->record_disabled);
+               /*
+                * Even though the buffer was disabled, we must make sure
+                * that it is truly disabled before calling rb_check_pages.
+                * There could have been a race between checking
+                * record_disable and incrementing it.
+                */
+               synchronize_sched();
+               for_each_buffer_cpu(buffer, cpu) {
+                       cpu_buffer = buffer->buffers[cpu];
+                       rb_check_pages(cpu_buffer);
+               }
+               atomic_dec(&buffer->record_disabled);
+       }
+
+       mutex_unlock(&buffer->mutex);
+       return size;
+
+ out_err:
+       for_each_buffer_cpu(buffer, cpu) {
+               struct buffer_page *bpage, *tmp;
+
+               cpu_buffer = buffer->buffers[cpu];
+               cpu_buffer->nr_pages_to_update = 0;
+
+               if (list_empty(&cpu_buffer->new_pages))
+                       continue;
+
+               list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
+                                       list) {
+                       list_del_init(&bpage->list);
+                       free_buffer_page(bpage);
+               }
+       }
+       mutex_unlock(&buffer->mutex);
+       return err;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_resize);
+
+void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
+{
+       mutex_lock(&buffer->mutex);
+       if (val)
+               buffer->flags |= RB_FL_OVERWRITE;
+       else
+               buffer->flags &= ~RB_FL_OVERWRITE;
+       mutex_unlock(&buffer->mutex);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
+
+static inline void *
+__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
+{
+       return bpage->data + index;
+}
+
+static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
+{
+       return bpage->page->data + index;
+}
+
+static inline struct ring_buffer_event *
+rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       return __rb_page_index(cpu_buffer->reader_page,
+                              cpu_buffer->reader_page->read);
+}
+
+static inline struct ring_buffer_event *
+rb_iter_head_event(struct ring_buffer_iter *iter)
+{
+       return __rb_page_index(iter->head_page, iter->head);
+}
+
+static inline unsigned rb_page_commit(struct buffer_page *bpage)
+{
+       return local_read(&bpage->page->commit);
+}
+
+/* Size is determined by what has been committed */
+static inline unsigned rb_page_size(struct buffer_page *bpage)
+{
+       return rb_page_commit(bpage);
+}
+
+static inline unsigned
+rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       return rb_page_commit(cpu_buffer->commit_page);
+}
+
+static inline unsigned
+rb_event_index(struct ring_buffer_event *event)
+{
+       unsigned long addr = (unsigned long)event;
+
+       return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
+}
+
+static inline int
+rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
+                  struct ring_buffer_event *event)
+{
+       unsigned long addr = (unsigned long)event;
+       unsigned long index;
+
+       index = rb_event_index(event);
+       addr &= PAGE_MASK;
+
+       return cpu_buffer->commit_page->page == (void *)addr &&
+               rb_commit_index(cpu_buffer) == index;
+}
+
+static void
+rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       unsigned long max_count;
+
+       /*
+        * We only race with interrupts and NMIs on this CPU.
+        * If we own the commit event, then we can commit
+        * all others that interrupted us, since the interruptions
+        * are in stack format (they finish before they come
+        * back to us). This allows us to do a simple loop to
+        * assign the commit to the tail.
+        */
+ again:
+       max_count = cpu_buffer->nr_pages * 100;
+
+       while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
+               if (RB_WARN_ON(cpu_buffer, !(--max_count)))
+                       return;
+               if (RB_WARN_ON(cpu_buffer,
+                              rb_is_reader_page(cpu_buffer->tail_page)))
+                       return;
+               local_set(&cpu_buffer->commit_page->page->commit,
+                         rb_page_write(cpu_buffer->commit_page));
+               rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
+               cpu_buffer->write_stamp =
+                       cpu_buffer->commit_page->page->time_stamp;
+               /* add barrier to keep gcc from optimizing too much */
+               barrier();
+       }
+       while (rb_commit_index(cpu_buffer) !=
+              rb_page_write(cpu_buffer->commit_page)) {
+
+               local_set(&cpu_buffer->commit_page->page->commit,
+                         rb_page_write(cpu_buffer->commit_page));
+               RB_WARN_ON(cpu_buffer,
+                          local_read(&cpu_buffer->commit_page->page->commit) &
+                          ~RB_WRITE_MASK);
+               barrier();
+       }
+
+       /* again, keep gcc from optimizing */
+       barrier();
+
+       /*
+        * If an interrupt came in just after the first while loop
+        * and pushed the tail page forward, we will be left with
+        * a dangling commit that will never go forward.
+        */
+       if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
+               goto again;
+}
+
+static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
+       cpu_buffer->reader_page->read = 0;
+}
+
+static void rb_inc_iter(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+
+       /*
+        * The iterator could be on the reader page (it starts there).
+        * But the head could have moved, since the reader was
+        * found. Check for this case and assign the iterator
+        * to the head page instead of next.
+        */
+       if (iter->head_page == cpu_buffer->reader_page)
+               iter->head_page = rb_set_head_page(cpu_buffer);
+       else
+               rb_inc_page(cpu_buffer, &iter->head_page);
+
+       iter->read_stamp = iter->head_page->page->time_stamp;
+       iter->head = 0;
+}
+
+/* Slow path, do not inline */
+static noinline struct ring_buffer_event *
+rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
+{
+       event->type_len = RINGBUF_TYPE_TIME_EXTEND;
+
+       /* Not the first event on the page? */
+       if (rb_event_index(event)) {
+               event->time_delta = delta & TS_MASK;
+               event->array[0] = delta >> TS_SHIFT;
+       } else {
+               /* nope, just zero it */
+               event->time_delta = 0;
+               event->array[0] = 0;
+       }
+
+       return skip_time_extend(event);
+}
+
+/**
+ * rb_update_event - update event type and data
+ * @event: the event to update
+ * @type: the type of event
+ * @length: the size of the event field in the ring buffer
+ *
+ * Update the type and data fields of the event. The length
+ * is the actual size that is written to the ring buffer,
+ * and with this, we can determine what to place into the
+ * data field.
+ */
+static void
+rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
+               struct ring_buffer_event *event, unsigned length,
+               int add_timestamp, u64 delta)
+{
+       /* Only a commit updates the timestamp */
+       if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
+               delta = 0;
+
+       /*
+        * If we need to add a timestamp, then we
+        * add it to the start of the resevered space.
+        */
+       if (unlikely(add_timestamp)) {
+               event = rb_add_time_stamp(event, delta);
+               length -= RB_LEN_TIME_EXTEND;
+               delta = 0;
+       }
+
+       event->time_delta = delta;
+       length -= RB_EVNT_HDR_SIZE;
+       if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
+               event->type_len = 0;
+               event->array[0] = length;
+       } else
+               event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
+}
+
+/*
+ * rb_handle_head_page - writer hit the head page
+ *
+ * Returns: +1 to retry page
+ *           0 to continue
+ *          -1 on error
+ */
+static int
+rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
+                   struct buffer_page *tail_page,
+                   struct buffer_page *next_page)
+{
+       struct buffer_page *new_head;
+       int entries;
+       int type;
+       int ret;
+
+       entries = rb_page_entries(next_page);
+
+       /*
+        * The hard part is here. We need to move the head
+        * forward, and protect against both readers on
+        * other CPUs and writers coming in via interrupts.
+        */
+       type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
+                                      RB_PAGE_HEAD);
+
+       /*
+        * type can be one of four:
+        *  NORMAL - an interrupt already moved it for us
+        *  HEAD   - we are the first to get here.
+        *  UPDATE - we are the interrupt interrupting
+        *           a current move.
+        *  MOVED  - a reader on another CPU moved the next
+        *           pointer to its reader page. Give up
+        *           and try again.
+        */
+
+       switch (type) {
+       case RB_PAGE_HEAD:
+               /*
+                * We changed the head to UPDATE, thus
+                * it is our responsibility to update
+                * the counters.
+                */
+               local_add(entries, &cpu_buffer->overrun);
+               local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
+
+               /*
+                * The entries will be zeroed out when we move the
+                * tail page.
+                */
+
+               /* still more to do */
+               break;
+
+       case RB_PAGE_UPDATE:
+               /*
+                * This is an interrupt that interrupt the
+                * previous update. Still more to do.
+                */
+               break;
+       case RB_PAGE_NORMAL:
+               /*
+                * An interrupt came in before the update
+                * and processed this for us.
+                * Nothing left to do.
+                */
+               return 1;
+       case RB_PAGE_MOVED:
+               /*
+                * The reader is on another CPU and just did
+                * a swap with our next_page.
+                * Try again.
+                */
+               return 1;
+       default:
+               RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
+               return -1;
+       }
+
+       /*
+        * Now that we are here, the old head pointer is
+        * set to UPDATE. This will keep the reader from
+        * swapping the head page with the reader page.
+        * The reader (on another CPU) will spin till
+        * we are finished.
+        *
+        * We just need to protect against interrupts
+        * doing the job. We will set the next pointer
+        * to HEAD. After that, we set the old pointer
+        * to NORMAL, but only if it was HEAD before.
+        * otherwise we are an interrupt, and only
+        * want the outer most commit to reset it.
+        */
+       new_head = next_page;
+       rb_inc_page(cpu_buffer, &new_head);
+
+       ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
+                                   RB_PAGE_NORMAL);
+
+       /*
+        * Valid returns are:
+        *  HEAD   - an interrupt came in and already set it.
+        *  NORMAL - One of two things:
+        *            1) We really set it.
+        *            2) A bunch of interrupts came in and moved
+        *               the page forward again.
+        */
+       switch (ret) {
+       case RB_PAGE_HEAD:
+       case RB_PAGE_NORMAL:
+               /* OK */
+               break;
+       default:
+               RB_WARN_ON(cpu_buffer, 1);
+               return -1;
+       }
+
+       /*
+        * It is possible that an interrupt came in,
+        * set the head up, then more interrupts came in
+        * and moved it again. When we get back here,
+        * the page would have been set to NORMAL but we
+        * just set it back to HEAD.
+        *
+        * How do you detect this? Well, if that happened
+        * the tail page would have moved.
+        */
+       if (ret == RB_PAGE_NORMAL) {
+               /*
+                * If the tail had moved passed next, then we need
+                * to reset the pointer.
+                */
+               if (cpu_buffer->tail_page != tail_page &&
+                   cpu_buffer->tail_page != next_page)
+                       rb_head_page_set_normal(cpu_buffer, new_head,
+                                               next_page,
+                                               RB_PAGE_HEAD);
+       }
+
+       /*
+        * If this was the outer most commit (the one that
+        * changed the original pointer from HEAD to UPDATE),
+        * then it is up to us to reset it to NORMAL.
+        */
+       if (type == RB_PAGE_HEAD) {
+               ret = rb_head_page_set_normal(cpu_buffer, next_page,
+                                             tail_page,
+                                             RB_PAGE_UPDATE);
+               if (RB_WARN_ON(cpu_buffer,
+                              ret != RB_PAGE_UPDATE))
+                       return -1;
+       }
+
+       return 0;
+}
+
+static unsigned rb_calculate_event_length(unsigned length)
+{
+       struct ring_buffer_event event; /* Used only for sizeof array */
+
+       /* zero length can cause confusions */
+       if (!length)
+               length = 1;
+
+       if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
+               length += sizeof(event.array[0]);
+
+       length += RB_EVNT_HDR_SIZE;
+       length = ALIGN(length, RB_ARCH_ALIGNMENT);
+
+       return length;
+}
+
+static inline void
+rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
+             struct buffer_page *tail_page,
+             unsigned long tail, unsigned long length)
+{
+       struct ring_buffer_event *event;
+
+       /*
+        * Only the event that crossed the page boundary
+        * must fill the old tail_page with padding.
+        */
+       if (tail >= BUF_PAGE_SIZE) {
+               /*
+                * If the page was filled, then we still need
+                * to update the real_end. Reset it to zero
+                * and the reader will ignore it.
+                */
+               if (tail == BUF_PAGE_SIZE)
+                       tail_page->real_end = 0;
+
+               local_sub(length, &tail_page->write);
+               return;
+       }
+
+       event = __rb_page_index(tail_page, tail);
+       kmemcheck_annotate_bitfield(event, bitfield);
+
+       /* account for padding bytes */
+       local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
+
+       /*
+        * Save the original length to the meta data.
+        * This will be used by the reader to add lost event
+        * counter.
+        */
+       tail_page->real_end = tail;
+
+       /*
+        * If this event is bigger than the minimum size, then
+        * we need to be careful that we don't subtract the
+        * write counter enough to allow another writer to slip
+        * in on this page.
+        * We put in a discarded commit instead, to make sure
+        * that this space is not used again.
+        *
+        * If we are less than the minimum size, we don't need to
+        * worry about it.
+        */
+       if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
+               /* No room for any events */
+
+               /* Mark the rest of the page with padding */
+               rb_event_set_padding(event);
+
+               /* Set the write back to the previous setting */
+               local_sub(length, &tail_page->write);
+               return;
+       }
+
+       /* Put in a discarded event */
+       event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
+       event->type_len = RINGBUF_TYPE_PADDING;
+       /* time delta must be non zero */
+       event->time_delta = 1;
+
+       /* Set write to end of buffer */
+       length = (tail + length) - BUF_PAGE_SIZE;
+       local_sub(length, &tail_page->write);
+}
+
+/*
+ * This is the slow path, force gcc not to inline it.
+ */
+static noinline struct ring_buffer_event *
+rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
+            unsigned long length, unsigned long tail,
+            struct buffer_page *tail_page, u64 ts)
+{
+       struct buffer_page *commit_page = cpu_buffer->commit_page;
+       struct ring_buffer *buffer = cpu_buffer->buffer;
+       struct buffer_page *next_page;
+       int ret;
+
+       next_page = tail_page;
+
+       rb_inc_page(cpu_buffer, &next_page);
+
+       /*
+        * If for some reason, we had an interrupt storm that made
+        * it all the way around the buffer, bail, and warn
+        * about it.
+        */
+       if (unlikely(next_page == commit_page)) {
+               local_inc(&cpu_buffer->commit_overrun);
+               goto out_reset;
+       }
+
+       /*
+        * This is where the fun begins!
+        *
+        * We are fighting against races between a reader that
+        * could be on another CPU trying to swap its reader
+        * page with the buffer head.
+        *
+        * We are also fighting against interrupts coming in and
+        * moving the head or tail on us as well.
+        *
+        * If the next page is the head page then we have filled
+        * the buffer, unless the commit page is still on the
+        * reader page.
+        */
+       if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
+
+               /*
+                * If the commit is not on the reader page, then
+                * move the header page.
+                */
+               if (!rb_is_reader_page(cpu_buffer->commit_page)) {
+                       /*
+                        * If we are not in overwrite mode,
+                        * this is easy, just stop here.
+                        */
+                       if (!(buffer->flags & RB_FL_OVERWRITE)) {
+                               local_inc(&cpu_buffer->dropped_events);
+                               goto out_reset;
+                       }
+
+                       ret = rb_handle_head_page(cpu_buffer,
+                                                 tail_page,
+                                                 next_page);
+                       if (ret < 0)
+                               goto out_reset;
+                       if (ret)
+                               goto out_again;
+               } else {
+                       /*
+                        * We need to be careful here too. The
+                        * commit page could still be on the reader
+                        * page. We could have a small buffer, and
+                        * have filled up the buffer with events
+                        * from interrupts and such, and wrapped.
+                        *
+                        * Note, if the tail page is also the on the
+                        * reader_page, we let it move out.
+                        */
+                       if (unlikely((cpu_buffer->commit_page !=
+                                     cpu_buffer->tail_page) &&
+                                    (cpu_buffer->commit_page ==
+                                     cpu_buffer->reader_page))) {
+                               local_inc(&cpu_buffer->commit_overrun);
+                               goto out_reset;
+                       }
+               }
+       }
+
+       ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
+       if (ret) {
+               /*
+                * Nested commits always have zero deltas, so
+                * just reread the time stamp
+                */
+               ts = rb_time_stamp(buffer);
+               next_page->page->time_stamp = ts;
+       }
+
+ out_again:
+
+       rb_reset_tail(cpu_buffer, tail_page, tail, length);
+
+       /* fail and let the caller try again */
+       return ERR_PTR(-EAGAIN);
+
+ out_reset:
+       /* reset write */
+       rb_reset_tail(cpu_buffer, tail_page, tail, length);
+
+       return NULL;
+}
+
+static struct ring_buffer_event *
+__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
+                 unsigned long length, u64 ts,
+                 u64 delta, int add_timestamp)
+{
+       struct buffer_page *tail_page;
+       struct ring_buffer_event *event;
+       unsigned long tail, write;
+
+       /*
+        * If the time delta since the last event is too big to
+        * hold in the time field of the event, then we append a
+        * TIME EXTEND event ahead of the data event.
+        */
+       if (unlikely(add_timestamp))
+               length += RB_LEN_TIME_EXTEND;
+
+       tail_page = cpu_buffer->tail_page;
+       write = local_add_return(length, &tail_page->write);
+
+       /* set write to only the index of the write */
+       write &= RB_WRITE_MASK;
+       tail = write - length;
+
+       /*
+        * If this is the first commit on the page, then it has the same
+        * timestamp as the page itself.
+        */
+       if (!tail)
+               delta = 0;
+
+       /* See if we shot pass the end of this buffer page */
+       if (unlikely(write > BUF_PAGE_SIZE))
+               return rb_move_tail(cpu_buffer, length, tail,
+                                   tail_page, ts);
+
+       /* We reserved something on the buffer */
+
+       event = __rb_page_index(tail_page, tail);
+       kmemcheck_annotate_bitfield(event, bitfield);
+       rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
+
+       local_inc(&tail_page->entries);
+
+       /*
+        * If this is the first commit on the page, then update
+        * its timestamp.
+        */
+       if (!tail)
+               tail_page->page->time_stamp = ts;
+
+       /* account for these added bytes */
+       local_add(length, &cpu_buffer->entries_bytes);
+
+       return event;
+}
+
+static inline int
+rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
+                 struct ring_buffer_event *event)
+{
+       unsigned long new_index, old_index;
+       struct buffer_page *bpage;
+       unsigned long index;
+       unsigned long addr;
+
+       new_index = rb_event_index(event);
+       old_index = new_index + rb_event_ts_length(event);
+       addr = (unsigned long)event;
+       addr &= PAGE_MASK;
+
+       bpage = cpu_buffer->tail_page;
+
+       if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
+               unsigned long write_mask =
+                       local_read(&bpage->write) & ~RB_WRITE_MASK;
+               unsigned long event_length = rb_event_length(event);
+               /*
+                * This is on the tail page. It is possible that
+                * a write could come in and move the tail page
+                * and write to the next page. That is fine
+                * because we just shorten what is on this page.
+                */
+               old_index += write_mask;
+               new_index += write_mask;
+               index = local_cmpxchg(&bpage->write, old_index, new_index);
+               if (index == old_index) {
+                       /* update counters */
+                       local_sub(event_length, &cpu_buffer->entries_bytes);
+                       return 1;
+               }
+       }
+
+       /* could not discard */
+       return 0;
+}
+
+static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       local_inc(&cpu_buffer->committing);
+       local_inc(&cpu_buffer->commits);
+}
+
+static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       unsigned long commits;
+
+       if (RB_WARN_ON(cpu_buffer,
+                      !local_read(&cpu_buffer->committing)))
+               return;
+
+ again:
+       commits = local_read(&cpu_buffer->commits);
+       /* synchronize with interrupts */
+       barrier();
+       if (local_read(&cpu_buffer->committing) == 1)
+               rb_set_commit_to_write(cpu_buffer);
+
+       local_dec(&cpu_buffer->committing);
+
+       /* synchronize with interrupts */
+       barrier();
+
+       /*
+        * Need to account for interrupts coming in between the
+        * updating of the commit page and the clearing of the
+        * committing counter.
+        */
+       if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
+           !local_read(&cpu_buffer->committing)) {
+               local_inc(&cpu_buffer->committing);
+               goto again;
+       }
+}
+
+static struct ring_buffer_event *
+rb_reserve_next_event(struct ring_buffer *buffer,
+                     struct ring_buffer_per_cpu *cpu_buffer,
+                     unsigned long length)
+{
+       struct ring_buffer_event *event;
+       u64 ts, delta;
+       int nr_loops = 0;
+       int add_timestamp;
+       u64 diff;
+
+       rb_start_commit(cpu_buffer);
+
+#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
+       /*
+        * Due to the ability to swap a cpu buffer from a buffer
+        * it is possible it was swapped before we committed.
+        * (committing stops a swap). We check for it here and
+        * if it happened, we have to fail the write.
+        */
+       barrier();
+       if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
+               local_dec(&cpu_buffer->committing);
+               local_dec(&cpu_buffer->commits);
+               return NULL;
+       }
+#endif
+
+       length = rb_calculate_event_length(length);
+ again:
+       add_timestamp = 0;
+       delta = 0;
+
+       /*
+        * We allow for interrupts to reenter here and do a trace.
+        * If one does, it will cause this original code to loop
+        * back here. Even with heavy interrupts happening, this
+        * should only happen a few times in a row. If this happens
+        * 1000 times in a row, there must be either an interrupt
+        * storm or we have something buggy.
+        * Bail!
+        */
+       if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
+               goto out_fail;
+
+       ts = rb_time_stamp(cpu_buffer->buffer);
+       diff = ts - cpu_buffer->write_stamp;
+
+       /* make sure this diff is calculated here */
+       barrier();
+
+       /* Did the write stamp get updated already? */
+       if (likely(ts >= cpu_buffer->write_stamp)) {
+               delta = diff;
+               if (unlikely(test_time_stamp(delta))) {
+                       int local_clock_stable = 1;
+#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
+                       local_clock_stable = sched_clock_stable();
+#endif
+                       WARN_ONCE(delta > (1ULL << 59),
+                                 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
+                                 (unsigned long long)delta,
+                                 (unsigned long long)ts,
+                                 (unsigned long long)cpu_buffer->write_stamp,
+                                 local_clock_stable ? "" :
+                                 "If you just came from a suspend/resume,\n"
+                                 "please switch to the trace global clock:\n"
+                                 "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
+                       add_timestamp = 1;
+               }
+       }
+
+       event = __rb_reserve_next(cpu_buffer, length, ts,
+                                 delta, add_timestamp);
+       if (unlikely(PTR_ERR(event) == -EAGAIN))
+               goto again;
+
+       if (!event)
+               goto out_fail;
+
+       return event;
+
+ out_fail:
+       rb_end_commit(cpu_buffer);
+       return NULL;
+}
+
+#ifdef CONFIG_TRACING
+
+/*
+ * The lock and unlock are done within a preempt disable section.
+ * The current_context per_cpu variable can only be modified
+ * by the current task between lock and unlock. But it can
+ * be modified more than once via an interrupt. To pass this
+ * information from the lock to the unlock without having to
+ * access the 'in_interrupt()' functions again (which do show
+ * a bit of overhead in something as critical as function tracing,
+ * we use a bitmask trick.
+ *
+ *  bit 0 =  NMI context
+ *  bit 1 =  IRQ context
+ *  bit 2 =  SoftIRQ context
+ *  bit 3 =  normal context.
+ *
+ * This works because this is the order of contexts that can
+ * preempt other contexts. A SoftIRQ never preempts an IRQ
+ * context.
+ *
+ * When the context is determined, the corresponding bit is
+ * checked and set (if it was set, then a recursion of that context
+ * happened).
+ *
+ * On unlock, we need to clear this bit. To do so, just subtract
+ * 1 from the current_context and AND it to itself.
+ *
+ * (binary)
+ *  101 - 1 = 100
+ *  101 & 100 = 100 (clearing bit zero)
+ *
+ *  1010 - 1 = 1001
+ *  1010 & 1001 = 1000 (clearing bit 1)
+ *
+ * The least significant bit can be cleared this way, and it
+ * just so happens that it is the same bit corresponding to
+ * the current context.
+ */
+static DEFINE_PER_CPU(unsigned int, current_context);
+
+static __always_inline int trace_recursive_lock(void)
+{
+       unsigned int val = __this_cpu_read(current_context);
+       int bit;
+
+       if (in_interrupt()) {
+               if (in_nmi())
+                       bit = 0;
+               else if (in_irq())
+                       bit = 1;
+               else
+                       bit = 2;
+       } else
+               bit = 3;
+
+       if (unlikely(val & (1 << bit)))
+               return 1;
+
+       val |= (1 << bit);
+       __this_cpu_write(current_context, val);
+
+       return 0;
+}
+
+static __always_inline void trace_recursive_unlock(void)
+{
+       __this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
+}
+
+#else
+
+#define trace_recursive_lock()         (0)
+#define trace_recursive_unlock()       do { } while (0)
+
+#endif
+
+/**
+ * ring_buffer_lock_reserve - reserve a part of the buffer
+ * @buffer: the ring buffer to reserve from
+ * @length: the length of the data to reserve (excluding event header)
+ *
+ * Returns a reseverd event on the ring buffer to copy directly to.
+ * The user of this interface will need to get the body to write into
+ * and can use the ring_buffer_event_data() interface.
+ *
+ * The length is the length of the data needed, not the event length
+ * which also includes the event header.
+ *
+ * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
+ * If NULL is returned, then nothing has been allocated or locked.
+ */
+struct ring_buffer_event *
+ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_event *event;
+       int cpu;
+
+       if (ring_buffer_flags != RB_BUFFERS_ON)
+               return NULL;
+
+       /* If we are tracing schedule, we don't want to recurse */
+       preempt_disable_notrace();
+
+       if (atomic_read(&buffer->record_disabled))
+               goto out_nocheck;
+
+       if (trace_recursive_lock())
+               goto out_nocheck;
+
+       cpu = raw_smp_processor_id();
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               goto out;
+
+       cpu_buffer = buffer->buffers[cpu];
+
+       if (atomic_read(&cpu_buffer->record_disabled))
+               goto out;
+
+       if (length > BUF_MAX_DATA_SIZE)
+               goto out;
+
+       event = rb_reserve_next_event(buffer, cpu_buffer, length);
+       if (!event)
+               goto out;
+
+       return event;
+
+ out:
+       trace_recursive_unlock();
+
+ out_nocheck:
+       preempt_enable_notrace();
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
+
+static void
+rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
+                     struct ring_buffer_event *event)
+{
+       u64 delta;
+
+       /*
+        * The event first in the commit queue updates the
+        * time stamp.
+        */
+       if (rb_event_is_commit(cpu_buffer, event)) {
+               /*
+                * A commit event that is first on a page
+                * updates the write timestamp with the page stamp
+                */
+               if (!rb_event_index(event))
+                       cpu_buffer->write_stamp =
+                               cpu_buffer->commit_page->page->time_stamp;
+               else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
+                       delta = event->array[0];
+                       delta <<= TS_SHIFT;
+                       delta += event->time_delta;
+                       cpu_buffer->write_stamp += delta;
+               } else
+                       cpu_buffer->write_stamp += event->time_delta;
+       }
+}
+
+static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
+                     struct ring_buffer_event *event)
+{
+       local_inc(&cpu_buffer->entries);
+       rb_update_write_stamp(cpu_buffer, event);
+       rb_end_commit(cpu_buffer);
+}
+
+static __always_inline void
+rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
+{
+       bool pagebusy;
+
+       if (buffer->irq_work.waiters_pending) {
+               buffer->irq_work.waiters_pending = false;
+               /* irq_work_queue() supplies it's own memory barriers */
+               irq_work_queue(&buffer->irq_work.work);
+       }
+
+       if (cpu_buffer->irq_work.waiters_pending) {
+               cpu_buffer->irq_work.waiters_pending = false;
+               /* irq_work_queue() supplies it's own memory barriers */
+               irq_work_queue(&cpu_buffer->irq_work.work);
+       }
+
+       pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
+
+       if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
+               cpu_buffer->irq_work.wakeup_full = true;
+               cpu_buffer->irq_work.full_waiters_pending = false;
+               /* irq_work_queue() supplies it's own memory barriers */
+               irq_work_queue(&cpu_buffer->irq_work.work);
+       }
+}
+
+/**
+ * ring_buffer_unlock_commit - commit a reserved
+ * @buffer: The buffer to commit to
+ * @event: The event pointer to commit.
+ *
+ * This commits the data to the ring buffer, and releases any locks held.
+ *
+ * Must be paired with ring_buffer_lock_reserve.
+ */
+int ring_buffer_unlock_commit(struct ring_buffer *buffer,
+                             struct ring_buffer_event *event)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       int cpu = raw_smp_processor_id();
+
+       cpu_buffer = buffer->buffers[cpu];
+
+       rb_commit(cpu_buffer, event);
+
+       rb_wakeups(buffer, cpu_buffer);
+
+       trace_recursive_unlock();
+
+       preempt_enable_notrace();
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
+
+static inline void rb_event_discard(struct ring_buffer_event *event)
+{
+       if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+               event = skip_time_extend(event);
+
+       /* array[0] holds the actual length for the discarded event */
+       event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
+       event->type_len = RINGBUF_TYPE_PADDING;
+       /* time delta must be non zero */
+       if (!event->time_delta)
+               event->time_delta = 1;
+}
+
+/*
+ * Decrement the entries to the page that an event is on.
+ * The event does not even need to exist, only the pointer
+ * to the page it is on. This may only be called before the commit
+ * takes place.
+ */
+static inline void
+rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
+                  struct ring_buffer_event *event)
+{
+       unsigned long addr = (unsigned long)event;
+       struct buffer_page *bpage = cpu_buffer->commit_page;
+       struct buffer_page *start;
+
+       addr &= PAGE_MASK;
+
+       /* Do the likely case first */
+       if (likely(bpage->page == (void *)addr)) {
+               local_dec(&bpage->entries);
+               return;
+       }
+
+       /*
+        * Because the commit page may be on the reader page we
+        * start with the next page and check the end loop there.
+        */
+       rb_inc_page(cpu_buffer, &bpage);
+       start = bpage;
+       do {
+               if (bpage->page == (void *)addr) {
+                       local_dec(&bpage->entries);
+                       return;
+               }
+               rb_inc_page(cpu_buffer, &bpage);
+       } while (bpage != start);
+
+       /* commit not part of this buffer?? */
+       RB_WARN_ON(cpu_buffer, 1);
+}
+
+/**
+ * ring_buffer_commit_discard - discard an event that has not been committed
+ * @buffer: the ring buffer
+ * @event: non committed event to discard
+ *
+ * Sometimes an event that is in the ring buffer needs to be ignored.
+ * This function lets the user discard an event in the ring buffer
+ * and then that event will not be read later.
+ *
+ * This function only works if it is called before the the item has been
+ * committed. It will try to free the event from the ring buffer
+ * if another event has not been added behind it.
+ *
+ * If another event has been added behind it, it will set the event
+ * up as discarded, and perform the commit.
+ *
+ * If this function is called, do not call ring_buffer_unlock_commit on
+ * the event.
+ */
+void ring_buffer_discard_commit(struct ring_buffer *buffer,
+                               struct ring_buffer_event *event)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       int cpu;
+
+       /* The event is discarded regardless */
+       rb_event_discard(event);
+
+       cpu = smp_processor_id();
+       cpu_buffer = buffer->buffers[cpu];
+
+       /*
+        * This must only be called if the event has not been
+        * committed yet. Thus we can assume that preemption
+        * is still disabled.
+        */
+       RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
+
+       rb_decrement_entry(cpu_buffer, event);
+       if (rb_try_to_discard(cpu_buffer, event))
+               goto out;
+
+       /*
+        * The commit is still visible by the reader, so we
+        * must still update the timestamp.
+        */
+       rb_update_write_stamp(cpu_buffer, event);
+ out:
+       rb_end_commit(cpu_buffer);
+
+       trace_recursive_unlock();
+
+       preempt_enable_notrace();
+
+}
+EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
+
+/**
+ * ring_buffer_write - write data to the buffer without reserving
+ * @buffer: The ring buffer to write to.
+ * @length: The length of the data being written (excluding the event header)
+ * @data: The data to write to the buffer.
+ *
+ * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
+ * one function. If you already have the data to write to the buffer, it
+ * may be easier to simply call this function.
+ *
+ * Note, like ring_buffer_lock_reserve, the length is the length of the data
+ * and not the length of the event which would hold the header.
+ */
+int ring_buffer_write(struct ring_buffer *buffer,
+                     unsigned long length,
+                     void *data)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_event *event;
+       void *body;
+       int ret = -EBUSY;
+       int cpu;
+
+       if (ring_buffer_flags != RB_BUFFERS_ON)
+               return -EBUSY;
+
+       preempt_disable_notrace();
+
+       if (atomic_read(&buffer->record_disabled))
+               goto out;
+
+       cpu = raw_smp_processor_id();
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               goto out;
+
+       cpu_buffer = buffer->buffers[cpu];
+
+       if (atomic_read(&cpu_buffer->record_disabled))
+               goto out;
+
+       if (length > BUF_MAX_DATA_SIZE)
+               goto out;
+
+       event = rb_reserve_next_event(buffer, cpu_buffer, length);
+       if (!event)
+               goto out;
+
+       body = rb_event_data(event);
+
+       memcpy(body, data, length);
+
+       rb_commit(cpu_buffer, event);
+
+       rb_wakeups(buffer, cpu_buffer);
+
+       ret = 0;
+ out:
+       preempt_enable_notrace();
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_write);
+
+static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct buffer_page *reader = cpu_buffer->reader_page;
+       struct buffer_page *head = rb_set_head_page(cpu_buffer);
+       struct buffer_page *commit = cpu_buffer->commit_page;
+
+       /* In case of error, head will be NULL */
+       if (unlikely(!head))
+               return 1;
+
+       return reader->read == rb_page_commit(reader) &&
+               (commit == reader ||
+                (commit == head &&
+                 head->read == rb_page_commit(commit)));
+}
+
+/**
+ * ring_buffer_record_disable - stop all writes into the buffer
+ * @buffer: The ring buffer to stop writes to.
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * The caller should call synchronize_sched() after this.
+ */
+void ring_buffer_record_disable(struct ring_buffer *buffer)
+{
+       atomic_inc(&buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
+
+/**
+ * ring_buffer_record_enable - enable writes to the buffer
+ * @buffer: The ring buffer to enable writes
+ *
+ * Note, multiple disables will need the same number of enables
+ * to truly enable the writing (much like preempt_disable).
+ */
+void ring_buffer_record_enable(struct ring_buffer *buffer)
+{
+       atomic_dec(&buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
+
+/**
+ * ring_buffer_record_off - stop all writes into the buffer
+ * @buffer: The ring buffer to stop writes to.
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * This is different than ring_buffer_record_disable() as
+ * it works like an on/off switch, where as the disable() version
+ * must be paired with a enable().
+ */
+void ring_buffer_record_off(struct ring_buffer *buffer)
+{
+       unsigned int rd;
+       unsigned int new_rd;
+
+       do {
+               rd = atomic_read(&buffer->record_disabled);
+               new_rd = rd | RB_BUFFER_OFF;
+       } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_off);
+
+/**
+ * ring_buffer_record_on - restart writes into the buffer
+ * @buffer: The ring buffer to start writes to.
+ *
+ * This enables all writes to the buffer that was disabled by
+ * ring_buffer_record_off().
+ *
+ * This is different than ring_buffer_record_enable() as
+ * it works like an on/off switch, where as the enable() version
+ * must be paired with a disable().
+ */
+void ring_buffer_record_on(struct ring_buffer *buffer)
+{
+       unsigned int rd;
+       unsigned int new_rd;
+
+       do {
+               rd = atomic_read(&buffer->record_disabled);
+               new_rd = rd & ~RB_BUFFER_OFF;
+       } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_on);
+
+/**
+ * ring_buffer_record_is_on - return true if the ring buffer can write
+ * @buffer: The ring buffer to see if write is enabled
+ *
+ * Returns true if the ring buffer is in a state that it accepts writes.
+ */
+int ring_buffer_record_is_on(struct ring_buffer *buffer)
+{
+       return !atomic_read(&buffer->record_disabled);
+}
+
+/**
+ * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
+ * @buffer: The ring buffer to stop writes to.
+ * @cpu: The CPU buffer to stop
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * The caller should call synchronize_sched() after this.
+ */
+void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return;
+
+       cpu_buffer = buffer->buffers[cpu];
+       atomic_inc(&cpu_buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
+
+/**
+ * ring_buffer_record_enable_cpu - enable writes to the buffer
+ * @buffer: The ring buffer to enable writes
+ * @cpu: The CPU to enable.
+ *
+ * Note, multiple disables will need the same number of enables
+ * to truly enable the writing (much like preempt_disable).
+ */
+void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return;
+
+       cpu_buffer = buffer->buffers[cpu];
+       atomic_dec(&cpu_buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
+
+/*
+ * The total entries in the ring buffer is the running counter
+ * of entries entered into the ring buffer, minus the sum of
+ * the entries read from the ring buffer and the number of
+ * entries that were overwritten.
+ */
+static inline unsigned long
+rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       return local_read(&cpu_buffer->entries) -
+               (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
+}
+
+/**
+ * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to read from.
+ */
+u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
+{
+       unsigned long flags;
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct buffer_page *bpage;
+       u64 ret = 0;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+       /*
+        * if the tail is on reader_page, oldest time stamp is on the reader
+        * page
+        */
+       if (cpu_buffer->tail_page == cpu_buffer->reader_page)
+               bpage = cpu_buffer->reader_page;
+       else
+               bpage = rb_set_head_page(cpu_buffer);
+       if (bpage)
+               ret = bpage->page->time_stamp;
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
+
+/**
+ * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to read from.
+ */
+unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long ret;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
+
+/**
+ * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the entries from.
+ */
+unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+
+       return rb_num_of_entries(cpu_buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
+
+/**
+ * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
+ * buffer wrapping around (only if RB_FL_OVERWRITE is on).
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of overruns from
+ */
+unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long ret;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       ret = local_read(&cpu_buffer->overrun);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
+
+/**
+ * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
+ * commits failing due to the buffer wrapping around while there are uncommitted
+ * events, such as during an interrupt storm.
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of overruns from
+ */
+unsigned long
+ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long ret;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       ret = local_read(&cpu_buffer->commit_overrun);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
+
+/**
+ * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
+ * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of overruns from
+ */
+unsigned long
+ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long ret;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       ret = local_read(&cpu_buffer->dropped_events);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
+
+/**
+ * ring_buffer_read_events_cpu - get the number of events successfully read
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of events read
+ */
+unsigned long
+ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       cpu_buffer = buffer->buffers[cpu];
+       return cpu_buffer->read;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
+
+/**
+ * ring_buffer_entries - get the number of entries in a buffer
+ * @buffer: The ring buffer
+ *
+ * Returns the total number of entries in the ring buffer
+ * (all CPU entries)
+ */
+unsigned long ring_buffer_entries(struct ring_buffer *buffer)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long entries = 0;
+       int cpu;
+
+       /* if you care about this being correct, lock the buffer */
+       for_each_buffer_cpu(buffer, cpu) {
+               cpu_buffer = buffer->buffers[cpu];
+               entries += rb_num_of_entries(cpu_buffer);
+       }
+
+       return entries;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_entries);
+
+/**
+ * ring_buffer_overruns - get the number of overruns in buffer
+ * @buffer: The ring buffer
+ *
+ * Returns the total number of overruns in the ring buffer
+ * (all CPU entries)
+ */
+unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long overruns = 0;
+       int cpu;
+
+       /* if you care about this being correct, lock the buffer */
+       for_each_buffer_cpu(buffer, cpu) {
+               cpu_buffer = buffer->buffers[cpu];
+               overruns += local_read(&cpu_buffer->overrun);
+       }
+
+       return overruns;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_overruns);
+
+static void rb_iter_reset(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+
+       /* Iterator usage is expected to have record disabled */
+       iter->head_page = cpu_buffer->reader_page;
+       iter->head = cpu_buffer->reader_page->read;
+
+       iter->cache_reader_page = iter->head_page;
+       iter->cache_read = cpu_buffer->read;
+
+       if (iter->head)
+               iter->read_stamp = cpu_buffer->read_stamp;
+       else
+               iter->read_stamp = iter->head_page->page->time_stamp;
+}
+
+/**
+ * ring_buffer_iter_reset - reset an iterator
+ * @iter: The iterator to reset
+ *
+ * Resets the iterator, so that it will start from the beginning
+ * again.
+ */
+void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long flags;
+
+       if (!iter)
+               return;
+
+       cpu_buffer = iter->cpu_buffer;
+
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+       rb_iter_reset(iter);
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
+
+/**
+ * ring_buffer_iter_empty - check if an iterator has no more to read
+ * @iter: The iterator to check
+ */
+int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+
+       cpu_buffer = iter->cpu_buffer;
+
+       return iter->head_page == cpu_buffer->commit_page &&
+               iter->head == rb_commit_index(cpu_buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
+
+static void
+rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
+                    struct ring_buffer_event *event)
+{
+       u64 delta;
+
+       switch (event->type_len) {
+       case RINGBUF_TYPE_PADDING:
+               return;
+
+       case RINGBUF_TYPE_TIME_EXTEND:
+               delta = event->array[0];
+               delta <<= TS_SHIFT;
+               delta += event->time_delta;
+               cpu_buffer->read_stamp += delta;
+               return;
+
+       case RINGBUF_TYPE_TIME_STAMP:
+               /* FIXME: not implemented */
+               return;
+
+       case RINGBUF_TYPE_DATA:
+               cpu_buffer->read_stamp += event->time_delta;
+               return;
+
+       default:
+               BUG();
+       }
+       return;
+}
+
+static void
+rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
+                         struct ring_buffer_event *event)
+{
+       u64 delta;
+
+       switch (event->type_len) {
+       case RINGBUF_TYPE_PADDING:
+               return;
+
+       case RINGBUF_TYPE_TIME_EXTEND:
+               delta = event->array[0];
+               delta <<= TS_SHIFT;
+               delta += event->time_delta;
+               iter->read_stamp += delta;
+               return;
+
+       case RINGBUF_TYPE_TIME_STAMP:
+               /* FIXME: not implemented */
+               return;
+
+       case RINGBUF_TYPE_DATA:
+               iter->read_stamp += event->time_delta;
+               return;
+
+       default:
+               BUG();
+       }
+       return;
+}
+
+static struct buffer_page *
+rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct buffer_page *reader = NULL;
+       unsigned long overwrite;
+       unsigned long flags;
+       int nr_loops = 0;
+       int ret;
+
+       local_irq_save(flags);
+       arch_spin_lock(&cpu_buffer->lock);
+
+ again:
+       /*
+        * This should normally only loop twice. But because the
+        * start of the reader inserts an empty page, it causes
+        * a case where we will loop three times. There should be no
+        * reason to loop four times (that I know of).
+        */
+       if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
+               reader = NULL;
+               goto out;
+       }
+
+       reader = cpu_buffer->reader_page;
+
+       /* If there's more to read, return this page */
+       if (cpu_buffer->reader_page->read < rb_page_size(reader))
+               goto out;
+
+       /* Never should we have an index greater than the size */
+       if (RB_WARN_ON(cpu_buffer,
+                      cpu_buffer->reader_page->read > rb_page_size(reader)))
+               goto out;
+
+       /* check if we caught up to the tail */
+       reader = NULL;
+       if (cpu_buffer->commit_page == cpu_buffer->reader_page)
+               goto out;
+
+       /* Don't bother swapping if the ring buffer is empty */
+       if (rb_num_of_entries(cpu_buffer) == 0)
+               goto out;
+
+       /*
+        * Reset the reader page to size zero.
+        */
+       local_set(&cpu_buffer->reader_page->write, 0);
+       local_set(&cpu_buffer->reader_page->entries, 0);
+       local_set(&cpu_buffer->reader_page->page->commit, 0);
+       cpu_buffer->reader_page->real_end = 0;
+
+ spin:
+       /*
+        * Splice the empty reader page into the list around the head.
+        */
+       reader = rb_set_head_page(cpu_buffer);
+       if (!reader)
+               goto out;
+       cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
+       cpu_buffer->reader_page->list.prev = reader->list.prev;
+
+       /*
+        * cpu_buffer->pages just needs to point to the buffer, it
+        *  has no specific buffer page to point to. Lets move it out
+        *  of our way so we don't accidentally swap it.
+        */
+       cpu_buffer->pages = reader->list.prev;
+
+       /* The reader page will be pointing to the new head */
+       rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
+
+       /*
+        * We want to make sure we read the overruns after we set up our
+        * pointers to the next object. The writer side does a
+        * cmpxchg to cross pages which acts as the mb on the writer
+        * side. Note, the reader will constantly fail the swap
+        * while the writer is updating the pointers, so this
+        * guarantees that the overwrite recorded here is the one we
+        * want to compare with the last_overrun.
+        */
+       smp_mb();
+       overwrite = local_read(&(cpu_buffer->overrun));
+
+       /*
+        * Here's the tricky part.
+        *
+        * We need to move the pointer past the header page.
+        * But we can only do that if a writer is not currently
+        * moving it. The page before the header page has the
+        * flag bit '1' set if it is pointing to the page we want.
+        * but if the writer is in the process of moving it
+        * than it will be '2' or already moved '0'.
+        */
+
+       ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
+
+       /*
+        * If we did not convert it, then we must try again.
+        */
+       if (!ret)
+               goto spin;
+
+       /*
+        * Yeah! We succeeded in replacing the page.
+        *
+        * Now make the new head point back to the reader page.
+        */
+       rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
+       rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
+
+       /* Finally update the reader page to the new head */
+       cpu_buffer->reader_page = reader;
+       rb_reset_reader_page(cpu_buffer);
+
+       if (overwrite != cpu_buffer->last_overrun) {
+               cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
+               cpu_buffer->last_overrun = overwrite;
+       }
+
+       goto again;
+
+ out:
+       arch_spin_unlock(&cpu_buffer->lock);
+       local_irq_restore(flags);
+
+       return reader;
+}
+
+static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       struct ring_buffer_event *event;
+       struct buffer_page *reader;
+       unsigned length;
+
+       reader = rb_get_reader_page(cpu_buffer);
+
+       /* This function should not be called when buffer is empty */
+       if (RB_WARN_ON(cpu_buffer, !reader))
+               return;
+
+       event = rb_reader_event(cpu_buffer);
+
+       if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+               cpu_buffer->read++;
+
+       rb_update_read_stamp(cpu_buffer, event);
+
+       length = rb_event_length(event);
+       cpu_buffer->reader_page->read += length;
+}
+
+static void rb_advance_iter(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_event *event;
+       unsigned length;
+
+       cpu_buffer = iter->cpu_buffer;
+
+       /*
+        * Check if we are at the end of the buffer.
+        */
+       if (iter->head >= rb_page_size(iter->head_page)) {
+               /* discarded commits can make the page empty */
+               if (iter->head_page == cpu_buffer->commit_page)
+                       return;
+               rb_inc_iter(iter);
+               return;
+       }
+
+       event = rb_iter_head_event(iter);
+
+       length = rb_event_length(event);
+
+       /*
+        * This should not be called to advance the header if we are
+        * at the tail of the buffer.
+        */
+       if (RB_WARN_ON(cpu_buffer,
+                      (iter->head_page == cpu_buffer->commit_page) &&
+                      (iter->head + length > rb_commit_index(cpu_buffer))))
+               return;
+
+       rb_update_iter_read_stamp(iter, event);
+
+       iter->head += length;
+
+       /* check for end of page padding */
+       if ((iter->head >= rb_page_size(iter->head_page)) &&
+           (iter->head_page != cpu_buffer->commit_page))
+               rb_inc_iter(iter);
+}
+
+static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       return cpu_buffer->lost_events;
+}
+
+static struct ring_buffer_event *
+rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
+              unsigned long *lost_events)
+{
+       struct ring_buffer_event *event;
+       struct buffer_page *reader;
+       int nr_loops = 0;
+
+ again:
+       /*
+        * We repeat when a time extend is encountered.
+        * Since the time extend is always attached to a data event,
+        * we should never loop more than once.
+        * (We never hit the following condition more than twice).
+        */
+       if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
+               return NULL;
+
+       reader = rb_get_reader_page(cpu_buffer);
+       if (!reader)
+               return NULL;
+
+       event = rb_reader_event(cpu_buffer);
+
+       switch (event->type_len) {
+       case RINGBUF_TYPE_PADDING:
+               if (rb_null_event(event))
+                       RB_WARN_ON(cpu_buffer, 1);
+               /*
+                * Because the writer could be discarding every
+                * event it creates (which would probably be bad)
+                * if we were to go back to "again" then we may never
+                * catch up, and will trigger the warn on, or lock
+                * the box. Return the padding, and we will release
+                * the current locks, and try again.
+                */
+               return event;
+
+       case RINGBUF_TYPE_TIME_EXTEND:
+               /* Internal data, OK to advance */
+               rb_advance_reader(cpu_buffer);
+               goto again;
+
+       case RINGBUF_TYPE_TIME_STAMP:
+               /* FIXME: not implemented */
+               rb_advance_reader(cpu_buffer);
+               goto again;
+
+       case RINGBUF_TYPE_DATA:
+               if (ts) {
+                       *ts = cpu_buffer->read_stamp + event->time_delta;
+                       ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
+                                                        cpu_buffer->cpu, ts);
+               }
+               if (lost_events)
+                       *lost_events = rb_lost_events(cpu_buffer);
+               return event;
+
+       default:
+               BUG();
+       }
+
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_peek);
+
+static struct ring_buffer_event *
+rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
+{
+       struct ring_buffer *buffer;
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_event *event;
+       int nr_loops = 0;
+
+       cpu_buffer = iter->cpu_buffer;
+       buffer = cpu_buffer->buffer;
+
+       /*
+        * Check if someone performed a consuming read to
+        * the buffer. A consuming read invalidates the iterator
+        * and we need to reset the iterator in this case.
+        */
+       if (unlikely(iter->cache_read != cpu_buffer->read ||
+                    iter->cache_reader_page != cpu_buffer->reader_page))
+               rb_iter_reset(iter);
+
+ again:
+       if (ring_buffer_iter_empty(iter))
+               return NULL;
+
+       /*
+        * We repeat when a time extend is encountered or we hit
+        * the end of the page. Since the time extend is always attached
+        * to a data event, we should never loop more than three times.
+        * Once for going to next page, once on time extend, and
+        * finally once to get the event.
+        * (We never hit the following condition more than thrice).
+        */
+       if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
+               return NULL;
+
+       if (rb_per_cpu_empty(cpu_buffer))
+               return NULL;
+
+       if (iter->head >= rb_page_size(iter->head_page)) {
+               rb_inc_iter(iter);
+               goto again;
+       }
+
+       event = rb_iter_head_event(iter);
+
+       switch (event->type_len) {
+       case RINGBUF_TYPE_PADDING:
+               if (rb_null_event(event)) {
+                       rb_inc_iter(iter);
+                       goto again;
+               }
+               rb_advance_iter(iter);
+               return event;
+
+       case RINGBUF_TYPE_TIME_EXTEND:
+               /* Internal data, OK to advance */
+               rb_advance_iter(iter);
+               goto again;
+
+       case RINGBUF_TYPE_TIME_STAMP:
+               /* FIXME: not implemented */
+               rb_advance_iter(iter);
+               goto again;
+
+       case RINGBUF_TYPE_DATA:
+               if (ts) {
+                       *ts = iter->read_stamp + event->time_delta;
+                       ring_buffer_normalize_time_stamp(buffer,
+                                                        cpu_buffer->cpu, ts);
+               }
+               return event;
+
+       default:
+               BUG();
+       }
+
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
+
+static inline int rb_ok_to_lock(void)
+{
+       /*
+        * If an NMI die dumps out the content of the ring buffer
+        * do not grab locks. We also permanently disable the ring
+        * buffer too. A one time deal is all you get from reading
+        * the ring buffer from an NMI.
+        */
+       if (likely(!in_nmi()))
+               return 1;
+
+       tracing_off_permanent();
+       return 0;
+}
+
+/**
+ * ring_buffer_peek - peek at the next event to be read
+ * @buffer: The ring buffer to read
+ * @cpu: The cpu to peak at
+ * @ts: The timestamp counter of this event.
+ * @lost_events: a variable to store if events were lost (may be NULL)
+ *
+ * This will return the event that will be read next, but does
+ * not consume the data.
+ */
+struct ring_buffer_event *
+ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
+                unsigned long *lost_events)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+       struct ring_buffer_event *event;
+       unsigned long flags;
+       int dolock;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return NULL;
+
+       dolock = rb_ok_to_lock();
+ again:
+       local_irq_save(flags);
+       if (dolock)
+               raw_spin_lock(&cpu_buffer->reader_lock);
+       event = rb_buffer_peek(cpu_buffer, ts, lost_events);
+       if (event && event->type_len == RINGBUF_TYPE_PADDING)
+               rb_advance_reader(cpu_buffer);
+       if (dolock)
+               raw_spin_unlock(&cpu_buffer->reader_lock);
+       local_irq_restore(flags);
+
+       if (event && event->type_len == RINGBUF_TYPE_PADDING)
+               goto again;
+
+       return event;
+}
+
+/**
+ * ring_buffer_iter_peek - peek at the next event to be read
+ * @iter: The ring buffer iterator
+ * @ts: The timestamp counter of this event.
+ *
+ * This will return the event that will be read next, but does
+ * not increment the iterator.
+ */
+struct ring_buffer_event *
+ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+       struct ring_buffer_event *event;
+       unsigned long flags;
+
+ again:
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+       event = rb_iter_peek(iter, ts);
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+       if (event && event->type_len == RINGBUF_TYPE_PADDING)
+               goto again;
+
+       return event;
+}
+
+/**
+ * ring_buffer_consume - return an event and consume it
+ * @buffer: The ring buffer to get the next event from
+ * @cpu: the cpu to read the buffer from
+ * @ts: a variable to store the timestamp (may be NULL)
+ * @lost_events: a variable to store if events were lost (may be NULL)
+ *
+ * Returns the next event in the ring buffer, and that event is consumed.
+ * Meaning, that sequential reads will keep returning a different event,
+ * and eventually empty the ring buffer if the producer is slower.
+ */
+struct ring_buffer_event *
+ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
+                   unsigned long *lost_events)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_event *event = NULL;
+       unsigned long flags;
+       int dolock;
+
+       dolock = rb_ok_to_lock();
+
+ again:
+       /* might be called in atomic */
+       preempt_disable();
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               goto out;
+
+       cpu_buffer = buffer->buffers[cpu];
+       local_irq_save(flags);
+       if (dolock)
+               raw_spin_lock(&cpu_buffer->reader_lock);
+
+       event = rb_buffer_peek(cpu_buffer, ts, lost_events);
+       if (event) {
+               cpu_buffer->lost_events = 0;
+               rb_advance_reader(cpu_buffer);
+       }
+
+       if (dolock)
+               raw_spin_unlock(&cpu_buffer->reader_lock);
+       local_irq_restore(flags);
+
+ out:
+       preempt_enable();
+
+       if (event && event->type_len == RINGBUF_TYPE_PADDING)
+               goto again;
+
+       return event;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_consume);
+
+/**
+ * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
+ * @buffer: The ring buffer to read from
+ * @cpu: The cpu buffer to iterate over
+ *
+ * This performs the initial preparations necessary to iterate
+ * through the buffer.  Memory is allocated, buffer recording
+ * is disabled, and the iterator pointer is returned to the caller.
+ *
+ * Disabling buffer recordng prevents the reading from being
+ * corrupted. This is not a consuming read, so a producer is not
+ * expected.
+ *
+ * After a sequence of ring_buffer_read_prepare calls, the user is
+ * expected to make at least one call to ring_buffer_read_prepare_sync.
+ * Afterwards, ring_buffer_read_start is invoked to get things going
+ * for real.
+ *
+ * This overall must be paired with ring_buffer_read_finish.
+ */
+struct ring_buffer_iter *
+ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       struct ring_buffer_iter *iter;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return NULL;
+
+       iter = kmalloc(sizeof(*iter), GFP_KERNEL);
+       if (!iter)
+               return NULL;
+
+       cpu_buffer = buffer->buffers[cpu];
+
+       iter->cpu_buffer = cpu_buffer;
+
+       atomic_inc(&buffer->resize_disabled);
+       atomic_inc(&cpu_buffer->record_disabled);
+
+       return iter;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
+
+/**
+ * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
+ *
+ * All previously invoked ring_buffer_read_prepare calls to prepare
+ * iterators will be synchronized.  Afterwards, read_buffer_read_start
+ * calls on those iterators are allowed.
+ */
+void
+ring_buffer_read_prepare_sync(void)
+{
+       synchronize_sched();
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
+
+/**
+ * ring_buffer_read_start - start a non consuming read of the buffer
+ * @iter: The iterator returned by ring_buffer_read_prepare
+ *
+ * This finalizes the startup of an iteration through the buffer.
+ * The iterator comes from a call to ring_buffer_read_prepare and
+ * an intervening ring_buffer_read_prepare_sync must have been
+ * performed.
+ *
+ * Must be paired with ring_buffer_read_finish.
+ */
+void
+ring_buffer_read_start(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long flags;
+
+       if (!iter)
+               return;
+
+       cpu_buffer = iter->cpu_buffer;
+
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+       arch_spin_lock(&cpu_buffer->lock);
+       rb_iter_reset(iter);
+       arch_spin_unlock(&cpu_buffer->lock);
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_start);
+
+/**
+ * ring_buffer_read_finish - finish reading the iterator of the buffer
+ * @iter: The iterator retrieved by ring_buffer_start
+ *
+ * This re-enables the recording to the buffer, and frees the
+ * iterator.
+ */
+void
+ring_buffer_read_finish(struct ring_buffer_iter *iter)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+       unsigned long flags;
+
+       /*
+        * Ring buffer is disabled from recording, here's a good place
+        * to check the integrity of the ring buffer.
+        * Must prevent readers from trying to read, as the check
+        * clears the HEAD page and readers require it.
+        */
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+       rb_check_pages(cpu_buffer);
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+       atomic_dec(&cpu_buffer->record_disabled);
+       atomic_dec(&cpu_buffer->buffer->resize_disabled);
+       kfree(iter);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
+
+/**
+ * ring_buffer_read - read the next item in the ring buffer by the iterator
+ * @iter: The ring buffer iterator
+ * @ts: The time stamp of the event read.
+ *
+ * This reads the next event in the ring buffer and increments the iterator.
+ */
+struct ring_buffer_event *
+ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
+{
+       struct ring_buffer_event *event;
+       struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+ again:
+       event = rb_iter_peek(iter, ts);
+       if (!event)
+               goto out;
+
+       if (event->type_len == RINGBUF_TYPE_PADDING)
+               goto again;
+
+       rb_advance_iter(iter);
+ out:
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+       return event;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read);
+
+/**
+ * ring_buffer_size - return the size of the ring buffer (in bytes)
+ * @buffer: The ring buffer.
+ */
+unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
+{
+       /*
+        * Earlier, this method returned
+        *      BUF_PAGE_SIZE * buffer->nr_pages
+        * Since the nr_pages field is now removed, we have converted this to
+        * return the per cpu buffer value.
+        */
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 0;
+
+       return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_size);
+
+static void
+rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
+{
+       rb_head_page_deactivate(cpu_buffer);
+
+       cpu_buffer->head_page
+               = list_entry(cpu_buffer->pages, struct buffer_page, list);
+       local_set(&cpu_buffer->head_page->write, 0);
+       local_set(&cpu_buffer->head_page->entries, 0);
+       local_set(&cpu_buffer->head_page->page->commit, 0);
+
+       cpu_buffer->head_page->read = 0;
+
+       cpu_buffer->tail_page = cpu_buffer->head_page;
+       cpu_buffer->commit_page = cpu_buffer->head_page;
+
+       INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
+       INIT_LIST_HEAD(&cpu_buffer->new_pages);
+       local_set(&cpu_buffer->reader_page->write, 0);
+       local_set(&cpu_buffer->reader_page->entries, 0);
+       local_set(&cpu_buffer->reader_page->page->commit, 0);
+       cpu_buffer->reader_page->read = 0;
+
+       local_set(&cpu_buffer->entries_bytes, 0);
+       local_set(&cpu_buffer->overrun, 0);
+       local_set(&cpu_buffer->commit_overrun, 0);
+       local_set(&cpu_buffer->dropped_events, 0);
+       local_set(&cpu_buffer->entries, 0);
+       local_set(&cpu_buffer->committing, 0);
+       local_set(&cpu_buffer->commits, 0);
+       cpu_buffer->read = 0;
+       cpu_buffer->read_bytes = 0;
+
+       cpu_buffer->write_stamp = 0;
+       cpu_buffer->read_stamp = 0;
+
+       cpu_buffer->lost_events = 0;
+       cpu_buffer->last_overrun = 0;
+
+       rb_head_page_activate(cpu_buffer);
+}
+
+/**
+ * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
+ * @buffer: The ring buffer to reset a per cpu buffer of
+ * @cpu: The CPU buffer to be reset
+ */
+void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+       unsigned long flags;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return;
+
+       atomic_inc(&buffer->resize_disabled);
+       atomic_inc(&cpu_buffer->record_disabled);
+
+       /* Make sure all commits have finished */
+       synchronize_sched();
+
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+
+       if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
+               goto out;
+
+       arch_spin_lock(&cpu_buffer->lock);
+
+       rb_reset_cpu(cpu_buffer);
+
+       arch_spin_unlock(&cpu_buffer->lock);
+
+ out:
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+       atomic_dec(&cpu_buffer->record_disabled);
+       atomic_dec(&buffer->resize_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
+
+/**
+ * ring_buffer_reset - reset a ring buffer
+ * @buffer: The ring buffer to reset all cpu buffers
+ */
+void ring_buffer_reset(struct ring_buffer *buffer)
+{
+       int cpu;
+
+       for_each_buffer_cpu(buffer, cpu)
+               ring_buffer_reset_cpu(buffer, cpu);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_reset);
+
+/**
+ * rind_buffer_empty - is the ring buffer empty?
+ * @buffer: The ring buffer to test
+ */
+int ring_buffer_empty(struct ring_buffer *buffer)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long flags;
+       int dolock;
+       int cpu;
+       int ret;
+
+       dolock = rb_ok_to_lock();
+
+       /* yes this is racy, but if you don't like the race, lock the buffer */
+       for_each_buffer_cpu(buffer, cpu) {
+               cpu_buffer = buffer->buffers[cpu];
+               local_irq_save(flags);
+               if (dolock)
+                       raw_spin_lock(&cpu_buffer->reader_lock);
+               ret = rb_per_cpu_empty(cpu_buffer);
+               if (dolock)
+                       raw_spin_unlock(&cpu_buffer->reader_lock);
+               local_irq_restore(flags);
+
+               if (!ret)
+                       return 0;
+       }
+
+       return 1;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_empty);
+
+/**
+ * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
+ * @buffer: The ring buffer
+ * @cpu: The CPU buffer to test
+ */
+int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer;
+       unsigned long flags;
+       int dolock;
+       int ret;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               return 1;
+
+       dolock = rb_ok_to_lock();
+
+       cpu_buffer = buffer->buffers[cpu];
+       local_irq_save(flags);
+       if (dolock)
+               raw_spin_lock(&cpu_buffer->reader_lock);
+       ret = rb_per_cpu_empty(cpu_buffer);
+       if (dolock)
+               raw_spin_unlock(&cpu_buffer->reader_lock);
+       local_irq_restore(flags);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
+
+#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
+/**
+ * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
+ * @buffer_a: One buffer to swap with
+ * @buffer_b: The other buffer to swap with
+ *
+ * This function is useful for tracers that want to take a "snapshot"
+ * of a CPU buffer and has another back up buffer lying around.
+ * it is expected that the tracer handles the cpu buffer not being
+ * used at the moment.
+ */
+int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
+                        struct ring_buffer *buffer_b, int cpu)
+{
+       struct ring_buffer_per_cpu *cpu_buffer_a;
+       struct ring_buffer_per_cpu *cpu_buffer_b;
+       int ret = -EINVAL;
+
+       if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
+           !cpumask_test_cpu(cpu, buffer_b->cpumask))
+               goto out;
+
+       cpu_buffer_a = buffer_a->buffers[cpu];
+       cpu_buffer_b = buffer_b->buffers[cpu];
+
+       /* At least make sure the two buffers are somewhat the same */
+       if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
+               goto out;
+
+       ret = -EAGAIN;
+
+       if (ring_buffer_flags != RB_BUFFERS_ON)
+               goto out;
+
+       if (atomic_read(&buffer_a->record_disabled))
+               goto out;
+
+       if (atomic_read(&buffer_b->record_disabled))
+               goto out;
+
+       if (atomic_read(&cpu_buffer_a->record_disabled))
+               goto out;
+
+       if (atomic_read(&cpu_buffer_b->record_disabled))
+               goto out;
+
+       /*
+        * We can't do a synchronize_sched here because this
+        * function can be called in atomic context.
+        * Normally this will be called from the same CPU as cpu.
+        * If not it's up to the caller to protect this.
+        */
+       atomic_inc(&cpu_buffer_a->record_disabled);
+       atomic_inc(&cpu_buffer_b->record_disabled);
+
+       ret = -EBUSY;
+       if (local_read(&cpu_buffer_a->committing))
+               goto out_dec;
+       if (local_read(&cpu_buffer_b->committing))
+               goto out_dec;
+
+       buffer_a->buffers[cpu] = cpu_buffer_b;
+       buffer_b->buffers[cpu] = cpu_buffer_a;
+
+       cpu_buffer_b->buffer = buffer_a;
+       cpu_buffer_a->buffer = buffer_b;
+
+       ret = 0;
+
+out_dec:
+       atomic_dec(&cpu_buffer_a->record_disabled);
+       atomic_dec(&cpu_buffer_b->record_disabled);
+out:
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
+#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
+
+/**
+ * ring_buffer_alloc_read_page - allocate a page to read from buffer
+ * @buffer: the buffer to allocate for.
+ * @cpu: the cpu buffer to allocate.
+ *
+ * This function is used in conjunction with ring_buffer_read_page.
+ * When reading a full page from the ring buffer, these functions
+ * can be used to speed up the process. The calling function should
+ * allocate a few pages first with this function. Then when it
+ * needs to get pages from the ring buffer, it passes the result
+ * of this function into ring_buffer_read_page, which will swap
+ * the page that was allocated, with the read page of the buffer.
+ *
+ * Returns:
+ *  The page allocated, or NULL on error.
+ */
+void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
+{
+       struct buffer_data_page *bpage;
+       struct page *page;
+
+       page = alloc_pages_node(cpu_to_node(cpu),
+                               GFP_KERNEL | __GFP_NORETRY, 0);
+       if (!page)
+               return NULL;
+
+       bpage = page_address(page);
+
+       rb_init_page(bpage);
+
+       return bpage;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
+
+/**
+ * ring_buffer_free_read_page - free an allocated read page
+ * @buffer: the buffer the page was allocate for
+ * @data: the page to free
+ *
+ * Free a page allocated from ring_buffer_alloc_read_page.
+ */
+void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
+{
+       free_page((unsigned long)data);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
+
+/**
+ * ring_buffer_read_page - extract a page from the ring buffer
+ * @buffer: buffer to extract from
+ * @data_page: the page to use allocated from ring_buffer_alloc_read_page
+ * @len: amount to extract
+ * @cpu: the cpu of the buffer to extract
+ * @full: should the extraction only happen when the page is full.
+ *
+ * This function will pull out a page from the ring buffer and consume it.
+ * @data_page must be the address of the variable that was returned
+ * from ring_buffer_alloc_read_page. This is because the page might be used
+ * to swap with a page in the ring buffer.
+ *
+ * for example:
+ *     rpage = ring_buffer_alloc_read_page(buffer, cpu);
+ *     if (!rpage)
+ *             return error;
+ *     ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
+ *     if (ret >= 0)
+ *             process_page(rpage, ret);
+ *
+ * When @full is set, the function will not return true unless
+ * the writer is off the reader page.
+ *
+ * Note: it is up to the calling functions to handle sleeps and wakeups.
+ *  The ring buffer can be used anywhere in the kernel and can not
+ *  blindly call wake_up. The layer that uses the ring buffer must be
+ *  responsible for that.
+ *
+ * Returns:
+ *  >=0 if data has been transferred, returns the offset of consumed data.
+ *  <0 if no data has been transferred.
+ */
+int ring_buffer_read_page(struct ring_buffer *buffer,
+                         void **data_page, size_t len, int cpu, int full)
+{
+       struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+       struct ring_buffer_event *event;
+       struct buffer_data_page *bpage;
+       struct buffer_page *reader;
+       unsigned long missed_events;
+       unsigned long flags;
+       unsigned int commit;
+       unsigned int read;
+       u64 save_timestamp;
+       int ret = -1;
+
+       if (!cpumask_test_cpu(cpu, buffer->cpumask))
+               goto out;
+
+       /*
+        * If len is not big enough to hold the page header, then
+        * we can not copy anything.
+        */
+       if (len <= BUF_PAGE_HDR_SIZE)
+               goto out;
+
+       len -= BUF_PAGE_HDR_SIZE;
+
+       if (!data_page)
+               goto out;
+
+       bpage = *data_page;
+       if (!bpage)
+               goto out;
+
+       raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+
+       reader = rb_get_reader_page(cpu_buffer);
+       if (!reader)
+               goto out_unlock;
+
+       event = rb_reader_event(cpu_buffer);
+
+       read = reader->read;
+       commit = rb_page_commit(reader);
+
+       /* Check if any events were dropped */
+       missed_events = cpu_buffer->lost_events;
+
+       /*
+        * If this page has been partially read or
+        * if len is not big enough to read the rest of the page or
+        * a writer is still on the page, then
+        * we must copy the data from the page to the buffer.
+        * Otherwise, we can simply swap the page with the one passed in.
+        */
+       if (read || (len < (commit - read)) ||
+           cpu_buffer->reader_page == cpu_buffer->commit_page) {
+               struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
+               unsigned int rpos = read;
+               unsigned int pos = 0;
+               unsigned int size;
+
+               if (full)
+                       goto out_unlock;
+
+               if (len > (commit - read))
+                       len = (commit - read);
+
+               /* Always keep the time extend and data together */
+               size = rb_event_ts_length(event);
+
+               if (len < size)
+                       goto out_unlock;
+
+               /* save the current timestamp, since the user will need it */
+               save_timestamp = cpu_buffer->read_stamp;
+
+               /* Need to copy one event at a time */
+               do {
+                       /* We need the size of one event, because
+                        * rb_advance_reader only advances by one event,
+                        * whereas rb_event_ts_length may include the size of
+                        * one or two events.
+                        * We have already ensured there's enough space if this
+                        * is a time extend. */
+                       size = rb_event_length(event);
+                       memcpy(bpage->data + pos, rpage->data + rpos, size);
+
+                       len -= size;
+
+                       rb_advance_reader(cpu_buffer);
+                       rpos = reader->read;
+                       pos += size;
+
+                       if (rpos >= commit)
+                               break;
+
+                       event = rb_reader_event(cpu_buffer);
+                       /* Always keep the time extend and data together */
+                       size = rb_event_ts_length(event);
+               } while (len >= size);
+
+               /* update bpage */
+               local_set(&bpage->commit, pos);
+               bpage->time_stamp = save_timestamp;
+
+               /* we copied everything to the beginning */
+               read = 0;
+       } else {
+               /* update the entry counter */
+               cpu_buffer->read += rb_page_entries(reader);
+               cpu_buffer->read_bytes += BUF_PAGE_SIZE;
+
+               /* swap the pages */
+               rb_init_page(bpage);
+               bpage = reader->page;
+               reader->page = *data_page;
+               local_set(&reader->write, 0);
+               local_set(&reader->entries, 0);
+               reader->read = 0;
+               *data_page = bpage;
+
+               /*
+                * Use the real_end for the data size,
+                * This gives us a chance to store the lost events
+                * on the page.
+                */
+               if (reader->real_end)
+                       local_set(&bpage->commit, reader->real_end);
+       }
+       ret = read;
+
+       cpu_buffer->lost_events = 0;
+
+       commit = local_read(&bpage->commit);
+       /*
+        * Set a flag in the commit field if we lost events
+        */
+       if (missed_events) {
+               /* If there is room at the end of the page to save the
+                * missed events, then record it there.
+                */
+               if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
+                       memcpy(&bpage->data[commit], &missed_events,
+                              sizeof(missed_events));
+                       local_add(RB_MISSED_STORED, &bpage->commit);
+                       commit += sizeof(missed_events);
+               }
+               local_add(RB_MISSED_EVENTS, &bpage->commit);
+       }
+
+       /*
+        * This page may be off to user land. Zero it out here.
+        */
+       if (commit < BUF_PAGE_SIZE)
+               memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
+
+ out_unlock:
+       raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+ out:
+       return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_page);
+
+#ifdef CONFIG_HOTPLUG_CPU
+static int rb_cpu_notify(struct notifier_block *self,
+                        unsigned long action, void *hcpu)
+{
+       struct ring_buffer *buffer =
+               container_of(self, struct ring_buffer, cpu_notify);
+       long cpu = (long)hcpu;
+       int cpu_i, nr_pages_same;
+       unsigned int nr_pages;
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+       case CPU_UP_PREPARE_FROZEN:
+               if (cpumask_test_cpu(cpu, buffer->cpumask))
+                       return NOTIFY_OK;
+
+               nr_pages = 0;
+               nr_pages_same = 1;
+               /* check if all cpu sizes are same */
+               for_each_buffer_cpu(buffer, cpu_i) {
+                       /* fill in the size from first enabled cpu */
+                       if (nr_pages == 0)
+                               nr_pages = buffer->buffers[cpu_i]->nr_pages;
+                       if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
+                               nr_pages_same = 0;
+                               break;
+                       }
+               }
+               /* allocate minimum pages, user can later expand it */
+               if (!nr_pages_same)
+                       nr_pages = 2;
+               buffer->buffers[cpu] =
+                       rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
+               if (!buffer->buffers[cpu]) {
+                       WARN(1, "failed to allocate ring buffer on CPU %ld\n",
+                            cpu);
+                       return NOTIFY_OK;
+               }
+               smp_wmb();
+               cpumask_set_cpu(cpu, buffer->cpumask);
+               break;
+       case CPU_DOWN_PREPARE:
+       case CPU_DOWN_PREPARE_FROZEN:
+               /*
+                * Do nothing.
+                *  If we were to free the buffer, then the user would
+                *  lose any trace that was in the buffer.
+                */
+               break;
+       default:
+               break;
+       }
+       return NOTIFY_OK;
+}
+#endif
+
+#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
+/*
+ * This is a basic integrity check of the ring buffer.
+ * Late in the boot cycle this test will run when configured in.
+ * It will kick off a thread per CPU that will go into a loop
+ * writing to the per cpu ring buffer various sizes of data.
+ * Some of the data will be large items, some small.
+ *
+ * Another thread is created that goes into a spin, sending out
+ * IPIs to the other CPUs to also write into the ring buffer.
+ * this is to test the nesting ability of the buffer.
+ *
+ * Basic stats are recorded and reported. If something in the
+ * ring buffer should happen that's not expected, a big warning
+ * is displayed and all ring buffers are disabled.
+ */
+static struct task_struct *rb_threads[NR_CPUS] __initdata;
+
+struct rb_test_data {
+       struct ring_buffer      *buffer;
+       unsigned long           events;
+       unsigned long           bytes_written;
+       unsigned long           bytes_alloc;
+       unsigned long           bytes_dropped;
+       unsigned long           events_nested;
+       unsigned long           bytes_written_nested;
+       unsigned long           bytes_alloc_nested;
+       unsigned long           bytes_dropped_nested;
+       int                     min_size_nested;
+       int                     max_size_nested;
+       int                     max_size;
+       int                     min_size;
+       int                     cpu;
+       int                     cnt;
+};
+
+static struct rb_test_data rb_data[NR_CPUS] __initdata;
+
+/* 1 meg per cpu */
+#define RB_TEST_BUFFER_SIZE    1048576
+
+static char rb_string[] __initdata =
+       "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
+       "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
+       "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
+
+static bool rb_test_started __initdata;
+
+struct rb_item {
+       int size;
+       char str[];
+};
+
+static __init int rb_write_something(struct rb_test_data *data, bool nested)
+{
+       struct ring_buffer_event *event;
+       struct rb_item *item;
+       bool started;
+       int event_len;
+       int size;
+       int len;
+       int cnt;
+
+       /* Have nested writes different that what is written */
+       cnt = data->cnt + (nested ? 27 : 0);
+
+       /* Multiply cnt by ~e, to make some unique increment */
+       size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
+
+       len = size + sizeof(struct rb_item);
+
+       started = rb_test_started;
+       /* read rb_test_started before checking buffer enabled */
+       smp_rmb();
+
+       event = ring_buffer_lock_reserve(data->buffer, len);
+       if (!event) {
+               /* Ignore dropped events before test starts. */
+               if (started) {
+                       if (nested)
+                               data->bytes_dropped += len;
+                       else
+                               data->bytes_dropped_nested += len;
+               }
+               return len;
+       }
+
+       event_len = ring_buffer_event_length(event);
+
+       if (RB_WARN_ON(data->buffer, event_len < len))
+               goto out;
+
+       item = ring_buffer_event_data(event);
+       item->size = size;
+       memcpy(item->str, rb_string, size);
+
+       if (nested) {
+               data->bytes_alloc_nested += event_len;
+               data->bytes_written_nested += len;
+               data->events_nested++;
+               if (!data->min_size_nested || len < data->min_size_nested)
+                       data->min_size_nested = len;
+               if (len > data->max_size_nested)
+                       data->max_size_nested = len;
+       } else {
+               data->bytes_alloc += event_len;
+               data->bytes_written += len;
+               data->events++;
+               if (!data->min_size || len < data->min_size)
+                       data->max_size = len;
+               if (len > data->max_size)
+                       data->max_size = len;
+       }
+
+ out:
+       ring_buffer_unlock_commit(data->buffer, event);
+
+       return 0;
+}
+
+static __init int rb_test(void *arg)
+{
+       struct rb_test_data *data = arg;
+
+       while (!kthread_should_stop()) {
+               rb_write_something(data, false);
+               data->cnt++;
+
+               set_current_state(TASK_INTERRUPTIBLE);
+               /* Now sleep between a min of 100-300us and a max of 1ms */
+               usleep_range(((data->cnt % 3) + 1) * 100, 1000);
+       }
+
+       return 0;
+}
+
+static __init void rb_ipi(void *ignore)
+{
+       struct rb_test_data *data;
+       int cpu = smp_processor_id();
+
+       data = &rb_data[cpu];
+       rb_write_something(data, true);
+}
+
+static __init int rb_hammer_test(void *arg)
+{
+       while (!kthread_should_stop()) {
+
+               /* Send an IPI to all cpus to write data! */
+               smp_call_function(rb_ipi, NULL, 1);
+               /* No sleep, but for non preempt, let others run */
+               schedule();
+       }
+
+       return 0;
+}
+
+static __init int test_ringbuffer(void)
+{
+       struct task_struct *rb_hammer;
+       struct ring_buffer *buffer;
+       int cpu;
+       int ret = 0;
+
+       pr_info("Running ring buffer tests...\n");
+
+       buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
+       if (WARN_ON(!buffer))
+               return 0;
+
+       /* Disable buffer so that threads can't write to it yet */
+       ring_buffer_record_off(buffer);
+
+       for_each_online_cpu(cpu) {
+               rb_data[cpu].buffer = buffer;
+               rb_data[cpu].cpu = cpu;
+               rb_data[cpu].cnt = cpu;
+               rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
+                                                "rbtester/%d", cpu);
+               if (WARN_ON(!rb_threads[cpu])) {
+                       pr_cont("FAILED\n");
+                       ret = -1;
+                       goto out_free;
+               }
+
+               kthread_bind(rb_threads[cpu], cpu);
+               wake_up_process(rb_threads[cpu]);
+       }
+
+       /* Now create the rb hammer! */
+       rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
+       if (WARN_ON(!rb_hammer)) {
+               pr_cont("FAILED\n");
+               ret = -1;
+               goto out_free;
+       }
+
+       ring_buffer_record_on(buffer);
+       /*
+        * Show buffer is enabled before setting rb_test_started.
+        * Yes there's a small race window where events could be
+        * dropped and the thread wont catch it. But when a ring
+        * buffer gets enabled, there will always be some kind of
+        * delay before other CPUs see it. Thus, we don't care about
+        * those dropped events. We care about events dropped after
+        * the threads see that the buffer is active.
+        */
+       smp_wmb();
+       rb_test_started = true;
+
+       set_current_state(TASK_INTERRUPTIBLE);
+       /* Just run for 10 seconds */;
+       schedule_timeout(10 * HZ);
+
+       kthread_stop(rb_hammer);
+
+ out_free:
+       for_each_online_cpu(cpu) {
+               if (!rb_threads[cpu])
+                       break;
+               kthread_stop(rb_threads[cpu]);
+       }
+       if (ret) {
+               ring_buffer_free(buffer);
+               return ret;
+       }
+
+       /* Report! */
+       pr_info("finished\n");
+       for_each_online_cpu(cpu) {
+               struct ring_buffer_event *event;
+               struct rb_test_data *data = &rb_data[cpu];
+               struct rb_item *item;
+               unsigned long total_events;
+               unsigned long total_dropped;
+               unsigned long total_written;
+               unsigned long total_alloc;
+               unsigned long total_read = 0;
+               unsigned long total_size = 0;
+               unsigned long total_len = 0;
+               unsigned long total_lost = 0;
+               unsigned long lost;
+               int big_event_size;
+               int small_event_size;
+
+               ret = -1;
+
+               total_events = data->events + data->events_nested;
+               total_written = data->bytes_written + data->bytes_written_nested;
+               total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
+               total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
+
+               big_event_size = data->max_size + data->max_size_nested;
+               small_event_size = data->min_size + data->min_size_nested;
+
+               pr_info("CPU %d:\n", cpu);
+               pr_info("              events:    %ld\n", total_events);
+               pr_info("       dropped bytes:    %ld\n", total_dropped);
+               pr_info("       alloced bytes:    %ld\n", total_alloc);
+               pr_info("       written bytes:    %ld\n", total_written);
+               pr_info("       biggest event:    %d\n", big_event_size);
+               pr_info("      smallest event:    %d\n", small_event_size);
+
+               if (RB_WARN_ON(buffer, total_dropped))
+                       break;
+
+               ret = 0;
+
+               while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
+                       total_lost += lost;
+                       item = ring_buffer_event_data(event);
+                       total_len += ring_buffer_event_length(event);
+                       total_size += item->size + sizeof(struct rb_item);
+                       if (memcmp(&item->str[0], rb_string, item->size) != 0) {
+                               pr_info("FAILED!\n");
+                               pr_info("buffer had: %.*s\n", item->size, item->str);
+                               pr_info("expected:   %.*s\n", item->size, rb_string);
+                               RB_WARN_ON(buffer, 1);
+                               ret = -1;
+                               break;
+                       }
+                       total_read++;
+               }
+               if (ret)
+                       break;
+
+               ret = -1;
+
+               pr_info("         read events:   %ld\n", total_read);
+               pr_info("         lost events:   %ld\n", total_lost);
+               pr_info("        total events:   %ld\n", total_lost + total_read);
+               pr_info("  recorded len bytes:   %ld\n", total_len);
+               pr_info(" recorded size bytes:   %ld\n", total_size);
+               if (total_lost)
+                       pr_info(" With dropped events, record len and size may not match\n"
+                               " alloced and written from above\n");
+               if (!total_lost) {
+                       if (RB_WARN_ON(buffer, total_len != total_alloc ||
+                                      total_size != total_written))
+                               break;
+               }
+               if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
+                       break;
+
+               ret = 0;
+       }
+       if (!ret)
+               pr_info("Ring buffer PASSED!\n");
+
+       ring_buffer_free(buffer);
+       return 0;
+}
+
+late_initcall(test_ringbuffer);
+#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */