Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / time / tick-broadcast.c
diff --git a/kernel/kernel/time/tick-broadcast.c b/kernel/kernel/time/tick-broadcast.c
new file mode 100644 (file)
index 0000000..7e8ca4f
--- /dev/null
@@ -0,0 +1,964 @@
+/*
+ * linux/kernel/time/tick-broadcast.c
+ *
+ * This file contains functions which emulate a local clock-event
+ * device via a broadcast event source.
+ *
+ * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
+ * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
+ * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
+ *
+ * This code is licenced under the GPL version 2. For details see
+ * kernel-base/COPYING.
+ */
+#include <linux/cpu.h>
+#include <linux/err.h>
+#include <linux/hrtimer.h>
+#include <linux/interrupt.h>
+#include <linux/percpu.h>
+#include <linux/profile.h>
+#include <linux/sched.h>
+#include <linux/smp.h>
+#include <linux/module.h>
+
+#include "tick-internal.h"
+
+/*
+ * Broadcast support for broken x86 hardware, where the local apic
+ * timer stops in C3 state.
+ */
+
+static struct tick_device tick_broadcast_device;
+static cpumask_var_t tick_broadcast_mask;
+static cpumask_var_t tick_broadcast_on;
+static cpumask_var_t tmpmask;
+static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
+static int tick_broadcast_forced;
+
+#ifdef CONFIG_TICK_ONESHOT
+static void tick_broadcast_clear_oneshot(int cpu);
+static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
+#else
+static inline void tick_broadcast_clear_oneshot(int cpu) { }
+static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
+#endif
+
+/*
+ * Debugging: see timer_list.c
+ */
+struct tick_device *tick_get_broadcast_device(void)
+{
+       return &tick_broadcast_device;
+}
+
+struct cpumask *tick_get_broadcast_mask(void)
+{
+       return tick_broadcast_mask;
+}
+
+/*
+ * Start the device in periodic mode
+ */
+static void tick_broadcast_start_periodic(struct clock_event_device *bc)
+{
+       if (bc)
+               tick_setup_periodic(bc, 1);
+}
+
+/*
+ * Check, if the device can be utilized as broadcast device:
+ */
+static bool tick_check_broadcast_device(struct clock_event_device *curdev,
+                                       struct clock_event_device *newdev)
+{
+       if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
+           (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
+           (newdev->features & CLOCK_EVT_FEAT_C3STOP))
+               return false;
+
+       if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
+           !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
+               return false;
+
+       return !curdev || newdev->rating > curdev->rating;
+}
+
+/*
+ * Conditionally install/replace broadcast device
+ */
+void tick_install_broadcast_device(struct clock_event_device *dev)
+{
+       struct clock_event_device *cur = tick_broadcast_device.evtdev;
+
+       if (!tick_check_broadcast_device(cur, dev))
+               return;
+
+       if (!try_module_get(dev->owner))
+               return;
+
+       clockevents_exchange_device(cur, dev);
+       if (cur)
+               cur->event_handler = clockevents_handle_noop;
+       tick_broadcast_device.evtdev = dev;
+       if (!cpumask_empty(tick_broadcast_mask))
+               tick_broadcast_start_periodic(dev);
+       /*
+        * Inform all cpus about this. We might be in a situation
+        * where we did not switch to oneshot mode because the per cpu
+        * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
+        * of a oneshot capable broadcast device. Without that
+        * notification the systems stays stuck in periodic mode
+        * forever.
+        */
+       if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
+               tick_clock_notify();
+}
+
+/*
+ * Check, if the device is the broadcast device
+ */
+int tick_is_broadcast_device(struct clock_event_device *dev)
+{
+       return (dev && tick_broadcast_device.evtdev == dev);
+}
+
+int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
+{
+       int ret = -ENODEV;
+
+       if (tick_is_broadcast_device(dev)) {
+               raw_spin_lock(&tick_broadcast_lock);
+               ret = __clockevents_update_freq(dev, freq);
+               raw_spin_unlock(&tick_broadcast_lock);
+       }
+       return ret;
+}
+
+
+static void err_broadcast(const struct cpumask *mask)
+{
+       pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
+}
+
+static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
+{
+       if (!dev->broadcast)
+               dev->broadcast = tick_broadcast;
+       if (!dev->broadcast) {
+               pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
+                            dev->name);
+               dev->broadcast = err_broadcast;
+       }
+}
+
+/*
+ * Check, if the device is disfunctional and a place holder, which
+ * needs to be handled by the broadcast device.
+ */
+int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
+{
+       struct clock_event_device *bc = tick_broadcast_device.evtdev;
+       unsigned long flags;
+       int ret;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       /*
+        * Devices might be registered with both periodic and oneshot
+        * mode disabled. This signals, that the device needs to be
+        * operated from the broadcast device and is a placeholder for
+        * the cpu local device.
+        */
+       if (!tick_device_is_functional(dev)) {
+               dev->event_handler = tick_handle_periodic;
+               tick_device_setup_broadcast_func(dev);
+               cpumask_set_cpu(cpu, tick_broadcast_mask);
+               if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
+                       tick_broadcast_start_periodic(bc);
+               else
+                       tick_broadcast_setup_oneshot(bc);
+               ret = 1;
+       } else {
+               /*
+                * Clear the broadcast bit for this cpu if the
+                * device is not power state affected.
+                */
+               if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
+                       cpumask_clear_cpu(cpu, tick_broadcast_mask);
+               else
+                       tick_device_setup_broadcast_func(dev);
+
+               /*
+                * Clear the broadcast bit if the CPU is not in
+                * periodic broadcast on state.
+                */
+               if (!cpumask_test_cpu(cpu, tick_broadcast_on))
+                       cpumask_clear_cpu(cpu, tick_broadcast_mask);
+
+               switch (tick_broadcast_device.mode) {
+               case TICKDEV_MODE_ONESHOT:
+                       /*
+                        * If the system is in oneshot mode we can
+                        * unconditionally clear the oneshot mask bit,
+                        * because the CPU is running and therefore
+                        * not in an idle state which causes the power
+                        * state affected device to stop. Let the
+                        * caller initialize the device.
+                        */
+                       tick_broadcast_clear_oneshot(cpu);
+                       ret = 0;
+                       break;
+
+               case TICKDEV_MODE_PERIODIC:
+                       /*
+                        * If the system is in periodic mode, check
+                        * whether the broadcast device can be
+                        * switched off now.
+                        */
+                       if (cpumask_empty(tick_broadcast_mask) && bc)
+                               clockevents_shutdown(bc);
+                       /*
+                        * If we kept the cpu in the broadcast mask,
+                        * tell the caller to leave the per cpu device
+                        * in shutdown state. The periodic interrupt
+                        * is delivered by the broadcast device.
+                        */
+                       ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
+                       break;
+               default:
+                       /* Nothing to do */
+                       ret = 0;
+                       break;
+               }
+       }
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+       return ret;
+}
+
+#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
+int tick_receive_broadcast(void)
+{
+       struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
+       struct clock_event_device *evt = td->evtdev;
+
+       if (!evt)
+               return -ENODEV;
+
+       if (!evt->event_handler)
+               return -EINVAL;
+
+       evt->event_handler(evt);
+       return 0;
+}
+#endif
+
+/*
+ * Broadcast the event to the cpus, which are set in the mask (mangled).
+ */
+static void tick_do_broadcast(struct cpumask *mask)
+{
+       int cpu = smp_processor_id();
+       struct tick_device *td;
+
+       /*
+        * Check, if the current cpu is in the mask
+        */
+       if (cpumask_test_cpu(cpu, mask)) {
+               cpumask_clear_cpu(cpu, mask);
+               td = &per_cpu(tick_cpu_device, cpu);
+               td->evtdev->event_handler(td->evtdev);
+       }
+
+       if (!cpumask_empty(mask)) {
+               /*
+                * It might be necessary to actually check whether the devices
+                * have different broadcast functions. For now, just use the
+                * one of the first device. This works as long as we have this
+                * misfeature only on x86 (lapic)
+                */
+               td = &per_cpu(tick_cpu_device, cpumask_first(mask));
+               td->evtdev->broadcast(mask);
+       }
+}
+
+/*
+ * Periodic broadcast:
+ * - invoke the broadcast handlers
+ */
+static void tick_do_periodic_broadcast(void)
+{
+       cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
+       tick_do_broadcast(tmpmask);
+}
+
+/*
+ * Event handler for periodic broadcast ticks
+ */
+static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
+{
+       ktime_t next;
+
+       raw_spin_lock(&tick_broadcast_lock);
+
+       tick_do_periodic_broadcast();
+
+       /*
+        * The device is in periodic mode. No reprogramming necessary:
+        */
+       if (dev->state == CLOCK_EVT_STATE_PERIODIC)
+               goto unlock;
+
+       /*
+        * Setup the next period for devices, which do not have
+        * periodic mode. We read dev->next_event first and add to it
+        * when the event already expired. clockevents_program_event()
+        * sets dev->next_event only when the event is really
+        * programmed to the device.
+        */
+       for (next = dev->next_event; ;) {
+               next = ktime_add(next, tick_period);
+
+               if (!clockevents_program_event(dev, next, false))
+                       goto unlock;
+               tick_do_periodic_broadcast();
+       }
+unlock:
+       raw_spin_unlock(&tick_broadcast_lock);
+}
+
+/**
+ * tick_broadcast_control - Enable/disable or force broadcast mode
+ * @mode:      The selected broadcast mode
+ *
+ * Called when the system enters a state where affected tick devices
+ * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
+ *
+ * Called with interrupts disabled, so clockevents_lock is not
+ * required here because the local clock event device cannot go away
+ * under us.
+ */
+void tick_broadcast_control(enum tick_broadcast_mode mode)
+{
+       struct clock_event_device *bc, *dev;
+       struct tick_device *td;
+       int cpu, bc_stopped;
+
+       td = this_cpu_ptr(&tick_cpu_device);
+       dev = td->evtdev;
+
+       /*
+        * Is the device not affected by the powerstate ?
+        */
+       if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
+               return;
+
+       if (!tick_device_is_functional(dev))
+               return;
+
+       raw_spin_lock(&tick_broadcast_lock);
+       cpu = smp_processor_id();
+       bc = tick_broadcast_device.evtdev;
+       bc_stopped = cpumask_empty(tick_broadcast_mask);
+
+       switch (mode) {
+       case TICK_BROADCAST_FORCE:
+               tick_broadcast_forced = 1;
+       case TICK_BROADCAST_ON:
+               cpumask_set_cpu(cpu, tick_broadcast_on);
+               if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
+                       if (tick_broadcast_device.mode ==
+                           TICKDEV_MODE_PERIODIC)
+                               clockevents_shutdown(dev);
+               }
+               break;
+
+       case TICK_BROADCAST_OFF:
+               if (tick_broadcast_forced)
+                       break;
+               cpumask_clear_cpu(cpu, tick_broadcast_on);
+               if (!tick_device_is_functional(dev))
+                       break;
+               if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
+                       if (tick_broadcast_device.mode ==
+                           TICKDEV_MODE_PERIODIC)
+                               tick_setup_periodic(dev, 0);
+               }
+               break;
+       }
+
+       if (cpumask_empty(tick_broadcast_mask)) {
+               if (!bc_stopped)
+                       clockevents_shutdown(bc);
+       } else if (bc_stopped) {
+               if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
+                       tick_broadcast_start_periodic(bc);
+               else
+                       tick_broadcast_setup_oneshot(bc);
+       }
+       raw_spin_unlock(&tick_broadcast_lock);
+}
+EXPORT_SYMBOL_GPL(tick_broadcast_control);
+
+/*
+ * Set the periodic handler depending on broadcast on/off
+ */
+void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
+{
+       if (!broadcast)
+               dev->event_handler = tick_handle_periodic;
+       else
+               dev->event_handler = tick_handle_periodic_broadcast;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Remove a CPU from broadcasting
+ */
+void tick_shutdown_broadcast(unsigned int cpu)
+{
+       struct clock_event_device *bc;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       bc = tick_broadcast_device.evtdev;
+       cpumask_clear_cpu(cpu, tick_broadcast_mask);
+       cpumask_clear_cpu(cpu, tick_broadcast_on);
+
+       if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
+               if (bc && cpumask_empty(tick_broadcast_mask))
+                       clockevents_shutdown(bc);
+       }
+
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+#endif
+
+void tick_suspend_broadcast(void)
+{
+       struct clock_event_device *bc;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       bc = tick_broadcast_device.evtdev;
+       if (bc)
+               clockevents_shutdown(bc);
+
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+
+/*
+ * This is called from tick_resume_local() on a resuming CPU. That's
+ * called from the core resume function, tick_unfreeze() and the magic XEN
+ * resume hackery.
+ *
+ * In none of these cases the broadcast device mode can change and the
+ * bit of the resuming CPU in the broadcast mask is safe as well.
+ */
+bool tick_resume_check_broadcast(void)
+{
+       if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
+               return false;
+       else
+               return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
+}
+
+void tick_resume_broadcast(void)
+{
+       struct clock_event_device *bc;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       bc = tick_broadcast_device.evtdev;
+
+       if (bc) {
+               clockevents_tick_resume(bc);
+
+               switch (tick_broadcast_device.mode) {
+               case TICKDEV_MODE_PERIODIC:
+                       if (!cpumask_empty(tick_broadcast_mask))
+                               tick_broadcast_start_periodic(bc);
+                       break;
+               case TICKDEV_MODE_ONESHOT:
+                       if (!cpumask_empty(tick_broadcast_mask))
+                               tick_resume_broadcast_oneshot(bc);
+                       break;
+               }
+       }
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+
+#ifdef CONFIG_TICK_ONESHOT
+
+static cpumask_var_t tick_broadcast_oneshot_mask;
+static cpumask_var_t tick_broadcast_pending_mask;
+static cpumask_var_t tick_broadcast_force_mask;
+
+/*
+ * Exposed for debugging: see timer_list.c
+ */
+struct cpumask *tick_get_broadcast_oneshot_mask(void)
+{
+       return tick_broadcast_oneshot_mask;
+}
+
+/*
+ * Called before going idle with interrupts disabled. Checks whether a
+ * broadcast event from the other core is about to happen. We detected
+ * that in tick_broadcast_oneshot_control(). The callsite can use this
+ * to avoid a deep idle transition as we are about to get the
+ * broadcast IPI right away.
+ */
+int tick_check_broadcast_expired(void)
+{
+       return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
+}
+
+/*
+ * Set broadcast interrupt affinity
+ */
+static void tick_broadcast_set_affinity(struct clock_event_device *bc,
+                                       const struct cpumask *cpumask)
+{
+       if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
+               return;
+
+       if (cpumask_equal(bc->cpumask, cpumask))
+               return;
+
+       bc->cpumask = cpumask;
+       irq_set_affinity(bc->irq, bc->cpumask);
+}
+
+static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
+                                   ktime_t expires, int force)
+{
+       int ret;
+
+       if (bc->state != CLOCK_EVT_STATE_ONESHOT)
+               clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
+
+       ret = clockevents_program_event(bc, expires, force);
+       if (!ret)
+               tick_broadcast_set_affinity(bc, cpumask_of(cpu));
+       return ret;
+}
+
+static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
+{
+       clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
+}
+
+/*
+ * Called from irq_enter() when idle was interrupted to reenable the
+ * per cpu device.
+ */
+void tick_check_oneshot_broadcast_this_cpu(void)
+{
+       if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
+               struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
+
+               /*
+                * We might be in the middle of switching over from
+                * periodic to oneshot. If the CPU has not yet
+                * switched over, leave the device alone.
+                */
+               if (td->mode == TICKDEV_MODE_ONESHOT) {
+                       clockevents_set_state(td->evtdev,
+                                             CLOCK_EVT_STATE_ONESHOT);
+               }
+       }
+}
+
+/*
+ * Handle oneshot mode broadcasting
+ */
+static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
+{
+       struct tick_device *td;
+       ktime_t now, next_event;
+       int cpu, next_cpu = 0;
+
+       raw_spin_lock(&tick_broadcast_lock);
+again:
+       dev->next_event.tv64 = KTIME_MAX;
+       next_event.tv64 = KTIME_MAX;
+       cpumask_clear(tmpmask);
+       now = ktime_get();
+       /* Find all expired events */
+       for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
+               td = &per_cpu(tick_cpu_device, cpu);
+               if (td->evtdev->next_event.tv64 <= now.tv64) {
+                       cpumask_set_cpu(cpu, tmpmask);
+                       /*
+                        * Mark the remote cpu in the pending mask, so
+                        * it can avoid reprogramming the cpu local
+                        * timer in tick_broadcast_oneshot_control().
+                        */
+                       cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
+               } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
+                       next_event.tv64 = td->evtdev->next_event.tv64;
+                       next_cpu = cpu;
+               }
+       }
+
+       /*
+        * Remove the current cpu from the pending mask. The event is
+        * delivered immediately in tick_do_broadcast() !
+        */
+       cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
+
+       /* Take care of enforced broadcast requests */
+       cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
+       cpumask_clear(tick_broadcast_force_mask);
+
+       /*
+        * Sanity check. Catch the case where we try to broadcast to
+        * offline cpus.
+        */
+       if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
+               cpumask_and(tmpmask, tmpmask, cpu_online_mask);
+
+       /*
+        * Wakeup the cpus which have an expired event.
+        */
+       tick_do_broadcast(tmpmask);
+
+       /*
+        * Two reasons for reprogram:
+        *
+        * - The global event did not expire any CPU local
+        * events. This happens in dyntick mode, as the maximum PIT
+        * delta is quite small.
+        *
+        * - There are pending events on sleeping CPUs which were not
+        * in the event mask
+        */
+       if (next_event.tv64 != KTIME_MAX) {
+               /*
+                * Rearm the broadcast device. If event expired,
+                * repeat the above
+                */
+               if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
+                       goto again;
+       }
+       raw_spin_unlock(&tick_broadcast_lock);
+}
+
+static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
+{
+       if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
+               return 0;
+       if (bc->next_event.tv64 == KTIME_MAX)
+               return 0;
+       return bc->bound_on == cpu ? -EBUSY : 0;
+}
+
+static void broadcast_shutdown_local(struct clock_event_device *bc,
+                                    struct clock_event_device *dev)
+{
+       /*
+        * For hrtimer based broadcasting we cannot shutdown the cpu
+        * local device if our own event is the first one to expire or
+        * if we own the broadcast timer.
+        */
+       if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
+               if (broadcast_needs_cpu(bc, smp_processor_id()))
+                       return;
+               if (dev->next_event.tv64 < bc->next_event.tv64)
+                       return;
+       }
+       clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
+}
+
+/**
+ * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
+ * @state:     The target state (enter/exit)
+ *
+ * The system enters/leaves a state, where affected devices might stop
+ * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
+ *
+ * Called with interrupts disabled, so clockevents_lock is not
+ * required here because the local clock event device cannot go away
+ * under us.
+ */
+int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
+{
+       struct clock_event_device *bc, *dev;
+       struct tick_device *td;
+       int cpu, ret = 0;
+       ktime_t now;
+
+       /*
+        * Periodic mode does not care about the enter/exit of power
+        * states
+        */
+       if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
+               return 0;
+
+       /*
+        * We are called with preemtion disabled from the depth of the
+        * idle code, so we can't be moved away.
+        */
+       td = this_cpu_ptr(&tick_cpu_device);
+       dev = td->evtdev;
+
+       if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
+               return 0;
+
+       raw_spin_lock(&tick_broadcast_lock);
+       bc = tick_broadcast_device.evtdev;
+       cpu = smp_processor_id();
+
+       if (state == TICK_BROADCAST_ENTER) {
+               if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
+                       WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
+                       broadcast_shutdown_local(bc, dev);
+                       /*
+                        * We only reprogram the broadcast timer if we
+                        * did not mark ourself in the force mask and
+                        * if the cpu local event is earlier than the
+                        * broadcast event. If the current CPU is in
+                        * the force mask, then we are going to be
+                        * woken by the IPI right away.
+                        */
+                       if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
+                           dev->next_event.tv64 < bc->next_event.tv64)
+                               tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
+               }
+               /*
+                * If the current CPU owns the hrtimer broadcast
+                * mechanism, it cannot go deep idle and we remove the
+                * CPU from the broadcast mask. We don't have to go
+                * through the EXIT path as the local timer is not
+                * shutdown.
+                */
+               ret = broadcast_needs_cpu(bc, cpu);
+               if (ret)
+                       cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
+       } else {
+               if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
+                       clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
+                       /*
+                        * The cpu which was handling the broadcast
+                        * timer marked this cpu in the broadcast
+                        * pending mask and fired the broadcast
+                        * IPI. So we are going to handle the expired
+                        * event anyway via the broadcast IPI
+                        * handler. No need to reprogram the timer
+                        * with an already expired event.
+                        */
+                       if (cpumask_test_and_clear_cpu(cpu,
+                                      tick_broadcast_pending_mask))
+                               goto out;
+
+                       /*
+                        * Bail out if there is no next event.
+                        */
+                       if (dev->next_event.tv64 == KTIME_MAX)
+                               goto out;
+                       /*
+                        * If the pending bit is not set, then we are
+                        * either the CPU handling the broadcast
+                        * interrupt or we got woken by something else.
+                        *
+                        * We are not longer in the broadcast mask, so
+                        * if the cpu local expiry time is already
+                        * reached, we would reprogram the cpu local
+                        * timer with an already expired event.
+                        *
+                        * This can lead to a ping-pong when we return
+                        * to idle and therefor rearm the broadcast
+                        * timer before the cpu local timer was able
+                        * to fire. This happens because the forced
+                        * reprogramming makes sure that the event
+                        * will happen in the future and depending on
+                        * the min_delta setting this might be far
+                        * enough out that the ping-pong starts.
+                        *
+                        * If the cpu local next_event has expired
+                        * then we know that the broadcast timer
+                        * next_event has expired as well and
+                        * broadcast is about to be handled. So we
+                        * avoid reprogramming and enforce that the
+                        * broadcast handler, which did not run yet,
+                        * will invoke the cpu local handler.
+                        *
+                        * We cannot call the handler directly from
+                        * here, because we might be in a NOHZ phase
+                        * and we did not go through the irq_enter()
+                        * nohz fixups.
+                        */
+                       now = ktime_get();
+                       if (dev->next_event.tv64 <= now.tv64) {
+                               cpumask_set_cpu(cpu, tick_broadcast_force_mask);
+                               goto out;
+                       }
+                       /*
+                        * We got woken by something else. Reprogram
+                        * the cpu local timer device.
+                        */
+                       tick_program_event(dev->next_event, 1);
+               }
+       }
+out:
+       raw_spin_unlock(&tick_broadcast_lock);
+       return ret;
+}
+EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
+
+/*
+ * Reset the one shot broadcast for a cpu
+ *
+ * Called with tick_broadcast_lock held
+ */
+static void tick_broadcast_clear_oneshot(int cpu)
+{
+       cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
+       cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
+}
+
+static void tick_broadcast_init_next_event(struct cpumask *mask,
+                                          ktime_t expires)
+{
+       struct tick_device *td;
+       int cpu;
+
+       for_each_cpu(cpu, mask) {
+               td = &per_cpu(tick_cpu_device, cpu);
+               if (td->evtdev)
+                       td->evtdev->next_event = expires;
+       }
+}
+
+/**
+ * tick_broadcast_setup_oneshot - setup the broadcast device
+ */
+void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
+{
+       int cpu = smp_processor_id();
+
+       /* Set it up only once ! */
+       if (bc->event_handler != tick_handle_oneshot_broadcast) {
+               int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
+
+               bc->event_handler = tick_handle_oneshot_broadcast;
+
+               /*
+                * We must be careful here. There might be other CPUs
+                * waiting for periodic broadcast. We need to set the
+                * oneshot_mask bits for those and program the
+                * broadcast device to fire.
+                */
+               cpumask_copy(tmpmask, tick_broadcast_mask);
+               cpumask_clear_cpu(cpu, tmpmask);
+               cpumask_or(tick_broadcast_oneshot_mask,
+                          tick_broadcast_oneshot_mask, tmpmask);
+
+               if (was_periodic && !cpumask_empty(tmpmask)) {
+                       clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
+                       tick_broadcast_init_next_event(tmpmask,
+                                                      tick_next_period);
+                       tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
+               } else
+                       bc->next_event.tv64 = KTIME_MAX;
+       } else {
+               /*
+                * The first cpu which switches to oneshot mode sets
+                * the bit for all other cpus which are in the general
+                * (periodic) broadcast mask. So the bit is set and
+                * would prevent the first broadcast enter after this
+                * to program the bc device.
+                */
+               tick_broadcast_clear_oneshot(cpu);
+       }
+}
+
+/*
+ * Select oneshot operating mode for the broadcast device
+ */
+void tick_broadcast_switch_to_oneshot(void)
+{
+       struct clock_event_device *bc;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
+       bc = tick_broadcast_device.evtdev;
+       if (bc)
+               tick_broadcast_setup_oneshot(bc);
+
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+void hotplug_cpu__broadcast_tick_pull(int deadcpu)
+{
+       struct clock_event_device *bc;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+       bc = tick_broadcast_device.evtdev;
+
+       if (bc && broadcast_needs_cpu(bc, deadcpu)) {
+               /* This moves the broadcast assignment to this CPU: */
+               clockevents_program_event(bc, bc->next_event, 1);
+       }
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+
+/*
+ * Remove a dead CPU from broadcasting
+ */
+void tick_shutdown_broadcast_oneshot(unsigned int cpu)
+{
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
+
+       /*
+        * Clear the broadcast masks for the dead cpu, but do not stop
+        * the broadcast device!
+        */
+       cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
+       cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
+       cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
+
+       raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
+}
+#endif
+
+/*
+ * Check, whether the broadcast device is in one shot mode
+ */
+int tick_broadcast_oneshot_active(void)
+{
+       return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
+}
+
+/*
+ * Check whether the broadcast device supports oneshot.
+ */
+bool tick_broadcast_oneshot_available(void)
+{
+       struct clock_event_device *bc = tick_broadcast_device.evtdev;
+
+       return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
+}
+
+#endif
+
+void __init tick_broadcast_init(void)
+{
+       zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
+       zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
+       zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
+#ifdef CONFIG_TICK_ONESHOT
+       zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
+       zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
+       zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
+#endif
+}