Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / time / posix-cpu-timers.c
diff --git a/kernel/kernel/time/posix-cpu-timers.c b/kernel/kernel/time/posix-cpu-timers.c
new file mode 100644 (file)
index 0000000..c8c7150
--- /dev/null
@@ -0,0 +1,1661 @@
+/*
+ * Implement CPU time clocks for the POSIX clock interface.
+ */
+
+#include <linux/sched.h>
+#include <linux/sched/rt.h>
+#include <linux/posix-timers.h>
+#include <linux/errno.h>
+#include <linux/math64.h>
+#include <asm/uaccess.h>
+#include <linux/kernel_stat.h>
+#include <trace/events/timer.h>
+#include <linux/random.h>
+#include <linux/tick.h>
+#include <linux/workqueue.h>
+
+/*
+ * Called after updating RLIMIT_CPU to run cpu timer and update
+ * tsk->signal->cputime_expires expiration cache if necessary. Needs
+ * siglock protection since other code may update expiration cache as
+ * well.
+ */
+void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
+{
+       cputime_t cputime = secs_to_cputime(rlim_new);
+
+       spin_lock_irq(&task->sighand->siglock);
+       set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
+       spin_unlock_irq(&task->sighand->siglock);
+}
+
+static int check_clock(const clockid_t which_clock)
+{
+       int error = 0;
+       struct task_struct *p;
+       const pid_t pid = CPUCLOCK_PID(which_clock);
+
+       if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
+               return -EINVAL;
+
+       if (pid == 0)
+               return 0;
+
+       rcu_read_lock();
+       p = find_task_by_vpid(pid);
+       if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
+                  same_thread_group(p, current) : has_group_leader_pid(p))) {
+               error = -EINVAL;
+       }
+       rcu_read_unlock();
+
+       return error;
+}
+
+static inline unsigned long long
+timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
+{
+       unsigned long long ret;
+
+       ret = 0;                /* high half always zero when .cpu used */
+       if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+               ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
+       } else {
+               ret = cputime_to_expires(timespec_to_cputime(tp));
+       }
+       return ret;
+}
+
+static void sample_to_timespec(const clockid_t which_clock,
+                              unsigned long long expires,
+                              struct timespec *tp)
+{
+       if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
+               *tp = ns_to_timespec(expires);
+       else
+               cputime_to_timespec((__force cputime_t)expires, tp);
+}
+
+/*
+ * Update expiry time from increment, and increase overrun count,
+ * given the current clock sample.
+ */
+static void bump_cpu_timer(struct k_itimer *timer,
+                          unsigned long long now)
+{
+       int i;
+       unsigned long long delta, incr;
+
+       if (timer->it.cpu.incr == 0)
+               return;
+
+       if (now < timer->it.cpu.expires)
+               return;
+
+       incr = timer->it.cpu.incr;
+       delta = now + incr - timer->it.cpu.expires;
+
+       /* Don't use (incr*2 < delta), incr*2 might overflow. */
+       for (i = 0; incr < delta - incr; i++)
+               incr = incr << 1;
+
+       for (; i >= 0; incr >>= 1, i--) {
+               if (delta < incr)
+                       continue;
+
+               timer->it.cpu.expires += incr;
+               timer->it_overrun += 1 << i;
+               delta -= incr;
+       }
+}
+
+/**
+ * task_cputime_zero - Check a task_cputime struct for all zero fields.
+ *
+ * @cputime:   The struct to compare.
+ *
+ * Checks @cputime to see if all fields are zero.  Returns true if all fields
+ * are zero, false if any field is nonzero.
+ */
+static inline int task_cputime_zero(const struct task_cputime *cputime)
+{
+       if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
+               return 1;
+       return 0;
+}
+
+static inline unsigned long long prof_ticks(struct task_struct *p)
+{
+       cputime_t utime, stime;
+
+       task_cputime(p, &utime, &stime);
+
+       return cputime_to_expires(utime + stime);
+}
+static inline unsigned long long virt_ticks(struct task_struct *p)
+{
+       cputime_t utime;
+
+       task_cputime(p, &utime, NULL);
+
+       return cputime_to_expires(utime);
+}
+
+static int
+posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
+{
+       int error = check_clock(which_clock);
+       if (!error) {
+               tp->tv_sec = 0;
+               tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
+               if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+                       /*
+                        * If sched_clock is using a cycle counter, we
+                        * don't have any idea of its true resolution
+                        * exported, but it is much more than 1s/HZ.
+                        */
+                       tp->tv_nsec = 1;
+               }
+       }
+       return error;
+}
+
+static int
+posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
+{
+       /*
+        * You can never reset a CPU clock, but we check for other errors
+        * in the call before failing with EPERM.
+        */
+       int error = check_clock(which_clock);
+       if (error == 0) {
+               error = -EPERM;
+       }
+       return error;
+}
+
+
+/*
+ * Sample a per-thread clock for the given task.
+ */
+static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
+                           unsigned long long *sample)
+{
+       switch (CPUCLOCK_WHICH(which_clock)) {
+       default:
+               return -EINVAL;
+       case CPUCLOCK_PROF:
+               *sample = prof_ticks(p);
+               break;
+       case CPUCLOCK_VIRT:
+               *sample = virt_ticks(p);
+               break;
+       case CPUCLOCK_SCHED:
+               *sample = task_sched_runtime(p);
+               break;
+       }
+       return 0;
+}
+
+static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
+{
+       if (b->utime > a->utime)
+               a->utime = b->utime;
+
+       if (b->stime > a->stime)
+               a->stime = b->stime;
+
+       if (b->sum_exec_runtime > a->sum_exec_runtime)
+               a->sum_exec_runtime = b->sum_exec_runtime;
+}
+
+void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
+{
+       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
+       struct task_cputime sum;
+       unsigned long flags;
+
+       if (!cputimer->running) {
+               /*
+                * The POSIX timer interface allows for absolute time expiry
+                * values through the TIMER_ABSTIME flag, therefore we have
+                * to synchronize the timer to the clock every time we start
+                * it.
+                */
+               thread_group_cputime(tsk, &sum);
+               raw_spin_lock_irqsave(&cputimer->lock, flags);
+               cputimer->running = 1;
+               update_gt_cputime(&cputimer->cputime, &sum);
+       } else
+               raw_spin_lock_irqsave(&cputimer->lock, flags);
+       *times = cputimer->cputime;
+       raw_spin_unlock_irqrestore(&cputimer->lock, flags);
+}
+
+/*
+ * Sample a process (thread group) clock for the given group_leader task.
+ * Must be called with task sighand lock held for safe while_each_thread()
+ * traversal.
+ */
+static int cpu_clock_sample_group(const clockid_t which_clock,
+                                 struct task_struct *p,
+                                 unsigned long long *sample)
+{
+       struct task_cputime cputime;
+
+       switch (CPUCLOCK_WHICH(which_clock)) {
+       default:
+               return -EINVAL;
+       case CPUCLOCK_PROF:
+               thread_group_cputime(p, &cputime);
+               *sample = cputime_to_expires(cputime.utime + cputime.stime);
+               break;
+       case CPUCLOCK_VIRT:
+               thread_group_cputime(p, &cputime);
+               *sample = cputime_to_expires(cputime.utime);
+               break;
+       case CPUCLOCK_SCHED:
+               thread_group_cputime(p, &cputime);
+               *sample = cputime.sum_exec_runtime;
+               break;
+       }
+       return 0;
+}
+
+static int posix_cpu_clock_get_task(struct task_struct *tsk,
+                                   const clockid_t which_clock,
+                                   struct timespec *tp)
+{
+       int err = -EINVAL;
+       unsigned long long rtn;
+
+       if (CPUCLOCK_PERTHREAD(which_clock)) {
+               if (same_thread_group(tsk, current))
+                       err = cpu_clock_sample(which_clock, tsk, &rtn);
+       } else {
+               if (tsk == current || thread_group_leader(tsk))
+                       err = cpu_clock_sample_group(which_clock, tsk, &rtn);
+       }
+
+       if (!err)
+               sample_to_timespec(which_clock, rtn, tp);
+
+       return err;
+}
+
+
+static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
+{
+       const pid_t pid = CPUCLOCK_PID(which_clock);
+       int err = -EINVAL;
+
+       if (pid == 0) {
+               /*
+                * Special case constant value for our own clocks.
+                * We don't have to do any lookup to find ourselves.
+                */
+               err = posix_cpu_clock_get_task(current, which_clock, tp);
+       } else {
+               /*
+                * Find the given PID, and validate that the caller
+                * should be able to see it.
+                */
+               struct task_struct *p;
+               rcu_read_lock();
+               p = find_task_by_vpid(pid);
+               if (p)
+                       err = posix_cpu_clock_get_task(p, which_clock, tp);
+               rcu_read_unlock();
+       }
+
+       return err;
+}
+
+
+/*
+ * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
+ * This is called from sys_timer_create() and do_cpu_nanosleep() with the
+ * new timer already all-zeros initialized.
+ */
+static int posix_cpu_timer_create(struct k_itimer *new_timer)
+{
+       int ret = 0;
+       const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
+       struct task_struct *p;
+
+       if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
+               return -EINVAL;
+
+       INIT_LIST_HEAD(&new_timer->it.cpu.entry);
+
+       rcu_read_lock();
+       if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
+               if (pid == 0) {
+                       p = current;
+               } else {
+                       p = find_task_by_vpid(pid);
+                       if (p && !same_thread_group(p, current))
+                               p = NULL;
+               }
+       } else {
+               if (pid == 0) {
+                       p = current->group_leader;
+               } else {
+                       p = find_task_by_vpid(pid);
+                       if (p && !has_group_leader_pid(p))
+                               p = NULL;
+               }
+       }
+       new_timer->it.cpu.task = p;
+       if (p) {
+               get_task_struct(p);
+       } else {
+               ret = -EINVAL;
+       }
+       rcu_read_unlock();
+
+       return ret;
+}
+
+/*
+ * Clean up a CPU-clock timer that is about to be destroyed.
+ * This is called from timer deletion with the timer already locked.
+ * If we return TIMER_RETRY, it's necessary to release the timer's lock
+ * and try again.  (This happens when the timer is in the middle of firing.)
+ */
+static int posix_cpu_timer_del(struct k_itimer *timer)
+{
+       int ret = 0;
+       unsigned long flags;
+       struct sighand_struct *sighand;
+       struct task_struct *p = timer->it.cpu.task;
+
+       WARN_ON_ONCE(p == NULL);
+
+       /*
+        * Protect against sighand release/switch in exit/exec and process/
+        * thread timer list entry concurrent read/writes.
+        */
+       sighand = lock_task_sighand(p, &flags);
+       if (unlikely(sighand == NULL)) {
+               /*
+                * We raced with the reaping of the task.
+                * The deletion should have cleared us off the list.
+                */
+               WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
+       } else {
+               if (timer->it.cpu.firing)
+                       ret = TIMER_RETRY;
+               else
+                       list_del(&timer->it.cpu.entry);
+
+               unlock_task_sighand(p, &flags);
+       }
+
+       if (!ret)
+               put_task_struct(p);
+
+       return ret;
+}
+
+static void cleanup_timers_list(struct list_head *head)
+{
+       struct cpu_timer_list *timer, *next;
+
+       list_for_each_entry_safe(timer, next, head, entry)
+               list_del_init(&timer->entry);
+}
+
+/*
+ * Clean out CPU timers still ticking when a thread exited.  The task
+ * pointer is cleared, and the expiry time is replaced with the residual
+ * time for later timer_gettime calls to return.
+ * This must be called with the siglock held.
+ */
+static void cleanup_timers(struct list_head *head)
+{
+       cleanup_timers_list(head);
+       cleanup_timers_list(++head);
+       cleanup_timers_list(++head);
+}
+
+/*
+ * These are both called with the siglock held, when the current thread
+ * is being reaped.  When the final (leader) thread in the group is reaped,
+ * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
+ */
+void posix_cpu_timers_exit(struct task_struct *tsk)
+{
+       add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
+                                               sizeof(unsigned long long));
+       cleanup_timers(tsk->cpu_timers);
+
+}
+void posix_cpu_timers_exit_group(struct task_struct *tsk)
+{
+       cleanup_timers(tsk->signal->cpu_timers);
+}
+
+static inline int expires_gt(cputime_t expires, cputime_t new_exp)
+{
+       return expires == 0 || expires > new_exp;
+}
+
+/*
+ * Insert the timer on the appropriate list before any timers that
+ * expire later.  This must be called with the sighand lock held.
+ */
+static void arm_timer(struct k_itimer *timer)
+{
+       struct task_struct *p = timer->it.cpu.task;
+       struct list_head *head, *listpos;
+       struct task_cputime *cputime_expires;
+       struct cpu_timer_list *const nt = &timer->it.cpu;
+       struct cpu_timer_list *next;
+
+       if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+               head = p->cpu_timers;
+               cputime_expires = &p->cputime_expires;
+       } else {
+               head = p->signal->cpu_timers;
+               cputime_expires = &p->signal->cputime_expires;
+       }
+       head += CPUCLOCK_WHICH(timer->it_clock);
+
+       listpos = head;
+       list_for_each_entry(next, head, entry) {
+               if (nt->expires < next->expires)
+                       break;
+               listpos = &next->entry;
+       }
+       list_add(&nt->entry, listpos);
+
+       if (listpos == head) {
+               unsigned long long exp = nt->expires;
+
+               /*
+                * We are the new earliest-expiring POSIX 1.b timer, hence
+                * need to update expiration cache. Take into account that
+                * for process timers we share expiration cache with itimers
+                * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
+                */
+
+               switch (CPUCLOCK_WHICH(timer->it_clock)) {
+               case CPUCLOCK_PROF:
+                       if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
+                               cputime_expires->prof_exp = expires_to_cputime(exp);
+                       break;
+               case CPUCLOCK_VIRT:
+                       if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
+                               cputime_expires->virt_exp = expires_to_cputime(exp);
+                       break;
+               case CPUCLOCK_SCHED:
+                       if (cputime_expires->sched_exp == 0 ||
+                           cputime_expires->sched_exp > exp)
+                               cputime_expires->sched_exp = exp;
+                       break;
+               }
+       }
+}
+
+/*
+ * The timer is locked, fire it and arrange for its reload.
+ */
+static void cpu_timer_fire(struct k_itimer *timer)
+{
+       if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
+               /*
+                * User don't want any signal.
+                */
+               timer->it.cpu.expires = 0;
+       } else if (unlikely(timer->sigq == NULL)) {
+               /*
+                * This a special case for clock_nanosleep,
+                * not a normal timer from sys_timer_create.
+                */
+               wake_up_process(timer->it_process);
+               timer->it.cpu.expires = 0;
+       } else if (timer->it.cpu.incr == 0) {
+               /*
+                * One-shot timer.  Clear it as soon as it's fired.
+                */
+               posix_timer_event(timer, 0);
+               timer->it.cpu.expires = 0;
+       } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
+               /*
+                * The signal did not get queued because the signal
+                * was ignored, so we won't get any callback to
+                * reload the timer.  But we need to keep it
+                * ticking in case the signal is deliverable next time.
+                */
+               posix_cpu_timer_schedule(timer);
+       }
+}
+
+/*
+ * Sample a process (thread group) timer for the given group_leader task.
+ * Must be called with task sighand lock held for safe while_each_thread()
+ * traversal.
+ */
+static int cpu_timer_sample_group(const clockid_t which_clock,
+                                 struct task_struct *p,
+                                 unsigned long long *sample)
+{
+       struct task_cputime cputime;
+
+       thread_group_cputimer(p, &cputime);
+       switch (CPUCLOCK_WHICH(which_clock)) {
+       default:
+               return -EINVAL;
+       case CPUCLOCK_PROF:
+               *sample = cputime_to_expires(cputime.utime + cputime.stime);
+               break;
+       case CPUCLOCK_VIRT:
+               *sample = cputime_to_expires(cputime.utime);
+               break;
+       case CPUCLOCK_SCHED:
+               *sample = cputime.sum_exec_runtime;
+               break;
+       }
+       return 0;
+}
+
+#ifdef CONFIG_NO_HZ_FULL
+static void nohz_kick_work_fn(struct work_struct *work)
+{
+       tick_nohz_full_kick_all();
+}
+
+static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
+
+/*
+ * We need the IPIs to be sent from sane process context.
+ * The posix cpu timers are always set with irqs disabled.
+ */
+static void posix_cpu_timer_kick_nohz(void)
+{
+       if (context_tracking_is_enabled())
+               schedule_work(&nohz_kick_work);
+}
+
+bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
+{
+       if (!task_cputime_zero(&tsk->cputime_expires))
+               return false;
+
+       if (tsk->signal->cputimer.running)
+               return false;
+
+       return true;
+}
+#else
+static inline void posix_cpu_timer_kick_nohz(void) { }
+#endif
+
+/*
+ * Guts of sys_timer_settime for CPU timers.
+ * This is called with the timer locked and interrupts disabled.
+ * If we return TIMER_RETRY, it's necessary to release the timer's lock
+ * and try again.  (This happens when the timer is in the middle of firing.)
+ */
+static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
+                              struct itimerspec *new, struct itimerspec *old)
+{
+       unsigned long flags;
+       struct sighand_struct *sighand;
+       struct task_struct *p = timer->it.cpu.task;
+       unsigned long long old_expires, new_expires, old_incr, val;
+       int ret;
+
+       WARN_ON_ONCE(p == NULL);
+
+       new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
+
+       /*
+        * Protect against sighand release/switch in exit/exec and p->cpu_timers
+        * and p->signal->cpu_timers read/write in arm_timer()
+        */
+       sighand = lock_task_sighand(p, &flags);
+       /*
+        * If p has just been reaped, we can no
+        * longer get any information about it at all.
+        */
+       if (unlikely(sighand == NULL)) {
+               return -ESRCH;
+       }
+
+       /*
+        * Disarm any old timer after extracting its expiry time.
+        */
+       WARN_ON_ONCE_NONRT(!irqs_disabled());
+
+       ret = 0;
+       old_incr = timer->it.cpu.incr;
+       old_expires = timer->it.cpu.expires;
+       if (unlikely(timer->it.cpu.firing)) {
+               timer->it.cpu.firing = -1;
+               ret = TIMER_RETRY;
+       } else
+               list_del_init(&timer->it.cpu.entry);
+
+       /*
+        * We need to sample the current value to convert the new
+        * value from to relative and absolute, and to convert the
+        * old value from absolute to relative.  To set a process
+        * timer, we need a sample to balance the thread expiry
+        * times (in arm_timer).  With an absolute time, we must
+        * check if it's already passed.  In short, we need a sample.
+        */
+       if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+               cpu_clock_sample(timer->it_clock, p, &val);
+       } else {
+               cpu_timer_sample_group(timer->it_clock, p, &val);
+       }
+
+       if (old) {
+               if (old_expires == 0) {
+                       old->it_value.tv_sec = 0;
+                       old->it_value.tv_nsec = 0;
+               } else {
+                       /*
+                        * Update the timer in case it has
+                        * overrun already.  If it has,
+                        * we'll report it as having overrun
+                        * and with the next reloaded timer
+                        * already ticking, though we are
+                        * swallowing that pending
+                        * notification here to install the
+                        * new setting.
+                        */
+                       bump_cpu_timer(timer, val);
+                       if (val < timer->it.cpu.expires) {
+                               old_expires = timer->it.cpu.expires - val;
+                               sample_to_timespec(timer->it_clock,
+                                                  old_expires,
+                                                  &old->it_value);
+                       } else {
+                               old->it_value.tv_nsec = 1;
+                               old->it_value.tv_sec = 0;
+                       }
+               }
+       }
+
+       if (unlikely(ret)) {
+               /*
+                * We are colliding with the timer actually firing.
+                * Punt after filling in the timer's old value, and
+                * disable this firing since we are already reporting
+                * it as an overrun (thanks to bump_cpu_timer above).
+                */
+               unlock_task_sighand(p, &flags);
+               goto out;
+       }
+
+       if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
+               new_expires += val;
+       }
+
+       /*
+        * Install the new expiry time (or zero).
+        * For a timer with no notification action, we don't actually
+        * arm the timer (we'll just fake it for timer_gettime).
+        */
+       timer->it.cpu.expires = new_expires;
+       if (new_expires != 0 && val < new_expires) {
+               arm_timer(timer);
+       }
+
+       unlock_task_sighand(p, &flags);
+       /*
+        * Install the new reload setting, and
+        * set up the signal and overrun bookkeeping.
+        */
+       timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
+                                               &new->it_interval);
+
+       /*
+        * This acts as a modification timestamp for the timer,
+        * so any automatic reload attempt will punt on seeing
+        * that we have reset the timer manually.
+        */
+       timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
+               ~REQUEUE_PENDING;
+       timer->it_overrun_last = 0;
+       timer->it_overrun = -1;
+
+       if (new_expires != 0 && !(val < new_expires)) {
+               /*
+                * The designated time already passed, so we notify
+                * immediately, even if the thread never runs to
+                * accumulate more time on this clock.
+                */
+               cpu_timer_fire(timer);
+       }
+
+       ret = 0;
+ out:
+       if (old) {
+               sample_to_timespec(timer->it_clock,
+                                  old_incr, &old->it_interval);
+       }
+       if (!ret)
+               posix_cpu_timer_kick_nohz();
+       return ret;
+}
+
+static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
+{
+       unsigned long long now;
+       struct task_struct *p = timer->it.cpu.task;
+
+       WARN_ON_ONCE(p == NULL);
+
+       /*
+        * Easy part: convert the reload time.
+        */
+       sample_to_timespec(timer->it_clock,
+                          timer->it.cpu.incr, &itp->it_interval);
+
+       if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
+               itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
+               return;
+       }
+
+       /*
+        * Sample the clock to take the difference with the expiry time.
+        */
+       if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+               cpu_clock_sample(timer->it_clock, p, &now);
+       } else {
+               struct sighand_struct *sighand;
+               unsigned long flags;
+
+               /*
+                * Protect against sighand release/switch in exit/exec and
+                * also make timer sampling safe if it ends up calling
+                * thread_group_cputime().
+                */
+               sighand = lock_task_sighand(p, &flags);
+               if (unlikely(sighand == NULL)) {
+                       /*
+                        * The process has been reaped.
+                        * We can't even collect a sample any more.
+                        * Call the timer disarmed, nothing else to do.
+                        */
+                       timer->it.cpu.expires = 0;
+                       sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
+                                          &itp->it_value);
+               } else {
+                       cpu_timer_sample_group(timer->it_clock, p, &now);
+                       unlock_task_sighand(p, &flags);
+               }
+       }
+
+       if (now < timer->it.cpu.expires) {
+               sample_to_timespec(timer->it_clock,
+                                  timer->it.cpu.expires - now,
+                                  &itp->it_value);
+       } else {
+               /*
+                * The timer should have expired already, but the firing
+                * hasn't taken place yet.  Say it's just about to expire.
+                */
+               itp->it_value.tv_nsec = 1;
+               itp->it_value.tv_sec = 0;
+       }
+}
+
+static unsigned long long
+check_timers_list(struct list_head *timers,
+                 struct list_head *firing,
+                 unsigned long long curr)
+{
+       int maxfire = 20;
+
+       while (!list_empty(timers)) {
+               struct cpu_timer_list *t;
+
+               t = list_first_entry(timers, struct cpu_timer_list, entry);
+
+               if (!--maxfire || curr < t->expires)
+                       return t->expires;
+
+               t->firing = 1;
+               list_move_tail(&t->entry, firing);
+       }
+
+       return 0;
+}
+
+/*
+ * Check for any per-thread CPU timers that have fired and move them off
+ * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
+ * tsk->it_*_expires values to reflect the remaining thread CPU timers.
+ */
+static void check_thread_timers(struct task_struct *tsk,
+                               struct list_head *firing)
+{
+       struct list_head *timers = tsk->cpu_timers;
+       struct signal_struct *const sig = tsk->signal;
+       struct task_cputime *tsk_expires = &tsk->cputime_expires;
+       unsigned long long expires;
+       unsigned long soft;
+
+       expires = check_timers_list(timers, firing, prof_ticks(tsk));
+       tsk_expires->prof_exp = expires_to_cputime(expires);
+
+       expires = check_timers_list(++timers, firing, virt_ticks(tsk));
+       tsk_expires->virt_exp = expires_to_cputime(expires);
+
+       tsk_expires->sched_exp = check_timers_list(++timers, firing,
+                                                  tsk->se.sum_exec_runtime);
+
+       /*
+        * Check for the special case thread timers.
+        */
+       soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
+       if (soft != RLIM_INFINITY) {
+               unsigned long hard =
+                       ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
+
+               if (hard != RLIM_INFINITY &&
+                   tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+                       /*
+                        * At the hard limit, we just die.
+                        * No need to calculate anything else now.
+                        */
+                       __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+                       return;
+               }
+               if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+                       /*
+                        * At the soft limit, send a SIGXCPU every second.
+                        */
+                       if (soft < hard) {
+                               soft += USEC_PER_SEC;
+                               sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
+                       }
+                       printk(KERN_INFO
+                               "RT Watchdog Timeout: %s[%d]\n",
+                               tsk->comm, task_pid_nr(tsk));
+                       __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+               }
+       }
+}
+
+static void stop_process_timers(struct signal_struct *sig)
+{
+       struct thread_group_cputimer *cputimer = &sig->cputimer;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&cputimer->lock, flags);
+       cputimer->running = 0;
+       raw_spin_unlock_irqrestore(&cputimer->lock, flags);
+}
+
+static u32 onecputick;
+
+static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
+                            unsigned long long *expires,
+                            unsigned long long cur_time, int signo)
+{
+       if (!it->expires)
+               return;
+
+       if (cur_time >= it->expires) {
+               if (it->incr) {
+                       it->expires += it->incr;
+                       it->error += it->incr_error;
+                       if (it->error >= onecputick) {
+                               it->expires -= cputime_one_jiffy;
+                               it->error -= onecputick;
+                       }
+               } else {
+                       it->expires = 0;
+               }
+
+               trace_itimer_expire(signo == SIGPROF ?
+                                   ITIMER_PROF : ITIMER_VIRTUAL,
+                                   tsk->signal->leader_pid, cur_time);
+               __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
+       }
+
+       if (it->expires && (!*expires || it->expires < *expires)) {
+               *expires = it->expires;
+       }
+}
+
+/*
+ * Check for any per-thread CPU timers that have fired and move them
+ * off the tsk->*_timers list onto the firing list.  Per-thread timers
+ * have already been taken off.
+ */
+static void check_process_timers(struct task_struct *tsk,
+                                struct list_head *firing)
+{
+       struct signal_struct *const sig = tsk->signal;
+       unsigned long long utime, ptime, virt_expires, prof_expires;
+       unsigned long long sum_sched_runtime, sched_expires;
+       struct list_head *timers = sig->cpu_timers;
+       struct task_cputime cputime;
+       unsigned long soft;
+
+       /*
+        * Collect the current process totals.
+        */
+       thread_group_cputimer(tsk, &cputime);
+       utime = cputime_to_expires(cputime.utime);
+       ptime = utime + cputime_to_expires(cputime.stime);
+       sum_sched_runtime = cputime.sum_exec_runtime;
+
+       prof_expires = check_timers_list(timers, firing, ptime);
+       virt_expires = check_timers_list(++timers, firing, utime);
+       sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
+
+       /*
+        * Check for the special case process timers.
+        */
+       check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
+                        SIGPROF);
+       check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
+                        SIGVTALRM);
+       soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
+       if (soft != RLIM_INFINITY) {
+               unsigned long psecs = cputime_to_secs(ptime);
+               unsigned long hard =
+                       ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
+               cputime_t x;
+               if (psecs >= hard) {
+                       /*
+                        * At the hard limit, we just die.
+                        * No need to calculate anything else now.
+                        */
+                       __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+                       return;
+               }
+               if (psecs >= soft) {
+                       /*
+                        * At the soft limit, send a SIGXCPU every second.
+                        */
+                       __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+                       if (soft < hard) {
+                               soft++;
+                               sig->rlim[RLIMIT_CPU].rlim_cur = soft;
+                       }
+               }
+               x = secs_to_cputime(soft);
+               if (!prof_expires || x < prof_expires) {
+                       prof_expires = x;
+               }
+       }
+
+       sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
+       sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
+       sig->cputime_expires.sched_exp = sched_expires;
+       if (task_cputime_zero(&sig->cputime_expires))
+               stop_process_timers(sig);
+}
+
+/*
+ * This is called from the signal code (via do_schedule_next_timer)
+ * when the last timer signal was delivered and we have to reload the timer.
+ */
+void posix_cpu_timer_schedule(struct k_itimer *timer)
+{
+       struct sighand_struct *sighand;
+       unsigned long flags;
+       struct task_struct *p = timer->it.cpu.task;
+       unsigned long long now;
+
+       WARN_ON_ONCE(p == NULL);
+
+       /*
+        * Fetch the current sample and update the timer's expiry time.
+        */
+       if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+               cpu_clock_sample(timer->it_clock, p, &now);
+               bump_cpu_timer(timer, now);
+               if (unlikely(p->exit_state))
+                       goto out;
+
+               /* Protect timer list r/w in arm_timer() */
+               sighand = lock_task_sighand(p, &flags);
+               if (!sighand)
+                       goto out;
+       } else {
+               /*
+                * Protect arm_timer() and timer sampling in case of call to
+                * thread_group_cputime().
+                */
+               sighand = lock_task_sighand(p, &flags);
+               if (unlikely(sighand == NULL)) {
+                       /*
+                        * The process has been reaped.
+                        * We can't even collect a sample any more.
+                        */
+                       timer->it.cpu.expires = 0;
+                       goto out;
+               } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
+                       unlock_task_sighand(p, &flags);
+                       /* Optimizations: if the process is dying, no need to rearm */
+                       goto out;
+               }
+               cpu_timer_sample_group(timer->it_clock, p, &now);
+               bump_cpu_timer(timer, now);
+               /* Leave the sighand locked for the call below.  */
+       }
+
+       /*
+        * Now re-arm for the new expiry time.
+        */
+       WARN_ON_ONCE_NONRT(!irqs_disabled());
+       arm_timer(timer);
+       unlock_task_sighand(p, &flags);
+
+       /* Kick full dynticks CPUs in case they need to tick on the new timer */
+       posix_cpu_timer_kick_nohz();
+out:
+       timer->it_overrun_last = timer->it_overrun;
+       timer->it_overrun = -1;
+       ++timer->it_requeue_pending;
+}
+
+/**
+ * task_cputime_expired - Compare two task_cputime entities.
+ *
+ * @sample:    The task_cputime structure to be checked for expiration.
+ * @expires:   Expiration times, against which @sample will be checked.
+ *
+ * Checks @sample against @expires to see if any field of @sample has expired.
+ * Returns true if any field of the former is greater than the corresponding
+ * field of the latter if the latter field is set.  Otherwise returns false.
+ */
+static inline int task_cputime_expired(const struct task_cputime *sample,
+                                       const struct task_cputime *expires)
+{
+       if (expires->utime && sample->utime >= expires->utime)
+               return 1;
+       if (expires->stime && sample->utime + sample->stime >= expires->stime)
+               return 1;
+       if (expires->sum_exec_runtime != 0 &&
+           sample->sum_exec_runtime >= expires->sum_exec_runtime)
+               return 1;
+       return 0;
+}
+
+/**
+ * fastpath_timer_check - POSIX CPU timers fast path.
+ *
+ * @tsk:       The task (thread) being checked.
+ *
+ * Check the task and thread group timers.  If both are zero (there are no
+ * timers set) return false.  Otherwise snapshot the task and thread group
+ * timers and compare them with the corresponding expiration times.  Return
+ * true if a timer has expired, else return false.
+ */
+static inline int fastpath_timer_check(struct task_struct *tsk)
+{
+       struct signal_struct *sig;
+       cputime_t utime, stime;
+
+       task_cputime(tsk, &utime, &stime);
+
+       if (!task_cputime_zero(&tsk->cputime_expires)) {
+               struct task_cputime task_sample = {
+                       .utime = utime,
+                       .stime = stime,
+                       .sum_exec_runtime = tsk->se.sum_exec_runtime
+               };
+
+               if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
+                       return 1;
+       }
+
+       sig = tsk->signal;
+       if (sig->cputimer.running) {
+               struct task_cputime group_sample;
+               unsigned long flags;
+
+               raw_spin_lock_irqsave(&sig->cputimer.lock, flags);
+               group_sample = sig->cputimer.cputime;
+               raw_spin_unlock_irqrestore(&sig->cputimer.lock, flags);
+
+               if (task_cputime_expired(&group_sample, &sig->cputime_expires))
+                       return 1;
+       }
+
+       return 0;
+}
+
+/*
+ * This is called from the timer interrupt handler.  The irq handler has
+ * already updated our counts.  We need to check if any timers fire now.
+ * Interrupts are disabled.
+ */
+static void __run_posix_cpu_timers(struct task_struct *tsk)
+{
+       LIST_HEAD(firing);
+       struct k_itimer *timer, *next;
+       unsigned long flags;
+
+       WARN_ON_ONCE_NONRT(!irqs_disabled());
+
+       /*
+        * The fast path checks that there are no expired thread or thread
+        * group timers.  If that's so, just return.
+        */
+       if (!fastpath_timer_check(tsk))
+               return;
+
+       if (!lock_task_sighand(tsk, &flags))
+               return;
+       /*
+        * Here we take off tsk->signal->cpu_timers[N] and
+        * tsk->cpu_timers[N] all the timers that are firing, and
+        * put them on the firing list.
+        */
+       check_thread_timers(tsk, &firing);
+       /*
+        * If there are any active process wide timers (POSIX 1.b, itimers,
+        * RLIMIT_CPU) cputimer must be running.
+        */
+       if (tsk->signal->cputimer.running)
+               check_process_timers(tsk, &firing);
+
+       /*
+        * We must release these locks before taking any timer's lock.
+        * There is a potential race with timer deletion here, as the
+        * siglock now protects our private firing list.  We have set
+        * the firing flag in each timer, so that a deletion attempt
+        * that gets the timer lock before we do will give it up and
+        * spin until we've taken care of that timer below.
+        */
+       unlock_task_sighand(tsk, &flags);
+
+       /*
+        * Now that all the timers on our list have the firing flag,
+        * no one will touch their list entries but us.  We'll take
+        * each timer's lock before clearing its firing flag, so no
+        * timer call will interfere.
+        */
+       list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
+               int cpu_firing;
+
+               spin_lock(&timer->it_lock);
+               list_del_init(&timer->it.cpu.entry);
+               cpu_firing = timer->it.cpu.firing;
+               timer->it.cpu.firing = 0;
+               /*
+                * The firing flag is -1 if we collided with a reset
+                * of the timer, which already reported this
+                * almost-firing as an overrun.  So don't generate an event.
+                */
+               if (likely(cpu_firing >= 0))
+                       cpu_timer_fire(timer);
+               spin_unlock(&timer->it_lock);
+       }
+}
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+#include <linux/kthread.h>
+#include <linux/cpu.h>
+DEFINE_PER_CPU(struct task_struct *, posix_timer_task);
+DEFINE_PER_CPU(struct task_struct *, posix_timer_tasklist);
+
+static int posix_cpu_timers_thread(void *data)
+{
+       int cpu = (long)data;
+
+       BUG_ON(per_cpu(posix_timer_task,cpu) != current);
+
+       while (!kthread_should_stop()) {
+               struct task_struct *tsk = NULL;
+               struct task_struct *next = NULL;
+
+               if (cpu_is_offline(cpu))
+                       goto wait_to_die;
+
+               /* grab task list */
+               raw_local_irq_disable();
+               tsk = per_cpu(posix_timer_tasklist, cpu);
+               per_cpu(posix_timer_tasklist, cpu) = NULL;
+               raw_local_irq_enable();
+
+               /* its possible the list is empty, just return */
+               if (!tsk) {
+                       set_current_state(TASK_INTERRUPTIBLE);
+                       schedule();
+                       __set_current_state(TASK_RUNNING);
+                       continue;
+               }
+
+               /* Process task list */
+               while (1) {
+                       /* save next */
+                       next = tsk->posix_timer_list;
+
+                       /* run the task timers, clear its ptr and
+                        * unreference it
+                        */
+                       __run_posix_cpu_timers(tsk);
+                       tsk->posix_timer_list = NULL;
+                       put_task_struct(tsk);
+
+                       /* check if this is the last on the list */
+                       if (next == tsk)
+                               break;
+                       tsk = next;
+               }
+       }
+       return 0;
+
+wait_to_die:
+       /* Wait for kthread_stop */
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_INTERRUPTIBLE);
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+}
+
+static inline int __fastpath_timer_check(struct task_struct *tsk)
+{
+       /* tsk == current, ensure it is safe to use ->signal/sighand */
+       if (unlikely(tsk->exit_state))
+               return 0;
+
+       if (!task_cputime_zero(&tsk->cputime_expires))
+                       return 1;
+
+       if (!task_cputime_zero(&tsk->signal->cputime_expires))
+                       return 1;
+
+       return 0;
+}
+
+void run_posix_cpu_timers(struct task_struct *tsk)
+{
+       unsigned long cpu = smp_processor_id();
+       struct task_struct *tasklist;
+
+       BUG_ON(!irqs_disabled());
+       if(!per_cpu(posix_timer_task, cpu))
+               return;
+       /* get per-cpu references */
+       tasklist = per_cpu(posix_timer_tasklist, cpu);
+
+       /* check to see if we're already queued */
+       if (!tsk->posix_timer_list && __fastpath_timer_check(tsk)) {
+               get_task_struct(tsk);
+               if (tasklist) {
+                       tsk->posix_timer_list = tasklist;
+               } else {
+                       /*
+                        * The list is terminated by a self-pointing
+                        * task_struct
+                        */
+                       tsk->posix_timer_list = tsk;
+               }
+               per_cpu(posix_timer_tasklist, cpu) = tsk;
+
+               wake_up_process(per_cpu(posix_timer_task, cpu));
+       }
+}
+
+/*
+ * posix_cpu_thread_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int posix_cpu_thread_call(struct notifier_block *nfb,
+                                unsigned long action, void *hcpu)
+{
+       int cpu = (long)hcpu;
+       struct task_struct *p;
+       struct sched_param param;
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+               p = kthread_create(posix_cpu_timers_thread, hcpu,
+                                       "posixcputmr/%d",cpu);
+               if (IS_ERR(p))
+                       return NOTIFY_BAD;
+               p->flags |= PF_NOFREEZE;
+               kthread_bind(p, cpu);
+               /* Must be high prio to avoid getting starved */
+               param.sched_priority = MAX_RT_PRIO-1;
+               sched_setscheduler(p, SCHED_FIFO, &param);
+               per_cpu(posix_timer_task,cpu) = p;
+               break;
+       case CPU_ONLINE:
+               /* Strictly unneccessary, as first user will wake it. */
+               wake_up_process(per_cpu(posix_timer_task,cpu));
+               break;
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_UP_CANCELED:
+               /* Unbind it from offline cpu so it can run.  Fall thru. */
+               kthread_bind(per_cpu(posix_timer_task, cpu),
+                            cpumask_any(cpu_online_mask));
+               kthread_stop(per_cpu(posix_timer_task,cpu));
+               per_cpu(posix_timer_task,cpu) = NULL;
+               break;
+       case CPU_DEAD:
+               kthread_stop(per_cpu(posix_timer_task,cpu));
+               per_cpu(posix_timer_task,cpu) = NULL;
+               break;
+#endif
+       }
+       return NOTIFY_OK;
+}
+
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
+static struct notifier_block posix_cpu_thread_notifier = {
+       .notifier_call = posix_cpu_thread_call,
+       .priority = 10
+};
+
+static int __init posix_cpu_thread_init(void)
+{
+       void *hcpu = (void *)(long)smp_processor_id();
+       /* Start one for boot CPU. */
+       unsigned long cpu;
+
+       /* init the per-cpu posix_timer_tasklets */
+       for_each_possible_cpu(cpu)
+               per_cpu(posix_timer_tasklist, cpu) = NULL;
+
+       posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_UP_PREPARE, hcpu);
+       posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_ONLINE, hcpu);
+       register_cpu_notifier(&posix_cpu_thread_notifier);
+       return 0;
+}
+early_initcall(posix_cpu_thread_init);
+#else /* CONFIG_PREEMPT_RT_BASE */
+void run_posix_cpu_timers(struct task_struct *tsk)
+{
+       __run_posix_cpu_timers(tsk);
+}
+#endif /* CONFIG_PREEMPT_RT_BASE */
+
+/*
+ * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
+ * The tsk->sighand->siglock must be held by the caller.
+ */
+void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
+                          cputime_t *newval, cputime_t *oldval)
+{
+       unsigned long long now;
+
+       WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
+       cpu_timer_sample_group(clock_idx, tsk, &now);
+
+       if (oldval) {
+               /*
+                * We are setting itimer. The *oldval is absolute and we update
+                * it to be relative, *newval argument is relative and we update
+                * it to be absolute.
+                */
+               if (*oldval) {
+                       if (*oldval <= now) {
+                               /* Just about to fire. */
+                               *oldval = cputime_one_jiffy;
+                       } else {
+                               *oldval -= now;
+                       }
+               }
+
+               if (!*newval)
+                       goto out;
+               *newval += now;
+       }
+
+       /*
+        * Update expiration cache if we are the earliest timer, or eventually
+        * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
+        */
+       switch (clock_idx) {
+       case CPUCLOCK_PROF:
+               if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
+                       tsk->signal->cputime_expires.prof_exp = *newval;
+               break;
+       case CPUCLOCK_VIRT:
+               if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
+                       tsk->signal->cputime_expires.virt_exp = *newval;
+               break;
+       }
+out:
+       posix_cpu_timer_kick_nohz();
+}
+
+static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
+                           struct timespec *rqtp, struct itimerspec *it)
+{
+       struct k_itimer timer;
+       int error;
+
+       /*
+        * Set up a temporary timer and then wait for it to go off.
+        */
+       memset(&timer, 0, sizeof timer);
+       spin_lock_init(&timer.it_lock);
+       timer.it_clock = which_clock;
+       timer.it_overrun = -1;
+       error = posix_cpu_timer_create(&timer);
+       timer.it_process = current;
+       if (!error) {
+               static struct itimerspec zero_it;
+
+               memset(it, 0, sizeof *it);
+               it->it_value = *rqtp;
+
+               spin_lock_irq(&timer.it_lock);
+               error = posix_cpu_timer_set(&timer, flags, it, NULL);
+               if (error) {
+                       spin_unlock_irq(&timer.it_lock);
+                       return error;
+               }
+
+               while (!signal_pending(current)) {
+                       if (timer.it.cpu.expires == 0) {
+                               /*
+                                * Our timer fired and was reset, below
+                                * deletion can not fail.
+                                */
+                               posix_cpu_timer_del(&timer);
+                               spin_unlock_irq(&timer.it_lock);
+                               return 0;
+                       }
+
+                       /*
+                        * Block until cpu_timer_fire (or a signal) wakes us.
+                        */
+                       __set_current_state(TASK_INTERRUPTIBLE);
+                       spin_unlock_irq(&timer.it_lock);
+                       schedule();
+                       spin_lock_irq(&timer.it_lock);
+               }
+
+               /*
+                * We were interrupted by a signal.
+                */
+               sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
+               error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
+               if (!error) {
+                       /*
+                        * Timer is now unarmed, deletion can not fail.
+                        */
+                       posix_cpu_timer_del(&timer);
+               }
+               spin_unlock_irq(&timer.it_lock);
+
+               while (error == TIMER_RETRY) {
+                       /*
+                        * We need to handle case when timer was or is in the
+                        * middle of firing. In other cases we already freed
+                        * resources.
+                        */
+                       spin_lock_irq(&timer.it_lock);
+                       error = posix_cpu_timer_del(&timer);
+                       spin_unlock_irq(&timer.it_lock);
+               }
+
+               if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
+                       /*
+                        * It actually did fire already.
+                        */
+                       return 0;
+               }
+
+               error = -ERESTART_RESTARTBLOCK;
+       }
+
+       return error;
+}
+
+static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
+
+static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
+                           struct timespec *rqtp, struct timespec __user *rmtp)
+{
+       struct restart_block *restart_block = &current->restart_block;
+       struct itimerspec it;
+       int error;
+
+       /*
+        * Diagnose required errors first.
+        */
+       if (CPUCLOCK_PERTHREAD(which_clock) &&
+           (CPUCLOCK_PID(which_clock) == 0 ||
+            CPUCLOCK_PID(which_clock) == current->pid))
+               return -EINVAL;
+
+       error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
+
+       if (error == -ERESTART_RESTARTBLOCK) {
+
+               if (flags & TIMER_ABSTIME)
+                       return -ERESTARTNOHAND;
+               /*
+                * Report back to the user the time still remaining.
+                */
+               if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
+                       return -EFAULT;
+
+               restart_block->fn = posix_cpu_nsleep_restart;
+               restart_block->nanosleep.clockid = which_clock;
+               restart_block->nanosleep.rmtp = rmtp;
+               restart_block->nanosleep.expires = timespec_to_ns(rqtp);
+       }
+       return error;
+}
+
+static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
+{
+       clockid_t which_clock = restart_block->nanosleep.clockid;
+       struct timespec t;
+       struct itimerspec it;
+       int error;
+
+       t = ns_to_timespec(restart_block->nanosleep.expires);
+
+       error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
+
+       if (error == -ERESTART_RESTARTBLOCK) {
+               struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
+               /*
+                * Report back to the user the time still remaining.
+                */
+               if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
+                       return -EFAULT;
+
+               restart_block->nanosleep.expires = timespec_to_ns(&t);
+       }
+       return error;
+
+}
+
+#define PROCESS_CLOCK  MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
+#define THREAD_CLOCK   MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
+
+static int process_cpu_clock_getres(const clockid_t which_clock,
+                                   struct timespec *tp)
+{
+       return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
+}
+static int process_cpu_clock_get(const clockid_t which_clock,
+                                struct timespec *tp)
+{
+       return posix_cpu_clock_get(PROCESS_CLOCK, tp);
+}
+static int process_cpu_timer_create(struct k_itimer *timer)
+{
+       timer->it_clock = PROCESS_CLOCK;
+       return posix_cpu_timer_create(timer);
+}
+static int process_cpu_nsleep(const clockid_t which_clock, int flags,
+                             struct timespec *rqtp,
+                             struct timespec __user *rmtp)
+{
+       return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
+}
+static long process_cpu_nsleep_restart(struct restart_block *restart_block)
+{
+       return -EINVAL;
+}
+static int thread_cpu_clock_getres(const clockid_t which_clock,
+                                  struct timespec *tp)
+{
+       return posix_cpu_clock_getres(THREAD_CLOCK, tp);
+}
+static int thread_cpu_clock_get(const clockid_t which_clock,
+                               struct timespec *tp)
+{
+       return posix_cpu_clock_get(THREAD_CLOCK, tp);
+}
+static int thread_cpu_timer_create(struct k_itimer *timer)
+{
+       timer->it_clock = THREAD_CLOCK;
+       return posix_cpu_timer_create(timer);
+}
+
+struct k_clock clock_posix_cpu = {
+       .clock_getres   = posix_cpu_clock_getres,
+       .clock_set      = posix_cpu_clock_set,
+       .clock_get      = posix_cpu_clock_get,
+       .timer_create   = posix_cpu_timer_create,
+       .nsleep         = posix_cpu_nsleep,
+       .nsleep_restart = posix_cpu_nsleep_restart,
+       .timer_set      = posix_cpu_timer_set,
+       .timer_del      = posix_cpu_timer_del,
+       .timer_get      = posix_cpu_timer_get,
+};
+
+static __init int init_posix_cpu_timers(void)
+{
+       struct k_clock process = {
+               .clock_getres   = process_cpu_clock_getres,
+               .clock_get      = process_cpu_clock_get,
+               .timer_create   = process_cpu_timer_create,
+               .nsleep         = process_cpu_nsleep,
+               .nsleep_restart = process_cpu_nsleep_restart,
+       };
+       struct k_clock thread = {
+               .clock_getres   = thread_cpu_clock_getres,
+               .clock_get      = thread_cpu_clock_get,
+               .timer_create   = thread_cpu_timer_create,
+       };
+       struct timespec ts;
+
+       posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
+       posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
+
+       cputime_to_timespec(cputime_one_jiffy, &ts);
+       onecputick = ts.tv_nsec;
+       WARN_ON(ts.tv_sec != 0);
+
+       return 0;
+}
+__initcall(init_posix_cpu_timers);