Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / time / hrtimer.c
diff --git a/kernel/kernel/time/hrtimer.c b/kernel/kernel/time/hrtimer.c
new file mode 100644 (file)
index 0000000..2c6be16
--- /dev/null
@@ -0,0 +1,2140 @@
+/*
+ *  linux/kernel/hrtimer.c
+ *
+ *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
+ *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
+ *
+ *  High-resolution kernel timers
+ *
+ *  In contrast to the low-resolution timeout API implemented in
+ *  kernel/timer.c, hrtimers provide finer resolution and accuracy
+ *  depending on system configuration and capabilities.
+ *
+ *  These timers are currently used for:
+ *   - itimers
+ *   - POSIX timers
+ *   - nanosleep
+ *   - precise in-kernel timing
+ *
+ *  Started by: Thomas Gleixner and Ingo Molnar
+ *
+ *  Credits:
+ *     based on kernel/timer.c
+ *
+ *     Help, testing, suggestions, bugfixes, improvements were
+ *     provided by:
+ *
+ *     George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
+ *     et. al.
+ *
+ *  For licencing details see kernel-base/COPYING
+ */
+
+#include <linux/cpu.h>
+#include <linux/export.h>
+#include <linux/percpu.h>
+#include <linux/hrtimer.h>
+#include <linux/notifier.h>
+#include <linux/syscalls.h>
+#include <linux/kallsyms.h>
+#include <linux/interrupt.h>
+#include <linux/tick.h>
+#include <linux/seq_file.h>
+#include <linux/err.h>
+#include <linux/debugobjects.h>
+#include <linux/sched.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
+#include <linux/timer.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+
+#include <asm/uaccess.h>
+
+#include <trace/events/timer.h>
+#include <trace/events/hist.h>
+
+#include "tick-internal.h"
+
+/*
+ * The timer bases:
+ *
+ * There are more clockids then hrtimer bases. Thus, we index
+ * into the timer bases by the hrtimer_base_type enum. When trying
+ * to reach a base using a clockid, hrtimer_clockid_to_base()
+ * is used to convert from clockid to the proper hrtimer_base_type.
+ */
+DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
+{
+
+       .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
+       .clock_base =
+       {
+               {
+                       .index = HRTIMER_BASE_MONOTONIC,
+                       .clockid = CLOCK_MONOTONIC,
+                       .get_time = &ktime_get,
+                       .resolution = KTIME_LOW_RES,
+               },
+               {
+                       .index = HRTIMER_BASE_REALTIME,
+                       .clockid = CLOCK_REALTIME,
+                       .get_time = &ktime_get_real,
+                       .resolution = KTIME_LOW_RES,
+               },
+               {
+                       .index = HRTIMER_BASE_BOOTTIME,
+                       .clockid = CLOCK_BOOTTIME,
+                       .get_time = &ktime_get_boottime,
+                       .resolution = KTIME_LOW_RES,
+               },
+               {
+                       .index = HRTIMER_BASE_TAI,
+                       .clockid = CLOCK_TAI,
+                       .get_time = &ktime_get_clocktai,
+                       .resolution = KTIME_LOW_RES,
+               },
+       }
+};
+
+static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
+       [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
+       [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
+       [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
+       [CLOCK_TAI]             = HRTIMER_BASE_TAI,
+};
+
+static inline int hrtimer_clockid_to_base(clockid_t clock_id)
+{
+       return hrtimer_clock_to_base_table[clock_id];
+}
+
+
+/*
+ * Get the coarse grained time at the softirq based on xtime and
+ * wall_to_monotonic.
+ */
+static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
+{
+       ktime_t xtim, mono, boot, tai;
+       ktime_t off_real, off_boot, off_tai;
+
+       mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
+       boot = ktime_add(mono, off_boot);
+       xtim = ktime_add(mono, off_real);
+       tai = ktime_add(mono, off_tai);
+
+       base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
+       base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
+       base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
+       base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
+}
+
+/*
+ * Functions and macros which are different for UP/SMP systems are kept in a
+ * single place
+ */
+#ifdef CONFIG_SMP
+
+/*
+ * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
+ * means that all timers which are tied to this base via timer->base are
+ * locked, and the base itself is locked too.
+ *
+ * So __run_timers/migrate_timers can safely modify all timers which could
+ * be found on the lists/queues.
+ *
+ * When the timer's base is locked, and the timer removed from list, it is
+ * possible to set timer->base = NULL and drop the lock: the timer remains
+ * locked.
+ */
+static
+struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
+                                            unsigned long *flags)
+{
+       struct hrtimer_clock_base *base;
+
+       for (;;) {
+               base = timer->base;
+               if (likely(base != NULL)) {
+                       raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+                       if (likely(base == timer->base))
+                               return base;
+                       /* The timer has migrated to another CPU: */
+                       raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
+               }
+               cpu_relax();
+       }
+}
+
+/*
+ * With HIGHRES=y we do not migrate the timer when it is expiring
+ * before the next event on the target cpu because we cannot reprogram
+ * the target cpu hardware and we would cause it to fire late.
+ *
+ * Called with cpu_base->lock of target cpu held.
+ */
+static int
+hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+       ktime_t expires;
+
+       if (!new_base->cpu_base->hres_active)
+               return 0;
+
+       expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
+       return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
+#else
+       return 0;
+#endif
+}
+
+/*
+ * Switch the timer base to the current CPU when possible.
+ */
+static inline struct hrtimer_clock_base *
+switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
+                   int pinned)
+{
+       struct hrtimer_clock_base *new_base;
+       struct hrtimer_cpu_base *new_cpu_base;
+       int this_cpu = smp_processor_id();
+       int cpu = get_nohz_timer_target(pinned);
+       int basenum = base->index;
+
+again:
+       new_cpu_base = &per_cpu(hrtimer_bases, cpu);
+       new_base = &new_cpu_base->clock_base[basenum];
+
+       if (base != new_base) {
+               /*
+                * We are trying to move timer to new_base.
+                * However we can't change timer's base while it is running,
+                * so we keep it on the same CPU. No hassle vs. reprogramming
+                * the event source in the high resolution case. The softirq
+                * code will take care of this when the timer function has
+                * completed. There is no conflict as we hold the lock until
+                * the timer is enqueued.
+                */
+               if (unlikely(hrtimer_callback_running(timer)))
+                       return base;
+
+               /* See the comment in lock_timer_base() */
+               timer->base = NULL;
+               raw_spin_unlock(&base->cpu_base->lock);
+               raw_spin_lock(&new_base->cpu_base->lock);
+
+               if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
+                       cpu = this_cpu;
+                       raw_spin_unlock(&new_base->cpu_base->lock);
+                       raw_spin_lock(&base->cpu_base->lock);
+                       timer->base = base;
+                       goto again;
+               }
+               timer->base = new_base;
+       } else {
+               if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
+                       cpu = this_cpu;
+                       goto again;
+               }
+       }
+       return new_base;
+}
+
+#else /* CONFIG_SMP */
+
+static inline struct hrtimer_clock_base *
+lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+       struct hrtimer_clock_base *base = timer->base;
+
+       raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+
+       return base;
+}
+
+# define switch_hrtimer_base(t, b, p)  (b)
+
+#endif /* !CONFIG_SMP */
+
+/*
+ * Functions for the union type storage format of ktime_t which are
+ * too large for inlining:
+ */
+#if BITS_PER_LONG < 64
+/*
+ * Divide a ktime value by a nanosecond value
+ */
+s64 __ktime_divns(const ktime_t kt, s64 div)
+{
+       int sft = 0;
+       s64 dclc;
+       u64 tmp;
+
+       dclc = ktime_to_ns(kt);
+       tmp = dclc < 0 ? -dclc : dclc;
+
+       /* Make sure the divisor is less than 2^32: */
+       while (div >> 32) {
+               sft++;
+               div >>= 1;
+       }
+       tmp >>= sft;
+       do_div(tmp, (unsigned long) div);
+       return dclc < 0 ? -tmp : tmp;
+}
+EXPORT_SYMBOL_GPL(__ktime_divns);
+#endif /* BITS_PER_LONG >= 64 */
+
+/*
+ * Add two ktime values and do a safety check for overflow:
+ */
+ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
+{
+       ktime_t res = ktime_add(lhs, rhs);
+
+       /*
+        * We use KTIME_SEC_MAX here, the maximum timeout which we can
+        * return to user space in a timespec:
+        */
+       if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
+               res = ktime_set(KTIME_SEC_MAX, 0);
+
+       return res;
+}
+
+EXPORT_SYMBOL_GPL(ktime_add_safe);
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr hrtimer_debug_descr;
+
+static void *hrtimer_debug_hint(void *addr)
+{
+       return ((struct hrtimer *) addr)->function;
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
+{
+       struct hrtimer *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               hrtimer_cancel(timer);
+               debug_object_init(timer, &hrtimer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+       switch (state) {
+
+       case ODEBUG_STATE_NOTAVAILABLE:
+               WARN_ON_ONCE(1);
+               return 0;
+
+       case ODEBUG_STATE_ACTIVE:
+               WARN_ON(1);
+
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
+{
+       struct hrtimer *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               hrtimer_cancel(timer);
+               debug_object_free(timer, &hrtimer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+static struct debug_obj_descr hrtimer_debug_descr = {
+       .name           = "hrtimer",
+       .debug_hint     = hrtimer_debug_hint,
+       .fixup_init     = hrtimer_fixup_init,
+       .fixup_activate = hrtimer_fixup_activate,
+       .fixup_free     = hrtimer_fixup_free,
+};
+
+static inline void debug_hrtimer_init(struct hrtimer *timer)
+{
+       debug_object_init(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_activate(struct hrtimer *timer)
+{
+       debug_object_activate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
+{
+       debug_object_deactivate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_free(struct hrtimer *timer)
+{
+       debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode);
+
+void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode)
+{
+       debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+       __hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
+
+void destroy_hrtimer_on_stack(struct hrtimer *timer)
+{
+       debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+#else
+static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
+#endif
+
+static inline void
+debug_init(struct hrtimer *timer, clockid_t clockid,
+          enum hrtimer_mode mode)
+{
+       debug_hrtimer_init(timer);
+       trace_hrtimer_init(timer, clockid, mode);
+}
+
+static inline void debug_activate(struct hrtimer *timer)
+{
+       debug_hrtimer_activate(timer);
+       trace_hrtimer_start(timer);
+}
+
+static inline void debug_deactivate(struct hrtimer *timer)
+{
+       debug_hrtimer_deactivate(timer);
+       trace_hrtimer_cancel(timer);
+}
+
+#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
+static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
+{
+       struct hrtimer_clock_base *base = cpu_base->clock_base;
+       ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
+       int i;
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
+               struct timerqueue_node *next;
+               struct hrtimer *timer;
+
+               next = timerqueue_getnext(&base->active);
+               if (!next)
+                       continue;
+
+               timer = container_of(next, struct hrtimer, node);
+               expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+               if (expires.tv64 < expires_next.tv64)
+                       expires_next = expires;
+       }
+       /*
+        * clock_was_set() might have changed base->offset of any of
+        * the clock bases so the result might be negative. Fix it up
+        * to prevent a false positive in clockevents_program_event().
+        */
+       if (expires_next.tv64 < 0)
+               expires_next.tv64 = 0;
+       return expires_next;
+}
+#endif
+
+/* High resolution timer related functions */
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer enabled ?
+ */
+static int hrtimer_hres_enabled __read_mostly  = 1;
+
+/*
+ * Enable / Disable high resolution mode
+ */
+static int __init setup_hrtimer_hres(char *str)
+{
+       if (!strcmp(str, "off"))
+               hrtimer_hres_enabled = 0;
+       else if (!strcmp(str, "on"))
+               hrtimer_hres_enabled = 1;
+       else
+               return 0;
+       return 1;
+}
+
+__setup("highres=", setup_hrtimer_hres);
+
+/*
+ * hrtimer_high_res_enabled - query, if the highres mode is enabled
+ */
+static inline int hrtimer_is_hres_enabled(void)
+{
+       return hrtimer_hres_enabled;
+}
+
+/*
+ * Is the high resolution mode active ?
+ */
+static inline int hrtimer_hres_active(void)
+{
+       return __this_cpu_read(hrtimer_bases.hres_active);
+}
+
+/*
+ * Reprogram the event source with checking both queues for the
+ * next event
+ * Called with interrupts disabled and base->lock held
+ */
+static void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+{
+       ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
+
+       if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
+               return;
+
+       cpu_base->expires_next.tv64 = expires_next.tv64;
+
+       /*
+        * If a hang was detected in the last timer interrupt then we
+        * leave the hang delay active in the hardware. We want the
+        * system to make progress. That also prevents the following
+        * scenario:
+        * T1 expires 50ms from now
+        * T2 expires 5s from now
+        *
+        * T1 is removed, so this code is called and would reprogram
+        * the hardware to 5s from now. Any hrtimer_start after that
+        * will not reprogram the hardware due to hang_detected being
+        * set. So we'd effectivly block all timers until the T2 event
+        * fires.
+        */
+       if (cpu_base->hang_detected)
+               return;
+
+       if (cpu_base->expires_next.tv64 != KTIME_MAX)
+               tick_program_event(cpu_base->expires_next, 1);
+}
+
+/*
+ * Shared reprogramming for clock_realtime and clock_monotonic
+ *
+ * When a timer is enqueued and expires earlier than the already enqueued
+ * timers, we have to check, whether it expires earlier than the timer for
+ * which the clock event device was armed.
+ *
+ * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
+ * and no expiry check happens. The timer gets enqueued into the rbtree. The
+ * reprogramming and expiry check is done in the hrtimer_interrupt or in the
+ * softirq.
+ *
+ * Called with interrupts disabled and base->cpu_base.lock held
+ */
+static int hrtimer_reprogram(struct hrtimer *timer,
+                            struct hrtimer_clock_base *base)
+{
+       struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+       ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+       int res;
+
+       WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
+
+       /*
+        * When the callback is running, we do not reprogram the clock event
+        * device. The timer callback is either running on a different CPU or
+        * the callback is executed in the hrtimer_interrupt context. The
+        * reprogramming is handled at the end of the hrtimer_interrupt.
+        */
+       if (hrtimer_callback_running(timer))
+               return 0;
+
+       /*
+        * CLOCK_REALTIME timer might be requested with an absolute
+        * expiry time which is less than base->offset. Nothing wrong
+        * about that, just avoid to call into the tick code, which
+        * has now objections against negative expiry values.
+        */
+       if (expires.tv64 < 0)
+               return -ETIME;
+
+       if (expires.tv64 >= cpu_base->expires_next.tv64)
+               return 0;
+
+       /*
+        * When the target cpu of the timer is currently executing
+        * hrtimer_interrupt(), then we do not touch the clock event
+        * device. hrtimer_interrupt() will reevaluate all clock bases
+        * before reprogramming the device.
+        */
+       if (cpu_base->in_hrtirq)
+               return 0;
+
+       /*
+        * If a hang was detected in the last timer interrupt then we
+        * do not schedule a timer which is earlier than the expiry
+        * which we enforced in the hang detection. We want the system
+        * to make progress.
+        */
+       if (cpu_base->hang_detected)
+               return 0;
+
+       /*
+        * Clockevents returns -ETIME, when the event was in the past.
+        */
+       res = tick_program_event(expires, 0);
+       if (!IS_ERR_VALUE(res))
+               cpu_base->expires_next = expires;
+       return res;
+}
+
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now);
+static int hrtimer_rt_defer(struct hrtimer *timer);
+
+/*
+ * Initialize the high resolution related parts of cpu_base
+ */
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
+{
+       base->expires_next.tv64 = KTIME_MAX;
+       base->hres_active = 0;
+}
+
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+                                           struct hrtimer_clock_base *base,
+                                           int wakeup)
+{
+       if (!hrtimer_reprogram(timer, base))
+               return 0;
+       if (!wakeup)
+               return -ETIME;
+#ifdef CONFIG_PREEMPT_RT_BASE
+       if (!hrtimer_rt_defer(timer))
+               return -ETIME;
+#endif
+       return 1;
+}
+
+static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
+{
+       ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
+       ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
+       ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
+
+       return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
+}
+
+/*
+ * Retrigger next event is called after clock was set
+ *
+ * Called with interrupts disabled via on_each_cpu()
+ */
+static void retrigger_next_event(void *arg)
+{
+       struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
+
+       if (!hrtimer_hres_active())
+               return;
+
+       raw_spin_lock(&base->lock);
+       hrtimer_update_base(base);
+       hrtimer_force_reprogram(base, 0);
+       raw_spin_unlock(&base->lock);
+}
+
+/*
+ * Switch to high resolution mode
+ */
+static int hrtimer_switch_to_hres(void)
+{
+       int i, cpu = smp_processor_id();
+       struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
+       unsigned long flags;
+
+       if (base->hres_active)
+               return 1;
+
+       local_irq_save(flags);
+
+       if (tick_init_highres()) {
+               local_irq_restore(flags);
+               printk(KERN_WARNING "Could not switch to high resolution "
+                                   "mode on CPU %d\n", cpu);
+               return 0;
+       }
+       base->hres_active = 1;
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
+               base->clock_base[i].resolution = KTIME_HIGH_RES;
+
+       tick_setup_sched_timer();
+       /* "Retrigger" the interrupt to get things going */
+       retrigger_next_event(NULL);
+       local_irq_restore(flags);
+       return 1;
+}
+
+static void clock_was_set_work(struct work_struct *work)
+{
+       clock_was_set();
+}
+
+static DECLARE_WORK(hrtimer_work, clock_was_set_work);
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * RT can not call schedule_work from real interrupt context.
+ * Need to make a thread to do the real work.
+ */
+static struct task_struct *clock_set_delay_thread;
+static bool do_clock_set_delay;
+
+static int run_clock_set_delay(void *ignore)
+{
+       while (!kthread_should_stop()) {
+               set_current_state(TASK_INTERRUPTIBLE);
+               if (do_clock_set_delay) {
+                       do_clock_set_delay = false;
+                       schedule_work(&hrtimer_work);
+               }
+               schedule();
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+}
+
+void clock_was_set_delayed(void)
+{
+       do_clock_set_delay = true;
+       /* Make visible before waking up process */
+       smp_wmb();
+       wake_up_process(clock_set_delay_thread);
+}
+
+static __init int create_clock_set_delay_thread(void)
+{
+       clock_set_delay_thread = kthread_run(run_clock_set_delay, NULL, "kclksetdelayd");
+       BUG_ON(!clock_set_delay_thread);
+       return 0;
+}
+early_initcall(create_clock_set_delay_thread);
+#else /* PREEMPT_RT_FULL */
+/*
+ * Called from timekeeping and resume code to reprogramm the hrtimer
+ * interrupt device on all cpus.
+ */
+void clock_was_set_delayed(void)
+{
+       schedule_work(&hrtimer_work);
+}
+#endif
+
+#else
+
+static inline int hrtimer_hres_active(void) { return 0; }
+static inline int hrtimer_is_hres_enabled(void) { return 0; }
+static inline int hrtimer_switch_to_hres(void) { return 0; }
+static inline void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+                                           struct hrtimer_clock_base *base,
+                                           int wakeup)
+{
+       return 0;
+}
+
+static inline int hrtimer_reprogram(struct hrtimer *timer,
+                                   struct hrtimer_clock_base *base)
+{
+       return 0;
+}
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
+static inline void retrigger_next_event(void *arg) { }
+#endif /* CONFIG_HIGH_RES_TIMERS */
+
+/*
+ * Clock realtime was set
+ *
+ * Change the offset of the realtime clock vs. the monotonic
+ * clock.
+ *
+ * We might have to reprogram the high resolution timer interrupt. On
+ * SMP we call the architecture specific code to retrigger _all_ high
+ * resolution timer interrupts. On UP we just disable interrupts and
+ * call the high resolution interrupt code.
+ */
+void clock_was_set(void)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+       /* Retrigger the CPU local events everywhere */
+       on_each_cpu(retrigger_next_event, NULL, 1);
+#endif
+       timerfd_clock_was_set();
+}
+
+/*
+ * During resume we might have to reprogram the high resolution timer
+ * interrupt on all online CPUs.  However, all other CPUs will be
+ * stopped with IRQs interrupts disabled so the clock_was_set() call
+ * must be deferred.
+ */
+void hrtimers_resume(void)
+{
+       WARN_ONCE(!irqs_disabled(),
+                 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
+
+       /* Retrigger on the local CPU */
+       retrigger_next_event(NULL);
+       /* And schedule a retrigger for all others */
+       clock_was_set_delayed();
+}
+
+static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       if (timer->start_site)
+               return;
+       timer->start_site = __builtin_return_address(0);
+       memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+       timer->start_pid = current->pid;
+#endif
+}
+
+static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       timer->start_site = NULL;
+#endif
+}
+
+static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       if (likely(!timer_stats_active))
+               return;
+       timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+                                timer->function, timer->start_comm, 0);
+#endif
+}
+
+/*
+ * Counterpart to lock_hrtimer_base above:
+ */
+static inline
+void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+       raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
+}
+
+/**
+ * hrtimer_forward - forward the timer expiry
+ * @timer:     hrtimer to forward
+ * @now:       forward past this time
+ * @interval:  the interval to forward
+ *
+ * Forward the timer expiry so it will expire in the future.
+ * Returns the number of overruns.
+ */
+u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
+{
+       u64 orun = 1;
+       ktime_t delta;
+
+       delta = ktime_sub(now, hrtimer_get_expires(timer));
+
+       if (delta.tv64 < 0)
+               return 0;
+
+       if (interval.tv64 < timer->base->resolution.tv64)
+               interval.tv64 = timer->base->resolution.tv64;
+
+       if (unlikely(delta.tv64 >= interval.tv64)) {
+               s64 incr = ktime_to_ns(interval);
+
+               orun = ktime_divns(delta, incr);
+               hrtimer_add_expires_ns(timer, incr * orun);
+               if (hrtimer_get_expires_tv64(timer) > now.tv64)
+                       return orun;
+               /*
+                * This (and the ktime_add() below) is the
+                * correction for exact:
+                */
+               orun++;
+       }
+       hrtimer_add_expires(timer, interval);
+
+       return orun;
+}
+EXPORT_SYMBOL_GPL(hrtimer_forward);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define wake_up_timer_waiters(b)      wake_up(&(b)->wait)
+
+/**
+ * hrtimer_wait_for_timer - Wait for a running timer
+ *
+ * @timer:     timer to wait for
+ *
+ * The function waits in case the timers callback function is
+ * currently executed on the waitqueue of the timer base. The
+ * waitqueue is woken up after the timer callback function has
+ * finished execution.
+ */
+void hrtimer_wait_for_timer(const struct hrtimer *timer)
+{
+       struct hrtimer_clock_base *base = timer->base;
+
+       if (base && base->cpu_base && !timer->irqsafe)
+               wait_event(base->cpu_base->wait,
+                          !(timer->state & HRTIMER_STATE_CALLBACK));
+}
+
+#else
+# define wake_up_timer_waiters(b)      do { } while (0)
+#endif
+
+/*
+ * enqueue_hrtimer - internal function to (re)start a timer
+ *
+ * The timer is inserted in expiry order. Insertion into the
+ * red black tree is O(log(n)). Must hold the base lock.
+ *
+ * Returns 1 when the new timer is the leftmost timer in the tree.
+ */
+static int enqueue_hrtimer(struct hrtimer *timer,
+                          struct hrtimer_clock_base *base)
+{
+       debug_activate(timer);
+
+       timerqueue_add(&base->active, &timer->node);
+       base->cpu_base->active_bases |= 1 << base->index;
+
+       /*
+        * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
+        * state of a possibly running callback.
+        */
+       timer->state |= HRTIMER_STATE_ENQUEUED;
+
+       return (&timer->node == base->active.next);
+}
+
+/*
+ * __remove_hrtimer - internal function to remove a timer
+ *
+ * Caller must hold the base lock.
+ *
+ * High resolution timer mode reprograms the clock event device when the
+ * timer is the one which expires next. The caller can disable this by setting
+ * reprogram to zero. This is useful, when the context does a reprogramming
+ * anyway (e.g. timer interrupt)
+ */
+static void __remove_hrtimer(struct hrtimer *timer,
+                            struct hrtimer_clock_base *base,
+                            unsigned long newstate, int reprogram)
+{
+       struct timerqueue_node *next_timer;
+       if (!(timer->state & HRTIMER_STATE_ENQUEUED))
+               goto out;
+
+       if (unlikely(!list_empty(&timer->cb_entry))) {
+               list_del_init(&timer->cb_entry);
+               goto out;
+       }
+
+       next_timer = timerqueue_getnext(&base->active);
+       timerqueue_del(&base->active, &timer->node);
+       if (&timer->node == next_timer) {
+#ifdef CONFIG_HIGH_RES_TIMERS
+               /* Reprogram the clock event device. if enabled */
+               if (reprogram && hrtimer_hres_active()) {
+                       ktime_t expires;
+
+                       expires = ktime_sub(hrtimer_get_expires(timer),
+                                           base->offset);
+                       if (base->cpu_base->expires_next.tv64 == expires.tv64)
+                               hrtimer_force_reprogram(base->cpu_base, 1);
+               }
+#endif
+       }
+       if (!timerqueue_getnext(&base->active))
+               base->cpu_base->active_bases &= ~(1 << base->index);
+out:
+       timer->state = newstate;
+}
+
+/*
+ * remove hrtimer, called with base lock held
+ */
+static inline int
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
+{
+       if (hrtimer_is_queued(timer)) {
+               unsigned long state;
+               int reprogram;
+
+               /*
+                * Remove the timer and force reprogramming when high
+                * resolution mode is active and the timer is on the current
+                * CPU. If we remove a timer on another CPU, reprogramming is
+                * skipped. The interrupt event on this CPU is fired and
+                * reprogramming happens in the interrupt handler. This is a
+                * rare case and less expensive than a smp call.
+                */
+               debug_deactivate(timer);
+               timer_stats_hrtimer_clear_start_info(timer);
+               reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
+               /*
+                * We must preserve the CALLBACK state flag here,
+                * otherwise we could move the timer base in
+                * switch_hrtimer_base.
+                */
+               state = timer->state & HRTIMER_STATE_CALLBACK;
+               __remove_hrtimer(timer, base, state, reprogram);
+               return 1;
+       }
+       return 0;
+}
+
+int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+               unsigned long delta_ns, const enum hrtimer_mode mode,
+               int wakeup)
+{
+       struct hrtimer_clock_base *base, *new_base;
+       unsigned long flags;
+       int ret, leftmost;
+
+       base = lock_hrtimer_base(timer, &flags);
+
+       /* Remove an active timer from the queue: */
+       ret = remove_hrtimer(timer, base);
+
+       if (mode & HRTIMER_MODE_REL) {
+               tim = ktime_add_safe(tim, base->get_time());
+               /*
+                * CONFIG_TIME_LOW_RES is a temporary way for architectures
+                * to signal that they simply return xtime in
+                * do_gettimeoffset(). In this case we want to round up by
+                * resolution when starting a relative timer, to avoid short
+                * timeouts. This will go away with the GTOD framework.
+                */
+#ifdef CONFIG_TIME_LOW_RES
+               tim = ktime_add_safe(tim, base->resolution);
+#endif
+       }
+
+       hrtimer_set_expires_range_ns(timer, tim, delta_ns);
+
+       /* Switch the timer base, if necessary: */
+       new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
+
+       timer_stats_hrtimer_set_start_info(timer);
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+       {
+               ktime_t now = new_base->get_time();
+
+               if (ktime_to_ns(tim) < ktime_to_ns(now))
+                       timer->praecox = now;
+               else
+                       timer->praecox = ktime_set(0, 0);
+       }
+#endif
+       leftmost = enqueue_hrtimer(timer, new_base);
+
+       if (!leftmost) {
+               unlock_hrtimer_base(timer, &flags);
+               return ret;
+       }
+
+       if (!hrtimer_is_hres_active(timer)) {
+               /*
+                * Kick to reschedule the next tick to handle the new timer
+                * on dynticks target.
+                */
+               wake_up_nohz_cpu(new_base->cpu_base->cpu);
+       } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases)) {
+
+               ret = hrtimer_enqueue_reprogram(timer, new_base, wakeup);
+               if (ret < 0) {
+                       /*
+                        * In case we failed to reprogram the timer (mostly
+                        * because out current timer is already elapsed),
+                        * remove it again and report a failure. This avoids
+                        * stale base->first entries.
+                        */
+                       debug_deactivate(timer);
+                       __remove_hrtimer(timer, new_base,
+                               timer->state & HRTIMER_STATE_CALLBACK, 0);
+               } else if (ret > 0) {
+               /*
+                * Only allow reprogramming if the new base is on this CPU.
+                * (it might still be on another CPU if the timer was pending)
+                *
+                * XXX send_remote_softirq() ?
+                */
+                       /*
+                        * We need to drop cpu_base->lock to avoid a
+                        * lock ordering issue vs. rq->lock.
+                        */
+                       raw_spin_unlock(&new_base->cpu_base->lock);
+                       raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+                       local_irq_restore(flags);
+                       return 0;
+               }
+       }
+
+       unlock_hrtimer_base(timer, &flags);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
+
+/**
+ * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
+ * @timer:     the timer to be added
+ * @tim:       expiry time
+ * @delta_ns:  "slack" range for the timer
+ * @mode:      expiry mode: absolute (HRTIMER_MODE_ABS) or
+ *             relative (HRTIMER_MODE_REL)
+ *
+ * Returns:
+ *  0 on success
+ *  1 when the timer was active
+ */
+int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+               unsigned long delta_ns, const enum hrtimer_mode mode)
+{
+       return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
+}
+EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
+
+/**
+ * hrtimer_start - (re)start an hrtimer on the current CPU
+ * @timer:     the timer to be added
+ * @tim:       expiry time
+ * @mode:      expiry mode: absolute (HRTIMER_MODE_ABS) or
+ *             relative (HRTIMER_MODE_REL)
+ *
+ * Returns:
+ *  0 on success
+ *  1 when the timer was active
+ */
+int
+hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
+{
+       return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
+}
+EXPORT_SYMBOL_GPL(hrtimer_start);
+
+
+/**
+ * hrtimer_try_to_cancel - try to deactivate a timer
+ * @timer:     hrtimer to stop
+ *
+ * Returns:
+ *  0 when the timer was not active
+ *  1 when the timer was active
+ * -1 when the timer is currently excuting the callback function and
+ *    cannot be stopped
+ */
+int hrtimer_try_to_cancel(struct hrtimer *timer)
+{
+       struct hrtimer_clock_base *base;
+       unsigned long flags;
+       int ret = -1;
+
+       base = lock_hrtimer_base(timer, &flags);
+
+       if (!hrtimer_callback_running(timer))
+               ret = remove_hrtimer(timer, base);
+
+       unlock_hrtimer_base(timer, &flags);
+
+       return ret;
+
+}
+EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
+
+/**
+ * hrtimer_cancel - cancel a timer and wait for the handler to finish.
+ * @timer:     the timer to be cancelled
+ *
+ * Returns:
+ *  0 when the timer was not active
+ *  1 when the timer was active
+ */
+int hrtimer_cancel(struct hrtimer *timer)
+{
+       for (;;) {
+               int ret = hrtimer_try_to_cancel(timer);
+
+               if (ret >= 0)
+                       return ret;
+               hrtimer_wait_for_timer(timer);
+       }
+}
+EXPORT_SYMBOL_GPL(hrtimer_cancel);
+
+/**
+ * hrtimer_get_remaining - get remaining time for the timer
+ * @timer:     the timer to read
+ */
+ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
+{
+       unsigned long flags;
+       ktime_t rem;
+
+       lock_hrtimer_base(timer, &flags);
+       rem = hrtimer_expires_remaining(timer);
+       unlock_hrtimer_base(timer, &flags);
+
+       return rem;
+}
+EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
+
+#ifdef CONFIG_NO_HZ_COMMON
+/**
+ * hrtimer_get_next_event - get the time until next expiry event
+ *
+ * Returns the delta to the next expiry event or KTIME_MAX if no timer
+ * is pending.
+ */
+ktime_t hrtimer_get_next_event(void)
+{
+       struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+       ktime_t mindelta = { .tv64 = KTIME_MAX };
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+       if (!hrtimer_hres_active())
+               mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
+                                    ktime_get());
+
+       raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+
+       if (mindelta.tv64 < 0)
+               mindelta.tv64 = 0;
+       return mindelta;
+}
+#endif
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode)
+{
+       struct hrtimer_cpu_base *cpu_base;
+       int base;
+
+       memset(timer, 0, sizeof(struct hrtimer));
+
+       cpu_base = raw_cpu_ptr(&hrtimer_bases);
+
+       if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
+               clock_id = CLOCK_MONOTONIC;
+
+       base = hrtimer_clockid_to_base(clock_id);
+       timer->base = &cpu_base->clock_base[base];
+       INIT_LIST_HEAD(&timer->cb_entry);
+       timerqueue_init(&timer->node);
+
+#ifdef CONFIG_TIMER_STATS
+       timer->start_site = NULL;
+       timer->start_pid = -1;
+       memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
+}
+
+/**
+ * hrtimer_init - initialize a timer to the given clock
+ * @timer:     the timer to be initialized
+ * @clock_id:  the clock to be used
+ * @mode:      timer mode abs/rel
+ */
+void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                 enum hrtimer_mode mode)
+{
+       debug_init(timer, clock_id, mode);
+       __hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init);
+
+/**
+ * hrtimer_get_res - get the timer resolution for a clock
+ * @which_clock: which clock to query
+ * @tp:                 pointer to timespec variable to store the resolution
+ *
+ * Store the resolution of the clock selected by @which_clock in the
+ * variable pointed to by @tp.
+ */
+int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
+{
+       struct hrtimer_cpu_base *cpu_base;
+       int base = hrtimer_clockid_to_base(which_clock);
+
+       cpu_base = raw_cpu_ptr(&hrtimer_bases);
+       *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(hrtimer_get_res);
+
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
+{
+       struct hrtimer_clock_base *base = timer->base;
+       struct hrtimer_cpu_base *cpu_base = base->cpu_base;
+       enum hrtimer_restart (*fn)(struct hrtimer *);
+       int restart;
+
+       WARN_ON(!irqs_disabled());
+
+       debug_deactivate(timer);
+       __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+       timer_stats_account_hrtimer(timer);
+       fn = timer->function;
+
+       /*
+        * Because we run timers from hardirq context, there is no chance
+        * they get migrated to another cpu, therefore its safe to unlock
+        * the timer base.
+        */
+       raw_spin_unlock(&cpu_base->lock);
+       trace_hrtimer_expire_entry(timer, now);
+       restart = fn(timer);
+       trace_hrtimer_expire_exit(timer);
+       raw_spin_lock(&cpu_base->lock);
+
+       /*
+        * Note: We clear the CALLBACK bit after enqueue_hrtimer and
+        * we do not reprogramm the event hardware. Happens either in
+        * hrtimer_start_range_ns() or in hrtimer_interrupt()
+        */
+       if (restart != HRTIMER_NORESTART) {
+               BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
+               enqueue_hrtimer(timer, base);
+       }
+
+       WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
+
+       timer->state &= ~HRTIMER_STATE_CALLBACK;
+}
+
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+static void hrtimer_rt_reprogram(int restart, struct hrtimer *timer,
+                                struct hrtimer_clock_base *base)
+{
+       /*
+        * Note, we clear the callback flag before we requeue the
+        * timer otherwise we trigger the callback_running() check
+        * in hrtimer_reprogram().
+        */
+       timer->state &= ~HRTIMER_STATE_CALLBACK;
+
+       if (restart != HRTIMER_NORESTART) {
+               BUG_ON(hrtimer_active(timer));
+               /*
+                * Enqueue the timer, if it's the leftmost timer then
+                * we need to reprogram it.
+                */
+               if (!enqueue_hrtimer(timer, base))
+                       return;
+
+#ifndef CONFIG_HIGH_RES_TIMERS
+       }
+#else
+               if (base->cpu_base->hres_active &&
+                   hrtimer_reprogram(timer, base))
+                       goto requeue;
+
+       } else if (hrtimer_active(timer)) {
+               /*
+                * If the timer was rearmed on another CPU, reprogram
+                * the event device.
+                */
+               if (&timer->node == base->active.next &&
+                   base->cpu_base->hres_active &&
+                   hrtimer_reprogram(timer, base))
+                       goto requeue;
+       }
+       return;
+
+requeue:
+       /*
+        * Timer is expired. Thus move it from tree to pending list
+        * again.
+        */
+       __remove_hrtimer(timer, base, timer->state, 0);
+       list_add_tail(&timer->cb_entry, &base->expired);
+#endif
+}
+
+/*
+ * The changes in mainline which removed the callback modes from
+ * hrtimer are not yet working with -rt. The non wakeup_process()
+ * based callbacks which involve sleeping locks need to be treated
+ * seperately.
+ */
+static void hrtimer_rt_run_pending(void)
+{
+       enum hrtimer_restart (*fn)(struct hrtimer *);
+       struct hrtimer_cpu_base *cpu_base;
+       struct hrtimer_clock_base *base;
+       struct hrtimer *timer;
+       int index, restart;
+
+       local_irq_disable();
+       cpu_base = &per_cpu(hrtimer_bases, smp_processor_id());
+
+       raw_spin_lock(&cpu_base->lock);
+
+       for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+               base = &cpu_base->clock_base[index];
+
+               while (!list_empty(&base->expired)) {
+                       timer = list_first_entry(&base->expired,
+                                                struct hrtimer, cb_entry);
+
+                       /*
+                        * Same as the above __run_hrtimer function
+                        * just we run with interrupts enabled.
+                        */
+                       debug_hrtimer_deactivate(timer);
+                       __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+                       timer_stats_account_hrtimer(timer);
+                       fn = timer->function;
+
+                       raw_spin_unlock_irq(&cpu_base->lock);
+                       restart = fn(timer);
+                       raw_spin_lock_irq(&cpu_base->lock);
+
+                       hrtimer_rt_reprogram(restart, timer, base);
+               }
+       }
+
+       raw_spin_unlock_irq(&cpu_base->lock);
+
+       wake_up_timer_waiters(cpu_base);
+}
+
+static int hrtimer_rt_defer(struct hrtimer *timer)
+{
+       if (timer->irqsafe)
+               return 0;
+
+       __remove_hrtimer(timer, timer->base, timer->state, 0);
+       list_add_tail(&timer->cb_entry, &timer->base->expired);
+       return 1;
+}
+
+#else
+
+static inline void hrtimer_rt_run_pending(void)
+{
+       hrtimer_peek_ahead_timers();
+}
+
+static inline int hrtimer_rt_defer(struct hrtimer *timer) { return 0; }
+
+#endif
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer interrupt
+ * Called with interrupts disabled
+ */
+void hrtimer_interrupt(struct clock_event_device *dev)
+{
+       struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+       ktime_t expires_next, now, entry_time, delta;
+       int i, retries = 0, raise = 0;
+
+       BUG_ON(!cpu_base->hres_active);
+       cpu_base->nr_events++;
+       dev->next_event.tv64 = KTIME_MAX;
+
+       raw_spin_lock(&cpu_base->lock);
+       entry_time = now = hrtimer_update_base(cpu_base);
+retry:
+       cpu_base->in_hrtirq = 1;
+       /*
+        * We set expires_next to KTIME_MAX here with cpu_base->lock
+        * held to prevent that a timer is enqueued in our queue via
+        * the migration code. This does not affect enqueueing of
+        * timers which run their callback and need to be requeued on
+        * this CPU.
+        */
+       cpu_base->expires_next.tv64 = KTIME_MAX;
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+               struct hrtimer_clock_base *base;
+               struct timerqueue_node *node;
+               ktime_t basenow;
+
+               if (!(cpu_base->active_bases & (1 << i)))
+                       continue;
+
+               base = cpu_base->clock_base + i;
+               basenow = ktime_add(now, base->offset);
+
+               while ((node = timerqueue_getnext(&base->active))) {
+                       struct hrtimer *timer;
+
+                       timer = container_of(node, struct hrtimer, node);
+
+                       trace_hrtimer_interrupt(raw_smp_processor_id(),
+                           ktime_to_ns(ktime_sub(ktime_to_ns(timer->praecox) ?
+                               timer->praecox : hrtimer_get_expires(timer),
+                               basenow)),
+                           current,
+                           timer->function == hrtimer_wakeup ?
+                           container_of(timer, struct hrtimer_sleeper,
+                               timer)->task : NULL);
+
+                       /*
+                        * The immediate goal for using the softexpires is
+                        * minimizing wakeups, not running timers at the
+                        * earliest interrupt after their soft expiration.
+                        * This allows us to avoid using a Priority Search
+                        * Tree, which can answer a stabbing querry for
+                        * overlapping intervals and instead use the simple
+                        * BST we already have.
+                        * We don't add extra wakeups by delaying timers that
+                        * are right-of a not yet expired timer, because that
+                        * timer will have to trigger a wakeup anyway.
+                        */
+                       if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
+                               break;
+
+                       if (!hrtimer_rt_defer(timer))
+                               __run_hrtimer(timer, &basenow);
+                       else
+                               raise = 1;
+               }
+       }
+       /* Reevaluate the clock bases for the next expiry */
+       expires_next = __hrtimer_get_next_event(cpu_base);
+       /*
+        * Store the new expiry value so the migration code can verify
+        * against it.
+        */
+       cpu_base->expires_next = expires_next;
+       cpu_base->in_hrtirq = 0;
+       raw_spin_unlock(&cpu_base->lock);
+
+       /* Reprogramming necessary ? */
+       if (expires_next.tv64 == KTIME_MAX ||
+           !tick_program_event(expires_next, 0)) {
+               cpu_base->hang_detected = 0;
+               goto out;
+       }
+
+       /*
+        * The next timer was already expired due to:
+        * - tracing
+        * - long lasting callbacks
+        * - being scheduled away when running in a VM
+        *
+        * We need to prevent that we loop forever in the hrtimer
+        * interrupt routine. We give it 3 attempts to avoid
+        * overreacting on some spurious event.
+        *
+        * Acquire base lock for updating the offsets and retrieving
+        * the current time.
+        */
+       raw_spin_lock(&cpu_base->lock);
+       now = hrtimer_update_base(cpu_base);
+       cpu_base->nr_retries++;
+       if (++retries < 3)
+               goto retry;
+       /*
+        * Give the system a chance to do something else than looping
+        * here. We stored the entry time, so we know exactly how long
+        * we spent here. We schedule the next event this amount of
+        * time away.
+        */
+       cpu_base->nr_hangs++;
+       cpu_base->hang_detected = 1;
+       raw_spin_unlock(&cpu_base->lock);
+       delta = ktime_sub(now, entry_time);
+       if (delta.tv64 > cpu_base->max_hang_time.tv64)
+               cpu_base->max_hang_time = delta;
+       /*
+        * Limit it to a sensible value as we enforce a longer
+        * delay. Give the CPU at least 100ms to catch up.
+        */
+       if (delta.tv64 > 100 * NSEC_PER_MSEC)
+               expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
+       else
+               expires_next = ktime_add(now, delta);
+       tick_program_event(expires_next, 1);
+       printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
+                   ktime_to_ns(delta));
+out:
+       if (raise)
+               raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+}
+
+/*
+ * local version of hrtimer_peek_ahead_timers() called with interrupts
+ * disabled.
+ */
+static void __hrtimer_peek_ahead_timers(void)
+{
+       struct tick_device *td;
+
+       if (!hrtimer_hres_active())
+               return;
+
+       td = this_cpu_ptr(&tick_cpu_device);
+       if (td && td->evtdev)
+               hrtimer_interrupt(td->evtdev);
+}
+
+/**
+ * hrtimer_peek_ahead_timers -- run soft-expired timers now
+ *
+ * hrtimer_peek_ahead_timers will peek at the timer queue of
+ * the current cpu and check if there are any timers for which
+ * the soft expires time has passed. If any such timers exist,
+ * they are run immediately and then removed from the timer queue.
+ *
+ */
+void hrtimer_peek_ahead_timers(void)
+{
+       unsigned long flags;
+
+       local_irq_save(flags);
+       __hrtimer_peek_ahead_timers();
+       local_irq_restore(flags);
+}
+#else /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void __hrtimer_peek_ahead_timers(void) { }
+
+#endif /* !CONFIG_HIGH_RES_TIMERS */
+
+
+static void run_hrtimer_softirq(struct softirq_action *h)
+{
+       hrtimer_rt_run_pending();
+}
+
+/*
+ * Called from timer softirq every jiffy, expire hrtimers:
+ *
+ * For HRT its the fall back code to run the softirq in the timer
+ * softirq context in case the hrtimer initialization failed or has
+ * not been done yet.
+ */
+void hrtimer_run_pending(void)
+{
+       if (hrtimer_hres_active())
+               return;
+
+       /*
+        * This _is_ ugly: We have to check in the softirq context,
+        * whether we can switch to highres and / or nohz mode. The
+        * clocksource switch happens in the timer interrupt with
+        * xtime_lock held. Notification from there only sets the
+        * check bit in the tick_oneshot code, otherwise we might
+        * deadlock vs. xtime_lock.
+        */
+       if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
+               hrtimer_switch_to_hres();
+}
+
+/*
+ * Called from hardirq context every jiffy
+ */
+void hrtimer_run_queues(void)
+{
+       struct timerqueue_node *node;
+       struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+       struct hrtimer_clock_base *base;
+       int index, gettime = 1, raise = 0;
+
+       if (hrtimer_hres_active())
+               return;
+
+       for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+               base = &cpu_base->clock_base[index];
+               if (!timerqueue_getnext(&base->active))
+                       continue;
+
+               if (gettime) {
+                       hrtimer_get_softirq_time(cpu_base);
+                       gettime = 0;
+               }
+
+               raw_spin_lock(&cpu_base->lock);
+
+               while ((node = timerqueue_getnext(&base->active))) {
+                       struct hrtimer *timer;
+
+                       timer = container_of(node, struct hrtimer, node);
+                       if (base->softirq_time.tv64 <=
+                                       hrtimer_get_expires_tv64(timer))
+                               break;
+
+                       if (!hrtimer_rt_defer(timer))
+                               __run_hrtimer(timer, &base->softirq_time);
+                       else
+                               raise = 1;
+               }
+               raw_spin_unlock(&cpu_base->lock);
+       }
+
+       if (raise)
+               raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+}
+
+/*
+ * Sleep related functions:
+ */
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
+{
+       struct hrtimer_sleeper *t =
+               container_of(timer, struct hrtimer_sleeper, timer);
+       struct task_struct *task = t->task;
+
+       t->task = NULL;
+       if (task)
+               wake_up_process(task);
+
+       return HRTIMER_NORESTART;
+}
+
+void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
+{
+       sl->timer.function = hrtimer_wakeup;
+       sl->timer.irqsafe = 1;
+       sl->task = task;
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
+
+static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode,
+                               unsigned long state)
+{
+       hrtimer_init_sleeper(t, current);
+
+       do {
+               set_current_state(state);
+               hrtimer_start_expires(&t->timer, mode);
+               if (!hrtimer_active(&t->timer))
+                       t->task = NULL;
+
+               if (likely(t->task))
+                       freezable_schedule();
+
+               hrtimer_cancel(&t->timer);
+               mode = HRTIMER_MODE_ABS;
+
+       } while (t->task && !signal_pending(current));
+
+       __set_current_state(TASK_RUNNING);
+
+       return t->task == NULL;
+}
+
+static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
+{
+       struct timespec rmt;
+       ktime_t rem;
+
+       rem = hrtimer_expires_remaining(timer);
+       if (rem.tv64 <= 0)
+               return 0;
+       rmt = ktime_to_timespec(rem);
+
+       if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
+               return -EFAULT;
+
+       return 1;
+}
+
+long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
+{
+       struct hrtimer_sleeper t;
+       struct timespec __user  *rmtp;
+       int ret = 0;
+
+       hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
+                               HRTIMER_MODE_ABS);
+       hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
+
+       /* cpu_chill() does not care about restart state. */
+       if (do_nanosleep(&t, HRTIMER_MODE_ABS, TASK_INTERRUPTIBLE))
+               goto out;
+
+       rmtp = restart->nanosleep.rmtp;
+       if (rmtp) {
+               ret = update_rmtp(&t.timer, rmtp);
+               if (ret <= 0)
+                       goto out;
+       }
+
+       /* The other values in restart are already filled in */
+       ret = -ERESTART_RESTARTBLOCK;
+out:
+       destroy_hrtimer_on_stack(&t.timer);
+       return ret;
+}
+
+static long
+__hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+                   const enum hrtimer_mode mode, const clockid_t clockid,
+                   unsigned long state)
+{
+       struct restart_block *restart;
+       struct hrtimer_sleeper t;
+       int ret = 0;
+       unsigned long slack;
+
+       slack = current->timer_slack_ns;
+       if (dl_task(current) || rt_task(current))
+               slack = 0;
+
+       hrtimer_init_on_stack(&t.timer, clockid, mode);
+       hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
+       if (do_nanosleep(&t, mode, state))
+               goto out;
+
+       /* Absolute timers do not update the rmtp value and restart: */
+       if (mode == HRTIMER_MODE_ABS) {
+               ret = -ERESTARTNOHAND;
+               goto out;
+       }
+
+       if (rmtp) {
+               ret = update_rmtp(&t.timer, rmtp);
+               if (ret <= 0)
+                       goto out;
+       }
+
+       restart = &current->restart_block;
+       restart->fn = hrtimer_nanosleep_restart;
+       restart->nanosleep.clockid = t.timer.base->clockid;
+       restart->nanosleep.rmtp = rmtp;
+       restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
+
+       ret = -ERESTART_RESTARTBLOCK;
+out:
+       destroy_hrtimer_on_stack(&t.timer);
+       return ret;
+}
+
+long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+                      const enum hrtimer_mode mode, const clockid_t clockid)
+{
+       return __hrtimer_nanosleep(rqtp, rmtp, mode, clockid, TASK_INTERRUPTIBLE);
+}
+
+SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
+               struct timespec __user *, rmtp)
+{
+       struct timespec tu;
+
+       if (copy_from_user(&tu, rqtp, sizeof(tu)))
+               return -EFAULT;
+
+       if (!timespec_valid(&tu))
+               return -EINVAL;
+
+       return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
+}
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * Sleep for 1 ms in hope whoever holds what we want will let it go.
+ */
+void cpu_chill(void)
+{
+       struct timespec tu = {
+               .tv_nsec = NSEC_PER_MSEC,
+       };
+       unsigned int freeze_flag = current->flags & PF_NOFREEZE;
+
+       current->flags |= PF_NOFREEZE;
+       __hrtimer_nanosleep(&tu, NULL, HRTIMER_MODE_REL, CLOCK_MONOTONIC,
+                           TASK_UNINTERRUPTIBLE);
+       if (!freeze_flag)
+               current->flags &= ~PF_NOFREEZE;
+}
+EXPORT_SYMBOL(cpu_chill);
+#endif
+
+/*
+ * Functions related to boot-time initialization:
+ */
+static void init_hrtimers_cpu(int cpu)
+{
+       struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
+       int i;
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+               cpu_base->clock_base[i].cpu_base = cpu_base;
+               timerqueue_init_head(&cpu_base->clock_base[i].active);
+               INIT_LIST_HEAD(&cpu_base->clock_base[i].expired);
+       }
+
+       cpu_base->cpu = cpu;
+       hrtimer_init_hres(cpu_base);
+#ifdef CONFIG_PREEMPT_RT_BASE
+       init_waitqueue_head(&cpu_base->wait);
+#endif
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
+                               struct hrtimer_clock_base *new_base)
+{
+       struct hrtimer *timer;
+       struct timerqueue_node *node;
+
+       while ((node = timerqueue_getnext(&old_base->active))) {
+               timer = container_of(node, struct hrtimer, node);
+               BUG_ON(hrtimer_callback_running(timer));
+               debug_deactivate(timer);
+
+               /*
+                * Mark it as STATE_MIGRATE not INACTIVE otherwise the
+                * timer could be seen as !active and just vanish away
+                * under us on another CPU
+                */
+               __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
+               timer->base = new_base;
+               /*
+                * Enqueue the timers on the new cpu. This does not
+                * reprogram the event device in case the timer
+                * expires before the earliest on this CPU, but we run
+                * hrtimer_interrupt after we migrated everything to
+                * sort out already expired timers and reprogram the
+                * event device.
+                */
+               enqueue_hrtimer(timer, new_base);
+
+               /* Clear the migration state bit */
+               timer->state &= ~HRTIMER_STATE_MIGRATE;
+       }
+}
+
+static void migrate_hrtimers(int scpu)
+{
+       struct hrtimer_cpu_base *old_base, *new_base;
+       int i;
+
+       BUG_ON(cpu_online(scpu));
+       tick_cancel_sched_timer(scpu);
+
+       local_irq_disable();
+       old_base = &per_cpu(hrtimer_bases, scpu);
+       new_base = this_cpu_ptr(&hrtimer_bases);
+       /*
+        * The caller is globally serialized and nobody else
+        * takes two locks at once, deadlock is not possible.
+        */
+       raw_spin_lock(&new_base->lock);
+       raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+               migrate_hrtimer_list(&old_base->clock_base[i],
+                                    &new_base->clock_base[i]);
+       }
+
+       raw_spin_unlock(&old_base->lock);
+       raw_spin_unlock(&new_base->lock);
+
+       /* Check, if we got expired work to do */
+       __hrtimer_peek_ahead_timers();
+       local_irq_enable();
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static int hrtimer_cpu_notify(struct notifier_block *self,
+                                       unsigned long action, void *hcpu)
+{
+       int scpu = (long)hcpu;
+
+       switch (action) {
+
+       case CPU_UP_PREPARE:
+       case CPU_UP_PREPARE_FROZEN:
+               init_hrtimers_cpu(scpu);
+               break;
+
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DEAD:
+       case CPU_DEAD_FROZEN:
+               migrate_hrtimers(scpu);
+               break;
+#endif
+
+       default:
+               break;
+       }
+
+       return NOTIFY_OK;
+}
+
+static struct notifier_block hrtimers_nb = {
+       .notifier_call = hrtimer_cpu_notify,
+};
+
+void __init hrtimers_init(void)
+{
+       hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
+                         (void *)(long)smp_processor_id());
+       register_cpu_notifier(&hrtimers_nb);
+       open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
+}
+
+/**
+ * schedule_hrtimeout_range_clock - sleep until timeout
+ * @expires:   timeout value (ktime_t)
+ * @delta:     slack in expires timeout (ktime_t)
+ * @mode:      timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ * @clock:     timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
+ */
+int __sched
+schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
+                              const enum hrtimer_mode mode, int clock)
+{
+       struct hrtimer_sleeper t;
+
+       /*
+        * Optimize when a zero timeout value is given. It does not
+        * matter whether this is an absolute or a relative time.
+        */
+       if (expires && !expires->tv64) {
+               __set_current_state(TASK_RUNNING);
+               return 0;
+       }
+
+       /*
+        * A NULL parameter means "infinite"
+        */
+       if (!expires) {
+               schedule();
+               return -EINTR;
+       }
+
+       hrtimer_init_on_stack(&t.timer, clock, mode);
+       hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+
+       hrtimer_init_sleeper(&t, current);
+
+       hrtimer_start_expires(&t.timer, mode);
+       if (!hrtimer_active(&t.timer))
+               t.task = NULL;
+
+       if (likely(t.task))
+               schedule();
+
+       hrtimer_cancel(&t.timer);
+       destroy_hrtimer_on_stack(&t.timer);
+
+       __set_current_state(TASK_RUNNING);
+
+       return !t.task ? 0 : -EINTR;
+}
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires:   timeout value (ktime_t)
+ * @delta:     slack in expires timeout (ktime_t)
+ * @mode:      timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
+                                    const enum hrtimer_mode mode)
+{
+       return schedule_hrtimeout_range_clock(expires, delta, mode,
+                                             CLOCK_MONOTONIC);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
+
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires:   timeout value (ktime_t)
+ * @mode:      timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout(ktime_t *expires,
+                              const enum hrtimer_mode mode)
+{
+       return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);