Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / sched / sched.h
diff --git a/kernel/kernel/sched/sched.h b/kernel/kernel/sched/sched.h
new file mode 100644 (file)
index 0000000..308f664
--- /dev/null
@@ -0,0 +1,1746 @@
+
+#include <linux/sched.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
+#include <linux/mutex.h>
+#include <linux/spinlock.h>
+#include <linux/stop_machine.h>
+#include <linux/irq_work.h>
+#include <linux/tick.h>
+#include <linux/slab.h>
+
+#include "cpupri.h"
+#include "cpudeadline.h"
+#include "cpuacct.h"
+
+struct rq;
+struct cpuidle_state;
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED      1
+#define TASK_ON_RQ_MIGRATING   2
+
+extern __read_mostly int scheduler_running;
+
+extern unsigned long calc_load_update;
+extern atomic_long_t calc_load_tasks;
+
+extern long calc_load_fold_active(struct rq *this_rq);
+extern void update_cpu_load_active(struct rq *this_rq);
+
+/*
+ * Helpers for converting nanosecond timing to jiffy resolution
+ */
+#define NS_TO_JIFFIES(TIME)    ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+
+/*
+ * Increase resolution of nice-level calculations for 64-bit architectures.
+ * The extra resolution improves shares distribution and load balancing of
+ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
+ * hierarchies, especially on larger systems. This is not a user-visible change
+ * and does not change the user-interface for setting shares/weights.
+ *
+ * We increase resolution only if we have enough bits to allow this increased
+ * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
+ * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
+ * increased costs.
+ */
+#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
+# define SCHED_LOAD_RESOLUTION 10
+# define scale_load(w)         ((w) << SCHED_LOAD_RESOLUTION)
+# define scale_load_down(w)    ((w) >> SCHED_LOAD_RESOLUTION)
+#else
+# define SCHED_LOAD_RESOLUTION 0
+# define scale_load(w)         (w)
+# define scale_load_down(w)    (w)
+#endif
+
+#define SCHED_LOAD_SHIFT       (10 + SCHED_LOAD_RESOLUTION)
+#define SCHED_LOAD_SCALE       (1L << SCHED_LOAD_SHIFT)
+
+#define NICE_0_LOAD            SCHED_LOAD_SCALE
+#define NICE_0_SHIFT           SCHED_LOAD_SHIFT
+
+/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9  -> just above 0.5us
+ */
+#define DL_SCALE (10)
+
+/*
+ * These are the 'tuning knobs' of the scheduler:
+ */
+
+/*
+ * single value that denotes runtime == period, ie unlimited time.
+ */
+#define RUNTIME_INF    ((u64)~0ULL)
+
+static inline int fair_policy(int policy)
+{
+       return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
+static inline int rt_policy(int policy)
+{
+       return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+       return policy == SCHED_DEADLINE;
+}
+
+static inline int task_has_rt_policy(struct task_struct *p)
+{
+       return rt_policy(p->policy);
+}
+
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+       return dl_policy(p->policy);
+}
+
+static inline bool dl_time_before(u64 a, u64 b)
+{
+       return (s64)(a - b) < 0;
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+       return dl_time_before(a->deadline, b->deadline);
+}
+
+/*
+ * This is the priority-queue data structure of the RT scheduling class:
+ */
+struct rt_prio_array {
+       DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
+       struct list_head queue[MAX_RT_PRIO];
+};
+
+struct rt_bandwidth {
+       /* nests inside the rq lock: */
+       raw_spinlock_t          rt_runtime_lock;
+       ktime_t                 rt_period;
+       u64                     rt_runtime;
+       struct hrtimer          rt_period_timer;
+};
+
+void __dl_clear_params(struct task_struct *p);
+
+/*
+ * To keep the bandwidth of -deadline tasks and groups under control
+ * we need some place where:
+ *  - store the maximum -deadline bandwidth of the system (the group);
+ *  - cache the fraction of that bandwidth that is currently allocated.
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * meaning that:
+ *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
+ *  - dl_total_bw array contains, in the i-eth element, the currently
+ *    allocated bandwidth on the i-eth CPU.
+ * Moreover, groups consume bandwidth on each CPU, while tasks only
+ * consume bandwidth on the CPU they're running on.
+ * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
+ * that will be shown the next time the proc or cgroup controls will
+ * be red. It on its turn can be changed by writing on its own
+ * control.
+ */
+struct dl_bandwidth {
+       raw_spinlock_t dl_runtime_lock;
+       u64 dl_runtime;
+       u64 dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+       return sysctl_sched_rt_runtime >= 0;
+}
+
+extern struct dl_bw *dl_bw_of(int i);
+
+struct dl_bw {
+       raw_spinlock_t lock;
+       u64 bw, total_bw;
+};
+
+static inline
+void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
+{
+       dl_b->total_bw -= tsk_bw;
+}
+
+static inline
+void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
+{
+       dl_b->total_bw += tsk_bw;
+}
+
+static inline
+bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
+{
+       return dl_b->bw != -1 &&
+              dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
+}
+
+extern struct mutex sched_domains_mutex;
+
+#ifdef CONFIG_CGROUP_SCHED
+
+#include <linux/cgroup.h>
+
+struct cfs_rq;
+struct rt_rq;
+
+extern struct list_head task_groups;
+
+struct cfs_bandwidth {
+#ifdef CONFIG_CFS_BANDWIDTH
+       raw_spinlock_t lock;
+       ktime_t period;
+       u64 quota, runtime;
+       s64 hierarchical_quota;
+       u64 runtime_expires;
+
+       int idle, timer_active;
+       struct hrtimer period_timer, slack_timer;
+       struct list_head throttled_cfs_rq;
+
+       /* statistics */
+       int nr_periods, nr_throttled;
+       u64 throttled_time;
+#endif
+};
+
+/* task group related information */
+struct task_group {
+       struct cgroup_subsys_state css;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       /* schedulable entities of this group on each cpu */
+       struct sched_entity **se;
+       /* runqueue "owned" by this group on each cpu */
+       struct cfs_rq **cfs_rq;
+       unsigned long shares;
+
+#ifdef CONFIG_SMP
+       atomic_long_t load_avg;
+       atomic_t runnable_avg;
+#endif
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       struct sched_rt_entity **rt_se;
+       struct rt_rq **rt_rq;
+
+       struct rt_bandwidth rt_bandwidth;
+#endif
+
+       struct rcu_head rcu;
+       struct list_head list;
+
+       struct task_group *parent;
+       struct list_head siblings;
+       struct list_head children;
+
+#ifdef CONFIG_SCHED_AUTOGROUP
+       struct autogroup *autogroup;
+#endif
+
+       struct cfs_bandwidth cfs_bandwidth;
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
+
+/*
+ * A weight of 0 or 1 can cause arithmetics problems.
+ * A weight of a cfs_rq is the sum of weights of which entities
+ * are queued on this cfs_rq, so a weight of a entity should not be
+ * too large, so as the shares value of a task group.
+ * (The default weight is 1024 - so there's no practical
+ *  limitation from this.)
+ */
+#define MIN_SHARES     (1UL <<  1)
+#define MAX_SHARES     (1UL << 18)
+#endif
+
+typedef int (*tg_visitor)(struct task_group *, void *);
+
+extern int walk_tg_tree_from(struct task_group *from,
+                            tg_visitor down, tg_visitor up, void *data);
+
+/*
+ * Iterate the full tree, calling @down when first entering a node and @up when
+ * leaving it for the final time.
+ *
+ * Caller must hold rcu_lock or sufficient equivalent.
+ */
+static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
+{
+       return walk_tg_tree_from(&root_task_group, down, up, data);
+}
+
+extern int tg_nop(struct task_group *tg, void *data);
+
+extern void free_fair_sched_group(struct task_group *tg);
+extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
+extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
+extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
+                       struct sched_entity *se, int cpu,
+                       struct sched_entity *parent);
+extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+
+extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
+extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
+extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
+
+extern void free_rt_sched_group(struct task_group *tg);
+extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
+extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+               struct sched_rt_entity *rt_se, int cpu,
+               struct sched_rt_entity *parent);
+
+extern struct task_group *sched_create_group(struct task_group *parent);
+extern void sched_online_group(struct task_group *tg,
+                              struct task_group *parent);
+extern void sched_destroy_group(struct task_group *tg);
+extern void sched_offline_group(struct task_group *tg);
+
+extern void sched_move_task(struct task_struct *tsk);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+#endif
+
+#else /* CONFIG_CGROUP_SCHED */
+
+struct cfs_bandwidth { };
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+/* CFS-related fields in a runqueue */
+struct cfs_rq {
+       struct load_weight load;
+       unsigned int nr_running, h_nr_running;
+
+       u64 exec_clock;
+       u64 min_vruntime;
+#ifndef CONFIG_64BIT
+       u64 min_vruntime_copy;
+#endif
+
+       struct rb_root tasks_timeline;
+       struct rb_node *rb_leftmost;
+
+       /*
+        * 'curr' points to currently running entity on this cfs_rq.
+        * It is set to NULL otherwise (i.e when none are currently running).
+        */
+       struct sched_entity *curr, *next, *last, *skip;
+
+#ifdef CONFIG_SCHED_DEBUG
+       unsigned int nr_spread_over;
+#endif
+
+#ifdef CONFIG_SMP
+       /*
+        * CFS Load tracking
+        * Under CFS, load is tracked on a per-entity basis and aggregated up.
+        * This allows for the description of both thread and group usage (in
+        * the FAIR_GROUP_SCHED case).
+        * runnable_load_avg is the sum of the load_avg_contrib of the
+        * sched_entities on the rq.
+        * blocked_load_avg is similar to runnable_load_avg except that its
+        * the blocked sched_entities on the rq.
+        * utilization_load_avg is the sum of the average running time of the
+        * sched_entities on the rq.
+        */
+       unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
+       atomic64_t decay_counter;
+       u64 last_decay;
+       atomic_long_t removed_load;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       /* Required to track per-cpu representation of a task_group */
+       u32 tg_runnable_contrib;
+       unsigned long tg_load_contrib;
+
+       /*
+        *   h_load = weight * f(tg)
+        *
+        * Where f(tg) is the recursive weight fraction assigned to
+        * this group.
+        */
+       unsigned long h_load;
+       u64 last_h_load_update;
+       struct sched_entity *h_load_next;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
+
+       /*
+        * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+        * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+        * (like users, containers etc.)
+        *
+        * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
+        * list is used during load balance.
+        */
+       int on_list;
+       struct list_head leaf_cfs_rq_list;
+       struct task_group *tg;  /* group that "owns" this runqueue */
+
+#ifdef CONFIG_CFS_BANDWIDTH
+       int runtime_enabled;
+       u64 runtime_expires;
+       s64 runtime_remaining;
+
+       u64 throttled_clock, throttled_clock_task;
+       u64 throttled_clock_task_time;
+       int throttled, throttle_count;
+       struct list_head throttled_list;
+#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+};
+
+static inline int rt_bandwidth_enabled(void)
+{
+       return sysctl_sched_rt_runtime >= 0;
+}
+
+/* RT IPI pull logic requires IRQ_WORK */
+#ifdef CONFIG_IRQ_WORK
+# define HAVE_RT_PUSH_IPI
+#endif
+
+/* Real-Time classes' related field in a runqueue: */
+struct rt_rq {
+       struct rt_prio_array active;
+       unsigned int rt_nr_running;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+       struct {
+               int curr; /* highest queued rt task prio */
+#ifdef CONFIG_SMP
+               int next; /* next highest */
+#endif
+       } highest_prio;
+#endif
+#ifdef CONFIG_SMP
+       unsigned long rt_nr_migratory;
+       unsigned long rt_nr_total;
+       int overloaded;
+       struct plist_head pushable_tasks;
+#ifdef HAVE_RT_PUSH_IPI
+       int push_flags;
+       int push_cpu;
+       struct irq_work push_work;
+       raw_spinlock_t push_lock;
+#endif
+#endif /* CONFIG_SMP */
+       int rt_queued;
+
+       int rt_throttled;
+       u64 rt_time;
+       u64 rt_runtime;
+       /* Nests inside the rq lock: */
+       raw_spinlock_t rt_runtime_lock;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       unsigned long rt_nr_boosted;
+
+       struct rq *rq;
+       struct task_group *tg;
+#endif
+};
+
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+       /* runqueue is an rbtree, ordered by deadline */
+       struct rb_root rb_root;
+       struct rb_node *rb_leftmost;
+
+       unsigned long dl_nr_running;
+
+#ifdef CONFIG_SMP
+       /*
+        * Deadline values of the currently executing and the
+        * earliest ready task on this rq. Caching these facilitates
+        * the decision wether or not a ready but not running task
+        * should migrate somewhere else.
+        */
+       struct {
+               u64 curr;
+               u64 next;
+       } earliest_dl;
+
+       unsigned long dl_nr_migratory;
+       int overloaded;
+
+       /*
+        * Tasks on this rq that can be pushed away. They are kept in
+        * an rb-tree, ordered by tasks' deadlines, with caching
+        * of the leftmost (earliest deadline) element.
+        */
+       struct rb_root pushable_dl_tasks_root;
+       struct rb_node *pushable_dl_tasks_leftmost;
+#else
+       struct dl_bw dl_bw;
+#endif
+};
+
+#ifdef CONFIG_SMP
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+       atomic_t refcount;
+       atomic_t rto_count;
+       struct rcu_head rcu;
+       cpumask_var_t span;
+       cpumask_var_t online;
+
+       /* Indicate more than one runnable task for any CPU */
+       bool overload;
+
+       /*
+        * The bit corresponding to a CPU gets set here if such CPU has more
+        * than one runnable -deadline task (as it is below for RT tasks).
+        */
+       cpumask_var_t dlo_mask;
+       atomic_t dlo_count;
+       struct dl_bw dl_bw;
+       struct cpudl cpudl;
+
+       /*
+        * The "RT overload" flag: it gets set if a CPU has more than
+        * one runnable RT task.
+        */
+       cpumask_var_t rto_mask;
+       struct cpupri cpupri;
+};
+
+extern struct root_domain def_root_domain;
+
+#endif /* CONFIG_SMP */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ *
+ * Locking rule: those places that want to lock multiple runqueues
+ * (such as the load balancing or the thread migration code), lock
+ * acquire operations must be ordered by ascending &runqueue.
+ */
+struct rq {
+       /* runqueue lock: */
+       raw_spinlock_t lock;
+
+       /*
+        * nr_running and cpu_load should be in the same cacheline because
+        * remote CPUs use both these fields when doing load calculation.
+        */
+       unsigned int nr_running;
+#ifdef CONFIG_NUMA_BALANCING
+       unsigned int nr_numa_running;
+       unsigned int nr_preferred_running;
+#endif
+       #define CPU_LOAD_IDX_MAX 5
+       unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+       unsigned long last_load_update_tick;
+#ifdef CONFIG_NO_HZ_COMMON
+       u64 nohz_stamp;
+       unsigned long nohz_flags;
+#endif
+#ifdef CONFIG_NO_HZ_FULL
+       unsigned long last_sched_tick;
+#endif
+       /* capture load from *all* tasks on this cpu: */
+       struct load_weight load;
+       unsigned long nr_load_updates;
+       u64 nr_switches;
+
+       struct cfs_rq cfs;
+       struct rt_rq rt;
+       struct dl_rq dl;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       /* list of leaf cfs_rq on this cpu: */
+       struct list_head leaf_cfs_rq_list;
+
+       struct sched_avg avg;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+       /*
+        * This is part of a global counter where only the total sum
+        * over all CPUs matters. A task can increase this counter on
+        * one CPU and if it got migrated afterwards it may decrease
+        * it on another CPU. Always updated under the runqueue lock:
+        */
+       unsigned long nr_uninterruptible;
+
+       struct task_struct *curr, *idle, *stop;
+       unsigned long next_balance;
+       struct mm_struct *prev_mm;
+
+       unsigned int clock_skip_update;
+       u64 clock;
+       u64 clock_task;
+
+       atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+       struct root_domain *rd;
+       struct sched_domain *sd;
+
+       unsigned long cpu_capacity;
+       unsigned long cpu_capacity_orig;
+
+       unsigned char idle_balance;
+       /* For active balancing */
+       int post_schedule;
+       int active_balance;
+       int push_cpu;
+       struct cpu_stop_work active_balance_work;
+       /* cpu of this runqueue: */
+       int cpu;
+       int online;
+
+       struct list_head cfs_tasks;
+
+       u64 rt_avg;
+       u64 age_stamp;
+       u64 idle_stamp;
+       u64 avg_idle;
+
+       /* This is used to determine avg_idle's max value */
+       u64 max_idle_balance_cost;
+#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+       u64 prev_irq_time;
+#endif
+#ifdef CONFIG_PARAVIRT
+       u64 prev_steal_time;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+       u64 prev_steal_time_rq;
+#endif
+
+       /* calc_load related fields */
+       unsigned long calc_load_update;
+       long calc_load_active;
+
+#ifdef CONFIG_SCHED_HRTICK
+#ifdef CONFIG_SMP
+       int hrtick_csd_pending;
+       struct call_single_data hrtick_csd;
+#endif
+       struct hrtimer hrtick_timer;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+       /* latency stats */
+       struct sched_info rq_sched_info;
+       unsigned long long rq_cpu_time;
+       /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+       /* sys_sched_yield() stats */
+       unsigned int yld_count;
+
+       /* schedule() stats */
+       unsigned int sched_count;
+       unsigned int sched_goidle;
+
+       /* try_to_wake_up() stats */
+       unsigned int ttwu_count;
+       unsigned int ttwu_local;
+#endif
+
+#ifdef CONFIG_SMP
+       struct llist_head wake_list;
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+       /* Must be inspected within a rcu lock section */
+       struct cpuidle_state *idle_state;
+#endif
+};
+
+static inline int cpu_of(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+       return rq->cpu;
+#else
+       return 0;
+#endif
+}
+
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+
+#define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
+#define this_rq()              this_cpu_ptr(&runqueues)
+#define task_rq(p)             cpu_rq(task_cpu(p))
+#define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
+#define raw_rq()               raw_cpu_ptr(&runqueues)
+
+static inline u64 __rq_clock_broken(struct rq *rq)
+{
+       return ACCESS_ONCE(rq->clock);
+}
+
+static inline u64 rq_clock(struct rq *rq)
+{
+       lockdep_assert_held(&rq->lock);
+       return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+       lockdep_assert_held(&rq->lock);
+       return rq->clock_task;
+}
+
+#define RQCF_REQ_SKIP  0x01
+#define RQCF_ACT_SKIP  0x02
+
+static inline void rq_clock_skip_update(struct rq *rq, bool skip)
+{
+       lockdep_assert_held(&rq->lock);
+       if (skip)
+               rq->clock_skip_update |= RQCF_REQ_SKIP;
+       else
+               rq->clock_skip_update &= ~RQCF_REQ_SKIP;
+}
+
+#ifdef CONFIG_NUMA
+enum numa_topology_type {
+       NUMA_DIRECT,
+       NUMA_GLUELESS_MESH,
+       NUMA_BACKPLANE,
+};
+extern enum numa_topology_type sched_numa_topology_type;
+extern int sched_max_numa_distance;
+extern bool find_numa_distance(int distance);
+#endif
+
+#ifdef CONFIG_NUMA_BALANCING
+/* The regions in numa_faults array from task_struct */
+enum numa_faults_stats {
+       NUMA_MEM = 0,
+       NUMA_CPU,
+       NUMA_MEMBUF,
+       NUMA_CPUBUF
+};
+extern void sched_setnuma(struct task_struct *p, int node);
+extern int migrate_task_to(struct task_struct *p, int cpu);
+extern int migrate_swap(struct task_struct *, struct task_struct *);
+#endif /* CONFIG_NUMA_BALANCING */
+
+#ifdef CONFIG_SMP
+
+extern void sched_ttwu_pending(void);
+
+#define rcu_dereference_check_sched_domain(p) \
+       rcu_dereference_check((p), \
+                             lockdep_is_held(&sched_domains_mutex))
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+       for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
+                       __sd; __sd = __sd->parent)
+
+#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
+
+/**
+ * highest_flag_domain - Return highest sched_domain containing flag.
+ * @cpu:       The cpu whose highest level of sched domain is to
+ *             be returned.
+ * @flag:      The flag to check for the highest sched_domain
+ *             for the given cpu.
+ *
+ * Returns the highest sched_domain of a cpu which contains the given flag.
+ */
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
+{
+       struct sched_domain *sd, *hsd = NULL;
+
+       for_each_domain(cpu, sd) {
+               if (!(sd->flags & flag))
+                       break;
+               hsd = sd;
+       }
+
+       return hsd;
+}
+
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+       struct sched_domain *sd;
+
+       for_each_domain(cpu, sd) {
+               if (sd->flags & flag)
+                       break;
+       }
+
+       return sd;
+}
+
+DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
+DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain *, sd_busy);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+
+struct sched_group_capacity {
+       atomic_t ref;
+       /*
+        * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
+        * for a single CPU.
+        */
+       unsigned int capacity;
+       unsigned long next_update;
+       int imbalance; /* XXX unrelated to capacity but shared group state */
+       /*
+        * Number of busy cpus in this group.
+        */
+       atomic_t nr_busy_cpus;
+
+       unsigned long cpumask[0]; /* iteration mask */
+};
+
+struct sched_group {
+       struct sched_group *next;       /* Must be a circular list */
+       atomic_t ref;
+
+       unsigned int group_weight;
+       struct sched_group_capacity *sgc;
+
+       /*
+        * The CPUs this group covers.
+        *
+        * NOTE: this field is variable length. (Allocated dynamically
+        * by attaching extra space to the end of the structure,
+        * depending on how many CPUs the kernel has booted up with)
+        */
+       unsigned long cpumask[0];
+};
+
+static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
+{
+       return to_cpumask(sg->cpumask);
+}
+
+/*
+ * cpumask masking which cpus in the group are allowed to iterate up the domain
+ * tree.
+ */
+static inline struct cpumask *sched_group_mask(struct sched_group *sg)
+{
+       return to_cpumask(sg->sgc->cpumask);
+}
+
+/**
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
+ * @group: The group whose first cpu is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+       return cpumask_first(sched_group_cpus(group));
+}
+
+extern int group_balance_cpu(struct sched_group *sg);
+
+#else
+
+static inline void sched_ttwu_pending(void) { }
+
+#endif /* CONFIG_SMP */
+
+#include "stats.h"
+#include "auto_group.h"
+
+#ifdef CONFIG_CGROUP_SCHED
+
+/*
+ * Return the group to which this tasks belongs.
+ *
+ * We cannot use task_css() and friends because the cgroup subsystem
+ * changes that value before the cgroup_subsys::attach() method is called,
+ * therefore we cannot pin it and might observe the wrong value.
+ *
+ * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
+ * core changes this before calling sched_move_task().
+ *
+ * Instead we use a 'copy' which is updated from sched_move_task() while
+ * holding both task_struct::pi_lock and rq::lock.
+ */
+static inline struct task_group *task_group(struct task_struct *p)
+{
+       return p->sched_task_group;
+}
+
+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
+{
+#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
+       struct task_group *tg = task_group(p);
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       p->se.cfs_rq = tg->cfs_rq[cpu];
+       p->se.parent = tg->se[cpu];
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       p->rt.rt_rq  = tg->rt_rq[cpu];
+       p->rt.parent = tg->rt_se[cpu];
+#endif
+}
+
+#else /* CONFIG_CGROUP_SCHED */
+
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
+static inline struct task_group *task_group(struct task_struct *p)
+{
+       return NULL;
+}
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+       set_task_rq(p, cpu);
+#ifdef CONFIG_SMP
+       /*
+        * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+        * successfuly executed on another CPU. We must ensure that updates of
+        * per-task data have been completed by this moment.
+        */
+       smp_wmb();
+       task_thread_info(p)->cpu = cpu;
+       p->wake_cpu = cpu;
+#endif
+}
+
+/*
+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ */
+#ifdef CONFIG_SCHED_DEBUG
+# include <linux/static_key.h>
+# define const_debug __read_mostly
+#else
+# define const_debug const
+#endif
+
+extern const_debug unsigned int sysctl_sched_features;
+
+#define SCHED_FEAT(name, enabled)      \
+       __SCHED_FEAT_##name ,
+
+enum {
+#include "features.h"
+       __SCHED_FEAT_NR,
+};
+
+#undef SCHED_FEAT
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
+#define SCHED_FEAT(name, enabled)                                      \
+static __always_inline bool static_branch_##name(struct static_key *key) \
+{                                                                      \
+       return static_key_##enabled(key);                               \
+}
+
+#include "features.h"
+
+#undef SCHED_FEAT
+
+extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
+#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
+#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
+
+#ifdef CONFIG_NUMA_BALANCING
+#define sched_feat_numa(x) sched_feat(x)
+#ifdef CONFIG_SCHED_DEBUG
+#define numabalancing_enabled sched_feat_numa(NUMA)
+#else
+extern bool numabalancing_enabled;
+#endif /* CONFIG_SCHED_DEBUG */
+#else
+#define sched_feat_numa(x) (0)
+#define numabalancing_enabled (0)
+#endif /* CONFIG_NUMA_BALANCING */
+
+static inline u64 global_rt_period(void)
+{
+       return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
+}
+
+static inline u64 global_rt_runtime(void)
+{
+       if (sysctl_sched_rt_runtime < 0)
+               return RUNTIME_INF;
+
+       return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
+}
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+       return rq->curr == p;
+}
+
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+       return p->on_cpu;
+#else
+       return task_current(rq, p);
+#endif
+}
+
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+       return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+       return p->on_rq == TASK_ON_RQ_MIGRATING;
+}
+
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(next)     do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)      do { } while (0)
+#endif
+#ifndef finish_arch_post_lock_switch
+# define finish_arch_post_lock_switch()        do { } while (0)
+#endif
+
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->on_cpu = 1;
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+       /*
+        * After ->on_cpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->on_cpu = 0;
+#endif
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
+#endif
+       /*
+        * If we are tracking spinlock dependencies then we have to
+        * fix up the runqueue lock - which gets 'carried over' from
+        * prev into current:
+        */
+       spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+
+       raw_spin_unlock_irq(&rq->lock);
+}
+
+/*
+ * wake flags
+ */
+#define WF_SYNC                0x01            /* waker goes to sleep after wakeup */
+#define WF_FORK                0x02            /* child wakeup after fork */
+#define WF_MIGRATED    0x4             /* internal use, task got migrated */
+#define WF_LOCK_SLEEPER        0x08            /* wakeup spinlock "sleeper" */
+
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+#define WEIGHT_IDLEPRIO                3
+#define WMULT_IDLEPRIO         1431655765
+
+/*
+ * Nice levels are multiplicative, with a gentle 10% change for every
+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
+ * that remained on nice 0.
+ *
+ * The "10% effect" is relative and cumulative: from _any_ nice level,
+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
+ * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
+ * If a task goes up by ~10% and another task goes down by ~10% then
+ * the relative distance between them is ~25%.)
+ */
+static const int prio_to_weight[40] = {
+ /* -20 */     88761,     71755,     56483,     46273,     36291,
+ /* -15 */     29154,     23254,     18705,     14949,     11916,
+ /* -10 */      9548,      7620,      6100,      4904,      3906,
+ /*  -5 */      3121,      2501,      1991,      1586,      1277,
+ /*   0 */      1024,       820,       655,       526,       423,
+ /*   5 */       335,       272,       215,       172,       137,
+ /*  10 */       110,        87,        70,        56,        45,
+ /*  15 */        36,        29,        23,        18,        15,
+};
+
+/*
+ * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
+ *
+ * In cases where the weight does not change often, we can use the
+ * precalculated inverse to speed up arithmetics by turning divisions
+ * into multiplications:
+ */
+static const u32 prio_to_wmult[40] = {
+ /* -20 */     48388,     59856,     76040,     92818,    118348,
+ /* -15 */    147320,    184698,    229616,    287308,    360437,
+ /* -10 */    449829,    563644,    704093,    875809,   1099582,
+ /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
+ /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
+ /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
+ /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
+ /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
+};
+
+#define ENQUEUE_WAKEUP         1
+#define ENQUEUE_HEAD           2
+#ifdef CONFIG_SMP
+#define ENQUEUE_WAKING         4       /* sched_class::task_waking was called */
+#else
+#define ENQUEUE_WAKING         0
+#endif
+#define ENQUEUE_REPLENISH      8
+
+#define DEQUEUE_SLEEP          1
+
+#define RETRY_TASK             ((void *)-1UL)
+
+struct sched_class {
+       const struct sched_class *next;
+
+       void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+       void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+       void (*yield_task) (struct rq *rq);
+       bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
+
+       void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
+
+       /*
+        * It is the responsibility of the pick_next_task() method that will
+        * return the next task to call put_prev_task() on the @prev task or
+        * something equivalent.
+        *
+        * May return RETRY_TASK when it finds a higher prio class has runnable
+        * tasks.
+        */
+       struct task_struct * (*pick_next_task) (struct rq *rq,
+                                               struct task_struct *prev);
+       void (*put_prev_task) (struct rq *rq, struct task_struct *p);
+
+#ifdef CONFIG_SMP
+       int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+       void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
+
+       void (*post_schedule) (struct rq *this_rq);
+       void (*task_waking) (struct task_struct *task);
+       void (*task_woken) (struct rq *this_rq, struct task_struct *task);
+
+       void (*set_cpus_allowed)(struct task_struct *p,
+                                const struct cpumask *newmask);
+
+       void (*rq_online)(struct rq *rq);
+       void (*rq_offline)(struct rq *rq);
+#endif
+
+       void (*set_curr_task) (struct rq *rq);
+       void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
+       void (*task_fork) (struct task_struct *p);
+       void (*task_dead) (struct task_struct *p);
+
+       /*
+        * The switched_from() call is allowed to drop rq->lock, therefore we
+        * cannot assume the switched_from/switched_to pair is serliazed by
+        * rq->lock. They are however serialized by p->pi_lock.
+        */
+       void (*switched_from) (struct rq *this_rq, struct task_struct *task);
+       void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+       void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
+                            int oldprio);
+
+       unsigned int (*get_rr_interval) (struct rq *rq,
+                                        struct task_struct *task);
+
+       void (*update_curr) (struct rq *rq);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       void (*task_move_group) (struct task_struct *p, int on_rq);
+#endif
+};
+
+static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+       prev->sched_class->put_prev_task(rq, prev);
+}
+
+#define sched_class_highest (&stop_sched_class)
+#define for_each_class(class) \
+   for (class = sched_class_highest; class; class = class->next)
+
+extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
+extern const struct sched_class rt_sched_class;
+extern const struct sched_class fair_sched_class;
+extern const struct sched_class idle_sched_class;
+
+
+#ifdef CONFIG_SMP
+
+extern void update_group_capacity(struct sched_domain *sd, int cpu);
+
+extern void trigger_load_balance(struct rq *rq);
+
+extern void idle_enter_fair(struct rq *this_rq);
+extern void idle_exit_fair(struct rq *this_rq);
+
+#else
+
+static inline void idle_enter_fair(struct rq *rq) { }
+static inline void idle_exit_fair(struct rq *rq) { }
+
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+                                 struct cpuidle_state *idle_state)
+{
+       rq->idle_state = idle_state;
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+       WARN_ON(!rcu_read_lock_held());
+       return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+                                 struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+       return NULL;
+}
+#endif
+
+extern void sysrq_sched_debug_show(void);
+extern void sched_init_granularity(void);
+extern void update_max_interval(void);
+
+extern void init_sched_dl_class(void);
+extern void init_sched_rt_class(void);
+extern void init_sched_fair_class(void);
+extern void init_sched_dl_class(void);
+
+extern void resched_curr(struct rq *rq);
+extern void resched_cpu(int cpu);
+
+#ifdef CONFIG_PREEMPT_LAZY
+extern void resched_curr_lazy(struct rq *rq);
+#else
+static inline void resched_curr_lazy(struct rq *rq)
+{
+       resched_curr(rq);
+}
+#endif
+
+extern struct rt_bandwidth def_rt_bandwidth;
+extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+
+extern struct dl_bandwidth def_dl_bandwidth;
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+
+unsigned long to_ratio(u64 period, u64 runtime);
+
+extern void update_idle_cpu_load(struct rq *this_rq);
+
+extern void init_task_runnable_average(struct task_struct *p);
+
+static inline void add_nr_running(struct rq *rq, unsigned count)
+{
+       unsigned prev_nr = rq->nr_running;
+
+       rq->nr_running = prev_nr + count;
+
+       if (prev_nr < 2 && rq->nr_running >= 2) {
+#ifdef CONFIG_SMP
+               if (!rq->rd->overload)
+                       rq->rd->overload = true;
+#endif
+
+#ifdef CONFIG_NO_HZ_FULL
+               if (tick_nohz_full_cpu(rq->cpu)) {
+                       /*
+                        * Tick is needed if more than one task runs on a CPU.
+                        * Send the target an IPI to kick it out of nohz mode.
+                        *
+                        * We assume that IPI implies full memory barrier and the
+                        * new value of rq->nr_running is visible on reception
+                        * from the target.
+                        */
+                       tick_nohz_full_kick_cpu(rq->cpu);
+               }
+#endif
+       }
+}
+
+static inline void sub_nr_running(struct rq *rq, unsigned count)
+{
+       rq->nr_running -= count;
+}
+
+static inline void rq_last_tick_reset(struct rq *rq)
+{
+#ifdef CONFIG_NO_HZ_FULL
+       rq->last_sched_tick = jiffies;
+#endif
+}
+
+extern void update_rq_clock(struct rq *rq);
+
+extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
+extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
+
+extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
+
+extern const_debug unsigned int sysctl_sched_time_avg;
+extern const_debug unsigned int sysctl_sched_nr_migrate;
+extern const_debug unsigned int sysctl_sched_migration_cost;
+
+static inline u64 sched_avg_period(void)
+{
+       return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
+}
+
+#ifdef CONFIG_SCHED_HRTICK
+
+/*
+ * Use hrtick when:
+ *  - enabled by features
+ *  - hrtimer is actually high res
+ */
+static inline int hrtick_enabled(struct rq *rq)
+{
+       if (!sched_feat(HRTICK))
+               return 0;
+       if (!cpu_active(cpu_of(rq)))
+               return 0;
+       return hrtimer_is_hres_active(&rq->hrtick_timer);
+}
+
+void hrtick_start(struct rq *rq, u64 delay);
+
+#else
+
+static inline int hrtick_enabled(struct rq *rq)
+{
+       return 0;
+}
+
+#endif /* CONFIG_SCHED_HRTICK */
+
+#ifdef CONFIG_SMP
+extern void sched_avg_update(struct rq *rq);
+
+#ifndef arch_scale_freq_capacity
+static __always_inline
+unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
+{
+       return SCHED_CAPACITY_SCALE;
+}
+#endif
+
+static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
+{
+       rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
+       sched_avg_update(rq);
+}
+#else
+static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
+static inline void sched_avg_update(struct rq *rq) { }
+#endif
+
+extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
+
+/*
+ * __task_rq_lock - lock the rq @p resides on.
+ */
+static inline struct rq *__task_rq_lock(struct task_struct *p)
+       __acquires(rq->lock)
+{
+       struct rq *rq;
+
+       lockdep_assert_held(&p->pi_lock);
+
+       for (;;) {
+               rq = task_rq(p);
+               raw_spin_lock(&rq->lock);
+               if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
+                       return rq;
+               raw_spin_unlock(&rq->lock);
+
+               while (unlikely(task_on_rq_migrating(p)))
+                       cpu_relax();
+       }
+}
+
+/*
+ * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
+ */
+static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
+       __acquires(p->pi_lock)
+       __acquires(rq->lock)
+{
+       struct rq *rq;
+
+       for (;;) {
+               raw_spin_lock_irqsave(&p->pi_lock, *flags);
+               rq = task_rq(p);
+               raw_spin_lock(&rq->lock);
+               /*
+                *      move_queued_task()              task_rq_lock()
+                *
+                *      ACQUIRE (rq->lock)
+                *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
+                *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
+                *      [S] ->cpu = new_cpu             [L] task_rq()
+                *                                      [L] ->on_rq
+                *      RELEASE (rq->lock)
+                *
+                * If we observe the old cpu in task_rq_lock, the acquire of
+                * the old rq->lock will fully serialize against the stores.
+                *
+                * If we observe the new cpu in task_rq_lock, the acquire will
+                * pair with the WMB to ensure we must then also see migrating.
+                */
+               if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
+                       return rq;
+               raw_spin_unlock(&rq->lock);
+               raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+
+               while (unlikely(task_on_rq_migrating(p)))
+                       cpu_relax();
+       }
+}
+
+static inline void __task_rq_unlock(struct rq *rq)
+       __releases(rq->lock)
+{
+       raw_spin_unlock(&rq->lock);
+}
+
+static inline void
+task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
+       __releases(rq->lock)
+       __releases(p->pi_lock)
+{
+       raw_spin_unlock(&rq->lock);
+       raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+}
+
+#ifdef CONFIG_SMP
+#ifdef CONFIG_PREEMPT
+
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
+
+/*
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations.  This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below.  However, it
+ * also adds more overhead and therefore may reduce throughput.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       raw_spin_unlock(&this_rq->lock);
+       double_rq_lock(this_rq, busiest);
+
+       return 1;
+}
+
+#else
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry.  This favors lower cpu-ids and will
+ * grant the double lock to lower cpus over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       int ret = 0;
+
+       if (unlikely(!raw_spin_trylock(&busiest->lock))) {
+               if (busiest < this_rq) {
+                       raw_spin_unlock(&this_rq->lock);
+                       raw_spin_lock(&busiest->lock);
+                       raw_spin_lock_nested(&this_rq->lock,
+                                             SINGLE_DEPTH_NESTING);
+                       ret = 1;
+               } else
+                       raw_spin_lock_nested(&busiest->lock,
+                                             SINGLE_DEPTH_NESTING);
+       }
+       return ret;
+}
+
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+       if (unlikely(!irqs_disabled())) {
+               /* printk() doesn't work good under rq->lock */
+               raw_spin_unlock(&this_rq->lock);
+               BUG_ON(1);
+       }
+
+       return _double_lock_balance(this_rq, busiest);
+}
+
+static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(busiest->lock)
+{
+       raw_spin_unlock(&busiest->lock);
+       lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
+}
+
+static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
+{
+       if (l1 > l2)
+               swap(l1, l2);
+
+       spin_lock(l1);
+       spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
+{
+       if (l1 > l2)
+               swap(l1, l2);
+
+       spin_lock_irq(l1);
+       spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
+{
+       if (l1 > l2)
+               swap(l1, l2);
+
+       raw_spin_lock(l1);
+       raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+{
+       BUG_ON(!irqs_disabled());
+       if (rq1 == rq2) {
+               raw_spin_lock(&rq1->lock);
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1 < rq2) {
+                       raw_spin_lock(&rq1->lock);
+                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+               } else {
+                       raw_spin_lock(&rq2->lock);
+                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+               }
+       }
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+{
+       raw_spin_unlock(&rq1->lock);
+       if (rq1 != rq2)
+               raw_spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
+}
+
+#else /* CONFIG_SMP */
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+{
+       BUG_ON(!irqs_disabled());
+       BUG_ON(rq1 != rq2);
+       raw_spin_lock(&rq1->lock);
+       __acquire(rq2->lock);   /* Fake it out ;) */
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+{
+       BUG_ON(rq1 != rq2);
+       raw_spin_unlock(&rq1->lock);
+       __release(rq2->lock);
+}
+
+#endif
+
+extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
+extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
+extern void print_cfs_stats(struct seq_file *m, int cpu);
+extern void print_rt_stats(struct seq_file *m, int cpu);
+extern void print_dl_stats(struct seq_file *m, int cpu);
+
+extern void init_cfs_rq(struct cfs_rq *cfs_rq);
+extern void init_rt_rq(struct rt_rq *rt_rq);
+extern void init_dl_rq(struct dl_rq *dl_rq);
+
+extern void cfs_bandwidth_usage_inc(void);
+extern void cfs_bandwidth_usage_dec(void);
+
+#ifdef CONFIG_NO_HZ_COMMON
+enum rq_nohz_flag_bits {
+       NOHZ_TICK_STOPPED,
+       NOHZ_BALANCE_KICK,
+};
+
+#define nohz_flags(cpu)        (&cpu_rq(cpu)->nohz_flags)
+#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+
+DECLARE_PER_CPU(u64, cpu_hardirq_time);
+DECLARE_PER_CPU(u64, cpu_softirq_time);
+
+#ifndef CONFIG_64BIT
+DECLARE_PER_CPU(seqcount_t, irq_time_seq);
+
+static inline void irq_time_write_begin(void)
+{
+       __this_cpu_inc(irq_time_seq.sequence);
+       smp_wmb();
+}
+
+static inline void irq_time_write_end(void)
+{
+       smp_wmb();
+       __this_cpu_inc(irq_time_seq.sequence);
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+       u64 irq_time;
+       unsigned seq;
+
+       do {
+               seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
+               irq_time = per_cpu(cpu_softirq_time, cpu) +
+                          per_cpu(cpu_hardirq_time, cpu);
+       } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
+
+       return irq_time;
+}
+#else /* CONFIG_64BIT */
+static inline void irq_time_write_begin(void)
+{
+}
+
+static inline void irq_time_write_end(void)
+{
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+       return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
+}
+#endif /* CONFIG_64BIT */
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */