Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / sched / rt.c
diff --git a/kernel/kernel/sched/rt.c b/kernel/kernel/sched/rt.c
new file mode 100644 (file)
index 0000000..637aa20
--- /dev/null
@@ -0,0 +1,2348 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+#include "sched.h"
+
+#include <linux/slab.h>
+#include <linux/irq_work.h>
+
+int sched_rr_timeslice = RR_TIMESLICE;
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
+
+struct rt_bandwidth def_rt_bandwidth;
+
+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
+{
+       struct rt_bandwidth *rt_b =
+               container_of(timer, struct rt_bandwidth, rt_period_timer);
+       ktime_t now;
+       int overrun;
+       int idle = 0;
+
+       for (;;) {
+               now = hrtimer_cb_get_time(timer);
+               overrun = hrtimer_forward(timer, now, rt_b->rt_period);
+
+               if (!overrun)
+                       break;
+
+               idle = do_sched_rt_period_timer(rt_b, overrun);
+       }
+
+       return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
+{
+       rt_b->rt_period = ns_to_ktime(period);
+       rt_b->rt_runtime = runtime;
+
+       raw_spin_lock_init(&rt_b->rt_runtime_lock);
+
+       hrtimer_init(&rt_b->rt_period_timer,
+                       CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       rt_b->rt_period_timer.irqsafe = 1;
+       rt_b->rt_period_timer.function = sched_rt_period_timer;
+}
+
+static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+       if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+               return;
+
+       if (hrtimer_active(&rt_b->rt_period_timer))
+               return;
+
+       raw_spin_lock(&rt_b->rt_runtime_lock);
+       start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
+       raw_spin_unlock(&rt_b->rt_runtime_lock);
+}
+
+#ifdef CONFIG_SMP
+static void push_irq_work_func(struct irq_work *work);
+#endif
+
+void init_rt_rq(struct rt_rq *rt_rq)
+{
+       struct rt_prio_array *array;
+       int i;
+
+       array = &rt_rq->active;
+       for (i = 0; i < MAX_RT_PRIO; i++) {
+               INIT_LIST_HEAD(array->queue + i);
+               __clear_bit(i, array->bitmap);
+       }
+       /* delimiter for bitsearch: */
+       __set_bit(MAX_RT_PRIO, array->bitmap);
+
+#if defined CONFIG_SMP
+       rt_rq->highest_prio.curr = MAX_RT_PRIO;
+       rt_rq->highest_prio.next = MAX_RT_PRIO;
+       rt_rq->rt_nr_migratory = 0;
+       rt_rq->overloaded = 0;
+       plist_head_init(&rt_rq->pushable_tasks);
+
+#ifdef HAVE_RT_PUSH_IPI
+       rt_rq->push_flags = 0;
+       rt_rq->push_cpu = nr_cpu_ids;
+       raw_spin_lock_init(&rt_rq->push_lock);
+       init_irq_work(&rt_rq->push_work, push_irq_work_func);
+       rt_rq->push_work.flags |= IRQ_WORK_HARD_IRQ;
+#endif
+#endif /* CONFIG_SMP */
+       /* We start is dequeued state, because no RT tasks are queued */
+       rt_rq->rt_queued = 0;
+
+       rt_rq->rt_time = 0;
+       rt_rq->rt_throttled = 0;
+       rt_rq->rt_runtime = 0;
+       raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+       hrtimer_cancel(&rt_b->rt_period_timer);
+}
+
+#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       WARN_ON_ONCE(!rt_entity_is_task(rt_se));
+#endif
+       return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+       return rt_rq->rq;
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+       return rt_se->rt_rq;
+}
+
+static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *rt_rq = rt_se->rt_rq;
+
+       return rt_rq->rq;
+}
+
+void free_rt_sched_group(struct task_group *tg)
+{
+       int i;
+
+       if (tg->rt_se)
+               destroy_rt_bandwidth(&tg->rt_bandwidth);
+
+       for_each_possible_cpu(i) {
+               if (tg->rt_rq)
+                       kfree(tg->rt_rq[i]);
+               if (tg->rt_se)
+                       kfree(tg->rt_se[i]);
+       }
+
+       kfree(tg->rt_rq);
+       kfree(tg->rt_se);
+}
+
+void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+               struct sched_rt_entity *rt_se, int cpu,
+               struct sched_rt_entity *parent)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+       rt_rq->highest_prio.curr = MAX_RT_PRIO;
+       rt_rq->rt_nr_boosted = 0;
+       rt_rq->rq = rq;
+       rt_rq->tg = tg;
+
+       tg->rt_rq[cpu] = rt_rq;
+       tg->rt_se[cpu] = rt_se;
+
+       if (!rt_se)
+               return;
+
+       if (!parent)
+               rt_se->rt_rq = &rq->rt;
+       else
+               rt_se->rt_rq = parent->my_q;
+
+       rt_se->my_q = rt_rq;
+       rt_se->parent = parent;
+       INIT_LIST_HEAD(&rt_se->run_list);
+}
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       struct rt_rq *rt_rq;
+       struct sched_rt_entity *rt_se;
+       int i;
+
+       tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->rt_rq)
+               goto err;
+       tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->rt_se)
+               goto err;
+
+       init_rt_bandwidth(&tg->rt_bandwidth,
+                       ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+
+       for_each_possible_cpu(i) {
+               rt_rq = kzalloc_node(sizeof(struct rt_rq),
+                                    GFP_KERNEL, cpu_to_node(i));
+               if (!rt_rq)
+                       goto err;
+
+               rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
+                                    GFP_KERNEL, cpu_to_node(i));
+               if (!rt_se)
+                       goto err_free_rq;
+
+               init_rt_rq(rt_rq);
+               rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
+               init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
+       }
+
+       return 1;
+
+err_free_rq:
+       kfree(rt_rq);
+err:
+       return 0;
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+#define rt_entity_is_task(rt_se) (1)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+       return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+       return container_of(rt_rq, struct rq, rt);
+}
+
+static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
+{
+       struct task_struct *p = rt_task_of(rt_se);
+
+       return task_rq(p);
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+       struct rq *rq = rq_of_rt_se(rt_se);
+
+       return &rq->rt;
+}
+
+void free_rt_sched_group(struct task_group *tg) { }
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       return 1;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+
+static int pull_rt_task(struct rq *this_rq);
+
+static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
+{
+       /* Try to pull RT tasks here if we lower this rq's prio */
+       return rq->rt.highest_prio.curr > prev->prio;
+}
+
+static inline int rt_overloaded(struct rq *rq)
+{
+       return atomic_read(&rq->rd->rto_count);
+}
+
+static inline void rt_set_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
+       /*
+        * Make sure the mask is visible before we set
+        * the overload count. That is checked to determine
+        * if we should look at the mask. It would be a shame
+        * if we looked at the mask, but the mask was not
+        * updated yet.
+        *
+        * Matched by the barrier in pull_rt_task().
+        */
+       smp_wmb();
+       atomic_inc(&rq->rd->rto_count);
+}
+
+static inline void rt_clear_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       /* the order here really doesn't matter */
+       atomic_dec(&rq->rd->rto_count);
+       cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
+}
+
+static void update_rt_migration(struct rt_rq *rt_rq)
+{
+       if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
+               if (!rt_rq->overloaded) {
+                       rt_set_overload(rq_of_rt_rq(rt_rq));
+                       rt_rq->overloaded = 1;
+               }
+       } else if (rt_rq->overloaded) {
+               rt_clear_overload(rq_of_rt_rq(rt_rq));
+               rt_rq->overloaded = 0;
+       }
+}
+
+static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       struct task_struct *p;
+
+       if (!rt_entity_is_task(rt_se))
+               return;
+
+       p = rt_task_of(rt_se);
+       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+       rt_rq->rt_nr_total++;
+       if (p->nr_cpus_allowed > 1)
+               rt_rq->rt_nr_migratory++;
+
+       update_rt_migration(rt_rq);
+}
+
+static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       struct task_struct *p;
+
+       if (!rt_entity_is_task(rt_se))
+               return;
+
+       p = rt_task_of(rt_se);
+       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+       rt_rq->rt_nr_total--;
+       if (p->nr_cpus_allowed > 1)
+               rt_rq->rt_nr_migratory--;
+
+       update_rt_migration(rt_rq);
+}
+
+static inline int has_pushable_tasks(struct rq *rq)
+{
+       return !plist_head_empty(&rq->rt.pushable_tasks);
+}
+
+static inline void set_post_schedule(struct rq *rq)
+{
+       /*
+        * We detect this state here so that we can avoid taking the RQ
+        * lock again later if there is no need to push
+        */
+       rq->post_schedule = has_pushable_tasks(rq);
+}
+
+static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+       plist_node_init(&p->pushable_tasks, p->prio);
+       plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+       /* Update the highest prio pushable task */
+       if (p->prio < rq->rt.highest_prio.next)
+               rq->rt.highest_prio.next = p->prio;
+}
+
+static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+       /* Update the new highest prio pushable task */
+       if (has_pushable_tasks(rq)) {
+               p = plist_first_entry(&rq->rt.pushable_tasks,
+                                     struct task_struct, pushable_tasks);
+               rq->rt.highest_prio.next = p->prio;
+       } else
+               rq->rt.highest_prio.next = MAX_RT_PRIO;
+}
+
+#else
+
+static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline
+void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
+{
+       return false;
+}
+
+static inline int pull_rt_task(struct rq *this_rq)
+{
+       return 0;
+}
+
+static inline void set_post_schedule(struct rq *rq)
+{
+}
+#endif /* CONFIG_SMP */
+
+static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
+static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
+
+static inline int on_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return !list_empty(&rt_se->run_list);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+       if (!rt_rq->tg)
+               return RUNTIME_INF;
+
+       return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+       return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+}
+
+typedef struct task_group *rt_rq_iter_t;
+
+static inline struct task_group *next_task_group(struct task_group *tg)
+{
+       do {
+               tg = list_entry_rcu(tg->list.next,
+                       typeof(struct task_group), list);
+       } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
+
+       if (&tg->list == &task_groups)
+               tg = NULL;
+
+       return tg;
+}
+
+#define for_each_rt_rq(rt_rq, iter, rq)                                        \
+       for (iter = container_of(&task_groups, typeof(*iter), list);    \
+               (iter = next_task_group(iter)) &&                       \
+               (rt_rq = iter->rt_rq[cpu_of(rq)]);)
+
+#define for_each_sched_rt_entity(rt_se) \
+       for (; rt_se; rt_se = rt_se->parent)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return rt_se->my_q;
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+
+static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+       struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+       struct sched_rt_entity *rt_se;
+
+       int cpu = cpu_of(rq);
+
+       rt_se = rt_rq->tg->rt_se[cpu];
+
+       if (rt_rq->rt_nr_running) {
+               if (!rt_se)
+                       enqueue_top_rt_rq(rt_rq);
+               else if (!on_rt_rq(rt_se))
+                       enqueue_rt_entity(rt_se, false);
+
+               if (rt_rq->highest_prio.curr < curr->prio)
+                       resched_curr(rq);
+       }
+}
+
+static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+       struct sched_rt_entity *rt_se;
+       int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+       rt_se = rt_rq->tg->rt_se[cpu];
+
+       if (!rt_se)
+               dequeue_top_rt_rq(rt_rq);
+       else if (on_rt_rq(rt_se))
+               dequeue_rt_entity(rt_se);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
+}
+
+static int rt_se_boosted(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *rt_rq = group_rt_rq(rt_se);
+       struct task_struct *p;
+
+       if (rt_rq)
+               return !!rt_rq->rt_nr_boosted;
+
+       p = rt_task_of(rt_se);
+       return p->prio != p->normal_prio;
+}
+
+#ifdef CONFIG_SMP
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return this_rq()->rd->span;
+}
+#else
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return cpu_online_mask;
+}
+#endif
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+       return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+       return &rt_rq->tg->rt_bandwidth;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+       return ktime_to_ns(def_rt_bandwidth.rt_period);
+}
+
+typedef struct rt_rq *rt_rq_iter_t;
+
+#define for_each_rt_rq(rt_rq, iter, rq) \
+       for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+#define for_each_sched_rt_entity(rt_se) \
+       for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+       if (!rt_rq->rt_nr_running)
+               return;
+
+       enqueue_top_rt_rq(rt_rq);
+       resched_curr(rq);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+       dequeue_top_rt_rq(rt_rq);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_throttled;
+}
+
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return cpu_online_mask;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+       return &cpu_rq(cpu)->rt;
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+       return &def_rt_bandwidth;
+}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
+{
+       struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+       return (hrtimer_active(&rt_b->rt_period_timer) ||
+               rt_rq->rt_time < rt_b->rt_runtime);
+}
+
+#ifdef CONFIG_SMP
+/*
+ * We ran out of runtime, see if we can borrow some from our neighbours.
+ */
+static int do_balance_runtime(struct rt_rq *rt_rq)
+{
+       struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+       struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
+       int i, weight, more = 0;
+       u64 rt_period;
+
+       weight = cpumask_weight(rd->span);
+
+       raw_spin_lock(&rt_b->rt_runtime_lock);
+       rt_period = ktime_to_ns(rt_b->rt_period);
+       for_each_cpu(i, rd->span) {
+               struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+               s64 diff;
+
+               if (iter == rt_rq)
+                       continue;
+
+               raw_spin_lock(&iter->rt_runtime_lock);
+               /*
+                * Either all rqs have inf runtime and there's nothing to steal
+                * or __disable_runtime() below sets a specific rq to inf to
+                * indicate its been disabled and disalow stealing.
+                */
+               if (iter->rt_runtime == RUNTIME_INF)
+                       goto next;
+
+               /*
+                * From runqueues with spare time, take 1/n part of their
+                * spare time, but no more than our period.
+                */
+               diff = iter->rt_runtime - iter->rt_time;
+               if (diff > 0) {
+                       diff = div_u64((u64)diff, weight);
+                       if (rt_rq->rt_runtime + diff > rt_period)
+                               diff = rt_period - rt_rq->rt_runtime;
+                       iter->rt_runtime -= diff;
+                       rt_rq->rt_runtime += diff;
+                       more = 1;
+                       if (rt_rq->rt_runtime == rt_period) {
+                               raw_spin_unlock(&iter->rt_runtime_lock);
+                               break;
+                       }
+               }
+next:
+               raw_spin_unlock(&iter->rt_runtime_lock);
+       }
+       raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+       return more;
+}
+
+/*
+ * Ensure this RQ takes back all the runtime it lend to its neighbours.
+ */
+static void __disable_runtime(struct rq *rq)
+{
+       struct root_domain *rd = rq->rd;
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       if (unlikely(!scheduler_running))
+               return;
+
+       for_each_rt_rq(rt_rq, iter, rq) {
+               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+               s64 want;
+               int i;
+
+               raw_spin_lock(&rt_b->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               /*
+                * Either we're all inf and nobody needs to borrow, or we're
+                * already disabled and thus have nothing to do, or we have
+                * exactly the right amount of runtime to take out.
+                */
+               if (rt_rq->rt_runtime == RUNTIME_INF ||
+                               rt_rq->rt_runtime == rt_b->rt_runtime)
+                       goto balanced;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+
+               /*
+                * Calculate the difference between what we started out with
+                * and what we current have, that's the amount of runtime
+                * we lend and now have to reclaim.
+                */
+               want = rt_b->rt_runtime - rt_rq->rt_runtime;
+
+               /*
+                * Greedy reclaim, take back as much as we can.
+                */
+               for_each_cpu(i, rd->span) {
+                       struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+                       s64 diff;
+
+                       /*
+                        * Can't reclaim from ourselves or disabled runqueues.
+                        */
+                       if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
+                               continue;
+
+                       raw_spin_lock(&iter->rt_runtime_lock);
+                       if (want > 0) {
+                               diff = min_t(s64, iter->rt_runtime, want);
+                               iter->rt_runtime -= diff;
+                               want -= diff;
+                       } else {
+                               iter->rt_runtime -= want;
+                               want -= want;
+                       }
+                       raw_spin_unlock(&iter->rt_runtime_lock);
+
+                       if (!want)
+                               break;
+               }
+
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               /*
+                * We cannot be left wanting - that would mean some runtime
+                * leaked out of the system.
+                */
+               BUG_ON(want);
+balanced:
+               /*
+                * Disable all the borrow logic by pretending we have inf
+                * runtime - in which case borrowing doesn't make sense.
+                */
+               rt_rq->rt_runtime = RUNTIME_INF;
+               rt_rq->rt_throttled = 0;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+               /* Make rt_rq available for pick_next_task() */
+               sched_rt_rq_enqueue(rt_rq);
+       }
+}
+
+static void __enable_runtime(struct rq *rq)
+{
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       if (unlikely(!scheduler_running))
+               return;
+
+       /*
+        * Reset each runqueue's bandwidth settings
+        */
+       for_each_rt_rq(rt_rq, iter, rq) {
+               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+               raw_spin_lock(&rt_b->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               rt_rq->rt_runtime = rt_b->rt_runtime;
+               rt_rq->rt_time = 0;
+               rt_rq->rt_throttled = 0;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_b->rt_runtime_lock);
+       }
+}
+
+static int balance_runtime(struct rt_rq *rt_rq)
+{
+       int more = 0;
+
+       if (!sched_feat(RT_RUNTIME_SHARE))
+               return more;
+
+       if (rt_rq->rt_time > rt_rq->rt_runtime) {
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               more = do_balance_runtime(rt_rq);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+       }
+
+       return more;
+}
+#else /* !CONFIG_SMP */
+static inline int balance_runtime(struct rt_rq *rt_rq)
+{
+       return 0;
+}
+#endif /* CONFIG_SMP */
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+{
+       int i, idle = 1, throttled = 0;
+       const struct cpumask *span;
+
+       span = sched_rt_period_mask();
+#ifdef CONFIG_RT_GROUP_SCHED
+       /*
+        * FIXME: isolated CPUs should really leave the root task group,
+        * whether they are isolcpus or were isolated via cpusets, lest
+        * the timer run on a CPU which does not service all runqueues,
+        * potentially leaving other CPUs indefinitely throttled.  If
+        * isolation is really required, the user will turn the throttle
+        * off to kill the perturbations it causes anyway.  Meanwhile,
+        * this maintains functionality for boot and/or troubleshooting.
+        */
+       if (rt_b == &root_task_group.rt_bandwidth)
+               span = cpu_online_mask;
+#endif
+       for_each_cpu(i, span) {
+               int enqueue = 0;
+               struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
+               struct rq *rq = rq_of_rt_rq(rt_rq);
+
+               raw_spin_lock(&rq->lock);
+               if (rt_rq->rt_time) {
+                       u64 runtime;
+
+                       raw_spin_lock(&rt_rq->rt_runtime_lock);
+                       if (rt_rq->rt_throttled)
+                               balance_runtime(rt_rq);
+                       runtime = rt_rq->rt_runtime;
+                       rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
+                       if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+                               rt_rq->rt_throttled = 0;
+                               enqueue = 1;
+
+                               /*
+                                * When we're idle and a woken (rt) task is
+                                * throttled check_preempt_curr() will set
+                                * skip_update and the time between the wakeup
+                                * and this unthrottle will get accounted as
+                                * 'runtime'.
+                                */
+                               if (rt_rq->rt_nr_running && rq->curr == rq->idle)
+                                       rq_clock_skip_update(rq, false);
+                       }
+                       if (rt_rq->rt_time || rt_rq->rt_nr_running)
+                               idle = 0;
+                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               } else if (rt_rq->rt_nr_running) {
+                       idle = 0;
+                       if (!rt_rq_throttled(rt_rq))
+                               enqueue = 1;
+               }
+               if (rt_rq->rt_throttled)
+                       throttled = 1;
+
+               if (enqueue)
+                       sched_rt_rq_enqueue(rt_rq);
+               raw_spin_unlock(&rq->lock);
+       }
+
+       if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
+               return 1;
+
+       return idle;
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+       struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+       if (rt_rq)
+               return rt_rq->highest_prio.curr;
+#endif
+
+       return rt_task_of(rt_se)->prio;
+}
+
+static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
+{
+       u64 runtime = sched_rt_runtime(rt_rq);
+
+       if (rt_rq->rt_throttled)
+               return rt_rq_throttled(rt_rq);
+
+       if (runtime >= sched_rt_period(rt_rq))
+               return 0;
+
+       balance_runtime(rt_rq);
+       runtime = sched_rt_runtime(rt_rq);
+       if (runtime == RUNTIME_INF)
+               return 0;
+
+       if (rt_rq->rt_time > runtime) {
+               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+               /*
+                * Don't actually throttle groups that have no runtime assigned
+                * but accrue some time due to boosting.
+                */
+               if (likely(rt_b->rt_runtime)) {
+                       rt_rq->rt_throttled = 1;
+                       printk_deferred_once("sched: RT throttling activated\n");
+               } else {
+                       /*
+                        * In case we did anyway, make it go away,
+                        * replenishment is a joke, since it will replenish us
+                        * with exactly 0 ns.
+                        */
+                       rt_rq->rt_time = 0;
+               }
+
+               if (rt_rq_throttled(rt_rq)) {
+                       sched_rt_rq_dequeue(rt_rq);
+                       return 1;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static void update_curr_rt(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+       struct sched_rt_entity *rt_se = &curr->rt;
+       u64 delta_exec;
+
+       if (curr->sched_class != &rt_sched_class)
+               return;
+
+       delta_exec = rq_clock_task(rq) - curr->se.exec_start;
+       if (unlikely((s64)delta_exec <= 0))
+               return;
+
+       schedstat_set(curr->se.statistics.exec_max,
+                     max(curr->se.statistics.exec_max, delta_exec));
+
+       curr->se.sum_exec_runtime += delta_exec;
+       account_group_exec_runtime(curr, delta_exec);
+
+       curr->se.exec_start = rq_clock_task(rq);
+       cpuacct_charge(curr, delta_exec);
+
+       sched_rt_avg_update(rq, delta_exec);
+
+       if (!rt_bandwidth_enabled())
+               return;
+
+       for_each_sched_rt_entity(rt_se) {
+               struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+
+               if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+                       raw_spin_lock(&rt_rq->rt_runtime_lock);
+                       rt_rq->rt_time += delta_exec;
+                       if (sched_rt_runtime_exceeded(rt_rq))
+                               resched_curr(rq);
+                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               }
+       }
+}
+
+static void
+dequeue_top_rt_rq(struct rt_rq *rt_rq)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+       BUG_ON(&rq->rt != rt_rq);
+
+       if (!rt_rq->rt_queued)
+               return;
+
+       BUG_ON(!rq->nr_running);
+
+       sub_nr_running(rq, rt_rq->rt_nr_running);
+       rt_rq->rt_queued = 0;
+}
+
+static void
+enqueue_top_rt_rq(struct rt_rq *rt_rq)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+       BUG_ON(&rq->rt != rt_rq);
+
+       if (rt_rq->rt_queued)
+               return;
+       if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
+               return;
+
+       add_nr_running(rq, rt_rq->rt_nr_running);
+       rt_rq->rt_queued = 1;
+}
+
+#if defined CONFIG_SMP
+
+static void
+inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       /*
+        * Change rq's cpupri only if rt_rq is the top queue.
+        */
+       if (&rq->rt != rt_rq)
+               return;
+#endif
+       if (rq->online && prio < prev_prio)
+               cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
+}
+
+static void
+dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       /*
+        * Change rq's cpupri only if rt_rq is the top queue.
+        */
+       if (&rq->rt != rt_rq)
+               return;
+#endif
+       if (rq->online && rt_rq->highest_prio.curr != prev_prio)
+               cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
+}
+
+#else /* CONFIG_SMP */
+
+static inline
+void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+static inline
+void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+
+#endif /* CONFIG_SMP */
+
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+static void
+inc_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+       int prev_prio = rt_rq->highest_prio.curr;
+
+       if (prio < prev_prio)
+               rt_rq->highest_prio.curr = prio;
+
+       inc_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+static void
+dec_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+       int prev_prio = rt_rq->highest_prio.curr;
+
+       if (rt_rq->rt_nr_running) {
+
+               WARN_ON(prio < prev_prio);
+
+               /*
+                * This may have been our highest task, and therefore
+                * we may have some recomputation to do
+                */
+               if (prio == prev_prio) {
+                       struct rt_prio_array *array = &rt_rq->active;
+
+                       rt_rq->highest_prio.curr =
+                               sched_find_first_bit(array->bitmap);
+               }
+
+       } else
+               rt_rq->highest_prio.curr = MAX_RT_PRIO;
+
+       dec_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+#else
+
+static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
+static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
+
+#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (rt_se_boosted(rt_se))
+               rt_rq->rt_nr_boosted++;
+
+       if (rt_rq->tg)
+               start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+}
+
+static void
+dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (rt_se_boosted(rt_se))
+               rt_rq->rt_nr_boosted--;
+
+       WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       start_rt_bandwidth(&def_rt_bandwidth);
+}
+
+static inline
+void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static inline
+unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *group_rq = group_rt_rq(rt_se);
+
+       if (group_rq)
+               return group_rq->rt_nr_running;
+       else
+               return 1;
+}
+
+static inline
+void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       int prio = rt_se_prio(rt_se);
+
+       WARN_ON(!rt_prio(prio));
+       rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
+
+       inc_rt_prio(rt_rq, prio);
+       inc_rt_migration(rt_se, rt_rq);
+       inc_rt_group(rt_se, rt_rq);
+}
+
+static inline
+void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+       WARN_ON(!rt_rq->rt_nr_running);
+       rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
+
+       dec_rt_prio(rt_rq, rt_se_prio(rt_se));
+       dec_rt_migration(rt_se, rt_rq);
+       dec_rt_group(rt_se, rt_rq);
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+       struct rt_prio_array *array = &rt_rq->active;
+       struct rt_rq *group_rq = group_rt_rq(rt_se);
+       struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+       /*
+        * Don't enqueue the group if its throttled, or when empty.
+        * The latter is a consequence of the former when a child group
+        * get throttled and the current group doesn't have any other
+        * active members.
+        */
+       if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
+               return;
+
+       if (head)
+               list_add(&rt_se->run_list, queue);
+       else
+               list_add_tail(&rt_se->run_list, queue);
+       __set_bit(rt_se_prio(rt_se), array->bitmap);
+
+       inc_rt_tasks(rt_se, rt_rq);
+}
+
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+       struct rt_prio_array *array = &rt_rq->active;
+
+       list_del_init(&rt_se->run_list);
+       if (list_empty(array->queue + rt_se_prio(rt_se)))
+               __clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+       dec_rt_tasks(rt_se, rt_rq);
+}
+
+/*
+ * Because the prio of an upper entry depends on the lower
+ * entries, we must remove entries top - down.
+ */
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
+{
+       struct sched_rt_entity *back = NULL;
+
+       for_each_sched_rt_entity(rt_se) {
+               rt_se->back = back;
+               back = rt_se;
+       }
+
+       dequeue_top_rt_rq(rt_rq_of_se(back));
+
+       for (rt_se = back; rt_se; rt_se = rt_se->back) {
+               if (on_rt_rq(rt_se))
+                       __dequeue_rt_entity(rt_se);
+       }
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+       struct rq *rq = rq_of_rt_se(rt_se);
+
+       dequeue_rt_stack(rt_se);
+       for_each_sched_rt_entity(rt_se)
+               __enqueue_rt_entity(rt_se, head);
+       enqueue_top_rt_rq(&rq->rt);
+}
+
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+       struct rq *rq = rq_of_rt_se(rt_se);
+
+       dequeue_rt_stack(rt_se);
+
+       for_each_sched_rt_entity(rt_se) {
+               struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+               if (rt_rq && rt_rq->rt_nr_running)
+                       __enqueue_rt_entity(rt_se, false);
+       }
+       enqueue_top_rt_rq(&rq->rt);
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+
+       if (flags & ENQUEUE_WAKEUP)
+               rt_se->timeout = 0;
+
+       enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
+
+       if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
+               enqueue_pushable_task(rq, p);
+}
+
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+
+       update_curr_rt(rq);
+       dequeue_rt_entity(rt_se);
+
+       dequeue_pushable_task(rq, p);
+}
+
+/*
+ * Put task to the head or the end of the run list without the overhead of
+ * dequeue followed by enqueue.
+ */
+static void
+requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
+{
+       if (on_rt_rq(rt_se)) {
+               struct rt_prio_array *array = &rt_rq->active;
+               struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+               if (head)
+                       list_move(&rt_se->run_list, queue);
+               else
+                       list_move_tail(&rt_se->run_list, queue);
+       }
+}
+
+static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+       struct rt_rq *rt_rq;
+
+       for_each_sched_rt_entity(rt_se) {
+               rt_rq = rt_rq_of_se(rt_se);
+               requeue_rt_entity(rt_rq, rt_se, head);
+       }
+}
+
+static void yield_task_rt(struct rq *rq)
+{
+       requeue_task_rt(rq, rq->curr, 0);
+}
+
+#ifdef CONFIG_SMP
+static int find_lowest_rq(struct task_struct *task);
+
+static int
+select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
+{
+       struct task_struct *curr;
+       struct rq *rq;
+
+       /* For anything but wake ups, just return the task_cpu */
+       if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+               goto out;
+
+       rq = cpu_rq(cpu);
+
+       rcu_read_lock();
+       curr = ACCESS_ONCE(rq->curr); /* unlocked access */
+
+       /*
+        * If the current task on @p's runqueue is an RT task, then
+        * try to see if we can wake this RT task up on another
+        * runqueue. Otherwise simply start this RT task
+        * on its current runqueue.
+        *
+        * We want to avoid overloading runqueues. If the woken
+        * task is a higher priority, then it will stay on this CPU
+        * and the lower prio task should be moved to another CPU.
+        * Even though this will probably make the lower prio task
+        * lose its cache, we do not want to bounce a higher task
+        * around just because it gave up its CPU, perhaps for a
+        * lock?
+        *
+        * For equal prio tasks, we just let the scheduler sort it out.
+        *
+        * Otherwise, just let it ride on the affined RQ and the
+        * post-schedule router will push the preempted task away
+        *
+        * This test is optimistic, if we get it wrong the load-balancer
+        * will have to sort it out.
+        */
+       if (curr && unlikely(rt_task(curr)) &&
+           (curr->nr_cpus_allowed < 2 ||
+            curr->prio <= p->prio)) {
+               int target = find_lowest_rq(p);
+
+               /*
+                * Don't bother moving it if the destination CPU is
+                * not running a lower priority task.
+                */
+               if (target != -1 &&
+                   p->prio < cpu_rq(target)->rt.highest_prio.curr)
+                       cpu = target;
+       }
+       rcu_read_unlock();
+
+out:
+       return cpu;
+}
+
+static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
+{
+       /*
+        * Current can't be migrated, useless to reschedule,
+        * let's hope p can move out.
+        */
+       if (rq->curr->nr_cpus_allowed == 1 ||
+           !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+               return;
+
+       /*
+        * p is migratable, so let's not schedule it and
+        * see if it is pushed or pulled somewhere else.
+        */
+       if (p->nr_cpus_allowed != 1
+           && cpupri_find(&rq->rd->cpupri, p, NULL))
+               return;
+
+       /*
+        * There appears to be other cpus that can accept
+        * current and none to run 'p', so lets reschedule
+        * to try and push current away:
+        */
+       requeue_task_rt(rq, p, 1);
+       resched_curr(rq);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       if (p->prio < rq->curr->prio) {
+               resched_curr(rq);
+               return;
+       }
+
+#ifdef CONFIG_SMP
+       /*
+        * If:
+        *
+        * - the newly woken task is of equal priority to the current task
+        * - the newly woken task is non-migratable while current is migratable
+        * - current will be preempted on the next reschedule
+        *
+        * we should check to see if current can readily move to a different
+        * cpu.  If so, we will reschedule to allow the push logic to try
+        * to move current somewhere else, making room for our non-migratable
+        * task.
+        */
+       if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+               check_preempt_equal_prio(rq, p);
+#endif
+}
+
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
+                                                  struct rt_rq *rt_rq)
+{
+       struct rt_prio_array *array = &rt_rq->active;
+       struct sched_rt_entity *next = NULL;
+       struct list_head *queue;
+       int idx;
+
+       idx = sched_find_first_bit(array->bitmap);
+       BUG_ON(idx >= MAX_RT_PRIO);
+
+       queue = array->queue + idx;
+       next = list_entry(queue->next, struct sched_rt_entity, run_list);
+
+       return next;
+}
+
+static struct task_struct *_pick_next_task_rt(struct rq *rq)
+{
+       struct sched_rt_entity *rt_se;
+       struct task_struct *p;
+       struct rt_rq *rt_rq  = &rq->rt;
+
+       do {
+               rt_se = pick_next_rt_entity(rq, rt_rq);
+               BUG_ON(!rt_se);
+               rt_rq = group_rt_rq(rt_se);
+       } while (rt_rq);
+
+       p = rt_task_of(rt_se);
+       p->se.exec_start = rq_clock_task(rq);
+
+       return p;
+}
+
+static struct task_struct *
+pick_next_task_rt(struct rq *rq, struct task_struct *prev)
+{
+       struct task_struct *p;
+       struct rt_rq *rt_rq = &rq->rt;
+
+       if (need_pull_rt_task(rq, prev)) {
+               pull_rt_task(rq);
+               /*
+                * pull_rt_task() can drop (and re-acquire) rq->lock; this
+                * means a dl or stop task can slip in, in which case we need
+                * to re-start task selection.
+                */
+               if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
+                            rq->dl.dl_nr_running))
+                       return RETRY_TASK;
+       }
+
+       /*
+        * We may dequeue prev's rt_rq in put_prev_task().
+        * So, we update time before rt_nr_running check.
+        */
+       if (prev->sched_class == &rt_sched_class)
+               update_curr_rt(rq);
+
+       if (!rt_rq->rt_queued)
+               return NULL;
+
+       put_prev_task(rq, prev);
+
+       p = _pick_next_task_rt(rq);
+
+       /* The running task is never eligible for pushing */
+       dequeue_pushable_task(rq, p);
+
+       set_post_schedule(rq);
+
+       return p;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+{
+       update_curr_rt(rq);
+
+       /*
+        * The previous task needs to be made eligible for pushing
+        * if it is still active
+        */
+       if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
+               enqueue_pushable_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define RT_MAX_TRIES 3
+
+static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+       if (!task_running(rq, p) &&
+           cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
+               return 1;
+       return 0;
+}
+
+/*
+ * Return the highest pushable rq's task, which is suitable to be executed
+ * on the cpu, NULL otherwise
+ */
+static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
+{
+       struct plist_head *head = &rq->rt.pushable_tasks;
+       struct task_struct *p;
+
+       if (!has_pushable_tasks(rq))
+               return NULL;
+
+       plist_for_each_entry(p, head, pushable_tasks) {
+               if (pick_rt_task(rq, p, cpu))
+                       return p;
+       }
+
+       return NULL;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
+
+static int find_lowest_rq(struct task_struct *task)
+{
+       struct sched_domain *sd;
+       struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
+       int this_cpu = smp_processor_id();
+       int cpu      = task_cpu(task);
+
+       /* Make sure the mask is initialized first */
+       if (unlikely(!lowest_mask))
+               return -1;
+
+       if (task->nr_cpus_allowed == 1)
+               return -1; /* No other targets possible */
+
+       if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+               return -1; /* No targets found */
+
+       /*
+        * At this point we have built a mask of cpus representing the
+        * lowest priority tasks in the system.  Now we want to elect
+        * the best one based on our affinity and topology.
+        *
+        * We prioritize the last cpu that the task executed on since
+        * it is most likely cache-hot in that location.
+        */
+       if (cpumask_test_cpu(cpu, lowest_mask))
+               return cpu;
+
+       /*
+        * Otherwise, we consult the sched_domains span maps to figure
+        * out which cpu is logically closest to our hot cache data.
+        */
+       if (!cpumask_test_cpu(this_cpu, lowest_mask))
+               this_cpu = -1; /* Skip this_cpu opt if not among lowest */
+
+       rcu_read_lock();
+       for_each_domain(cpu, sd) {
+               if (sd->flags & SD_WAKE_AFFINE) {
+                       int best_cpu;
+
+                       /*
+                        * "this_cpu" is cheaper to preempt than a
+                        * remote processor.
+                        */
+                       if (this_cpu != -1 &&
+                           cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+                               rcu_read_unlock();
+                               return this_cpu;
+                       }
+
+                       best_cpu = cpumask_first_and(lowest_mask,
+                                                    sched_domain_span(sd));
+                       if (best_cpu < nr_cpu_ids) {
+                               rcu_read_unlock();
+                               return best_cpu;
+                       }
+               }
+       }
+       rcu_read_unlock();
+
+       /*
+        * And finally, if there were no matches within the domains
+        * just give the caller *something* to work with from the compatible
+        * locations.
+        */
+       if (this_cpu != -1)
+               return this_cpu;
+
+       cpu = cpumask_any(lowest_mask);
+       if (cpu < nr_cpu_ids)
+               return cpu;
+       return -1;
+}
+
+/* Will lock the rq it finds */
+static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
+{
+       struct rq *lowest_rq = NULL;
+       int tries;
+       int cpu;
+
+       for (tries = 0; tries < RT_MAX_TRIES; tries++) {
+               cpu = find_lowest_rq(task);
+
+               if ((cpu == -1) || (cpu == rq->cpu))
+                       break;
+
+               lowest_rq = cpu_rq(cpu);
+
+               if (lowest_rq->rt.highest_prio.curr <= task->prio) {
+                       /*
+                        * Target rq has tasks of equal or higher priority,
+                        * retrying does not release any lock and is unlikely
+                        * to yield a different result.
+                        */
+                       lowest_rq = NULL;
+                       break;
+               }
+
+               /* if the prio of this runqueue changed, try again */
+               if (double_lock_balance(rq, lowest_rq)) {
+                       /*
+                        * We had to unlock the run queue. In
+                        * the mean time, task could have
+                        * migrated already or had its affinity changed.
+                        * Also make sure that it wasn't scheduled on its rq.
+                        */
+                       if (unlikely(task_rq(task) != rq ||
+                                    !cpumask_test_cpu(lowest_rq->cpu,
+                                                      tsk_cpus_allowed(task)) ||
+                                    task_running(rq, task) ||
+                                    !task_on_rq_queued(task))) {
+
+                               double_unlock_balance(rq, lowest_rq);
+                               lowest_rq = NULL;
+                               break;
+                       }
+               }
+
+               /* If this rq is still suitable use it. */
+               if (lowest_rq->rt.highest_prio.curr > task->prio)
+                       break;
+
+               /* try again */
+               double_unlock_balance(rq, lowest_rq);
+               lowest_rq = NULL;
+       }
+
+       return lowest_rq;
+}
+
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
+{
+       struct task_struct *p;
+
+       if (!has_pushable_tasks(rq))
+               return NULL;
+
+       p = plist_first_entry(&rq->rt.pushable_tasks,
+                             struct task_struct, pushable_tasks);
+
+       BUG_ON(rq->cpu != task_cpu(p));
+       BUG_ON(task_current(rq, p));
+       BUG_ON(p->nr_cpus_allowed <= 1);
+
+       BUG_ON(!task_on_rq_queued(p));
+       BUG_ON(!rt_task(p));
+
+       return p;
+}
+
+/*
+ * If the current CPU has more than one RT task, see if the non
+ * running task can migrate over to a CPU that is running a task
+ * of lesser priority.
+ */
+static int push_rt_task(struct rq *rq)
+{
+       struct task_struct *next_task;
+       struct rq *lowest_rq;
+       int ret = 0;
+
+       if (!rq->rt.overloaded)
+               return 0;
+
+       next_task = pick_next_pushable_task(rq);
+       if (!next_task)
+               return 0;
+
+retry:
+       if (unlikely(next_task == rq->curr)) {
+               WARN_ON(1);
+               return 0;
+       }
+
+       /*
+        * It's possible that the next_task slipped in of
+        * higher priority than current. If that's the case
+        * just reschedule current.
+        */
+       if (unlikely(next_task->prio < rq->curr->prio)) {
+               resched_curr(rq);
+               return 0;
+       }
+
+       /* We might release rq lock */
+       get_task_struct(next_task);
+
+       /* find_lock_lowest_rq locks the rq if found */
+       lowest_rq = find_lock_lowest_rq(next_task, rq);
+       if (!lowest_rq) {
+               struct task_struct *task;
+               /*
+                * find_lock_lowest_rq releases rq->lock
+                * so it is possible that next_task has migrated.
+                *
+                * We need to make sure that the task is still on the same
+                * run-queue and is also still the next task eligible for
+                * pushing.
+                */
+               task = pick_next_pushable_task(rq);
+               if (task_cpu(next_task) == rq->cpu && task == next_task) {
+                       /*
+                        * The task hasn't migrated, and is still the next
+                        * eligible task, but we failed to find a run-queue
+                        * to push it to.  Do not retry in this case, since
+                        * other cpus will pull from us when ready.
+                        */
+                       goto out;
+               }
+
+               if (!task)
+                       /* No more tasks, just exit */
+                       goto out;
+
+               /*
+                * Something has shifted, try again.
+                */
+               put_task_struct(next_task);
+               next_task = task;
+               goto retry;
+       }
+
+       deactivate_task(rq, next_task, 0);
+       set_task_cpu(next_task, lowest_rq->cpu);
+       activate_task(lowest_rq, next_task, 0);
+       ret = 1;
+
+       resched_curr(lowest_rq);
+
+       double_unlock_balance(rq, lowest_rq);
+
+out:
+       put_task_struct(next_task);
+
+       return ret;
+}
+
+static void push_rt_tasks(struct rq *rq)
+{
+       /* push_rt_task will return true if it moved an RT */
+       while (push_rt_task(rq))
+               ;
+}
+
+#ifdef HAVE_RT_PUSH_IPI
+/*
+ * The search for the next cpu always starts at rq->cpu and ends
+ * when we reach rq->cpu again. It will never return rq->cpu.
+ * This returns the next cpu to check, or nr_cpu_ids if the loop
+ * is complete.
+ *
+ * rq->rt.push_cpu holds the last cpu returned by this function,
+ * or if this is the first instance, it must hold rq->cpu.
+ */
+static int rto_next_cpu(struct rq *rq)
+{
+       int prev_cpu = rq->rt.push_cpu;
+       int cpu;
+
+       cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
+
+       /*
+        * If the previous cpu is less than the rq's CPU, then it already
+        * passed the end of the mask, and has started from the beginning.
+        * We end if the next CPU is greater or equal to rq's CPU.
+        */
+       if (prev_cpu < rq->cpu) {
+               if (cpu >= rq->cpu)
+                       return nr_cpu_ids;
+
+       } else if (cpu >= nr_cpu_ids) {
+               /*
+                * We passed the end of the mask, start at the beginning.
+                * If the result is greater or equal to the rq's CPU, then
+                * the loop is finished.
+                */
+               cpu = cpumask_first(rq->rd->rto_mask);
+               if (cpu >= rq->cpu)
+                       return nr_cpu_ids;
+       }
+       rq->rt.push_cpu = cpu;
+
+       /* Return cpu to let the caller know if the loop is finished or not */
+       return cpu;
+}
+
+static int find_next_push_cpu(struct rq *rq)
+{
+       struct rq *next_rq;
+       int cpu;
+
+       while (1) {
+               cpu = rto_next_cpu(rq);
+               if (cpu >= nr_cpu_ids)
+                       break;
+               next_rq = cpu_rq(cpu);
+
+               /* Make sure the next rq can push to this rq */
+               if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
+                       break;
+       }
+
+       return cpu;
+}
+
+#define RT_PUSH_IPI_EXECUTING          1
+#define RT_PUSH_IPI_RESTART            2
+
+static void tell_cpu_to_push(struct rq *rq)
+{
+       int cpu;
+
+       if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
+               raw_spin_lock(&rq->rt.push_lock);
+               /* Make sure it's still executing */
+               if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
+                       /*
+                        * Tell the IPI to restart the loop as things have
+                        * changed since it started.
+                        */
+                       rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
+                       raw_spin_unlock(&rq->rt.push_lock);
+                       return;
+               }
+               raw_spin_unlock(&rq->rt.push_lock);
+       }
+
+       /* When here, there's no IPI going around */
+
+       rq->rt.push_cpu = rq->cpu;
+       cpu = find_next_push_cpu(rq);
+       if (cpu >= nr_cpu_ids)
+               return;
+
+       rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
+
+       irq_work_queue_on(&rq->rt.push_work, cpu);
+}
+
+/* Called from hardirq context */
+static void try_to_push_tasks(void *arg)
+{
+       struct rt_rq *rt_rq = arg;
+       struct rq *rq, *src_rq;
+       int this_cpu;
+       int cpu;
+
+       this_cpu = rt_rq->push_cpu;
+
+       /* Paranoid check */
+       BUG_ON(this_cpu != smp_processor_id());
+
+       rq = cpu_rq(this_cpu);
+       src_rq = rq_of_rt_rq(rt_rq);
+
+again:
+       if (has_pushable_tasks(rq)) {
+               raw_spin_lock(&rq->lock);
+               push_rt_task(rq);
+               raw_spin_unlock(&rq->lock);
+       }
+
+       /* Pass the IPI to the next rt overloaded queue */
+       raw_spin_lock(&rt_rq->push_lock);
+       /*
+        * If the source queue changed since the IPI went out,
+        * we need to restart the search from that CPU again.
+        */
+       if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
+               rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
+               rt_rq->push_cpu = src_rq->cpu;
+       }
+
+       cpu = find_next_push_cpu(src_rq);
+
+       if (cpu >= nr_cpu_ids)
+               rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
+       raw_spin_unlock(&rt_rq->push_lock);
+
+       if (cpu >= nr_cpu_ids)
+               return;
+
+       /*
+        * It is possible that a restart caused this CPU to be
+        * chosen again. Don't bother with an IPI, just see if we
+        * have more to push.
+        */
+       if (unlikely(cpu == rq->cpu))
+               goto again;
+
+       /* Try the next RT overloaded CPU */
+       irq_work_queue_on(&rt_rq->push_work, cpu);
+}
+
+static void push_irq_work_func(struct irq_work *work)
+{
+       struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
+
+       try_to_push_tasks(rt_rq);
+}
+#endif /* HAVE_RT_PUSH_IPI */
+
+static int pull_rt_task(struct rq *this_rq)
+{
+       int this_cpu = this_rq->cpu, ret = 0, cpu;
+       struct task_struct *p;
+       struct rq *src_rq;
+
+       if (likely(!rt_overloaded(this_rq)))
+               return 0;
+
+       /*
+        * Match the barrier from rt_set_overloaded; this guarantees that if we
+        * see overloaded we must also see the rto_mask bit.
+        */
+       smp_rmb();
+
+#ifdef HAVE_RT_PUSH_IPI
+       if (sched_feat(RT_PUSH_IPI)) {
+               tell_cpu_to_push(this_rq);
+               return 0;
+       }
+#endif
+
+       for_each_cpu(cpu, this_rq->rd->rto_mask) {
+               if (this_cpu == cpu)
+                       continue;
+
+               src_rq = cpu_rq(cpu);
+
+               /*
+                * Don't bother taking the src_rq->lock if the next highest
+                * task is known to be lower-priority than our current task.
+                * This may look racy, but if this value is about to go
+                * logically higher, the src_rq will push this task away.
+                * And if its going logically lower, we do not care
+                */
+               if (src_rq->rt.highest_prio.next >=
+                   this_rq->rt.highest_prio.curr)
+                       continue;
+
+               /*
+                * We can potentially drop this_rq's lock in
+                * double_lock_balance, and another CPU could
+                * alter this_rq
+                */
+               double_lock_balance(this_rq, src_rq);
+
+               /*
+                * We can pull only a task, which is pushable
+                * on its rq, and no others.
+                */
+               p = pick_highest_pushable_task(src_rq, this_cpu);
+
+               /*
+                * Do we have an RT task that preempts
+                * the to-be-scheduled task?
+                */
+               if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
+                       WARN_ON(p == src_rq->curr);
+                       WARN_ON(!task_on_rq_queued(p));
+
+                       /*
+                        * There's a chance that p is higher in priority
+                        * than what's currently running on its cpu.
+                        * This is just that p is wakeing up and hasn't
+                        * had a chance to schedule. We only pull
+                        * p if it is lower in priority than the
+                        * current task on the run queue
+                        */
+                       if (p->prio < src_rq->curr->prio)
+                               goto skip;
+
+                       ret = 1;
+
+                       deactivate_task(src_rq, p, 0);
+                       set_task_cpu(p, this_cpu);
+                       activate_task(this_rq, p, 0);
+                       /*
+                        * We continue with the search, just in
+                        * case there's an even higher prio task
+                        * in another runqueue. (low likelihood
+                        * but possible)
+                        */
+               }
+skip:
+               double_unlock_balance(this_rq, src_rq);
+       }
+
+       return ret;
+}
+
+static void post_schedule_rt(struct rq *rq)
+{
+       push_rt_tasks(rq);
+}
+
+/*
+ * If we are not running and we are not going to reschedule soon, we should
+ * try to push tasks away now
+ */
+static void task_woken_rt(struct rq *rq, struct task_struct *p)
+{
+       if (!task_running(rq, p) &&
+           !test_tsk_need_resched(rq->curr) &&
+           has_pushable_tasks(rq) &&
+           p->nr_cpus_allowed > 1 &&
+           (dl_task(rq->curr) || rt_task(rq->curr)) &&
+           (rq->curr->nr_cpus_allowed < 2 ||
+            rq->curr->prio <= p->prio))
+               push_rt_tasks(rq);
+}
+
+static void set_cpus_allowed_rt(struct task_struct *p,
+                               const struct cpumask *new_mask)
+{
+       struct rq *rq;
+       int weight;
+
+       BUG_ON(!rt_task(p));
+
+       if (!task_on_rq_queued(p))
+               return;
+
+       weight = cpumask_weight(new_mask);
+
+       /*
+        * Only update if the process changes its state from whether it
+        * can migrate or not.
+        */
+       if ((p->nr_cpus_allowed > 1) == (weight > 1))
+               return;
+
+       rq = task_rq(p);
+
+       /*
+        * The process used to be able to migrate OR it can now migrate
+        */
+       if (weight <= 1) {
+               if (!task_current(rq, p))
+                       dequeue_pushable_task(rq, p);
+               BUG_ON(!rq->rt.rt_nr_migratory);
+               rq->rt.rt_nr_migratory--;
+       } else {
+               if (!task_current(rq, p))
+                       enqueue_pushable_task(rq, p);
+               rq->rt.rt_nr_migratory++;
+       }
+
+       update_rt_migration(&rq->rt);
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_rt(struct rq *rq)
+{
+       if (rq->rt.overloaded)
+               rt_set_overload(rq);
+
+       __enable_runtime(rq);
+
+       cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_rt(struct rq *rq)
+{
+       if (rq->rt.overloaded)
+               rt_clear_overload(rq);
+
+       __disable_runtime(rq);
+
+       cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
+}
+
+/*
+ * When switch from the rt queue, we bring ourselves to a position
+ * that we might want to pull RT tasks from other runqueues.
+ */
+static void switched_from_rt(struct rq *rq, struct task_struct *p)
+{
+       /*
+        * If there are other RT tasks then we will reschedule
+        * and the scheduling of the other RT tasks will handle
+        * the balancing. But if we are the last RT task
+        * we may need to handle the pulling of RT tasks
+        * now.
+        */
+       if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
+               return;
+
+       if (pull_rt_task(rq))
+               resched_curr(rq);
+}
+
+void __init init_sched_rt_class(void)
+{
+       unsigned int i;
+
+       for_each_possible_cpu(i) {
+               zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
+                                       GFP_KERNEL, cpu_to_node(i));
+       }
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * When switching a task to RT, we may overload the runqueue
+ * with RT tasks. In this case we try to push them off to
+ * other runqueues.
+ */
+static void switched_to_rt(struct rq *rq, struct task_struct *p)
+{
+       int check_resched = 1;
+
+       /*
+        * If we are already running, then there's nothing
+        * that needs to be done. But if we are not running
+        * we may need to preempt the current running task.
+        * If that current running task is also an RT task
+        * then see if we can move to another run queue.
+        */
+       if (task_on_rq_queued(p) && rq->curr != p) {
+#ifdef CONFIG_SMP
+               if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
+                   /* Don't resched if we changed runqueues */
+                   push_rt_task(rq) && rq != task_rq(p))
+                       check_resched = 0;
+#endif /* CONFIG_SMP */
+               if (check_resched && p->prio < rq->curr->prio)
+                       resched_curr(rq);
+       }
+}
+
+/*
+ * Priority of the task has changed. This may cause
+ * us to initiate a push or pull.
+ */
+static void
+prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
+{
+       if (!task_on_rq_queued(p))
+               return;
+
+       if (rq->curr == p) {
+#ifdef CONFIG_SMP
+               /*
+                * If our priority decreases while running, we
+                * may need to pull tasks to this runqueue.
+                */
+               if (oldprio < p->prio)
+                       pull_rt_task(rq);
+               /*
+                * If there's a higher priority task waiting to run
+                * then reschedule. Note, the above pull_rt_task
+                * can release the rq lock and p could migrate.
+                * Only reschedule if p is still on the same runqueue.
+                */
+               if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
+                       resched_curr(rq);
+#else
+               /* For UP simply resched on drop of prio */
+               if (oldprio < p->prio)
+                       resched_curr(rq);
+#endif /* CONFIG_SMP */
+       } else {
+               /*
+                * This task is not running, but if it is
+                * greater than the current running task
+                * then reschedule.
+                */
+               if (p->prio < rq->curr->prio)
+                       resched_curr(rq);
+       }
+}
+
+static void watchdog(struct rq *rq, struct task_struct *p)
+{
+       unsigned long soft, hard;
+
+       /* max may change after cur was read, this will be fixed next tick */
+       soft = task_rlimit(p, RLIMIT_RTTIME);
+       hard = task_rlimit_max(p, RLIMIT_RTTIME);
+
+       if (soft != RLIM_INFINITY) {
+               unsigned long next;
+
+               if (p->rt.watchdog_stamp != jiffies) {
+                       p->rt.timeout++;
+                       p->rt.watchdog_stamp = jiffies;
+               }
+
+               next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
+               if (p->rt.timeout > next)
+                       p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
+       }
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+
+       update_curr_rt(rq);
+
+       watchdog(rq, p);
+
+       /*
+        * RR tasks need a special form of timeslice management.
+        * FIFO tasks have no timeslices.
+        */
+       if (p->policy != SCHED_RR)
+               return;
+
+       if (--p->rt.time_slice)
+               return;
+
+       p->rt.time_slice = sched_rr_timeslice;
+
+       /*
+        * Requeue to the end of queue if we (and all of our ancestors) are not
+        * the only element on the queue
+        */
+       for_each_sched_rt_entity(rt_se) {
+               if (rt_se->run_list.prev != rt_se->run_list.next) {
+                       requeue_task_rt(rq, p, 0);
+                       resched_curr(rq);
+                       return;
+               }
+       }
+}
+
+static void set_curr_task_rt(struct rq *rq)
+{
+       struct task_struct *p = rq->curr;
+
+       p->se.exec_start = rq_clock_task(rq);
+
+       /* The running task is never eligible for pushing */
+       dequeue_pushable_task(rq, p);
+}
+
+static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
+{
+       /*
+        * Time slice is 0 for SCHED_FIFO tasks
+        */
+       if (task->policy == SCHED_RR)
+               return sched_rr_timeslice;
+       else
+               return 0;
+}
+
+const struct sched_class rt_sched_class = {
+       .next                   = &fair_sched_class,
+       .enqueue_task           = enqueue_task_rt,
+       .dequeue_task           = dequeue_task_rt,
+       .yield_task             = yield_task_rt,
+
+       .check_preempt_curr     = check_preempt_curr_rt,
+
+       .pick_next_task         = pick_next_task_rt,
+       .put_prev_task          = put_prev_task_rt,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_rt,
+
+       .set_cpus_allowed       = set_cpus_allowed_rt,
+       .rq_online              = rq_online_rt,
+       .rq_offline             = rq_offline_rt,
+       .post_schedule          = post_schedule_rt,
+       .task_woken             = task_woken_rt,
+       .switched_from          = switched_from_rt,
+#endif
+
+       .set_curr_task          = set_curr_task_rt,
+       .task_tick              = task_tick_rt,
+
+       .get_rr_interval        = get_rr_interval_rt,
+
+       .prio_changed           = prio_changed_rt,
+       .switched_to            = switched_to_rt,
+
+       .update_curr            = update_curr_rt,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+
+void print_rt_stats(struct seq_file *m, int cpu)
+{
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       rcu_read_lock();
+       for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
+               print_rt_rq(m, cpu, rt_rq);
+       rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */