Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / sched / deadline.c
diff --git a/kernel/kernel/sched/deadline.c b/kernel/kernel/sched/deadline.c
new file mode 100644 (file)
index 0000000..0c261c5
--- /dev/null
@@ -0,0 +1,1819 @@
+/*
+ * Deadline Scheduling Class (SCHED_DEADLINE)
+ *
+ * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
+ *
+ * Tasks that periodically executes their instances for less than their
+ * runtime won't miss any of their deadlines.
+ * Tasks that are not periodic or sporadic or that tries to execute more
+ * than their reserved bandwidth will be slowed down (and may potentially
+ * miss some of their deadlines), and won't affect any other task.
+ *
+ * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
+ *                    Juri Lelli <juri.lelli@gmail.com>,
+ *                    Michael Trimarchi <michael@amarulasolutions.com>,
+ *                    Fabio Checconi <fchecconi@gmail.com>
+ */
+#include "sched.h"
+
+#include <linux/slab.h>
+
+struct dl_bandwidth def_dl_bandwidth;
+
+static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
+{
+       return container_of(dl_se, struct task_struct, dl);
+}
+
+static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
+{
+       return container_of(dl_rq, struct rq, dl);
+}
+
+static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
+{
+       struct task_struct *p = dl_task_of(dl_se);
+       struct rq *rq = task_rq(p);
+
+       return &rq->dl;
+}
+
+static inline int on_dl_rq(struct sched_dl_entity *dl_se)
+{
+       return !RB_EMPTY_NODE(&dl_se->rb_node);
+}
+
+static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
+{
+       struct sched_dl_entity *dl_se = &p->dl;
+
+       return dl_rq->rb_leftmost == &dl_se->rb_node;
+}
+
+void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
+{
+       raw_spin_lock_init(&dl_b->dl_runtime_lock);
+       dl_b->dl_period = period;
+       dl_b->dl_runtime = runtime;
+}
+
+void init_dl_bw(struct dl_bw *dl_b)
+{
+       raw_spin_lock_init(&dl_b->lock);
+       raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
+       if (global_rt_runtime() == RUNTIME_INF)
+               dl_b->bw = -1;
+       else
+               dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
+       raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
+       dl_b->total_bw = 0;
+}
+
+void init_dl_rq(struct dl_rq *dl_rq)
+{
+       dl_rq->rb_root = RB_ROOT;
+
+#ifdef CONFIG_SMP
+       /* zero means no -deadline tasks */
+       dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
+
+       dl_rq->dl_nr_migratory = 0;
+       dl_rq->overloaded = 0;
+       dl_rq->pushable_dl_tasks_root = RB_ROOT;
+#else
+       init_dl_bw(&dl_rq->dl_bw);
+#endif
+}
+
+#ifdef CONFIG_SMP
+
+static inline int dl_overloaded(struct rq *rq)
+{
+       return atomic_read(&rq->rd->dlo_count);
+}
+
+static inline void dl_set_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
+       /*
+        * Must be visible before the overload count is
+        * set (as in sched_rt.c).
+        *
+        * Matched by the barrier in pull_dl_task().
+        */
+       smp_wmb();
+       atomic_inc(&rq->rd->dlo_count);
+}
+
+static inline void dl_clear_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       atomic_dec(&rq->rd->dlo_count);
+       cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
+}
+
+static void update_dl_migration(struct dl_rq *dl_rq)
+{
+       if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
+               if (!dl_rq->overloaded) {
+                       dl_set_overload(rq_of_dl_rq(dl_rq));
+                       dl_rq->overloaded = 1;
+               }
+       } else if (dl_rq->overloaded) {
+               dl_clear_overload(rq_of_dl_rq(dl_rq));
+               dl_rq->overloaded = 0;
+       }
+}
+
+static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+       struct task_struct *p = dl_task_of(dl_se);
+
+       if (p->nr_cpus_allowed > 1)
+               dl_rq->dl_nr_migratory++;
+
+       update_dl_migration(dl_rq);
+}
+
+static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+       struct task_struct *p = dl_task_of(dl_se);
+
+       if (p->nr_cpus_allowed > 1)
+               dl_rq->dl_nr_migratory--;
+
+       update_dl_migration(dl_rq);
+}
+
+/*
+ * The list of pushable -deadline task is not a plist, like in
+ * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
+ */
+static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+       struct dl_rq *dl_rq = &rq->dl;
+       struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
+       struct rb_node *parent = NULL;
+       struct task_struct *entry;
+       int leftmost = 1;
+
+       BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
+
+       while (*link) {
+               parent = *link;
+               entry = rb_entry(parent, struct task_struct,
+                                pushable_dl_tasks);
+               if (dl_entity_preempt(&p->dl, &entry->dl))
+                       link = &parent->rb_left;
+               else {
+                       link = &parent->rb_right;
+                       leftmost = 0;
+               }
+       }
+
+       if (leftmost)
+               dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
+
+       rb_link_node(&p->pushable_dl_tasks, parent, link);
+       rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
+}
+
+static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+       struct dl_rq *dl_rq = &rq->dl;
+
+       if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
+               return;
+
+       if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
+               struct rb_node *next_node;
+
+               next_node = rb_next(&p->pushable_dl_tasks);
+               dl_rq->pushable_dl_tasks_leftmost = next_node;
+       }
+
+       rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
+       RB_CLEAR_NODE(&p->pushable_dl_tasks);
+}
+
+static inline int has_pushable_dl_tasks(struct rq *rq)
+{
+       return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
+}
+
+static int push_dl_task(struct rq *rq);
+
+static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
+{
+       return dl_task(prev);
+}
+
+static inline void set_post_schedule(struct rq *rq)
+{
+       rq->post_schedule = has_pushable_dl_tasks(rq);
+}
+
+static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
+
+static void dl_task_offline_migration(struct rq *rq, struct task_struct *p)
+{
+       struct rq *later_rq = NULL;
+       bool fallback = false;
+
+       later_rq = find_lock_later_rq(p, rq);
+
+       if (!later_rq) {
+               int cpu;
+
+               /*
+                * If we cannot preempt any rq, fall back to pick any
+                * online cpu.
+                */
+               fallback = true;
+               cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
+               if (cpu >= nr_cpu_ids) {
+                       /*
+                        * Fail to find any suitable cpu.
+                        * The task will never come back!
+                        */
+                       BUG_ON(dl_bandwidth_enabled());
+
+                       /*
+                        * If admission control is disabled we
+                        * try a little harder to let the task
+                        * run.
+                        */
+                       cpu = cpumask_any(cpu_active_mask);
+               }
+               later_rq = cpu_rq(cpu);
+               double_lock_balance(rq, later_rq);
+       }
+
+       deactivate_task(rq, p, 0);
+       set_task_cpu(p, later_rq->cpu);
+       activate_task(later_rq, p, ENQUEUE_REPLENISH);
+
+       if (!fallback)
+               resched_curr(later_rq);
+
+       double_unlock_balance(rq, later_rq);
+}
+
+#else
+
+static inline
+void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+static inline
+void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
+{
+       return false;
+}
+
+static inline int pull_dl_task(struct rq *rq)
+{
+       return 0;
+}
+
+static inline void set_post_schedule(struct rq *rq)
+{
+}
+#endif /* CONFIG_SMP */
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
+                                 int flags);
+
+/*
+ * We are being explicitly informed that a new instance is starting,
+ * and this means that:
+ *  - the absolute deadline of the entity has to be placed at
+ *    current time + relative deadline;
+ *  - the runtime of the entity has to be set to the maximum value.
+ *
+ * The capability of specifying such event is useful whenever a -deadline
+ * entity wants to (try to!) synchronize its behaviour with the scheduler's
+ * one, and to (try to!) reconcile itself with its own scheduling
+ * parameters.
+ */
+static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
+                                      struct sched_dl_entity *pi_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+
+       WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
+
+       /*
+        * We use the regular wall clock time to set deadlines in the
+        * future; in fact, we must consider execution overheads (time
+        * spent on hardirq context, etc.).
+        */
+       dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+       dl_se->runtime = pi_se->dl_runtime;
+       dl_se->dl_new = 0;
+}
+
+/*
+ * Pure Earliest Deadline First (EDF) scheduling does not deal with the
+ * possibility of a entity lasting more than what it declared, and thus
+ * exhausting its runtime.
+ *
+ * Here we are interested in making runtime overrun possible, but we do
+ * not want a entity which is misbehaving to affect the scheduling of all
+ * other entities.
+ * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
+ * is used, in order to confine each entity within its own bandwidth.
+ *
+ * This function deals exactly with that, and ensures that when the runtime
+ * of a entity is replenished, its deadline is also postponed. That ensures
+ * the overrunning entity can't interfere with other entity in the system and
+ * can't make them miss their deadlines. Reasons why this kind of overruns
+ * could happen are, typically, a entity voluntarily trying to overcome its
+ * runtime, or it just underestimated it during sched_setattr().
+ */
+static void replenish_dl_entity(struct sched_dl_entity *dl_se,
+                               struct sched_dl_entity *pi_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+
+       BUG_ON(pi_se->dl_runtime <= 0);
+
+       /*
+        * This could be the case for a !-dl task that is boosted.
+        * Just go with full inherited parameters.
+        */
+       if (dl_se->dl_deadline == 0) {
+               dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+               dl_se->runtime = pi_se->dl_runtime;
+       }
+
+       /*
+        * We keep moving the deadline away until we get some
+        * available runtime for the entity. This ensures correct
+        * handling of situations where the runtime overrun is
+        * arbitrary large.
+        */
+       while (dl_se->runtime <= 0) {
+               dl_se->deadline += pi_se->dl_period;
+               dl_se->runtime += pi_se->dl_runtime;
+       }
+
+       /*
+        * At this point, the deadline really should be "in
+        * the future" with respect to rq->clock. If it's
+        * not, we are, for some reason, lagging too much!
+        * Anyway, after having warn userspace abut that,
+        * we still try to keep the things running by
+        * resetting the deadline and the budget of the
+        * entity.
+        */
+       if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
+               printk_deferred_once("sched: DL replenish lagged to much\n");
+               dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+               dl_se->runtime = pi_se->dl_runtime;
+       }
+
+       if (dl_se->dl_yielded)
+               dl_se->dl_yielded = 0;
+       if (dl_se->dl_throttled)
+               dl_se->dl_throttled = 0;
+}
+
+/*
+ * Here we check if --at time t-- an entity (which is probably being
+ * [re]activated or, in general, enqueued) can use its remaining runtime
+ * and its current deadline _without_ exceeding the bandwidth it is
+ * assigned (function returns true if it can't). We are in fact applying
+ * one of the CBS rules: when a task wakes up, if the residual runtime
+ * over residual deadline fits within the allocated bandwidth, then we
+ * can keep the current (absolute) deadline and residual budget without
+ * disrupting the schedulability of the system. Otherwise, we should
+ * refill the runtime and set the deadline a period in the future,
+ * because keeping the current (absolute) deadline of the task would
+ * result in breaking guarantees promised to other tasks (refer to
+ * Documentation/scheduler/sched-deadline.txt for more informations).
+ *
+ * This function returns true if:
+ *
+ *   runtime / (deadline - t) > dl_runtime / dl_period ,
+ *
+ * IOW we can't recycle current parameters.
+ *
+ * Notice that the bandwidth check is done against the period. For
+ * task with deadline equal to period this is the same of using
+ * dl_deadline instead of dl_period in the equation above.
+ */
+static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
+                              struct sched_dl_entity *pi_se, u64 t)
+{
+       u64 left, right;
+
+       /*
+        * left and right are the two sides of the equation above,
+        * after a bit of shuffling to use multiplications instead
+        * of divisions.
+        *
+        * Note that none of the time values involved in the two
+        * multiplications are absolute: dl_deadline and dl_runtime
+        * are the relative deadline and the maximum runtime of each
+        * instance, runtime is the runtime left for the last instance
+        * and (deadline - t), since t is rq->clock, is the time left
+        * to the (absolute) deadline. Even if overflowing the u64 type
+        * is very unlikely to occur in both cases, here we scale down
+        * as we want to avoid that risk at all. Scaling down by 10
+        * means that we reduce granularity to 1us. We are fine with it,
+        * since this is only a true/false check and, anyway, thinking
+        * of anything below microseconds resolution is actually fiction
+        * (but still we want to give the user that illusion >;).
+        */
+       left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
+       right = ((dl_se->deadline - t) >> DL_SCALE) *
+               (pi_se->dl_runtime >> DL_SCALE);
+
+       return dl_time_before(right, left);
+}
+
+/*
+ * When a -deadline entity is queued back on the runqueue, its runtime and
+ * deadline might need updating.
+ *
+ * The policy here is that we update the deadline of the entity only if:
+ *  - the current deadline is in the past,
+ *  - using the remaining runtime with the current deadline would make
+ *    the entity exceed its bandwidth.
+ */
+static void update_dl_entity(struct sched_dl_entity *dl_se,
+                            struct sched_dl_entity *pi_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+
+       /*
+        * The arrival of a new instance needs special treatment, i.e.,
+        * the actual scheduling parameters have to be "renewed".
+        */
+       if (dl_se->dl_new) {
+               setup_new_dl_entity(dl_se, pi_se);
+               return;
+       }
+
+       if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
+           dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
+               dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+               dl_se->runtime = pi_se->dl_runtime;
+       }
+}
+
+/*
+ * If the entity depleted all its runtime, and if we want it to sleep
+ * while waiting for some new execution time to become available, we
+ * set the bandwidth enforcement timer to the replenishment instant
+ * and try to activate it.
+ *
+ * Notice that it is important for the caller to know if the timer
+ * actually started or not (i.e., the replenishment instant is in
+ * the future or in the past).
+ */
+static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+       ktime_t now, act;
+       ktime_t soft, hard;
+       unsigned long range;
+       s64 delta;
+
+       if (boosted)
+               return 0;
+       /*
+        * We want the timer to fire at the deadline, but considering
+        * that it is actually coming from rq->clock and not from
+        * hrtimer's time base reading.
+        */
+       act = ns_to_ktime(dl_se->deadline);
+       now = hrtimer_cb_get_time(&dl_se->dl_timer);
+       delta = ktime_to_ns(now) - rq_clock(rq);
+       act = ktime_add_ns(act, delta);
+
+       /*
+        * If the expiry time already passed, e.g., because the value
+        * chosen as the deadline is too small, don't even try to
+        * start the timer in the past!
+        */
+       if (ktime_us_delta(act, now) < 0)
+               return 0;
+
+       hrtimer_set_expires(&dl_se->dl_timer, act);
+
+       soft = hrtimer_get_softexpires(&dl_se->dl_timer);
+       hard = hrtimer_get_expires(&dl_se->dl_timer);
+       range = ktime_to_ns(ktime_sub(hard, soft));
+       __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
+                                range, HRTIMER_MODE_ABS, 0);
+
+       return hrtimer_active(&dl_se->dl_timer);
+}
+
+/*
+ * This is the bandwidth enforcement timer callback. If here, we know
+ * a task is not on its dl_rq, since the fact that the timer was running
+ * means the task is throttled and needs a runtime replenishment.
+ *
+ * However, what we actually do depends on the fact the task is active,
+ * (it is on its rq) or has been removed from there by a call to
+ * dequeue_task_dl(). In the former case we must issue the runtime
+ * replenishment and add the task back to the dl_rq; in the latter, we just
+ * do nothing but clearing dl_throttled, so that runtime and deadline
+ * updating (and the queueing back to dl_rq) will be done by the
+ * next call to enqueue_task_dl().
+ */
+static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
+{
+       struct sched_dl_entity *dl_se = container_of(timer,
+                                                    struct sched_dl_entity,
+                                                    dl_timer);
+       struct task_struct *p = dl_task_of(dl_se);
+       unsigned long flags;
+       struct rq *rq;
+
+       rq = task_rq_lock(p, &flags);
+
+       /*
+        * We need to take care of several possible races here:
+        *
+        *   - the task might have changed its scheduling policy
+        *     to something different than SCHED_DEADLINE
+        *   - the task might have changed its reservation parameters
+        *     (through sched_setattr())
+        *   - the task might have been boosted by someone else and
+        *     might be in the boosting/deboosting path
+        *
+        * In all this cases we bail out, as the task is already
+        * in the runqueue or is going to be enqueued back anyway.
+        */
+       if (!dl_task(p) || dl_se->dl_new ||
+           dl_se->dl_boosted || !dl_se->dl_throttled)
+               goto unlock;
+
+       sched_clock_tick();
+       update_rq_clock(rq);
+
+#ifdef CONFIG_SMP
+       /*
+        * If we find that the rq the task was on is no longer
+        * available, we need to select a new rq.
+        */
+       if (unlikely(!rq->online)) {
+               dl_task_offline_migration(rq, p);
+               goto unlock;
+       }
+#endif
+
+       /*
+        * If the throttle happened during sched-out; like:
+        *
+        *   schedule()
+        *     deactivate_task()
+        *       dequeue_task_dl()
+        *         update_curr_dl()
+        *           start_dl_timer()
+        *         __dequeue_task_dl()
+        *     prev->on_rq = 0;
+        *
+        * We can be both throttled and !queued. Replenish the counter
+        * but do not enqueue -- wait for our wakeup to do that.
+        */
+       if (!task_on_rq_queued(p)) {
+               replenish_dl_entity(dl_se, dl_se);
+               goto unlock;
+       }
+
+       enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
+       if (dl_task(rq->curr))
+               check_preempt_curr_dl(rq, p, 0);
+       else
+               resched_curr(rq);
+#ifdef CONFIG_SMP
+       /*
+        * Queueing this task back might have overloaded rq,
+        * check if we need to kick someone away.
+        */
+       if (has_pushable_dl_tasks(rq))
+               push_dl_task(rq);
+#endif
+unlock:
+       task_rq_unlock(rq, p, &flags);
+
+       return HRTIMER_NORESTART;
+}
+
+void init_dl_task_timer(struct sched_dl_entity *dl_se)
+{
+       struct hrtimer *timer = &dl_se->dl_timer;
+
+       hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       timer->function = dl_task_timer;
+       timer->irqsafe = 1;
+}
+
+static
+int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
+{
+       return (dl_se->runtime <= 0);
+}
+
+extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
+
+/*
+ * Update the current task's runtime statistics (provided it is still
+ * a -deadline task and has not been removed from the dl_rq).
+ */
+static void update_curr_dl(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+       struct sched_dl_entity *dl_se = &curr->dl;
+       u64 delta_exec;
+
+       if (!dl_task(curr) || !on_dl_rq(dl_se))
+               return;
+
+       /*
+        * Consumed budget is computed considering the time as
+        * observed by schedulable tasks (excluding time spent
+        * in hardirq context, etc.). Deadlines are instead
+        * computed using hard walltime. This seems to be the more
+        * natural solution, but the full ramifications of this
+        * approach need further study.
+        */
+       delta_exec = rq_clock_task(rq) - curr->se.exec_start;
+       if (unlikely((s64)delta_exec <= 0))
+               return;
+
+       schedstat_set(curr->se.statistics.exec_max,
+                     max(curr->se.statistics.exec_max, delta_exec));
+
+       curr->se.sum_exec_runtime += delta_exec;
+       account_group_exec_runtime(curr, delta_exec);
+
+       curr->se.exec_start = rq_clock_task(rq);
+       cpuacct_charge(curr, delta_exec);
+
+       sched_rt_avg_update(rq, delta_exec);
+
+       dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
+       if (dl_runtime_exceeded(rq, dl_se)) {
+               dl_se->dl_throttled = 1;
+               __dequeue_task_dl(rq, curr, 0);
+               if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
+                       enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
+
+               if (!is_leftmost(curr, &rq->dl))
+                       resched_curr(rq);
+       }
+
+       /*
+        * Because -- for now -- we share the rt bandwidth, we need to
+        * account our runtime there too, otherwise actual rt tasks
+        * would be able to exceed the shared quota.
+        *
+        * Account to the root rt group for now.
+        *
+        * The solution we're working towards is having the RT groups scheduled
+        * using deadline servers -- however there's a few nasties to figure
+        * out before that can happen.
+        */
+       if (rt_bandwidth_enabled()) {
+               struct rt_rq *rt_rq = &rq->rt;
+
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               /*
+                * We'll let actual RT tasks worry about the overflow here, we
+                * have our own CBS to keep us inline; only account when RT
+                * bandwidth is relevant.
+                */
+               if (sched_rt_bandwidth_account(rt_rq))
+                       rt_rq->rt_time += delta_exec;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+       }
+}
+
+#ifdef CONFIG_SMP
+
+static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
+
+static inline u64 next_deadline(struct rq *rq)
+{
+       struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
+
+       if (next && dl_prio(next->prio))
+               return next->dl.deadline;
+       else
+               return 0;
+}
+
+static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+
+       if (dl_rq->earliest_dl.curr == 0 ||
+           dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
+               /*
+                * If the dl_rq had no -deadline tasks, or if the new task
+                * has shorter deadline than the current one on dl_rq, we
+                * know that the previous earliest becomes our next earliest,
+                * as the new task becomes the earliest itself.
+                */
+               dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
+               dl_rq->earliest_dl.curr = deadline;
+               cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
+       } else if (dl_rq->earliest_dl.next == 0 ||
+                  dl_time_before(deadline, dl_rq->earliest_dl.next)) {
+               /*
+                * On the other hand, if the new -deadline task has a
+                * a later deadline than the earliest one on dl_rq, but
+                * it is earlier than the next (if any), we must
+                * recompute the next-earliest.
+                */
+               dl_rq->earliest_dl.next = next_deadline(rq);
+       }
+}
+
+static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+
+       /*
+        * Since we may have removed our earliest (and/or next earliest)
+        * task we must recompute them.
+        */
+       if (!dl_rq->dl_nr_running) {
+               dl_rq->earliest_dl.curr = 0;
+               dl_rq->earliest_dl.next = 0;
+               cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
+       } else {
+               struct rb_node *leftmost = dl_rq->rb_leftmost;
+               struct sched_dl_entity *entry;
+
+               entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
+               dl_rq->earliest_dl.curr = entry->deadline;
+               dl_rq->earliest_dl.next = next_deadline(rq);
+               cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
+       }
+}
+
+#else
+
+static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+
+#endif /* CONFIG_SMP */
+
+static inline
+void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+       int prio = dl_task_of(dl_se)->prio;
+       u64 deadline = dl_se->deadline;
+
+       WARN_ON(!dl_prio(prio));
+       dl_rq->dl_nr_running++;
+       add_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+       inc_dl_deadline(dl_rq, deadline);
+       inc_dl_migration(dl_se, dl_rq);
+}
+
+static inline
+void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+       int prio = dl_task_of(dl_se)->prio;
+
+       WARN_ON(!dl_prio(prio));
+       WARN_ON(!dl_rq->dl_nr_running);
+       dl_rq->dl_nr_running--;
+       sub_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+       dec_dl_deadline(dl_rq, dl_se->deadline);
+       dec_dl_migration(dl_se, dl_rq);
+}
+
+static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rb_node **link = &dl_rq->rb_root.rb_node;
+       struct rb_node *parent = NULL;
+       struct sched_dl_entity *entry;
+       int leftmost = 1;
+
+       BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
+
+       while (*link) {
+               parent = *link;
+               entry = rb_entry(parent, struct sched_dl_entity, rb_node);
+               if (dl_time_before(dl_se->deadline, entry->deadline))
+                       link = &parent->rb_left;
+               else {
+                       link = &parent->rb_right;
+                       leftmost = 0;
+               }
+       }
+
+       if (leftmost)
+               dl_rq->rb_leftmost = &dl_se->rb_node;
+
+       rb_link_node(&dl_se->rb_node, parent, link);
+       rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
+
+       inc_dl_tasks(dl_se, dl_rq);
+}
+
+static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+       if (RB_EMPTY_NODE(&dl_se->rb_node))
+               return;
+
+       if (dl_rq->rb_leftmost == &dl_se->rb_node) {
+               struct rb_node *next_node;
+
+               next_node = rb_next(&dl_se->rb_node);
+               dl_rq->rb_leftmost = next_node;
+       }
+
+       rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
+       RB_CLEAR_NODE(&dl_se->rb_node);
+
+       dec_dl_tasks(dl_se, dl_rq);
+}
+
+static void
+enqueue_dl_entity(struct sched_dl_entity *dl_se,
+                 struct sched_dl_entity *pi_se, int flags)
+{
+       BUG_ON(on_dl_rq(dl_se));
+
+       /*
+        * If this is a wakeup or a new instance, the scheduling
+        * parameters of the task might need updating. Otherwise,
+        * we want a replenishment of its runtime.
+        */
+       if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
+               update_dl_entity(dl_se, pi_se);
+       else if (flags & ENQUEUE_REPLENISH)
+               replenish_dl_entity(dl_se, pi_se);
+
+       __enqueue_dl_entity(dl_se);
+}
+
+static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+       __dequeue_dl_entity(dl_se);
+}
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct task_struct *pi_task = rt_mutex_get_top_task(p);
+       struct sched_dl_entity *pi_se = &p->dl;
+
+       /*
+        * Use the scheduling parameters of the top pi-waiter
+        * task if we have one and its (relative) deadline is
+        * smaller than our one... OTW we keep our runtime and
+        * deadline.
+        */
+       if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
+               pi_se = &pi_task->dl;
+       } else if (!dl_prio(p->normal_prio)) {
+               /*
+                * Special case in which we have a !SCHED_DEADLINE task
+                * that is going to be deboosted, but exceedes its
+                * runtime while doing so. No point in replenishing
+                * it, as it's going to return back to its original
+                * scheduling class after this.
+                */
+               BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
+               return;
+       }
+
+       /*
+        * If p is throttled, we do nothing. In fact, if it exhausted
+        * its budget it needs a replenishment and, since it now is on
+        * its rq, the bandwidth timer callback (which clearly has not
+        * run yet) will take care of this.
+        */
+       if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
+               return;
+
+       enqueue_dl_entity(&p->dl, pi_se, flags);
+
+       if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
+               enqueue_pushable_dl_task(rq, p);
+}
+
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+       dequeue_dl_entity(&p->dl);
+       dequeue_pushable_dl_task(rq, p);
+}
+
+static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+       update_curr_dl(rq);
+       __dequeue_task_dl(rq, p, flags);
+}
+
+/*
+ * Yield task semantic for -deadline tasks is:
+ *
+ *   get off from the CPU until our next instance, with
+ *   a new runtime. This is of little use now, since we
+ *   don't have a bandwidth reclaiming mechanism. Anyway,
+ *   bandwidth reclaiming is planned for the future, and
+ *   yield_task_dl will indicate that some spare budget
+ *   is available for other task instances to use it.
+ */
+static void yield_task_dl(struct rq *rq)
+{
+       struct task_struct *p = rq->curr;
+
+       /*
+        * We make the task go to sleep until its current deadline by
+        * forcing its runtime to zero. This way, update_curr_dl() stops
+        * it and the bandwidth timer will wake it up and will give it
+        * new scheduling parameters (thanks to dl_yielded=1).
+        */
+       if (p->dl.runtime > 0) {
+               rq->curr->dl.dl_yielded = 1;
+               p->dl.runtime = 0;
+       }
+       update_rq_clock(rq);
+       update_curr_dl(rq);
+       /*
+        * Tell update_rq_clock() that we've just updated,
+        * so we don't do microscopic update in schedule()
+        * and double the fastpath cost.
+        */
+       rq_clock_skip_update(rq, true);
+}
+
+#ifdef CONFIG_SMP
+
+static int find_later_rq(struct task_struct *task);
+
+static int
+select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
+{
+       struct task_struct *curr;
+       struct rq *rq;
+
+       if (sd_flag != SD_BALANCE_WAKE)
+               goto out;
+
+       rq = cpu_rq(cpu);
+
+       rcu_read_lock();
+       curr = ACCESS_ONCE(rq->curr); /* unlocked access */
+
+       /*
+        * If we are dealing with a -deadline task, we must
+        * decide where to wake it up.
+        * If it has a later deadline and the current task
+        * on this rq can't move (provided the waking task
+        * can!) we prefer to send it somewhere else. On the
+        * other hand, if it has a shorter deadline, we
+        * try to make it stay here, it might be important.
+        */
+       if (unlikely(dl_task(curr)) &&
+           (curr->nr_cpus_allowed < 2 ||
+            !dl_entity_preempt(&p->dl, &curr->dl)) &&
+           (p->nr_cpus_allowed > 1)) {
+               int target = find_later_rq(p);
+
+               if (target != -1)
+                       cpu = target;
+       }
+       rcu_read_unlock();
+
+out:
+       return cpu;
+}
+
+static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
+{
+       /*
+        * Current can't be migrated, useless to reschedule,
+        * let's hope p can move out.
+        */
+       if (rq->curr->nr_cpus_allowed == 1 ||
+           cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
+               return;
+
+       /*
+        * p is migratable, so let's not schedule it and
+        * see if it is pushed or pulled somewhere else.
+        */
+       if (p->nr_cpus_allowed != 1 &&
+           cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
+               return;
+
+       resched_curr(rq);
+}
+
+static int pull_dl_task(struct rq *this_rq);
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Only called when both the current and waking task are -deadline
+ * tasks.
+ */
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
+                                 int flags)
+{
+       if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
+               resched_curr(rq);
+               return;
+       }
+
+#ifdef CONFIG_SMP
+       /*
+        * In the unlikely case current and p have the same deadline
+        * let us try to decide what's the best thing to do...
+        */
+       if ((p->dl.deadline == rq->curr->dl.deadline) &&
+           !test_tsk_need_resched(rq->curr))
+               check_preempt_equal_dl(rq, p);
+#endif /* CONFIG_SMP */
+}
+
+#ifdef CONFIG_SCHED_HRTICK
+static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+{
+       hrtick_start(rq, p->dl.runtime);
+}
+#else /* !CONFIG_SCHED_HRTICK */
+static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+{
+}
+#endif
+
+static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
+                                                  struct dl_rq *dl_rq)
+{
+       struct rb_node *left = dl_rq->rb_leftmost;
+
+       if (!left)
+               return NULL;
+
+       return rb_entry(left, struct sched_dl_entity, rb_node);
+}
+
+struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
+{
+       struct sched_dl_entity *dl_se;
+       struct task_struct *p;
+       struct dl_rq *dl_rq;
+
+       dl_rq = &rq->dl;
+
+       if (need_pull_dl_task(rq, prev)) {
+               pull_dl_task(rq);
+               /*
+                * pull_rt_task() can drop (and re-acquire) rq->lock; this
+                * means a stop task can slip in, in which case we need to
+                * re-start task selection.
+                */
+               if (rq->stop && task_on_rq_queued(rq->stop))
+                       return RETRY_TASK;
+       }
+
+       /*
+        * When prev is DL, we may throttle it in put_prev_task().
+        * So, we update time before we check for dl_nr_running.
+        */
+       if (prev->sched_class == &dl_sched_class)
+               update_curr_dl(rq);
+
+       if (unlikely(!dl_rq->dl_nr_running))
+               return NULL;
+
+       put_prev_task(rq, prev);
+
+       dl_se = pick_next_dl_entity(rq, dl_rq);
+       BUG_ON(!dl_se);
+
+       p = dl_task_of(dl_se);
+       p->se.exec_start = rq_clock_task(rq);
+
+       /* Running task will never be pushed. */
+       dequeue_pushable_dl_task(rq, p);
+
+       if (hrtick_enabled(rq))
+               start_hrtick_dl(rq, p);
+
+       set_post_schedule(rq);
+
+       return p;
+}
+
+static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
+{
+       update_curr_dl(rq);
+
+       if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
+               enqueue_pushable_dl_task(rq, p);
+}
+
+static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
+{
+       update_curr_dl(rq);
+
+       /*
+        * Even when we have runtime, update_curr_dl() might have resulted in us
+        * not being the leftmost task anymore. In that case NEED_RESCHED will
+        * be set and schedule() will start a new hrtick for the next task.
+        */
+       if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
+           is_leftmost(p, &rq->dl))
+               start_hrtick_dl(rq, p);
+}
+
+static void task_fork_dl(struct task_struct *p)
+{
+       /*
+        * SCHED_DEADLINE tasks cannot fork and this is achieved through
+        * sched_fork()
+        */
+}
+
+static void task_dead_dl(struct task_struct *p)
+{
+       struct hrtimer *timer = &p->dl.dl_timer;
+       struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+
+       /*
+        * Since we are TASK_DEAD we won't slip out of the domain!
+        */
+       raw_spin_lock_irq(&dl_b->lock);
+       /* XXX we should retain the bw until 0-lag */
+       dl_b->total_bw -= p->dl.dl_bw;
+       raw_spin_unlock_irq(&dl_b->lock);
+
+       hrtimer_cancel(timer);
+}
+
+static void set_curr_task_dl(struct rq *rq)
+{
+       struct task_struct *p = rq->curr;
+
+       p->se.exec_start = rq_clock_task(rq);
+
+       /* You can't push away the running task */
+       dequeue_pushable_dl_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define DL_MAX_TRIES 3
+
+static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+       if (!task_running(rq, p) &&
+           cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
+               return 1;
+       return 0;
+}
+
+/* Returns the second earliest -deadline task, NULL otherwise */
+static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
+{
+       struct rb_node *next_node = rq->dl.rb_leftmost;
+       struct sched_dl_entity *dl_se;
+       struct task_struct *p = NULL;
+
+next_node:
+       next_node = rb_next(next_node);
+       if (next_node) {
+               dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
+               p = dl_task_of(dl_se);
+
+               if (pick_dl_task(rq, p, cpu))
+                       return p;
+
+               goto next_node;
+       }
+
+       return NULL;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
+
+static int find_later_rq(struct task_struct *task)
+{
+       struct sched_domain *sd;
+       struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
+       int this_cpu = smp_processor_id();
+       int best_cpu, cpu = task_cpu(task);
+
+       /* Make sure the mask is initialized first */
+       if (unlikely(!later_mask))
+               return -1;
+
+       if (task->nr_cpus_allowed == 1)
+               return -1;
+
+       /*
+        * We have to consider system topology and task affinity
+        * first, then we can look for a suitable cpu.
+        */
+       best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
+                       task, later_mask);
+       if (best_cpu == -1)
+               return -1;
+
+       /*
+        * If we are here, some target has been found,
+        * the most suitable of which is cached in best_cpu.
+        * This is, among the runqueues where the current tasks
+        * have later deadlines than the task's one, the rq
+        * with the latest possible one.
+        *
+        * Now we check how well this matches with task's
+        * affinity and system topology.
+        *
+        * The last cpu where the task run is our first
+        * guess, since it is most likely cache-hot there.
+        */
+       if (cpumask_test_cpu(cpu, later_mask))
+               return cpu;
+       /*
+        * Check if this_cpu is to be skipped (i.e., it is
+        * not in the mask) or not.
+        */
+       if (!cpumask_test_cpu(this_cpu, later_mask))
+               this_cpu = -1;
+
+       rcu_read_lock();
+       for_each_domain(cpu, sd) {
+               if (sd->flags & SD_WAKE_AFFINE) {
+
+                       /*
+                        * If possible, preempting this_cpu is
+                        * cheaper than migrating.
+                        */
+                       if (this_cpu != -1 &&
+                           cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+                               rcu_read_unlock();
+                               return this_cpu;
+                       }
+
+                       /*
+                        * Last chance: if best_cpu is valid and is
+                        * in the mask, that becomes our choice.
+                        */
+                       if (best_cpu < nr_cpu_ids &&
+                           cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
+                               rcu_read_unlock();
+                               return best_cpu;
+                       }
+               }
+       }
+       rcu_read_unlock();
+
+       /*
+        * At this point, all our guesses failed, we just return
+        * 'something', and let the caller sort the things out.
+        */
+       if (this_cpu != -1)
+               return this_cpu;
+
+       cpu = cpumask_any(later_mask);
+       if (cpu < nr_cpu_ids)
+               return cpu;
+
+       return -1;
+}
+
+/* Locks the rq it finds */
+static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
+{
+       struct rq *later_rq = NULL;
+       int tries;
+       int cpu;
+
+       for (tries = 0; tries < DL_MAX_TRIES; tries++) {
+               cpu = find_later_rq(task);
+
+               if ((cpu == -1) || (cpu == rq->cpu))
+                       break;
+
+               later_rq = cpu_rq(cpu);
+
+               /* Retry if something changed. */
+               if (double_lock_balance(rq, later_rq)) {
+                       if (unlikely(task_rq(task) != rq ||
+                                    !cpumask_test_cpu(later_rq->cpu,
+                                                      &task->cpus_allowed) ||
+                                    task_running(rq, task) ||
+                                    !task_on_rq_queued(task))) {
+                               double_unlock_balance(rq, later_rq);
+                               later_rq = NULL;
+                               break;
+                       }
+               }
+
+               /*
+                * If the rq we found has no -deadline task, or
+                * its earliest one has a later deadline than our
+                * task, the rq is a good one.
+                */
+               if (!later_rq->dl.dl_nr_running ||
+                   dl_time_before(task->dl.deadline,
+                                  later_rq->dl.earliest_dl.curr))
+                       break;
+
+               /* Otherwise we try again. */
+               double_unlock_balance(rq, later_rq);
+               later_rq = NULL;
+       }
+
+       return later_rq;
+}
+
+static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
+{
+       struct task_struct *p;
+
+       if (!has_pushable_dl_tasks(rq))
+               return NULL;
+
+       p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
+                    struct task_struct, pushable_dl_tasks);
+
+       BUG_ON(rq->cpu != task_cpu(p));
+       BUG_ON(task_current(rq, p));
+       BUG_ON(p->nr_cpus_allowed <= 1);
+
+       BUG_ON(!task_on_rq_queued(p));
+       BUG_ON(!dl_task(p));
+
+       return p;
+}
+
+/*
+ * See if the non running -deadline tasks on this rq
+ * can be sent to some other CPU where they can preempt
+ * and start executing.
+ */
+static int push_dl_task(struct rq *rq)
+{
+       struct task_struct *next_task;
+       struct rq *later_rq;
+       int ret = 0;
+
+       if (!rq->dl.overloaded)
+               return 0;
+
+       next_task = pick_next_pushable_dl_task(rq);
+       if (!next_task)
+               return 0;
+
+retry:
+       if (unlikely(next_task == rq->curr)) {
+               WARN_ON(1);
+               return 0;
+       }
+
+       /*
+        * If next_task preempts rq->curr, and rq->curr
+        * can move away, it makes sense to just reschedule
+        * without going further in pushing next_task.
+        */
+       if (dl_task(rq->curr) &&
+           dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
+           rq->curr->nr_cpus_allowed > 1) {
+               resched_curr(rq);
+               return 0;
+       }
+
+       /* We might release rq lock */
+       get_task_struct(next_task);
+
+       /* Will lock the rq it'll find */
+       later_rq = find_lock_later_rq(next_task, rq);
+       if (!later_rq) {
+               struct task_struct *task;
+
+               /*
+                * We must check all this again, since
+                * find_lock_later_rq releases rq->lock and it is
+                * then possible that next_task has migrated.
+                */
+               task = pick_next_pushable_dl_task(rq);
+               if (task_cpu(next_task) == rq->cpu && task == next_task) {
+                       /*
+                        * The task is still there. We don't try
+                        * again, some other cpu will pull it when ready.
+                        */
+                       goto out;
+               }
+
+               if (!task)
+                       /* No more tasks */
+                       goto out;
+
+               put_task_struct(next_task);
+               next_task = task;
+               goto retry;
+       }
+
+       deactivate_task(rq, next_task, 0);
+       set_task_cpu(next_task, later_rq->cpu);
+       activate_task(later_rq, next_task, 0);
+       ret = 1;
+
+       resched_curr(later_rq);
+
+       double_unlock_balance(rq, later_rq);
+
+out:
+       put_task_struct(next_task);
+
+       return ret;
+}
+
+static void push_dl_tasks(struct rq *rq)
+{
+       /* Terminates as it moves a -deadline task */
+       while (push_dl_task(rq))
+               ;
+}
+
+static int pull_dl_task(struct rq *this_rq)
+{
+       int this_cpu = this_rq->cpu, ret = 0, cpu;
+       struct task_struct *p;
+       struct rq *src_rq;
+       u64 dmin = LONG_MAX;
+
+       if (likely(!dl_overloaded(this_rq)))
+               return 0;
+
+       /*
+        * Match the barrier from dl_set_overloaded; this guarantees that if we
+        * see overloaded we must also see the dlo_mask bit.
+        */
+       smp_rmb();
+
+       for_each_cpu(cpu, this_rq->rd->dlo_mask) {
+               if (this_cpu == cpu)
+                       continue;
+
+               src_rq = cpu_rq(cpu);
+
+               /*
+                * It looks racy, abd it is! However, as in sched_rt.c,
+                * we are fine with this.
+                */
+               if (this_rq->dl.dl_nr_running &&
+                   dl_time_before(this_rq->dl.earliest_dl.curr,
+                                  src_rq->dl.earliest_dl.next))
+                       continue;
+
+               /* Might drop this_rq->lock */
+               double_lock_balance(this_rq, src_rq);
+
+               /*
+                * If there are no more pullable tasks on the
+                * rq, we're done with it.
+                */
+               if (src_rq->dl.dl_nr_running <= 1)
+                       goto skip;
+
+               p = pick_next_earliest_dl_task(src_rq, this_cpu);
+
+               /*
+                * We found a task to be pulled if:
+                *  - it preempts our current (if there's one),
+                *  - it will preempt the last one we pulled (if any).
+                */
+               if (p && dl_time_before(p->dl.deadline, dmin) &&
+                   (!this_rq->dl.dl_nr_running ||
+                    dl_time_before(p->dl.deadline,
+                                   this_rq->dl.earliest_dl.curr))) {
+                       WARN_ON(p == src_rq->curr);
+                       WARN_ON(!task_on_rq_queued(p));
+
+                       /*
+                        * Then we pull iff p has actually an earlier
+                        * deadline than the current task of its runqueue.
+                        */
+                       if (dl_time_before(p->dl.deadline,
+                                          src_rq->curr->dl.deadline))
+                               goto skip;
+
+                       ret = 1;
+
+                       deactivate_task(src_rq, p, 0);
+                       set_task_cpu(p, this_cpu);
+                       activate_task(this_rq, p, 0);
+                       dmin = p->dl.deadline;
+
+                       /* Is there any other task even earlier? */
+               }
+skip:
+               double_unlock_balance(this_rq, src_rq);
+       }
+
+       return ret;
+}
+
+static void post_schedule_dl(struct rq *rq)
+{
+       push_dl_tasks(rq);
+}
+
+/*
+ * Since the task is not running and a reschedule is not going to happen
+ * anytime soon on its runqueue, we try pushing it away now.
+ */
+static void task_woken_dl(struct rq *rq, struct task_struct *p)
+{
+       if (!task_running(rq, p) &&
+           !test_tsk_need_resched(rq->curr) &&
+           has_pushable_dl_tasks(rq) &&
+           p->nr_cpus_allowed > 1 &&
+           dl_task(rq->curr) &&
+           (rq->curr->nr_cpus_allowed < 2 ||
+            !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
+               push_dl_tasks(rq);
+       }
+}
+
+static void set_cpus_allowed_dl(struct task_struct *p,
+                               const struct cpumask *new_mask)
+{
+       struct rq *rq;
+       struct root_domain *src_rd;
+       int weight;
+
+       BUG_ON(!dl_task(p));
+
+       rq = task_rq(p);
+       src_rd = rq->rd;
+       /*
+        * Migrating a SCHED_DEADLINE task between exclusive
+        * cpusets (different root_domains) entails a bandwidth
+        * update. We already made space for us in the destination
+        * domain (see cpuset_can_attach()).
+        */
+       if (!cpumask_intersects(src_rd->span, new_mask)) {
+               struct dl_bw *src_dl_b;
+
+               src_dl_b = dl_bw_of(cpu_of(rq));
+               /*
+                * We now free resources of the root_domain we are migrating
+                * off. In the worst case, sched_setattr() may temporary fail
+                * until we complete the update.
+                */
+               raw_spin_lock(&src_dl_b->lock);
+               __dl_clear(src_dl_b, p->dl.dl_bw);
+               raw_spin_unlock(&src_dl_b->lock);
+       }
+
+       /*
+        * Update only if the task is actually running (i.e.,
+        * it is on the rq AND it is not throttled).
+        */
+       if (!on_dl_rq(&p->dl))
+               return;
+
+       weight = cpumask_weight(new_mask);
+
+       /*
+        * Only update if the process changes its state from whether it
+        * can migrate or not.
+        */
+       if ((p->nr_cpus_allowed > 1) == (weight > 1))
+               return;
+
+       /*
+        * The process used to be able to migrate OR it can now migrate
+        */
+       if (weight <= 1) {
+               if (!task_current(rq, p))
+                       dequeue_pushable_dl_task(rq, p);
+               BUG_ON(!rq->dl.dl_nr_migratory);
+               rq->dl.dl_nr_migratory--;
+       } else {
+               if (!task_current(rq, p))
+                       enqueue_pushable_dl_task(rq, p);
+               rq->dl.dl_nr_migratory++;
+       }
+
+       update_dl_migration(&rq->dl);
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_dl(struct rq *rq)
+{
+       if (rq->dl.overloaded)
+               dl_set_overload(rq);
+
+       cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
+       if (rq->dl.dl_nr_running > 0)
+               cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_dl(struct rq *rq)
+{
+       if (rq->dl.overloaded)
+               dl_clear_overload(rq);
+
+       cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
+       cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
+}
+
+void init_sched_dl_class(void)
+{
+       unsigned int i;
+
+       for_each_possible_cpu(i)
+               zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
+                                       GFP_KERNEL, cpu_to_node(i));
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ *  Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
+ */
+static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
+{
+       struct hrtimer *dl_timer = &p->dl.dl_timer;
+
+       /* Nobody will change task's class if pi_lock is held */
+       lockdep_assert_held(&p->pi_lock);
+
+       if (hrtimer_active(dl_timer)) {
+               int ret = hrtimer_try_to_cancel(dl_timer);
+
+               if (unlikely(ret == -1)) {
+                       /*
+                        * Note, p may migrate OR new deadline tasks
+                        * may appear in rq when we are unlocking it.
+                        * A caller of us must be fine with that.
+                        */
+                       raw_spin_unlock(&rq->lock);
+                       hrtimer_cancel(dl_timer);
+                       raw_spin_lock(&rq->lock);
+               }
+       }
+}
+
+static void switched_from_dl(struct rq *rq, struct task_struct *p)
+{
+       /* XXX we should retain the bw until 0-lag */
+       cancel_dl_timer(rq, p);
+       __dl_clear_params(p);
+
+       /*
+        * Since this might be the only -deadline task on the rq,
+        * this is the right place to try to pull some other one
+        * from an overloaded cpu, if any.
+        */
+       if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
+               return;
+
+       if (pull_dl_task(rq))
+               resched_curr(rq);
+}
+
+/*
+ * When switching to -deadline, we may overload the rq, then
+ * we try to push someone off, if possible.
+ */
+static void switched_to_dl(struct rq *rq, struct task_struct *p)
+{
+       int check_resched = 1;
+
+       if (task_on_rq_queued(p) && rq->curr != p) {
+#ifdef CONFIG_SMP
+               if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
+                       push_dl_task(rq) && rq != task_rq(p))
+                       /* Only reschedule if pushing failed */
+                       check_resched = 0;
+#endif /* CONFIG_SMP */
+               if (check_resched) {
+                       if (dl_task(rq->curr))
+                               check_preempt_curr_dl(rq, p, 0);
+                       else
+                               resched_curr(rq);
+               }
+       }
+}
+
+/*
+ * If the scheduling parameters of a -deadline task changed,
+ * a push or pull operation might be needed.
+ */
+static void prio_changed_dl(struct rq *rq, struct task_struct *p,
+                           int oldprio)
+{
+       if (task_on_rq_queued(p) || rq->curr == p) {
+#ifdef CONFIG_SMP
+               /*
+                * This might be too much, but unfortunately
+                * we don't have the old deadline value, and
+                * we can't argue if the task is increasing
+                * or lowering its prio, so...
+                */
+               if (!rq->dl.overloaded)
+                       pull_dl_task(rq);
+
+               /*
+                * If we now have a earlier deadline task than p,
+                * then reschedule, provided p is still on this
+                * runqueue.
+                */
+               if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
+                   rq->curr == p)
+                       resched_curr(rq);
+#else
+               /*
+                * Again, we don't know if p has a earlier
+                * or later deadline, so let's blindly set a
+                * (maybe not needed) rescheduling point.
+                */
+               resched_curr(rq);
+#endif /* CONFIG_SMP */
+       } else
+               switched_to_dl(rq, p);
+}
+
+const struct sched_class dl_sched_class = {
+       .next                   = &rt_sched_class,
+       .enqueue_task           = enqueue_task_dl,
+       .dequeue_task           = dequeue_task_dl,
+       .yield_task             = yield_task_dl,
+
+       .check_preempt_curr     = check_preempt_curr_dl,
+
+       .pick_next_task         = pick_next_task_dl,
+       .put_prev_task          = put_prev_task_dl,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_dl,
+       .set_cpus_allowed       = set_cpus_allowed_dl,
+       .rq_online              = rq_online_dl,
+       .rq_offline             = rq_offline_dl,
+       .post_schedule          = post_schedule_dl,
+       .task_woken             = task_woken_dl,
+#endif
+
+       .set_curr_task          = set_curr_task_dl,
+       .task_tick              = task_tick_dl,
+       .task_fork              = task_fork_dl,
+       .task_dead              = task_dead_dl,
+
+       .prio_changed           = prio_changed_dl,
+       .switched_from          = switched_from_dl,
+       .switched_to            = switched_to_dl,
+
+       .update_curr            = update_curr_dl,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
+
+void print_dl_stats(struct seq_file *m, int cpu)
+{
+       print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
+}
+#endif /* CONFIG_SCHED_DEBUG */