Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / sched / cpupri.c
diff --git a/kernel/kernel/sched/cpupri.c b/kernel/kernel/sched/cpupri.c
new file mode 100644 (file)
index 0000000..981fcd7
--- /dev/null
@@ -0,0 +1,248 @@
+/*
+ *  kernel/sched/cpupri.c
+ *
+ *  CPU priority management
+ *
+ *  Copyright (C) 2007-2008 Novell
+ *
+ *  Author: Gregory Haskins <ghaskins@novell.com>
+ *
+ *  This code tracks the priority of each CPU so that global migration
+ *  decisions are easy to calculate.  Each CPU can be in a state as follows:
+ *
+ *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
+ *
+ *  going from the lowest priority to the highest.  CPUs in the INVALID state
+ *  are not eligible for routing.  The system maintains this state with
+ *  a 2 dimensional bitmap (the first for priority class, the second for cpus
+ *  in that class).  Therefore a typical application without affinity
+ *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
+ *  searches).  For tasks with affinity restrictions, the algorithm has a
+ *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
+ *  yields the worst case search is fairly contrived.
+ *
+ *  This program is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU General Public License
+ *  as published by the Free Software Foundation; version 2
+ *  of the License.
+ */
+
+#include <linux/gfp.h>
+#include <linux/sched.h>
+#include <linux/sched/rt.h>
+#include <linux/slab.h>
+#include "cpupri.h"
+
+/* Convert between a 140 based task->prio, and our 102 based cpupri */
+static int convert_prio(int prio)
+{
+       int cpupri;
+
+       if (prio == CPUPRI_INVALID)
+               cpupri = CPUPRI_INVALID;
+       else if (prio == MAX_PRIO)
+               cpupri = CPUPRI_IDLE;
+       else if (prio >= MAX_RT_PRIO)
+               cpupri = CPUPRI_NORMAL;
+       else
+               cpupri = MAX_RT_PRIO - prio + 1;
+
+       return cpupri;
+}
+
+/**
+ * cpupri_find - find the best (lowest-pri) CPU in the system
+ * @cp: The cpupri context
+ * @p: The task
+ * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
+ *
+ * Note: This function returns the recommended CPUs as calculated during the
+ * current invocation.  By the time the call returns, the CPUs may have in
+ * fact changed priorities any number of times.  While not ideal, it is not
+ * an issue of correctness since the normal rebalancer logic will correct
+ * any discrepancies created by racing against the uncertainty of the current
+ * priority configuration.
+ *
+ * Return: (int)bool - CPUs were found
+ */
+int cpupri_find(struct cpupri *cp, struct task_struct *p,
+               struct cpumask *lowest_mask)
+{
+       int idx = 0;
+       int task_pri = convert_prio(p->prio);
+
+       BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
+
+       for (idx = 0; idx < task_pri; idx++) {
+               struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
+               int skip = 0;
+
+               if (!atomic_read(&(vec)->count))
+                       skip = 1;
+               /*
+                * When looking at the vector, we need to read the counter,
+                * do a memory barrier, then read the mask.
+                *
+                * Note: This is still all racey, but we can deal with it.
+                *  Ideally, we only want to look at masks that are set.
+                *
+                *  If a mask is not set, then the only thing wrong is that we
+                *  did a little more work than necessary.
+                *
+                *  If we read a zero count but the mask is set, because of the
+                *  memory barriers, that can only happen when the highest prio
+                *  task for a run queue has left the run queue, in which case,
+                *  it will be followed by a pull. If the task we are processing
+                *  fails to find a proper place to go, that pull request will
+                *  pull this task if the run queue is running at a lower
+                *  priority.
+                */
+               smp_rmb();
+
+               /* Need to do the rmb for every iteration */
+               if (skip)
+                       continue;
+
+               if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
+                       continue;
+
+               if (lowest_mask) {
+                       cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
+
+                       /*
+                        * We have to ensure that we have at least one bit
+                        * still set in the array, since the map could have
+                        * been concurrently emptied between the first and
+                        * second reads of vec->mask.  If we hit this
+                        * condition, simply act as though we never hit this
+                        * priority level and continue on.
+                        */
+                       if (cpumask_any(lowest_mask) >= nr_cpu_ids)
+                               continue;
+               }
+
+               return 1;
+       }
+
+       return 0;
+}
+
+/**
+ * cpupri_set - update the cpu priority setting
+ * @cp: The cpupri context
+ * @cpu: The target cpu
+ * @newpri: The priority (INVALID-RT99) to assign to this CPU
+ *
+ * Note: Assumes cpu_rq(cpu)->lock is locked
+ *
+ * Returns: (void)
+ */
+void cpupri_set(struct cpupri *cp, int cpu, int newpri)
+{
+       int *currpri = &cp->cpu_to_pri[cpu];
+       int oldpri = *currpri;
+       int do_mb = 0;
+
+       newpri = convert_prio(newpri);
+
+       BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
+
+       if (newpri == oldpri)
+               return;
+
+       /*
+        * If the cpu was currently mapped to a different value, we
+        * need to map it to the new value then remove the old value.
+        * Note, we must add the new value first, otherwise we risk the
+        * cpu being missed by the priority loop in cpupri_find.
+        */
+       if (likely(newpri != CPUPRI_INVALID)) {
+               struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
+
+               cpumask_set_cpu(cpu, vec->mask);
+               /*
+                * When adding a new vector, we update the mask first,
+                * do a write memory barrier, and then update the count, to
+                * make sure the vector is visible when count is set.
+                */
+               smp_mb__before_atomic();
+               atomic_inc(&(vec)->count);
+               do_mb = 1;
+       }
+       if (likely(oldpri != CPUPRI_INVALID)) {
+               struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
+
+               /*
+                * Because the order of modification of the vec->count
+                * is important, we must make sure that the update
+                * of the new prio is seen before we decrement the
+                * old prio. This makes sure that the loop sees
+                * one or the other when we raise the priority of
+                * the run queue. We don't care about when we lower the
+                * priority, as that will trigger an rt pull anyway.
+                *
+                * We only need to do a memory barrier if we updated
+                * the new priority vec.
+                */
+               if (do_mb)
+                       smp_mb__after_atomic();
+
+               /*
+                * When removing from the vector, we decrement the counter first
+                * do a memory barrier and then clear the mask.
+                */
+               atomic_dec(&(vec)->count);
+               smp_mb__after_atomic();
+               cpumask_clear_cpu(cpu, vec->mask);
+       }
+
+       *currpri = newpri;
+}
+
+/**
+ * cpupri_init - initialize the cpupri structure
+ * @cp: The cpupri context
+ *
+ * Return: -ENOMEM on memory allocation failure.
+ */
+int cpupri_init(struct cpupri *cp)
+{
+       int i;
+
+       memset(cp, 0, sizeof(*cp));
+
+       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
+               struct cpupri_vec *vec = &cp->pri_to_cpu[i];
+
+               atomic_set(&vec->count, 0);
+               if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
+                       goto cleanup;
+       }
+
+       cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
+       if (!cp->cpu_to_pri)
+               goto cleanup;
+
+       for_each_possible_cpu(i)
+               cp->cpu_to_pri[i] = CPUPRI_INVALID;
+
+       return 0;
+
+cleanup:
+       for (i--; i >= 0; i--)
+               free_cpumask_var(cp->pri_to_cpu[i].mask);
+       return -ENOMEM;
+}
+
+/**
+ * cpupri_cleanup - clean up the cpupri structure
+ * @cp: The cpupri context
+ */
+void cpupri_cleanup(struct cpupri *cp)
+{
+       int i;
+
+       kfree(cp->cpu_to_pri);
+       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
+               free_cpumask_var(cp->pri_to_cpu[i].mask);
+}