Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / rcu / tree_plugin.h
diff --git a/kernel/kernel/rcu/tree_plugin.h b/kernel/kernel/rcu/tree_plugin.h
new file mode 100644 (file)
index 0000000..54da8f4
--- /dev/null
@@ -0,0 +1,2984 @@
+/*
+ * Read-Copy Update mechanism for mutual exclusion (tree-based version)
+ * Internal non-public definitions that provide either classic
+ * or preemptible semantics.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you can access it online at
+ * http://www.gnu.org/licenses/gpl-2.0.html.
+ *
+ * Copyright Red Hat, 2009
+ * Copyright IBM Corporation, 2009
+ *
+ * Author: Ingo Molnar <mingo@elte.hu>
+ *        Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ */
+
+#ifdef CONFIG_RCU_BOOST
+
+#include "../locking/rtmutex_common.h"
+
+#endif /* #ifdef CONFIG_RCU_BOOST */
+
+/*
+ * Control variables for per-CPU and per-rcu_node kthreads.  These
+ * handle all flavors of RCU.
+ */
+DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
+DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
+DEFINE_PER_CPU(char, rcu_cpu_has_work);
+
+#ifdef CONFIG_RCU_NOCB_CPU
+static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
+static bool have_rcu_nocb_mask;            /* Was rcu_nocb_mask allocated? */
+static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
+#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
+
+/*
+ * Check the RCU kernel configuration parameters and print informative
+ * messages about anything out of the ordinary.  If you like #ifdef, you
+ * will love this function.
+ */
+static void __init rcu_bootup_announce_oddness(void)
+{
+       if (IS_ENABLED(CONFIG_RCU_TRACE))
+               pr_info("\tRCU debugfs-based tracing is enabled.\n");
+       if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
+           (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
+               pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
+                      CONFIG_RCU_FANOUT);
+       if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
+               pr_info("\tHierarchical RCU autobalancing is disabled.\n");
+       if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
+               pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
+       if (IS_ENABLED(CONFIG_PROVE_RCU))
+               pr_info("\tRCU lockdep checking is enabled.\n");
+       if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
+               pr_info("\tRCU torture testing starts during boot.\n");
+       if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
+               pr_info("\tAdditional per-CPU info printed with stalls.\n");
+       if (NUM_RCU_LVL_4 != 0)
+               pr_info("\tFour-level hierarchy is enabled.\n");
+       if (CONFIG_RCU_FANOUT_LEAF != 16)
+               pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
+                       CONFIG_RCU_FANOUT_LEAF);
+       if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
+               pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
+       if (nr_cpu_ids != NR_CPUS)
+               pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
+       if (IS_ENABLED(CONFIG_RCU_BOOST))
+               pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
+}
+
+#ifdef CONFIG_PREEMPT_RCU
+
+RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
+static struct rcu_state *rcu_state_p = &rcu_preempt_state;
+
+static int rcu_preempted_readers_exp(struct rcu_node *rnp);
+static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
+                              bool wake);
+
+/*
+ * Tell them what RCU they are running.
+ */
+static void __init rcu_bootup_announce(void)
+{
+       pr_info("Preemptible hierarchical RCU implementation.\n");
+       rcu_bootup_announce_oddness();
+}
+
+/*
+ * Record a preemptible-RCU quiescent state for the specified CPU.  Note
+ * that this just means that the task currently running on the CPU is
+ * not in a quiescent state.  There might be any number of tasks blocked
+ * while in an RCU read-side critical section.
+ *
+ * As with the other rcu_*_qs() functions, callers to this function
+ * must disable preemption.
+ */
+static void rcu_preempt_qs(void)
+{
+       if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
+               trace_rcu_grace_period(TPS("rcu_preempt"),
+                                      __this_cpu_read(rcu_preempt_data.gpnum),
+                                      TPS("cpuqs"));
+               __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
+               barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
+               current->rcu_read_unlock_special.b.need_qs = false;
+       }
+}
+
+/*
+ * We have entered the scheduler, and the current task might soon be
+ * context-switched away from.  If this task is in an RCU read-side
+ * critical section, we will no longer be able to rely on the CPU to
+ * record that fact, so we enqueue the task on the blkd_tasks list.
+ * The task will dequeue itself when it exits the outermost enclosing
+ * RCU read-side critical section.  Therefore, the current grace period
+ * cannot be permitted to complete until the blkd_tasks list entries
+ * predating the current grace period drain, in other words, until
+ * rnp->gp_tasks becomes NULL.
+ *
+ * Caller must disable preemption.
+ */
+static void rcu_preempt_note_context_switch(void)
+{
+       struct task_struct *t = current;
+       unsigned long flags;
+       struct rcu_data *rdp;
+       struct rcu_node *rnp;
+
+       if (t->rcu_read_lock_nesting > 0 &&
+           !t->rcu_read_unlock_special.b.blocked) {
+
+               /* Possibly blocking in an RCU read-side critical section. */
+               rdp = this_cpu_ptr(rcu_preempt_state.rda);
+               rnp = rdp->mynode;
+               raw_spin_lock_irqsave(&rnp->lock, flags);
+               smp_mb__after_unlock_lock();
+               t->rcu_read_unlock_special.b.blocked = true;
+               t->rcu_blocked_node = rnp;
+
+               /*
+                * If this CPU has already checked in, then this task
+                * will hold up the next grace period rather than the
+                * current grace period.  Queue the task accordingly.
+                * If the task is queued for the current grace period
+                * (i.e., this CPU has not yet passed through a quiescent
+                * state for the current grace period), then as long
+                * as that task remains queued, the current grace period
+                * cannot end.  Note that there is some uncertainty as
+                * to exactly when the current grace period started.
+                * We take a conservative approach, which can result
+                * in unnecessarily waiting on tasks that started very
+                * slightly after the current grace period began.  C'est
+                * la vie!!!
+                *
+                * But first, note that the current CPU must still be
+                * on line!
+                */
+               WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
+               WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
+               if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
+                       list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
+                       rnp->gp_tasks = &t->rcu_node_entry;
+#ifdef CONFIG_RCU_BOOST
+                       if (rnp->boost_tasks != NULL)
+                               rnp->boost_tasks = rnp->gp_tasks;
+#endif /* #ifdef CONFIG_RCU_BOOST */
+               } else {
+                       list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
+                       if (rnp->qsmask & rdp->grpmask)
+                               rnp->gp_tasks = &t->rcu_node_entry;
+               }
+               trace_rcu_preempt_task(rdp->rsp->name,
+                                      t->pid,
+                                      (rnp->qsmask & rdp->grpmask)
+                                      ? rnp->gpnum
+                                      : rnp->gpnum + 1);
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       } else if (t->rcu_read_lock_nesting < 0 &&
+                  t->rcu_read_unlock_special.s) {
+
+               /*
+                * Complete exit from RCU read-side critical section on
+                * behalf of preempted instance of __rcu_read_unlock().
+                */
+               rcu_read_unlock_special(t);
+       }
+
+       /*
+        * Either we were not in an RCU read-side critical section to
+        * begin with, or we have now recorded that critical section
+        * globally.  Either way, we can now note a quiescent state
+        * for this CPU.  Again, if we were in an RCU read-side critical
+        * section, and if that critical section was blocking the current
+        * grace period, then the fact that the task has been enqueued
+        * means that we continue to block the current grace period.
+        */
+       rcu_preempt_qs();
+}
+
+/*
+ * Check for preempted RCU readers blocking the current grace period
+ * for the specified rcu_node structure.  If the caller needs a reliable
+ * answer, it must hold the rcu_node's ->lock.
+ */
+static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
+{
+       return rnp->gp_tasks != NULL;
+}
+
+/*
+ * Advance a ->blkd_tasks-list pointer to the next entry, instead
+ * returning NULL if at the end of the list.
+ */
+static struct list_head *rcu_next_node_entry(struct task_struct *t,
+                                            struct rcu_node *rnp)
+{
+       struct list_head *np;
+
+       np = t->rcu_node_entry.next;
+       if (np == &rnp->blkd_tasks)
+               np = NULL;
+       return np;
+}
+
+/*
+ * Return true if the specified rcu_node structure has tasks that were
+ * preempted within an RCU read-side critical section.
+ */
+static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
+{
+       return !list_empty(&rnp->blkd_tasks);
+}
+
+/*
+ * Handle special cases during rcu_read_unlock(), such as needing to
+ * notify RCU core processing or task having blocked during the RCU
+ * read-side critical section.
+ */
+void rcu_read_unlock_special(struct task_struct *t)
+{
+       bool empty_exp;
+       bool empty_norm;
+       bool empty_exp_now;
+       unsigned long flags;
+       struct list_head *np;
+#ifdef CONFIG_RCU_BOOST
+       bool drop_boost_mutex = false;
+#endif /* #ifdef CONFIG_RCU_BOOST */
+       struct rcu_node *rnp;
+       union rcu_special special;
+
+       /* NMI handlers cannot block and cannot safely manipulate state. */
+       if (in_nmi())
+               return;
+
+       local_irq_save(flags);
+
+       /*
+        * If RCU core is waiting for this CPU to exit critical section,
+        * let it know that we have done so.  Because irqs are disabled,
+        * t->rcu_read_unlock_special cannot change.
+        */
+       special = t->rcu_read_unlock_special;
+       if (special.b.need_qs) {
+               rcu_preempt_qs();
+               t->rcu_read_unlock_special.b.need_qs = false;
+               if (!t->rcu_read_unlock_special.s) {
+                       local_irq_restore(flags);
+                       return;
+               }
+       }
+
+       /* Hardware IRQ handlers cannot block, complain if they get here. */
+       if (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_OFFSET)) {
+               lockdep_rcu_suspicious(__FILE__, __LINE__,
+                                      "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
+               pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
+                        t->rcu_read_unlock_special.s,
+                        t->rcu_read_unlock_special.b.blocked,
+                        t->rcu_read_unlock_special.b.need_qs);
+               local_irq_restore(flags);
+               return;
+       }
+
+       /* Clean up if blocked during RCU read-side critical section. */
+       if (special.b.blocked) {
+               t->rcu_read_unlock_special.b.blocked = false;
+
+               /*
+                * Remove this task from the list it blocked on.  The
+                * task can migrate while we acquire the lock, but at
+                * most one time.  So at most two passes through loop.
+                */
+               for (;;) {
+                       rnp = t->rcu_blocked_node;
+                       raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
+                       smp_mb__after_unlock_lock();
+                       if (rnp == t->rcu_blocked_node)
+                               break;
+                       raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
+               }
+               empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
+               empty_exp = !rcu_preempted_readers_exp(rnp);
+               smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
+               np = rcu_next_node_entry(t, rnp);
+               list_del_init(&t->rcu_node_entry);
+               t->rcu_blocked_node = NULL;
+               trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
+                                               rnp->gpnum, t->pid);
+               if (&t->rcu_node_entry == rnp->gp_tasks)
+                       rnp->gp_tasks = np;
+               if (&t->rcu_node_entry == rnp->exp_tasks)
+                       rnp->exp_tasks = np;
+#ifdef CONFIG_RCU_BOOST
+               if (&t->rcu_node_entry == rnp->boost_tasks)
+                       rnp->boost_tasks = np;
+               /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
+               drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
+#endif /* #ifdef CONFIG_RCU_BOOST */
+
+               /*
+                * If this was the last task on the current list, and if
+                * we aren't waiting on any CPUs, report the quiescent state.
+                * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
+                * so we must take a snapshot of the expedited state.
+                */
+               empty_exp_now = !rcu_preempted_readers_exp(rnp);
+               if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
+                       trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
+                                                        rnp->gpnum,
+                                                        0, rnp->qsmask,
+                                                        rnp->level,
+                                                        rnp->grplo,
+                                                        rnp->grphi,
+                                                        !!rnp->gp_tasks);
+                       rcu_report_unblock_qs_rnp(&rcu_preempt_state,
+                                                 rnp, flags);
+               } else {
+                       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               }
+
+#ifdef CONFIG_RCU_BOOST
+               /* Unboost if we were boosted. */
+               if (drop_boost_mutex)
+                       rt_mutex_unlock(&rnp->boost_mtx);
+#endif /* #ifdef CONFIG_RCU_BOOST */
+
+               /*
+                * If this was the last task on the expedited lists,
+                * then we need to report up the rcu_node hierarchy.
+                */
+               if (!empty_exp && empty_exp_now)
+                       rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
+       } else {
+               local_irq_restore(flags);
+       }
+}
+
+/*
+ * Dump detailed information for all tasks blocking the current RCU
+ * grace period on the specified rcu_node structure.
+ */
+static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
+{
+       unsigned long flags;
+       struct task_struct *t;
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       if (!rcu_preempt_blocked_readers_cgp(rnp)) {
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               return;
+       }
+       t = list_entry(rnp->gp_tasks,
+                      struct task_struct, rcu_node_entry);
+       list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
+               sched_show_task(t);
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+}
+
+/*
+ * Dump detailed information for all tasks blocking the current RCU
+ * grace period.
+ */
+static void rcu_print_detail_task_stall(struct rcu_state *rsp)
+{
+       struct rcu_node *rnp = rcu_get_root(rsp);
+
+       rcu_print_detail_task_stall_rnp(rnp);
+       rcu_for_each_leaf_node(rsp, rnp)
+               rcu_print_detail_task_stall_rnp(rnp);
+}
+
+#ifdef CONFIG_RCU_CPU_STALL_INFO
+
+static void rcu_print_task_stall_begin(struct rcu_node *rnp)
+{
+       pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
+              rnp->level, rnp->grplo, rnp->grphi);
+}
+
+static void rcu_print_task_stall_end(void)
+{
+       pr_cont("\n");
+}
+
+#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
+
+static void rcu_print_task_stall_begin(struct rcu_node *rnp)
+{
+}
+
+static void rcu_print_task_stall_end(void)
+{
+}
+
+#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
+
+/*
+ * Scan the current list of tasks blocked within RCU read-side critical
+ * sections, printing out the tid of each.
+ */
+static int rcu_print_task_stall(struct rcu_node *rnp)
+{
+       struct task_struct *t;
+       int ndetected = 0;
+
+       if (!rcu_preempt_blocked_readers_cgp(rnp))
+               return 0;
+       rcu_print_task_stall_begin(rnp);
+       t = list_entry(rnp->gp_tasks,
+                      struct task_struct, rcu_node_entry);
+       list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
+               pr_cont(" P%d", t->pid);
+               ndetected++;
+       }
+       rcu_print_task_stall_end();
+       return ndetected;
+}
+
+/*
+ * Check that the list of blocked tasks for the newly completed grace
+ * period is in fact empty.  It is a serious bug to complete a grace
+ * period that still has RCU readers blocked!  This function must be
+ * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
+ * must be held by the caller.
+ *
+ * Also, if there are blocked tasks on the list, they automatically
+ * block the newly created grace period, so set up ->gp_tasks accordingly.
+ */
+static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
+{
+       WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
+       if (rcu_preempt_has_tasks(rnp))
+               rnp->gp_tasks = rnp->blkd_tasks.next;
+       WARN_ON_ONCE(rnp->qsmask);
+}
+
+/*
+ * Check for a quiescent state from the current CPU.  When a task blocks,
+ * the task is recorded in the corresponding CPU's rcu_node structure,
+ * which is checked elsewhere.
+ *
+ * Caller must disable hard irqs.
+ */
+static void rcu_preempt_check_callbacks(void)
+{
+       struct task_struct *t = current;
+
+       if (t->rcu_read_lock_nesting == 0) {
+               rcu_preempt_qs();
+               return;
+       }
+       if (t->rcu_read_lock_nesting > 0 &&
+           __this_cpu_read(rcu_preempt_data.qs_pending) &&
+           !__this_cpu_read(rcu_preempt_data.passed_quiesce))
+               t->rcu_read_unlock_special.b.need_qs = true;
+}
+
+/*
+ * Queue a preemptible-RCU callback for invocation after a grace period.
+ */
+void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
+{
+       __call_rcu(head, func, &rcu_preempt_state, -1, 0);
+}
+EXPORT_SYMBOL_GPL(call_rcu);
+
+/**
+ * synchronize_rcu - wait until a grace period has elapsed.
+ *
+ * Control will return to the caller some time after a full grace
+ * period has elapsed, in other words after all currently executing RCU
+ * read-side critical sections have completed.  Note, however, that
+ * upon return from synchronize_rcu(), the caller might well be executing
+ * concurrently with new RCU read-side critical sections that began while
+ * synchronize_rcu() was waiting.  RCU read-side critical sections are
+ * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
+ *
+ * See the description of synchronize_sched() for more detailed information
+ * on memory ordering guarantees.
+ */
+void synchronize_rcu(void)
+{
+       rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
+                          !lock_is_held(&rcu_lock_map) &&
+                          !lock_is_held(&rcu_sched_lock_map),
+                          "Illegal synchronize_rcu() in RCU read-side critical section");
+       if (!rcu_scheduler_active)
+               return;
+       if (rcu_gp_is_expedited())
+               synchronize_rcu_expedited();
+       else
+               wait_rcu_gp(call_rcu);
+}
+EXPORT_SYMBOL_GPL(synchronize_rcu);
+
+static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
+static unsigned long sync_rcu_preempt_exp_count;
+static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
+
+/*
+ * Return non-zero if there are any tasks in RCU read-side critical
+ * sections blocking the current preemptible-RCU expedited grace period.
+ * If there is no preemptible-RCU expedited grace period currently in
+ * progress, returns zero unconditionally.
+ */
+static int rcu_preempted_readers_exp(struct rcu_node *rnp)
+{
+       return rnp->exp_tasks != NULL;
+}
+
+/*
+ * return non-zero if there is no RCU expedited grace period in progress
+ * for the specified rcu_node structure, in other words, if all CPUs and
+ * tasks covered by the specified rcu_node structure have done their bit
+ * for the current expedited grace period.  Works only for preemptible
+ * RCU -- other RCU implementation use other means.
+ *
+ * Caller must hold sync_rcu_preempt_exp_mutex.
+ */
+static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
+{
+       return !rcu_preempted_readers_exp(rnp) &&
+              ACCESS_ONCE(rnp->expmask) == 0;
+}
+
+/*
+ * Report the exit from RCU read-side critical section for the last task
+ * that queued itself during or before the current expedited preemptible-RCU
+ * grace period.  This event is reported either to the rcu_node structure on
+ * which the task was queued or to one of that rcu_node structure's ancestors,
+ * recursively up the tree.  (Calm down, calm down, we do the recursion
+ * iteratively!)
+ *
+ * Caller must hold sync_rcu_preempt_exp_mutex.
+ */
+static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
+                              bool wake)
+{
+       unsigned long flags;
+       unsigned long mask;
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+       for (;;) {
+               if (!sync_rcu_preempt_exp_done(rnp)) {
+                       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+                       break;
+               }
+               if (rnp->parent == NULL) {
+                       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+                       if (wake) {
+                               smp_mb(); /* EGP done before wake_up(). */
+                               wake_up(&sync_rcu_preempt_exp_wq);
+                       }
+                       break;
+               }
+               mask = rnp->grpmask;
+               raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
+               rnp = rnp->parent;
+               raw_spin_lock(&rnp->lock); /* irqs already disabled */
+               smp_mb__after_unlock_lock();
+               rnp->expmask &= ~mask;
+       }
+}
+
+/*
+ * Snapshot the tasks blocking the newly started preemptible-RCU expedited
+ * grace period for the specified rcu_node structure, phase 1.  If there
+ * are such tasks, set the ->expmask bits up the rcu_node tree and also
+ * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
+ * that work is needed here.
+ *
+ * Caller must hold sync_rcu_preempt_exp_mutex.
+ */
+static void
+sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
+{
+       unsigned long flags;
+       unsigned long mask;
+       struct rcu_node *rnp_up;
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+       WARN_ON_ONCE(rnp->expmask);
+       WARN_ON_ONCE(rnp->exp_tasks);
+       if (!rcu_preempt_has_tasks(rnp)) {
+               /* No blocked tasks, nothing to do. */
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               return;
+       }
+       /* Call for Phase 2 and propagate ->expmask bits up the tree. */
+       rnp->expmask = 1;
+       rnp_up = rnp;
+       while (rnp_up->parent) {
+               mask = rnp_up->grpmask;
+               rnp_up = rnp_up->parent;
+               if (rnp_up->expmask & mask)
+                       break;
+               raw_spin_lock(&rnp_up->lock); /* irqs already off */
+               smp_mb__after_unlock_lock();
+               rnp_up->expmask |= mask;
+               raw_spin_unlock(&rnp_up->lock); /* irqs still off */
+       }
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+}
+
+/*
+ * Snapshot the tasks blocking the newly started preemptible-RCU expedited
+ * grace period for the specified rcu_node structure, phase 2.  If the
+ * leaf rcu_node structure has its ->expmask field set, check for tasks.
+ * If there are some, clear ->expmask and set ->exp_tasks accordingly,
+ * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
+ * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
+ * enabling rcu_read_unlock_special() to do the bit-clearing.
+ *
+ * Caller must hold sync_rcu_preempt_exp_mutex.
+ */
+static void
+sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
+{
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+       if (!rnp->expmask) {
+               /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               return;
+       }
+
+       /* Phase 1 is over. */
+       rnp->expmask = 0;
+
+       /*
+        * If there are still blocked tasks, set up ->exp_tasks so that
+        * rcu_read_unlock_special() will wake us and then boost them.
+        */
+       if (rcu_preempt_has_tasks(rnp)) {
+               rnp->exp_tasks = rnp->blkd_tasks.next;
+               rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
+               return;
+       }
+
+       /* No longer any blocked tasks, so undo bit setting. */
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       rcu_report_exp_rnp(rsp, rnp, false);
+}
+
+/**
+ * synchronize_rcu_expedited - Brute-force RCU grace period
+ *
+ * Wait for an RCU-preempt grace period, but expedite it.  The basic
+ * idea is to invoke synchronize_sched_expedited() to push all the tasks to
+ * the ->blkd_tasks lists and wait for this list to drain.  This consumes
+ * significant time on all CPUs and is unfriendly to real-time workloads,
+ * so is thus not recommended for any sort of common-case code.
+ * In fact, if you are using synchronize_rcu_expedited() in a loop,
+ * please restructure your code to batch your updates, and then Use a
+ * single synchronize_rcu() instead.
+ */
+void synchronize_rcu_expedited(void)
+{
+       struct rcu_node *rnp;
+       struct rcu_state *rsp = &rcu_preempt_state;
+       unsigned long snap;
+       int trycount = 0;
+
+       smp_mb(); /* Caller's modifications seen first by other CPUs. */
+       snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
+       smp_mb(); /* Above access cannot bleed into critical section. */
+
+       /*
+        * Block CPU-hotplug operations.  This means that any CPU-hotplug
+        * operation that finds an rcu_node structure with tasks in the
+        * process of being boosted will know that all tasks blocking
+        * this expedited grace period will already be in the process of
+        * being boosted.  This simplifies the process of moving tasks
+        * from leaf to root rcu_node structures.
+        */
+       if (!try_get_online_cpus()) {
+               /* CPU-hotplug operation in flight, fall back to normal GP. */
+               wait_rcu_gp(call_rcu);
+               return;
+       }
+
+       /*
+        * Acquire lock, falling back to synchronize_rcu() if too many
+        * lock-acquisition failures.  Of course, if someone does the
+        * expedited grace period for us, just leave.
+        */
+       while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
+               if (ULONG_CMP_LT(snap,
+                   ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
+                       put_online_cpus();
+                       goto mb_ret; /* Others did our work for us. */
+               }
+               if (trycount++ < 10) {
+                       udelay(trycount * num_online_cpus());
+               } else {
+                       put_online_cpus();
+                       wait_rcu_gp(call_rcu);
+                       return;
+               }
+       }
+       if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
+               put_online_cpus();
+               goto unlock_mb_ret; /* Others did our work for us. */
+       }
+
+       /* force all RCU readers onto ->blkd_tasks lists. */
+       synchronize_sched_expedited();
+
+       /*
+        * Snapshot current state of ->blkd_tasks lists into ->expmask.
+        * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
+        * to start clearing them.  Doing this in one phase leads to
+        * strange races between setting and clearing bits, so just say "no"!
+        */
+       rcu_for_each_leaf_node(rsp, rnp)
+               sync_rcu_preempt_exp_init1(rsp, rnp);
+       rcu_for_each_leaf_node(rsp, rnp)
+               sync_rcu_preempt_exp_init2(rsp, rnp);
+
+       put_online_cpus();
+
+       /* Wait for snapshotted ->blkd_tasks lists to drain. */
+       rnp = rcu_get_root(rsp);
+       wait_event(sync_rcu_preempt_exp_wq,
+                  sync_rcu_preempt_exp_done(rnp));
+
+       /* Clean up and exit. */
+       smp_mb(); /* ensure expedited GP seen before counter increment. */
+       ACCESS_ONCE(sync_rcu_preempt_exp_count) =
+                                       sync_rcu_preempt_exp_count + 1;
+unlock_mb_ret:
+       mutex_unlock(&sync_rcu_preempt_exp_mutex);
+mb_ret:
+       smp_mb(); /* ensure subsequent action seen after grace period. */
+}
+EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
+
+/**
+ * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
+ *
+ * Note that this primitive does not necessarily wait for an RCU grace period
+ * to complete.  For example, if there are no RCU callbacks queued anywhere
+ * in the system, then rcu_barrier() is within its rights to return
+ * immediately, without waiting for anything, much less an RCU grace period.
+ */
+void rcu_barrier(void)
+{
+       _rcu_barrier(&rcu_preempt_state);
+}
+EXPORT_SYMBOL_GPL(rcu_barrier);
+
+/*
+ * Initialize preemptible RCU's state structures.
+ */
+static void __init __rcu_init_preempt(void)
+{
+       rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
+}
+
+/*
+ * Check for a task exiting while in a preemptible-RCU read-side
+ * critical section, clean up if so.  No need to issue warnings,
+ * as debug_check_no_locks_held() already does this if lockdep
+ * is enabled.
+ */
+void exit_rcu(void)
+{
+       struct task_struct *t = current;
+
+       if (likely(list_empty(&current->rcu_node_entry)))
+               return;
+       t->rcu_read_lock_nesting = 1;
+       barrier();
+       t->rcu_read_unlock_special.b.blocked = true;
+       __rcu_read_unlock();
+}
+
+#else /* #ifdef CONFIG_PREEMPT_RCU */
+
+static struct rcu_state *rcu_state_p = &rcu_sched_state;
+
+/*
+ * Tell them what RCU they are running.
+ */
+static void __init rcu_bootup_announce(void)
+{
+       pr_info("Hierarchical RCU implementation.\n");
+       rcu_bootup_announce_oddness();
+}
+
+/*
+ * Because preemptible RCU does not exist, we never have to check for
+ * CPUs being in quiescent states.
+ */
+static void rcu_preempt_note_context_switch(void)
+{
+}
+
+/*
+ * Because preemptible RCU does not exist, there are never any preempted
+ * RCU readers.
+ */
+static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
+{
+       return 0;
+}
+
+/*
+ * Because there is no preemptible RCU, there can be no readers blocked.
+ */
+static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
+{
+       return false;
+}
+
+/*
+ * Because preemptible RCU does not exist, we never have to check for
+ * tasks blocked within RCU read-side critical sections.
+ */
+static void rcu_print_detail_task_stall(struct rcu_state *rsp)
+{
+}
+
+/*
+ * Because preemptible RCU does not exist, we never have to check for
+ * tasks blocked within RCU read-side critical sections.
+ */
+static int rcu_print_task_stall(struct rcu_node *rnp)
+{
+       return 0;
+}
+
+/*
+ * Because there is no preemptible RCU, there can be no readers blocked,
+ * so there is no need to check for blocked tasks.  So check only for
+ * bogus qsmask values.
+ */
+static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
+{
+       WARN_ON_ONCE(rnp->qsmask);
+}
+
+/*
+ * Because preemptible RCU does not exist, it never has any callbacks
+ * to check.
+ */
+static void rcu_preempt_check_callbacks(void)
+{
+}
+
+/*
+ * Wait for an rcu-preempt grace period, but make it happen quickly.
+ * But because preemptible RCU does not exist, map to rcu-sched.
+ */
+void synchronize_rcu_expedited(void)
+{
+       synchronize_sched_expedited();
+}
+EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
+
+/*
+ * Because preemptible RCU does not exist, rcu_barrier() is just
+ * another name for rcu_barrier_sched().
+ */
+void rcu_barrier(void)
+{
+       rcu_barrier_sched();
+}
+EXPORT_SYMBOL_GPL(rcu_barrier);
+
+/*
+ * Because preemptible RCU does not exist, it need not be initialized.
+ */
+static void __init __rcu_init_preempt(void)
+{
+}
+
+/*
+ * Because preemptible RCU does not exist, tasks cannot possibly exit
+ * while in preemptible RCU read-side critical sections.
+ */
+void exit_rcu(void)
+{
+}
+
+#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
+
+/*
+ * If boosting, set rcuc kthreads to realtime priority.
+ */
+static void rcu_cpu_kthread_setup(unsigned int cpu)
+{
+#ifdef CONFIG_RCU_BOOST
+       struct sched_param sp;
+
+       sp.sched_priority = kthread_prio;
+       sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
+#endif /* #ifdef CONFIG_RCU_BOOST */
+}
+
+#ifdef CONFIG_RCU_BOOST
+
+#include "../locking/rtmutex_common.h"
+
+#ifdef CONFIG_RCU_TRACE
+
+static void rcu_initiate_boost_trace(struct rcu_node *rnp)
+{
+       if (!rcu_preempt_has_tasks(rnp))
+               rnp->n_balk_blkd_tasks++;
+       else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
+               rnp->n_balk_exp_gp_tasks++;
+       else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
+               rnp->n_balk_boost_tasks++;
+       else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
+               rnp->n_balk_notblocked++;
+       else if (rnp->gp_tasks != NULL &&
+                ULONG_CMP_LT(jiffies, rnp->boost_time))
+               rnp->n_balk_notyet++;
+       else
+               rnp->n_balk_nos++;
+}
+
+#else /* #ifdef CONFIG_RCU_TRACE */
+
+static void rcu_initiate_boost_trace(struct rcu_node *rnp)
+{
+}
+
+#endif /* #else #ifdef CONFIG_RCU_TRACE */
+
+/*
+ * Carry out RCU priority boosting on the task indicated by ->exp_tasks
+ * or ->boost_tasks, advancing the pointer to the next task in the
+ * ->blkd_tasks list.
+ *
+ * Note that irqs must be enabled: boosting the task can block.
+ * Returns 1 if there are more tasks needing to be boosted.
+ */
+static int rcu_boost(struct rcu_node *rnp)
+{
+       unsigned long flags;
+       struct task_struct *t;
+       struct list_head *tb;
+
+       if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
+           ACCESS_ONCE(rnp->boost_tasks) == NULL)
+               return 0;  /* Nothing left to boost. */
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+
+       /*
+        * Recheck under the lock: all tasks in need of boosting
+        * might exit their RCU read-side critical sections on their own.
+        */
+       if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               return 0;
+       }
+
+       /*
+        * Preferentially boost tasks blocking expedited grace periods.
+        * This cannot starve the normal grace periods because a second
+        * expedited grace period must boost all blocked tasks, including
+        * those blocking the pre-existing normal grace period.
+        */
+       if (rnp->exp_tasks != NULL) {
+               tb = rnp->exp_tasks;
+               rnp->n_exp_boosts++;
+       } else {
+               tb = rnp->boost_tasks;
+               rnp->n_normal_boosts++;
+       }
+       rnp->n_tasks_boosted++;
+
+       /*
+        * We boost task t by manufacturing an rt_mutex that appears to
+        * be held by task t.  We leave a pointer to that rt_mutex where
+        * task t can find it, and task t will release the mutex when it
+        * exits its outermost RCU read-side critical section.  Then
+        * simply acquiring this artificial rt_mutex will boost task
+        * t's priority.  (Thanks to tglx for suggesting this approach!)
+        *
+        * Note that task t must acquire rnp->lock to remove itself from
+        * the ->blkd_tasks list, which it will do from exit() if from
+        * nowhere else.  We therefore are guaranteed that task t will
+        * stay around at least until we drop rnp->lock.  Note that
+        * rnp->lock also resolves races between our priority boosting
+        * and task t's exiting its outermost RCU read-side critical
+        * section.
+        */
+       t = container_of(tb, struct task_struct, rcu_node_entry);
+       rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       /* Lock only for side effect: boosts task t's priority. */
+       rt_mutex_lock(&rnp->boost_mtx);
+       rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
+
+       return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
+              ACCESS_ONCE(rnp->boost_tasks) != NULL;
+}
+
+/*
+ * Priority-boosting kthread.  One per leaf rcu_node and one for the
+ * root rcu_node.
+ */
+static int rcu_boost_kthread(void *arg)
+{
+       struct rcu_node *rnp = (struct rcu_node *)arg;
+       int spincnt = 0;
+       int more2boost;
+
+       trace_rcu_utilization(TPS("Start boost kthread@init"));
+       for (;;) {
+               rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
+               trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
+               rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
+               trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
+               rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
+               more2boost = rcu_boost(rnp);
+               if (more2boost)
+                       spincnt++;
+               else
+                       spincnt = 0;
+               if (spincnt > 10) {
+                       rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
+                       trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
+                       schedule_timeout_interruptible(2);
+                       trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
+                       spincnt = 0;
+               }
+       }
+       /* NOTREACHED */
+       trace_rcu_utilization(TPS("End boost kthread@notreached"));
+       return 0;
+}
+
+/*
+ * Check to see if it is time to start boosting RCU readers that are
+ * blocking the current grace period, and, if so, tell the per-rcu_node
+ * kthread to start boosting them.  If there is an expedited grace
+ * period in progress, it is always time to boost.
+ *
+ * The caller must hold rnp->lock, which this function releases.
+ * The ->boost_kthread_task is immortal, so we don't need to worry
+ * about it going away.
+ */
+static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
+       __releases(rnp->lock)
+{
+       struct task_struct *t;
+
+       if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
+               rnp->n_balk_exp_gp_tasks++;
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               return;
+       }
+       if (rnp->exp_tasks != NULL ||
+           (rnp->gp_tasks != NULL &&
+            rnp->boost_tasks == NULL &&
+            rnp->qsmask == 0 &&
+            ULONG_CMP_GE(jiffies, rnp->boost_time))) {
+               if (rnp->exp_tasks == NULL)
+                       rnp->boost_tasks = rnp->gp_tasks;
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+               t = rnp->boost_kthread_task;
+               if (t)
+                       rcu_wake_cond(t, rnp->boost_kthread_status);
+       } else {
+               rcu_initiate_boost_trace(rnp);
+               raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       }
+}
+
+/*
+ * Is the current CPU running the RCU-callbacks kthread?
+ * Caller must have preemption disabled.
+ */
+static bool rcu_is_callbacks_kthread(void)
+{
+       return __this_cpu_read(rcu_cpu_kthread_task) == current;
+}
+
+#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
+
+/*
+ * Do priority-boost accounting for the start of a new grace period.
+ */
+static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
+{
+       rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
+}
+
+/*
+ * Create an RCU-boost kthread for the specified node if one does not
+ * already exist.  We only create this kthread for preemptible RCU.
+ * Returns zero if all is well, a negated errno otherwise.
+ */
+static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
+                                      struct rcu_node *rnp)
+{
+       int rnp_index = rnp - &rsp->node[0];
+       unsigned long flags;
+       struct sched_param sp;
+       struct task_struct *t;
+
+       if (&rcu_preempt_state != rsp)
+               return 0;
+
+       if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
+               return 0;
+
+       rsp->boost = 1;
+       if (rnp->boost_kthread_task != NULL)
+               return 0;
+       t = kthread_create(rcu_boost_kthread, (void *)rnp,
+                          "rcub/%d", rnp_index);
+       if (IS_ERR(t))
+               return PTR_ERR(t);
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+       rnp->boost_kthread_task = t;
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       sp.sched_priority = kthread_prio;
+       sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
+       wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
+       return 0;
+}
+
+/*
+ * Set the per-rcu_node kthread's affinity to cover all CPUs that are
+ * served by the rcu_node in question.  The CPU hotplug lock is still
+ * held, so the value of rnp->qsmaskinit will be stable.
+ *
+ * We don't include outgoingcpu in the affinity set, use -1 if there is
+ * no outgoing CPU.  If there are no CPUs left in the affinity set,
+ * this function allows the kthread to execute on any CPU.
+ */
+static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
+{
+       struct task_struct *t = rnp->boost_kthread_task;
+       unsigned long mask = rcu_rnp_online_cpus(rnp);
+       cpumask_var_t cm;
+       int cpu;
+
+       if (!t)
+               return;
+       if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
+               return;
+       for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
+               if ((mask & 0x1) && cpu != outgoingcpu)
+                       cpumask_set_cpu(cpu, cm);
+       if (cpumask_weight(cm) == 0)
+               cpumask_setall(cm);
+       set_cpus_allowed_ptr(t, cm);
+       free_cpumask_var(cm);
+}
+
+/*
+ * Spawn boost kthreads -- called as soon as the scheduler is running.
+ */
+static void __init rcu_spawn_boost_kthreads(void)
+{
+       struct rcu_node *rnp;
+       rcu_for_each_leaf_node(rcu_state_p, rnp)
+               (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
+}
+
+static void rcu_prepare_kthreads(int cpu)
+{
+       struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
+       struct rcu_node *rnp = rdp->mynode;
+
+       /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
+       if (rcu_scheduler_fully_active)
+               (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
+}
+
+#else /* #ifdef CONFIG_RCU_BOOST */
+
+static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
+       __releases(rnp->lock)
+{
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+}
+
+static bool rcu_is_callbacks_kthread(void)
+{
+       return false;
+}
+
+static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
+{
+}
+
+static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
+{
+}
+
+static void __init rcu_spawn_boost_kthreads(void)
+{
+}
+
+static void rcu_prepare_kthreads(int cpu)
+{
+}
+
+#endif /* #else #ifdef CONFIG_RCU_BOOST */
+
+#if !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL)
+
+/*
+ * Check to see if any future RCU-related work will need to be done
+ * by the current CPU, even if none need be done immediately, returning
+ * 1 if so.  This function is part of the RCU implementation; it is -not-
+ * an exported member of the RCU API.
+ *
+ * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
+ * any flavor of RCU.
+ */
+#ifndef CONFIG_RCU_NOCB_CPU_ALL
+int rcu_needs_cpu(unsigned long *delta_jiffies)
+{
+       *delta_jiffies = ULONG_MAX;
+       return rcu_cpu_has_callbacks(NULL);
+}
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
+#endif /* !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL) */
+
+#if !defined(CONFIG_RCU_FAST_NO_HZ)
+/*
+ * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
+ * after it.
+ */
+static void rcu_cleanup_after_idle(void)
+{
+}
+
+/*
+ * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
+ * is nothing.
+ */
+static void rcu_prepare_for_idle(void)
+{
+}
+
+/*
+ * Don't bother keeping a running count of the number of RCU callbacks
+ * posted because CONFIG_RCU_FAST_NO_HZ=n.
+ */
+static void rcu_idle_count_callbacks_posted(void)
+{
+}
+
+#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
+
+/*
+ * This code is invoked when a CPU goes idle, at which point we want
+ * to have the CPU do everything required for RCU so that it can enter
+ * the energy-efficient dyntick-idle mode.  This is handled by a
+ * state machine implemented by rcu_prepare_for_idle() below.
+ *
+ * The following three proprocessor symbols control this state machine:
+ *
+ * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
+ *     to sleep in dyntick-idle mode with RCU callbacks pending.  This
+ *     is sized to be roughly one RCU grace period.  Those energy-efficiency
+ *     benchmarkers who might otherwise be tempted to set this to a large
+ *     number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
+ *     system.  And if you are -that- concerned about energy efficiency,
+ *     just power the system down and be done with it!
+ * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
+ *     permitted to sleep in dyntick-idle mode with only lazy RCU
+ *     callbacks pending.  Setting this too high can OOM your system.
+ *
+ * The values below work well in practice.  If future workloads require
+ * adjustment, they can be converted into kernel config parameters, though
+ * making the state machine smarter might be a better option.
+ */
+#define RCU_IDLE_GP_DELAY 4            /* Roughly one grace period. */
+#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)        /* Roughly six seconds. */
+
+static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
+module_param(rcu_idle_gp_delay, int, 0644);
+static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
+module_param(rcu_idle_lazy_gp_delay, int, 0644);
+
+extern int tick_nohz_active;
+
+/*
+ * Try to advance callbacks for all flavors of RCU on the current CPU, but
+ * only if it has been awhile since the last time we did so.  Afterwards,
+ * if there are any callbacks ready for immediate invocation, return true.
+ */
+static bool __maybe_unused rcu_try_advance_all_cbs(void)
+{
+       bool cbs_ready = false;
+       struct rcu_data *rdp;
+       struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+       struct rcu_node *rnp;
+       struct rcu_state *rsp;
+
+       /* Exit early if we advanced recently. */
+       if (jiffies == rdtp->last_advance_all)
+               return false;
+       rdtp->last_advance_all = jiffies;
+
+       for_each_rcu_flavor(rsp) {
+               rdp = this_cpu_ptr(rsp->rda);
+               rnp = rdp->mynode;
+
+               /*
+                * Don't bother checking unless a grace period has
+                * completed since we last checked and there are
+                * callbacks not yet ready to invoke.
+                */
+               if ((rdp->completed != rnp->completed ||
+                    unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
+                   rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
+                       note_gp_changes(rsp, rdp);
+
+               if (cpu_has_callbacks_ready_to_invoke(rdp))
+                       cbs_ready = true;
+       }
+       return cbs_ready;
+}
+
+#ifndef CONFIG_PREEMPT_RT_FULL
+
+/*
+ * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
+ * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
+ * caller to set the timeout based on whether or not there are non-lazy
+ * callbacks.
+ *
+ * The caller must have disabled interrupts.
+ */
+#ifndef CONFIG_RCU_NOCB_CPU_ALL
+int rcu_needs_cpu(unsigned long *dj)
+{
+       struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+
+       /* Snapshot to detect later posting of non-lazy callback. */
+       rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
+
+       /* If no callbacks, RCU doesn't need the CPU. */
+       if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
+               *dj = ULONG_MAX;
+               return 0;
+       }
+
+       /* Attempt to advance callbacks. */
+       if (rcu_try_advance_all_cbs()) {
+               /* Some ready to invoke, so initiate later invocation. */
+               invoke_rcu_core();
+               return 1;
+       }
+       rdtp->last_accelerate = jiffies;
+
+       /* Request timer delay depending on laziness, and round. */
+       if (!rdtp->all_lazy) {
+               *dj = round_up(rcu_idle_gp_delay + jiffies,
+                              rcu_idle_gp_delay) - jiffies;
+       } else {
+               *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
+       }
+       return 0;
+}
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
+#endif /* #ifndef CONFIG_PREEMPT_RT_FULL */
+/*
+ * Prepare a CPU for idle from an RCU perspective.  The first major task
+ * is to sense whether nohz mode has been enabled or disabled via sysfs.
+ * The second major task is to check to see if a non-lazy callback has
+ * arrived at a CPU that previously had only lazy callbacks.  The third
+ * major task is to accelerate (that is, assign grace-period numbers to)
+ * any recently arrived callbacks.
+ *
+ * The caller must have disabled interrupts.
+ */
+static void rcu_prepare_for_idle(void)
+{
+#ifndef CONFIG_RCU_NOCB_CPU_ALL
+       bool needwake;
+       struct rcu_data *rdp;
+       struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+       struct rcu_node *rnp;
+       struct rcu_state *rsp;
+       int tne;
+
+       /* Handle nohz enablement switches conservatively. */
+       tne = ACCESS_ONCE(tick_nohz_active);
+       if (tne != rdtp->tick_nohz_enabled_snap) {
+               if (rcu_cpu_has_callbacks(NULL))
+                       invoke_rcu_core(); /* force nohz to see update. */
+               rdtp->tick_nohz_enabled_snap = tne;
+               return;
+       }
+       if (!tne)
+               return;
+
+       /* If this is a no-CBs CPU, no callbacks, just return. */
+       if (rcu_is_nocb_cpu(smp_processor_id()))
+               return;
+
+       /*
+        * If a non-lazy callback arrived at a CPU having only lazy
+        * callbacks, invoke RCU core for the side-effect of recalculating
+        * idle duration on re-entry to idle.
+        */
+       if (rdtp->all_lazy &&
+           rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
+               rdtp->all_lazy = false;
+               rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
+               invoke_rcu_core();
+               return;
+       }
+
+       /*
+        * If we have not yet accelerated this jiffy, accelerate all
+        * callbacks on this CPU.
+        */
+       if (rdtp->last_accelerate == jiffies)
+               return;
+       rdtp->last_accelerate = jiffies;
+       for_each_rcu_flavor(rsp) {
+               rdp = this_cpu_ptr(rsp->rda);
+               if (!*rdp->nxttail[RCU_DONE_TAIL])
+                       continue;
+               rnp = rdp->mynode;
+               raw_spin_lock(&rnp->lock); /* irqs already disabled. */
+               smp_mb__after_unlock_lock();
+               needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
+               raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
+               if (needwake)
+                       rcu_gp_kthread_wake(rsp);
+       }
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
+}
+
+/*
+ * Clean up for exit from idle.  Attempt to advance callbacks based on
+ * any grace periods that elapsed while the CPU was idle, and if any
+ * callbacks are now ready to invoke, initiate invocation.
+ */
+static void rcu_cleanup_after_idle(void)
+{
+#ifndef CONFIG_RCU_NOCB_CPU_ALL
+       if (rcu_is_nocb_cpu(smp_processor_id()))
+               return;
+       if (rcu_try_advance_all_cbs())
+               invoke_rcu_core();
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
+}
+
+/*
+ * Keep a running count of the number of non-lazy callbacks posted
+ * on this CPU.  This running counter (which is never decremented) allows
+ * rcu_prepare_for_idle() to detect when something out of the idle loop
+ * posts a callback, even if an equal number of callbacks are invoked.
+ * Of course, callbacks should only be posted from within a trace event
+ * designed to be called from idle or from within RCU_NONIDLE().
+ */
+static void rcu_idle_count_callbacks_posted(void)
+{
+       __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
+}
+
+/*
+ * Data for flushing lazy RCU callbacks at OOM time.
+ */
+static atomic_t oom_callback_count;
+static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
+
+/*
+ * RCU OOM callback -- decrement the outstanding count and deliver the
+ * wake-up if we are the last one.
+ */
+static void rcu_oom_callback(struct rcu_head *rhp)
+{
+       if (atomic_dec_and_test(&oom_callback_count))
+               wake_up(&oom_callback_wq);
+}
+
+/*
+ * Post an rcu_oom_notify callback on the current CPU if it has at
+ * least one lazy callback.  This will unnecessarily post callbacks
+ * to CPUs that already have a non-lazy callback at the end of their
+ * callback list, but this is an infrequent operation, so accept some
+ * extra overhead to keep things simple.
+ */
+static void rcu_oom_notify_cpu(void *unused)
+{
+       struct rcu_state *rsp;
+       struct rcu_data *rdp;
+
+       for_each_rcu_flavor(rsp) {
+               rdp = raw_cpu_ptr(rsp->rda);
+               if (rdp->qlen_lazy != 0) {
+                       atomic_inc(&oom_callback_count);
+                       rsp->call(&rdp->oom_head, rcu_oom_callback);
+               }
+       }
+}
+
+/*
+ * If low on memory, ensure that each CPU has a non-lazy callback.
+ * This will wake up CPUs that have only lazy callbacks, in turn
+ * ensuring that they free up the corresponding memory in a timely manner.
+ * Because an uncertain amount of memory will be freed in some uncertain
+ * timeframe, we do not claim to have freed anything.
+ */
+static int rcu_oom_notify(struct notifier_block *self,
+                         unsigned long notused, void *nfreed)
+{
+       int cpu;
+
+       /* Wait for callbacks from earlier instance to complete. */
+       wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
+       smp_mb(); /* Ensure callback reuse happens after callback invocation. */
+
+       /*
+        * Prevent premature wakeup: ensure that all increments happen
+        * before there is a chance of the counter reaching zero.
+        */
+       atomic_set(&oom_callback_count, 1);
+
+       get_online_cpus();
+       for_each_online_cpu(cpu) {
+               smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
+               cond_resched_rcu_qs();
+       }
+       put_online_cpus();
+
+       /* Unconditionally decrement: no need to wake ourselves up. */
+       atomic_dec(&oom_callback_count);
+
+       return NOTIFY_OK;
+}
+
+static struct notifier_block rcu_oom_nb = {
+       .notifier_call = rcu_oom_notify
+};
+
+static int __init rcu_register_oom_notifier(void)
+{
+       register_oom_notifier(&rcu_oom_nb);
+       return 0;
+}
+early_initcall(rcu_register_oom_notifier);
+
+#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
+
+#ifdef CONFIG_RCU_CPU_STALL_INFO
+
+#ifdef CONFIG_RCU_FAST_NO_HZ
+
+static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
+{
+       struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
+       unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
+
+       sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
+               rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
+               ulong2long(nlpd),
+               rdtp->all_lazy ? 'L' : '.',
+               rdtp->tick_nohz_enabled_snap ? '.' : 'D');
+}
+
+#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
+
+static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
+{
+       *cp = '\0';
+}
+
+#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
+
+/* Initiate the stall-info list. */
+static void print_cpu_stall_info_begin(void)
+{
+       pr_cont("\n");
+}
+
+/*
+ * Print out diagnostic information for the specified stalled CPU.
+ *
+ * If the specified CPU is aware of the current RCU grace period
+ * (flavor specified by rsp), then print the number of scheduling
+ * clock interrupts the CPU has taken during the time that it has
+ * been aware.  Otherwise, print the number of RCU grace periods
+ * that this CPU is ignorant of, for example, "1" if the CPU was
+ * aware of the previous grace period.
+ *
+ * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
+ */
+static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
+{
+       char fast_no_hz[72];
+       struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
+       struct rcu_dynticks *rdtp = rdp->dynticks;
+       char *ticks_title;
+       unsigned long ticks_value;
+
+       if (rsp->gpnum == rdp->gpnum) {
+               ticks_title = "ticks this GP";
+               ticks_value = rdp->ticks_this_gp;
+       } else {
+               ticks_title = "GPs behind";
+               ticks_value = rsp->gpnum - rdp->gpnum;
+       }
+       print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
+       pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
+              cpu, ticks_value, ticks_title,
+              atomic_read(&rdtp->dynticks) & 0xfff,
+              rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
+              rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
+              ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
+              fast_no_hz);
+}
+
+/* Terminate the stall-info list. */
+static void print_cpu_stall_info_end(void)
+{
+       pr_err("\t");
+}
+
+/* Zero ->ticks_this_gp for all flavors of RCU. */
+static void zero_cpu_stall_ticks(struct rcu_data *rdp)
+{
+       rdp->ticks_this_gp = 0;
+       rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
+}
+
+/* Increment ->ticks_this_gp for all flavors of RCU. */
+static void increment_cpu_stall_ticks(void)
+{
+       struct rcu_state *rsp;
+
+       for_each_rcu_flavor(rsp)
+               raw_cpu_inc(rsp->rda->ticks_this_gp);
+}
+
+#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
+
+static void print_cpu_stall_info_begin(void)
+{
+       pr_cont(" {");
+}
+
+static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
+{
+       pr_cont(" %d", cpu);
+}
+
+static void print_cpu_stall_info_end(void)
+{
+       pr_cont("} ");
+}
+
+static void zero_cpu_stall_ticks(struct rcu_data *rdp)
+{
+}
+
+static void increment_cpu_stall_ticks(void)
+{
+}
+
+#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
+
+#ifdef CONFIG_RCU_NOCB_CPU
+
+/*
+ * Offload callback processing from the boot-time-specified set of CPUs
+ * specified by rcu_nocb_mask.  For each CPU in the set, there is a
+ * kthread created that pulls the callbacks from the corresponding CPU,
+ * waits for a grace period to elapse, and invokes the callbacks.
+ * The no-CBs CPUs do a wake_up() on their kthread when they insert
+ * a callback into any empty list, unless the rcu_nocb_poll boot parameter
+ * has been specified, in which case each kthread actively polls its
+ * CPU.  (Which isn't so great for energy efficiency, but which does
+ * reduce RCU's overhead on that CPU.)
+ *
+ * This is intended to be used in conjunction with Frederic Weisbecker's
+ * adaptive-idle work, which would seriously reduce OS jitter on CPUs
+ * running CPU-bound user-mode computations.
+ *
+ * Offloading of callback processing could also in theory be used as
+ * an energy-efficiency measure because CPUs with no RCU callbacks
+ * queued are more aggressive about entering dyntick-idle mode.
+ */
+
+
+/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
+static int __init rcu_nocb_setup(char *str)
+{
+       alloc_bootmem_cpumask_var(&rcu_nocb_mask);
+       have_rcu_nocb_mask = true;
+       cpulist_parse(str, rcu_nocb_mask);
+       return 1;
+}
+__setup("rcu_nocbs=", rcu_nocb_setup);
+
+static int __init parse_rcu_nocb_poll(char *arg)
+{
+       rcu_nocb_poll = 1;
+       return 0;
+}
+early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
+
+/*
+ * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
+ * grace period.
+ */
+static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
+{
+       swait_wake_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
+}
+
+/*
+ * Set the root rcu_node structure's ->need_future_gp field
+ * based on the sum of those of all rcu_node structures.  This does
+ * double-count the root rcu_node structure's requests, but this
+ * is necessary to handle the possibility of a rcu_nocb_kthread()
+ * having awakened during the time that the rcu_node structures
+ * were being updated for the end of the previous grace period.
+ */
+static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
+{
+       rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
+}
+
+static void rcu_init_one_nocb(struct rcu_node *rnp)
+{
+       init_swait_head(&rnp->nocb_gp_wq[0]);
+       init_swait_head(&rnp->nocb_gp_wq[1]);
+}
+
+#ifndef CONFIG_RCU_NOCB_CPU_ALL
+/* Is the specified CPU a no-CBs CPU? */
+bool rcu_is_nocb_cpu(int cpu)
+{
+       if (have_rcu_nocb_mask)
+               return cpumask_test_cpu(cpu, rcu_nocb_mask);
+       return false;
+}
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
+
+/*
+ * Kick the leader kthread for this NOCB group.
+ */
+static void wake_nocb_leader(struct rcu_data *rdp, bool force)
+{
+       struct rcu_data *rdp_leader = rdp->nocb_leader;
+
+       if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
+               return;
+       if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
+               /* Prior smp_mb__after_atomic() orders against prior enqueue. */
+               ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
+               swait_wake(&rdp_leader->nocb_wq);
+       }
+}
+
+/*
+ * Does the specified CPU need an RCU callback for the specified flavor
+ * of rcu_barrier()?
+ */
+static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
+{
+       struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
+       unsigned long ret;
+#ifdef CONFIG_PROVE_RCU
+       struct rcu_head *rhp;
+#endif /* #ifdef CONFIG_PROVE_RCU */
+
+       /*
+        * Check count of all no-CBs callbacks awaiting invocation.
+        * There needs to be a barrier before this function is called,
+        * but associated with a prior determination that no more
+        * callbacks would be posted.  In the worst case, the first
+        * barrier in _rcu_barrier() suffices (but the caller cannot
+        * necessarily rely on this, not a substitute for the caller
+        * getting the concurrency design right!).  There must also be
+        * a barrier between the following load an posting of a callback
+        * (if a callback is in fact needed).  This is associated with an
+        * atomic_inc() in the caller.
+        */
+       ret = atomic_long_read(&rdp->nocb_q_count);
+
+#ifdef CONFIG_PROVE_RCU
+       rhp = ACCESS_ONCE(rdp->nocb_head);
+       if (!rhp)
+               rhp = ACCESS_ONCE(rdp->nocb_gp_head);
+       if (!rhp)
+               rhp = ACCESS_ONCE(rdp->nocb_follower_head);
+
+       /* Having no rcuo kthread but CBs after scheduler starts is bad! */
+       if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp &&
+           rcu_scheduler_fully_active) {
+               /* RCU callback enqueued before CPU first came online??? */
+               pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
+                      cpu, rhp->func);
+               WARN_ON_ONCE(1);
+       }
+#endif /* #ifdef CONFIG_PROVE_RCU */
+
+       return !!ret;
+}
+
+/*
+ * Enqueue the specified string of rcu_head structures onto the specified
+ * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
+ * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
+ * counts are supplied by rhcount and rhcount_lazy.
+ *
+ * If warranted, also wake up the kthread servicing this CPUs queues.
+ */
+static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
+                                   struct rcu_head *rhp,
+                                   struct rcu_head **rhtp,
+                                   int rhcount, int rhcount_lazy,
+                                   unsigned long flags)
+{
+       int len;
+       struct rcu_head **old_rhpp;
+       struct task_struct *t;
+
+       /* Enqueue the callback on the nocb list and update counts. */
+       atomic_long_add(rhcount, &rdp->nocb_q_count);
+       /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
+       old_rhpp = xchg(&rdp->nocb_tail, rhtp);
+       ACCESS_ONCE(*old_rhpp) = rhp;
+       atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
+       smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
+
+       /* If we are not being polled and there is a kthread, awaken it ... */
+       t = ACCESS_ONCE(rdp->nocb_kthread);
+       if (rcu_nocb_poll || !t) {
+               trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                   TPS("WakeNotPoll"));
+               return;
+       }
+       len = atomic_long_read(&rdp->nocb_q_count);
+       if (old_rhpp == &rdp->nocb_head) {
+               if (!irqs_disabled_flags(flags)) {
+                       /* ... if queue was empty ... */
+                       wake_nocb_leader(rdp, false);
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           TPS("WakeEmpty"));
+               } else {
+                       rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           TPS("WakeEmptyIsDeferred"));
+               }
+               rdp->qlen_last_fqs_check = 0;
+       } else if (len > rdp->qlen_last_fqs_check + qhimark) {
+               /* ... or if many callbacks queued. */
+               if (!irqs_disabled_flags(flags)) {
+                       wake_nocb_leader(rdp, true);
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           TPS("WakeOvf"));
+               } else {
+                       rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           TPS("WakeOvfIsDeferred"));
+               }
+               rdp->qlen_last_fqs_check = LONG_MAX / 2;
+       } else {
+               trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
+       }
+       return;
+}
+
+/*
+ * This is a helper for __call_rcu(), which invokes this when the normal
+ * callback queue is inoperable.  If this is not a no-CBs CPU, this
+ * function returns failure back to __call_rcu(), which can complain
+ * appropriately.
+ *
+ * Otherwise, this function queues the callback where the corresponding
+ * "rcuo" kthread can find it.
+ */
+static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
+                           bool lazy, unsigned long flags)
+{
+
+       if (!rcu_is_nocb_cpu(rdp->cpu))
+               return false;
+       __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
+       if (__is_kfree_rcu_offset((unsigned long)rhp->func))
+               trace_rcu_kfree_callback(rdp->rsp->name, rhp,
+                                        (unsigned long)rhp->func,
+                                        -atomic_long_read(&rdp->nocb_q_count_lazy),
+                                        -atomic_long_read(&rdp->nocb_q_count));
+       else
+               trace_rcu_callback(rdp->rsp->name, rhp,
+                                  -atomic_long_read(&rdp->nocb_q_count_lazy),
+                                  -atomic_long_read(&rdp->nocb_q_count));
+
+       /*
+        * If called from an extended quiescent state with interrupts
+        * disabled, invoke the RCU core in order to allow the idle-entry
+        * deferred-wakeup check to function.
+        */
+       if (irqs_disabled_flags(flags) &&
+           !rcu_is_watching() &&
+           cpu_online(smp_processor_id()))
+               invoke_rcu_core();
+
+       return true;
+}
+
+/*
+ * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
+ * not a no-CBs CPU.
+ */
+static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
+                                                    struct rcu_data *rdp,
+                                                    unsigned long flags)
+{
+       long ql = rsp->qlen;
+       long qll = rsp->qlen_lazy;
+
+       /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
+       if (!rcu_is_nocb_cpu(smp_processor_id()))
+               return false;
+       rsp->qlen = 0;
+       rsp->qlen_lazy = 0;
+
+       /* First, enqueue the donelist, if any.  This preserves CB ordering. */
+       if (rsp->orphan_donelist != NULL) {
+               __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
+                                       rsp->orphan_donetail, ql, qll, flags);
+               ql = qll = 0;
+               rsp->orphan_donelist = NULL;
+               rsp->orphan_donetail = &rsp->orphan_donelist;
+       }
+       if (rsp->orphan_nxtlist != NULL) {
+               __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
+                                       rsp->orphan_nxttail, ql, qll, flags);
+               ql = qll = 0;
+               rsp->orphan_nxtlist = NULL;
+               rsp->orphan_nxttail = &rsp->orphan_nxtlist;
+       }
+       return true;
+}
+
+/*
+ * If necessary, kick off a new grace period, and either way wait
+ * for a subsequent grace period to complete.
+ */
+static void rcu_nocb_wait_gp(struct rcu_data *rdp)
+{
+       unsigned long c;
+       bool d;
+       unsigned long flags;
+       bool needwake;
+       struct rcu_node *rnp = rdp->mynode;
+
+       raw_spin_lock_irqsave(&rnp->lock, flags);
+       smp_mb__after_unlock_lock();
+       needwake = rcu_start_future_gp(rnp, rdp, &c);
+       raw_spin_unlock_irqrestore(&rnp->lock, flags);
+       if (needwake)
+               rcu_gp_kthread_wake(rdp->rsp);
+
+       /*
+        * Wait for the grace period.  Do so interruptibly to avoid messing
+        * up the load average.
+        */
+       trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
+       for (;;) {
+               swait_event_interruptible(
+                       rnp->nocb_gp_wq[c & 0x1],
+                       (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
+               if (likely(d))
+                       break;
+               WARN_ON(signal_pending(current));
+               trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
+       }
+       trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
+       smp_mb(); /* Ensure that CB invocation happens after GP end. */
+}
+
+/*
+ * Leaders come here to wait for additional callbacks to show up.
+ * This function does not return until callbacks appear.
+ */
+static void nocb_leader_wait(struct rcu_data *my_rdp)
+{
+       bool firsttime = true;
+       bool gotcbs;
+       struct rcu_data *rdp;
+       struct rcu_head **tail;
+
+wait_again:
+
+       /* Wait for callbacks to appear. */
+       if (!rcu_nocb_poll) {
+               trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
+               swait_event_interruptible(my_rdp->nocb_wq,
+                               !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
+               /* Memory barrier handled by smp_mb() calls below and repoll. */
+       } else if (firsttime) {
+               firsttime = false; /* Don't drown trace log with "Poll"! */
+               trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
+       }
+
+       /*
+        * Each pass through the following loop checks a follower for CBs.
+        * We are our own first follower.  Any CBs found are moved to
+        * nocb_gp_head, where they await a grace period.
+        */
+       gotcbs = false;
+       for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
+               rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
+               if (!rdp->nocb_gp_head)
+                       continue;  /* No CBs here, try next follower. */
+
+               /* Move callbacks to wait-for-GP list, which is empty. */
+               ACCESS_ONCE(rdp->nocb_head) = NULL;
+               rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
+               gotcbs = true;
+       }
+
+       /*
+        * If there were no callbacks, sleep a bit, rescan after a
+        * memory barrier, and go retry.
+        */
+       if (unlikely(!gotcbs)) {
+               if (!rcu_nocb_poll)
+                       trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
+                                           "WokeEmpty");
+               WARN_ON(signal_pending(current));
+               schedule_timeout_interruptible(1);
+
+               /* Rescan in case we were a victim of memory ordering. */
+               my_rdp->nocb_leader_sleep = true;
+               smp_mb();  /* Ensure _sleep true before scan. */
+               for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
+                       if (ACCESS_ONCE(rdp->nocb_head)) {
+                               /* Found CB, so short-circuit next wait. */
+                               my_rdp->nocb_leader_sleep = false;
+                               break;
+                       }
+               goto wait_again;
+       }
+
+       /* Wait for one grace period. */
+       rcu_nocb_wait_gp(my_rdp);
+
+       /*
+        * We left ->nocb_leader_sleep unset to reduce cache thrashing.
+        * We set it now, but recheck for new callbacks while
+        * traversing our follower list.
+        */
+       my_rdp->nocb_leader_sleep = true;
+       smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
+
+       /* Each pass through the following loop wakes a follower, if needed. */
+       for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
+               if (ACCESS_ONCE(rdp->nocb_head))
+                       my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
+               if (!rdp->nocb_gp_head)
+                       continue; /* No CBs, so no need to wake follower. */
+
+               /* Append callbacks to follower's "done" list. */
+               tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
+               *tail = rdp->nocb_gp_head;
+               smp_mb__after_atomic(); /* Store *tail before wakeup. */
+               if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
+                       /*
+                        * List was empty, wake up the follower.
+                        * Memory barriers supplied by atomic_long_add().
+                        */
+                       swait_wake(&rdp->nocb_wq);
+               }
+       }
+
+       /* If we (the leader) don't have CBs, go wait some more. */
+       if (!my_rdp->nocb_follower_head)
+               goto wait_again;
+}
+
+/*
+ * Followers come here to wait for additional callbacks to show up.
+ * This function does not return until callbacks appear.
+ */
+static void nocb_follower_wait(struct rcu_data *rdp)
+{
+       bool firsttime = true;
+
+       for (;;) {
+               if (!rcu_nocb_poll) {
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           "FollowerSleep");
+                       swait_event_interruptible(rdp->nocb_wq,
+                                                ACCESS_ONCE(rdp->nocb_follower_head));
+               } else if (firsttime) {
+                       /* Don't drown trace log with "Poll"! */
+                       firsttime = false;
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
+               }
+               if (smp_load_acquire(&rdp->nocb_follower_head)) {
+                       /* ^^^ Ensure CB invocation follows _head test. */
+                       return;
+               }
+               if (!rcu_nocb_poll)
+                       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                           "WokeEmpty");
+               WARN_ON(signal_pending(current));
+               schedule_timeout_interruptible(1);
+       }
+}
+
+/*
+ * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
+ * callbacks queued by the corresponding no-CBs CPU, however, there is
+ * an optional leader-follower relationship so that the grace-period
+ * kthreads don't have to do quite so many wakeups.
+ */
+static int rcu_nocb_kthread(void *arg)
+{
+       int c, cl;
+       struct rcu_head *list;
+       struct rcu_head *next;
+       struct rcu_head **tail;
+       struct rcu_data *rdp = arg;
+
+       /* Each pass through this loop invokes one batch of callbacks */
+       for (;;) {
+               /* Wait for callbacks. */
+               if (rdp->nocb_leader == rdp)
+                       nocb_leader_wait(rdp);
+               else
+                       nocb_follower_wait(rdp);
+
+               /* Pull the ready-to-invoke callbacks onto local list. */
+               list = ACCESS_ONCE(rdp->nocb_follower_head);
+               BUG_ON(!list);
+               trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
+               ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
+               tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
+
+               /* Each pass through the following loop invokes a callback. */
+               trace_rcu_batch_start(rdp->rsp->name,
+                                     atomic_long_read(&rdp->nocb_q_count_lazy),
+                                     atomic_long_read(&rdp->nocb_q_count), -1);
+               c = cl = 0;
+               while (list) {
+                       next = list->next;
+                       /* Wait for enqueuing to complete, if needed. */
+                       while (next == NULL && &list->next != tail) {
+                               trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                                   TPS("WaitQueue"));
+                               schedule_timeout_interruptible(1);
+                               trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+                                                   TPS("WokeQueue"));
+                               next = list->next;
+                       }
+                       debug_rcu_head_unqueue(list);
+                       local_bh_disable();
+                       if (__rcu_reclaim(rdp->rsp->name, list))
+                               cl++;
+                       c++;
+                       local_bh_enable();
+                       list = next;
+               }
+               trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
+               smp_mb__before_atomic();  /* _add after CB invocation. */
+               atomic_long_add(-c, &rdp->nocb_q_count);
+               atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
+               rdp->n_nocbs_invoked += c;
+       }
+       return 0;
+}
+
+/* Is a deferred wakeup of rcu_nocb_kthread() required? */
+static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
+{
+       return ACCESS_ONCE(rdp->nocb_defer_wakeup);
+}
+
+/* Do a deferred wakeup of rcu_nocb_kthread(). */
+static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+       int ndw;
+
+       if (!rcu_nocb_need_deferred_wakeup(rdp))
+               return;
+       ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
+       ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
+       wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
+       trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
+}
+
+void __init rcu_init_nohz(void)
+{
+       int cpu;
+       bool need_rcu_nocb_mask = true;
+       struct rcu_state *rsp;
+
+#ifdef CONFIG_RCU_NOCB_CPU_NONE
+       need_rcu_nocb_mask = false;
+#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
+
+#if defined(CONFIG_NO_HZ_FULL)
+       if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
+               need_rcu_nocb_mask = true;
+#endif /* #if defined(CONFIG_NO_HZ_FULL) */
+
+       if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
+               if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
+                       pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
+                       return;
+               }
+               have_rcu_nocb_mask = true;
+       }
+       if (!have_rcu_nocb_mask)
+               return;
+
+#ifdef CONFIG_RCU_NOCB_CPU_ZERO
+       pr_info("\tOffload RCU callbacks from CPU 0\n");
+       cpumask_set_cpu(0, rcu_nocb_mask);
+#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
+#ifdef CONFIG_RCU_NOCB_CPU_ALL
+       pr_info("\tOffload RCU callbacks from all CPUs\n");
+       cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
+#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
+#if defined(CONFIG_NO_HZ_FULL)
+       if (tick_nohz_full_running)
+               cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
+#endif /* #if defined(CONFIG_NO_HZ_FULL) */
+
+       if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
+               pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
+               cpumask_and(rcu_nocb_mask, cpu_possible_mask,
+                           rcu_nocb_mask);
+       }
+       pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
+               cpumask_pr_args(rcu_nocb_mask));
+       if (rcu_nocb_poll)
+               pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
+
+       for_each_rcu_flavor(rsp) {
+               for_each_cpu(cpu, rcu_nocb_mask)
+                       init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
+               rcu_organize_nocb_kthreads(rsp);
+       }
+}
+
+/* Initialize per-rcu_data variables for no-CBs CPUs. */
+static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
+{
+       rdp->nocb_tail = &rdp->nocb_head;
+       init_swait_head(&rdp->nocb_wq);
+       rdp->nocb_follower_tail = &rdp->nocb_follower_head;
+}
+
+/*
+ * If the specified CPU is a no-CBs CPU that does not already have its
+ * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
+ * brought online out of order, this can require re-organizing the
+ * leader-follower relationships.
+ */
+static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
+{
+       struct rcu_data *rdp;
+       struct rcu_data *rdp_last;
+       struct rcu_data *rdp_old_leader;
+       struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
+       struct task_struct *t;
+
+       /*
+        * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
+        * then nothing to do.
+        */
+       if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
+               return;
+
+       /* If we didn't spawn the leader first, reorganize! */
+       rdp_old_leader = rdp_spawn->nocb_leader;
+       if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
+               rdp_last = NULL;
+               rdp = rdp_old_leader;
+               do {
+                       rdp->nocb_leader = rdp_spawn;
+                       if (rdp_last && rdp != rdp_spawn)
+                               rdp_last->nocb_next_follower = rdp;
+                       if (rdp == rdp_spawn) {
+                               rdp = rdp->nocb_next_follower;
+                       } else {
+                               rdp_last = rdp;
+                               rdp = rdp->nocb_next_follower;
+                               rdp_last->nocb_next_follower = NULL;
+                       }
+               } while (rdp);
+               rdp_spawn->nocb_next_follower = rdp_old_leader;
+       }
+
+       /* Spawn the kthread for this CPU and RCU flavor. */
+       t = kthread_run(rcu_nocb_kthread, rdp_spawn,
+                       "rcuo%c/%d", rsp->abbr, cpu);
+       BUG_ON(IS_ERR(t));
+       ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
+}
+
+/*
+ * If the specified CPU is a no-CBs CPU that does not already have its
+ * rcuo kthreads, spawn them.
+ */
+static void rcu_spawn_all_nocb_kthreads(int cpu)
+{
+       struct rcu_state *rsp;
+
+       if (rcu_scheduler_fully_active)
+               for_each_rcu_flavor(rsp)
+                       rcu_spawn_one_nocb_kthread(rsp, cpu);
+}
+
+/*
+ * Once the scheduler is running, spawn rcuo kthreads for all online
+ * no-CBs CPUs.  This assumes that the early_initcall()s happen before
+ * non-boot CPUs come online -- if this changes, we will need to add
+ * some mutual exclusion.
+ */
+static void __init rcu_spawn_nocb_kthreads(void)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu)
+               rcu_spawn_all_nocb_kthreads(cpu);
+}
+
+/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
+static int rcu_nocb_leader_stride = -1;
+module_param(rcu_nocb_leader_stride, int, 0444);
+
+/*
+ * Initialize leader-follower relationships for all no-CBs CPU.
+ */
+static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
+{
+       int cpu;
+       int ls = rcu_nocb_leader_stride;
+       int nl = 0;  /* Next leader. */
+       struct rcu_data *rdp;
+       struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
+       struct rcu_data *rdp_prev = NULL;
+
+       if (!have_rcu_nocb_mask)
+               return;
+       if (ls == -1) {
+               ls = int_sqrt(nr_cpu_ids);
+               rcu_nocb_leader_stride = ls;
+       }
+
+       /*
+        * Each pass through this loop sets up one rcu_data structure and
+        * spawns one rcu_nocb_kthread().
+        */
+       for_each_cpu(cpu, rcu_nocb_mask) {
+               rdp = per_cpu_ptr(rsp->rda, cpu);
+               if (rdp->cpu >= nl) {
+                       /* New leader, set up for followers & next leader. */
+                       nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
+                       rdp->nocb_leader = rdp;
+                       rdp_leader = rdp;
+               } else {
+                       /* Another follower, link to previous leader. */
+                       rdp->nocb_leader = rdp_leader;
+                       rdp_prev->nocb_next_follower = rdp;
+               }
+               rdp_prev = rdp;
+       }
+}
+
+/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
+static bool init_nocb_callback_list(struct rcu_data *rdp)
+{
+       if (!rcu_is_nocb_cpu(rdp->cpu))
+               return false;
+
+       /* If there are early-boot callbacks, move them to nocb lists. */
+       if (rdp->nxtlist) {
+               rdp->nocb_head = rdp->nxtlist;
+               rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
+               atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
+               atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
+               rdp->nxtlist = NULL;
+               rdp->qlen = 0;
+               rdp->qlen_lazy = 0;
+       }
+       rdp->nxttail[RCU_NEXT_TAIL] = NULL;
+       return true;
+}
+
+#else /* #ifdef CONFIG_RCU_NOCB_CPU */
+
+static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
+{
+       WARN_ON_ONCE(1); /* Should be dead code. */
+       return false;
+}
+
+static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
+{
+}
+
+static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
+{
+}
+
+static void rcu_init_one_nocb(struct rcu_node *rnp)
+{
+}
+
+static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
+                           bool lazy, unsigned long flags)
+{
+       return false;
+}
+
+static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
+                                                    struct rcu_data *rdp,
+                                                    unsigned long flags)
+{
+       return false;
+}
+
+static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
+{
+}
+
+static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
+{
+       return false;
+}
+
+static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+}
+
+static void rcu_spawn_all_nocb_kthreads(int cpu)
+{
+}
+
+static void __init rcu_spawn_nocb_kthreads(void)
+{
+}
+
+static bool init_nocb_callback_list(struct rcu_data *rdp)
+{
+       return false;
+}
+
+#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
+
+/*
+ * An adaptive-ticks CPU can potentially execute in kernel mode for an
+ * arbitrarily long period of time with the scheduling-clock tick turned
+ * off.  RCU will be paying attention to this CPU because it is in the
+ * kernel, but the CPU cannot be guaranteed to be executing the RCU state
+ * machine because the scheduling-clock tick has been disabled.  Therefore,
+ * if an adaptive-ticks CPU is failing to respond to the current grace
+ * period and has not be idle from an RCU perspective, kick it.
+ */
+static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
+{
+#ifdef CONFIG_NO_HZ_FULL
+       if (tick_nohz_full_cpu(cpu))
+               smp_send_reschedule(cpu);
+#endif /* #ifdef CONFIG_NO_HZ_FULL */
+}
+
+
+#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
+
+static int full_sysidle_state;         /* Current system-idle state. */
+#define RCU_SYSIDLE_NOT                0       /* Some CPU is not idle. */
+#define RCU_SYSIDLE_SHORT      1       /* All CPUs idle for brief period. */
+#define RCU_SYSIDLE_LONG       2       /* All CPUs idle for long enough. */
+#define RCU_SYSIDLE_FULL       3       /* All CPUs idle, ready for sysidle. */
+#define RCU_SYSIDLE_FULL_NOTED 4       /* Actually entered sysidle state. */
+
+/*
+ * Invoked to note exit from irq or task transition to idle.  Note that
+ * usermode execution does -not- count as idle here!  After all, we want
+ * to detect full-system idle states, not RCU quiescent states and grace
+ * periods.  The caller must have disabled interrupts.
+ */
+static void rcu_sysidle_enter(int irq)
+{
+       unsigned long j;
+       struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+
+       /* If there are no nohz_full= CPUs, no need to track this. */
+       if (!tick_nohz_full_enabled())
+               return;
+
+       /* Adjust nesting, check for fully idle. */
+       if (irq) {
+               rdtp->dynticks_idle_nesting--;
+               WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
+               if (rdtp->dynticks_idle_nesting != 0)
+                       return;  /* Still not fully idle. */
+       } else {
+               if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
+                   DYNTICK_TASK_NEST_VALUE) {
+                       rdtp->dynticks_idle_nesting = 0;
+               } else {
+                       rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
+                       WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
+                       return;  /* Still not fully idle. */
+               }
+       }
+
+       /* Record start of fully idle period. */
+       j = jiffies;
+       ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
+       smp_mb__before_atomic();
+       atomic_inc(&rdtp->dynticks_idle);
+       smp_mb__after_atomic();
+       WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
+}
+
+/*
+ * Unconditionally force exit from full system-idle state.  This is
+ * invoked when a normal CPU exits idle, but must be called separately
+ * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
+ * is that the timekeeping CPU is permitted to take scheduling-clock
+ * interrupts while the system is in system-idle state, and of course
+ * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
+ * interrupt from any other type of interrupt.
+ */
+void rcu_sysidle_force_exit(void)
+{
+       int oldstate = ACCESS_ONCE(full_sysidle_state);
+       int newoldstate;
+
+       /*
+        * Each pass through the following loop attempts to exit full
+        * system-idle state.  If contention proves to be a problem,
+        * a trylock-based contention tree could be used here.
+        */
+       while (oldstate > RCU_SYSIDLE_SHORT) {
+               newoldstate = cmpxchg(&full_sysidle_state,
+                                     oldstate, RCU_SYSIDLE_NOT);
+               if (oldstate == newoldstate &&
+                   oldstate == RCU_SYSIDLE_FULL_NOTED) {
+                       rcu_kick_nohz_cpu(tick_do_timer_cpu);
+                       return; /* We cleared it, done! */
+               }
+               oldstate = newoldstate;
+       }
+       smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
+}
+
+/*
+ * Invoked to note entry to irq or task transition from idle.  Note that
+ * usermode execution does -not- count as idle here!  The caller must
+ * have disabled interrupts.
+ */
+static void rcu_sysidle_exit(int irq)
+{
+       struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+
+       /* If there are no nohz_full= CPUs, no need to track this. */
+       if (!tick_nohz_full_enabled())
+               return;
+
+       /* Adjust nesting, check for already non-idle. */
+       if (irq) {
+               rdtp->dynticks_idle_nesting++;
+               WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
+               if (rdtp->dynticks_idle_nesting != 1)
+                       return; /* Already non-idle. */
+       } else {
+               /*
+                * Allow for irq misnesting.  Yes, it really is possible
+                * to enter an irq handler then never leave it, and maybe
+                * also vice versa.  Handle both possibilities.
+                */
+               if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
+                       rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
+                       WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
+                       return; /* Already non-idle. */
+               } else {
+                       rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
+               }
+       }
+
+       /* Record end of idle period. */
+       smp_mb__before_atomic();
+       atomic_inc(&rdtp->dynticks_idle);
+       smp_mb__after_atomic();
+       WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
+
+       /*
+        * If we are the timekeeping CPU, we are permitted to be non-idle
+        * during a system-idle state.  This must be the case, because
+        * the timekeeping CPU has to take scheduling-clock interrupts
+        * during the time that the system is transitioning to full
+        * system-idle state.  This means that the timekeeping CPU must
+        * invoke rcu_sysidle_force_exit() directly if it does anything
+        * more than take a scheduling-clock interrupt.
+        */
+       if (smp_processor_id() == tick_do_timer_cpu)
+               return;
+
+       /* Update system-idle state: We are clearly no longer fully idle! */
+       rcu_sysidle_force_exit();
+}
+
+/*
+ * Check to see if the current CPU is idle.  Note that usermode execution
+ * does not count as idle.  The caller must have disabled interrupts,
+ * and must be running on tick_do_timer_cpu.
+ */
+static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
+                                 unsigned long *maxj)
+{
+       int cur;
+       unsigned long j;
+       struct rcu_dynticks *rdtp = rdp->dynticks;
+
+       /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
+       if (!tick_nohz_full_enabled())
+               return;
+
+       /*
+        * If some other CPU has already reported non-idle, if this is
+        * not the flavor of RCU that tracks sysidle state, or if this
+        * is an offline or the timekeeping CPU, nothing to do.
+        */
+       if (!*isidle || rdp->rsp != rcu_state_p ||
+           cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
+               return;
+       /* Verify affinity of current kthread. */
+       WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
+
+       /* Pick up current idle and NMI-nesting counter and check. */
+       cur = atomic_read(&rdtp->dynticks_idle);
+       if (cur & 0x1) {
+               *isidle = false; /* We are not idle! */
+               return;
+       }
+       smp_mb(); /* Read counters before timestamps. */
+
+       /* Pick up timestamps. */
+       j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
+       /* If this CPU entered idle more recently, update maxj timestamp. */
+       if (ULONG_CMP_LT(*maxj, j))
+               *maxj = j;
+}
+
+/*
+ * Is this the flavor of RCU that is handling full-system idle?
+ */
+static bool is_sysidle_rcu_state(struct rcu_state *rsp)
+{
+       return rsp == rcu_state_p;
+}
+
+/*
+ * Return a delay in jiffies based on the number of CPUs, rcu_node
+ * leaf fanout, and jiffies tick rate.  The idea is to allow larger
+ * systems more time to transition to full-idle state in order to
+ * avoid the cache thrashing that otherwise occur on the state variable.
+ * Really small systems (less than a couple of tens of CPUs) should
+ * instead use a single global atomically incremented counter, and later
+ * versions of this will automatically reconfigure themselves accordingly.
+ */
+static unsigned long rcu_sysidle_delay(void)
+{
+       if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
+               return 0;
+       return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
+}
+
+/*
+ * Advance the full-system-idle state.  This is invoked when all of
+ * the non-timekeeping CPUs are idle.
+ */
+static void rcu_sysidle(unsigned long j)
+{
+       /* Check the current state. */
+       switch (ACCESS_ONCE(full_sysidle_state)) {
+       case RCU_SYSIDLE_NOT:
+
+               /* First time all are idle, so note a short idle period. */
+               ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
+               break;
+
+       case RCU_SYSIDLE_SHORT:
+
+               /*
+                * Idle for a bit, time to advance to next state?
+                * cmpxchg failure means race with non-idle, let them win.
+                */
+               if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
+                       (void)cmpxchg(&full_sysidle_state,
+                                     RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
+               break;
+
+       case RCU_SYSIDLE_LONG:
+
+               /*
+                * Do an additional check pass before advancing to full.
+                * cmpxchg failure means race with non-idle, let them win.
+                */
+               if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
+                       (void)cmpxchg(&full_sysidle_state,
+                                     RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
+               break;
+
+       default:
+               break;
+       }
+}
+
+/*
+ * Found a non-idle non-timekeeping CPU, so kick the system-idle state
+ * back to the beginning.
+ */
+static void rcu_sysidle_cancel(void)
+{
+       smp_mb();
+       if (full_sysidle_state > RCU_SYSIDLE_SHORT)
+               ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
+}
+
+/*
+ * Update the sysidle state based on the results of a force-quiescent-state
+ * scan of the CPUs' dyntick-idle state.
+ */
+static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
+                              unsigned long maxj, bool gpkt)
+{
+       if (rsp != rcu_state_p)
+               return;  /* Wrong flavor, ignore. */
+       if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
+               return;  /* Running state machine from timekeeping CPU. */
+       if (isidle)
+               rcu_sysidle(maxj);    /* More idle! */
+       else
+               rcu_sysidle_cancel(); /* Idle is over. */
+}
+
+/*
+ * Wrapper for rcu_sysidle_report() when called from the grace-period
+ * kthread's context.
+ */
+static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
+                                 unsigned long maxj)
+{
+       /* If there are no nohz_full= CPUs, no need to track this. */
+       if (!tick_nohz_full_enabled())
+               return;
+
+       rcu_sysidle_report(rsp, isidle, maxj, true);
+}
+
+/* Callback and function for forcing an RCU grace period. */
+struct rcu_sysidle_head {
+       struct rcu_head rh;
+       int inuse;
+};
+
+static void rcu_sysidle_cb(struct rcu_head *rhp)
+{
+       struct rcu_sysidle_head *rshp;
+
+       /*
+        * The following memory barrier is needed to replace the
+        * memory barriers that would normally be in the memory
+        * allocator.
+        */
+       smp_mb();  /* grace period precedes setting inuse. */
+
+       rshp = container_of(rhp, struct rcu_sysidle_head, rh);
+       ACCESS_ONCE(rshp->inuse) = 0;
+}
+
+/*
+ * Check to see if the system is fully idle, other than the timekeeping CPU.
+ * The caller must have disabled interrupts.  This is not intended to be
+ * called unless tick_nohz_full_enabled().
+ */
+bool rcu_sys_is_idle(void)
+{
+       static struct rcu_sysidle_head rsh;
+       int rss = ACCESS_ONCE(full_sysidle_state);
+
+       if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
+               return false;
+
+       /* Handle small-system case by doing a full scan of CPUs. */
+       if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
+               int oldrss = rss - 1;
+
+               /*
+                * One pass to advance to each state up to _FULL.
+                * Give up if any pass fails to advance the state.
+                */
+               while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
+                       int cpu;
+                       bool isidle = true;
+                       unsigned long maxj = jiffies - ULONG_MAX / 4;
+                       struct rcu_data *rdp;
+
+                       /* Scan all the CPUs looking for nonidle CPUs. */
+                       for_each_possible_cpu(cpu) {
+                               rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
+                               rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
+                               if (!isidle)
+                                       break;
+                       }
+                       rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
+                       oldrss = rss;
+                       rss = ACCESS_ONCE(full_sysidle_state);
+               }
+       }
+
+       /* If this is the first observation of an idle period, record it. */
+       if (rss == RCU_SYSIDLE_FULL) {
+               rss = cmpxchg(&full_sysidle_state,
+                             RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
+               return rss == RCU_SYSIDLE_FULL;
+       }
+
+       smp_mb(); /* ensure rss load happens before later caller actions. */
+
+       /* If already fully idle, tell the caller (in case of races). */
+       if (rss == RCU_SYSIDLE_FULL_NOTED)
+               return true;
+
+       /*
+        * If we aren't there yet, and a grace period is not in flight,
+        * initiate a grace period.  Either way, tell the caller that
+        * we are not there yet.  We use an xchg() rather than an assignment
+        * to make up for the memory barriers that would otherwise be
+        * provided by the memory allocator.
+        */
+       if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
+           !rcu_gp_in_progress(rcu_state_p) &&
+           !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
+               call_rcu(&rsh.rh, rcu_sysidle_cb);
+       return false;
+}
+
+/*
+ * Initialize dynticks sysidle state for CPUs coming online.
+ */
+static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
+{
+       rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
+}
+
+#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+
+static void rcu_sysidle_enter(int irq)
+{
+}
+
+static void rcu_sysidle_exit(int irq)
+{
+}
+
+static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
+                                 unsigned long *maxj)
+{
+}
+
+static bool is_sysidle_rcu_state(struct rcu_state *rsp)
+{
+       return false;
+}
+
+static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
+                                 unsigned long maxj)
+{
+}
+
+static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
+{
+}
+
+#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+
+/*
+ * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
+ * grace-period kthread will do force_quiescent_state() processing?
+ * The idea is to avoid waking up RCU core processing on such a
+ * CPU unless the grace period has extended for too long.
+ *
+ * This code relies on the fact that all NO_HZ_FULL CPUs are also
+ * CONFIG_RCU_NOCB_CPU CPUs.
+ */
+static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
+{
+#ifdef CONFIG_NO_HZ_FULL
+       if (tick_nohz_full_cpu(smp_processor_id()) &&
+           (!rcu_gp_in_progress(rsp) ||
+            ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
+               return 1;
+#endif /* #ifdef CONFIG_NO_HZ_FULL */
+       return 0;
+}
+
+/*
+ * Bind the grace-period kthread for the sysidle flavor of RCU to the
+ * timekeeping CPU.
+ */
+static void rcu_bind_gp_kthread(void)
+{
+       int __maybe_unused cpu;
+
+       if (!tick_nohz_full_enabled())
+               return;
+#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
+       cpu = tick_do_timer_cpu;
+       if (cpu >= 0 && cpu < nr_cpu_ids)
+               set_cpus_allowed_ptr(current, cpumask_of(cpu));
+#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+       housekeeping_affine(current);
+#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+}
+
+/* Record the current task on dyntick-idle entry. */
+static void rcu_dynticks_task_enter(void)
+{
+#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
+       ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
+#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
+}
+
+/* Record no current task on dyntick-idle exit. */
+static void rcu_dynticks_task_exit(void)
+{
+#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
+       ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
+#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
+}