Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / rcu / srcu.c
diff --git a/kernel/kernel/rcu/srcu.c b/kernel/kernel/rcu/srcu.c
new file mode 100644 (file)
index 0000000..cad76e7
--- /dev/null
@@ -0,0 +1,676 @@
+/*
+ * Sleepable Read-Copy Update mechanism for mutual exclusion.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you can access it online at
+ * http://www.gnu.org/licenses/gpl-2.0.html.
+ *
+ * Copyright (C) IBM Corporation, 2006
+ * Copyright (C) Fujitsu, 2012
+ *
+ * Author: Paul McKenney <paulmck@us.ibm.com>
+ *        Lai Jiangshan <laijs@cn.fujitsu.com>
+ *
+ * For detailed explanation of Read-Copy Update mechanism see -
+ *             Documentation/RCU/ *.txt
+ *
+ */
+
+#include <linux/export.h>
+#include <linux/mutex.h>
+#include <linux/percpu.h>
+#include <linux/preempt.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/smp.h>
+#include <linux/delay.h>
+#include <linux/srcu.h>
+
+#include "rcu.h"
+
+/*
+ * Initialize an rcu_batch structure to empty.
+ */
+static inline void rcu_batch_init(struct rcu_batch *b)
+{
+       b->head = NULL;
+       b->tail = &b->head;
+}
+
+/*
+ * Enqueue a callback onto the tail of the specified rcu_batch structure.
+ */
+static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
+{
+       *b->tail = head;
+       b->tail = &head->next;
+}
+
+/*
+ * Is the specified rcu_batch structure empty?
+ */
+static inline bool rcu_batch_empty(struct rcu_batch *b)
+{
+       return b->tail == &b->head;
+}
+
+/*
+ * Remove the callback at the head of the specified rcu_batch structure
+ * and return a pointer to it, or return NULL if the structure is empty.
+ */
+static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
+{
+       struct rcu_head *head;
+
+       if (rcu_batch_empty(b))
+               return NULL;
+
+       head = b->head;
+       b->head = head->next;
+       if (b->tail == &head->next)
+               rcu_batch_init(b);
+
+       return head;
+}
+
+/*
+ * Move all callbacks from the rcu_batch structure specified by "from" to
+ * the structure specified by "to".
+ */
+static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
+{
+       if (!rcu_batch_empty(from)) {
+               *to->tail = from->head;
+               to->tail = from->tail;
+               rcu_batch_init(from);
+       }
+}
+
+static int init_srcu_struct_fields(struct srcu_struct *sp)
+{
+       sp->completed = 0;
+       spin_lock_init(&sp->queue_lock);
+       sp->running = false;
+       rcu_batch_init(&sp->batch_queue);
+       rcu_batch_init(&sp->batch_check0);
+       rcu_batch_init(&sp->batch_check1);
+       rcu_batch_init(&sp->batch_done);
+       INIT_DELAYED_WORK(&sp->work, process_srcu);
+       sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
+       return sp->per_cpu_ref ? 0 : -ENOMEM;
+}
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+
+int __init_srcu_struct(struct srcu_struct *sp, const char *name,
+                      struct lock_class_key *key)
+{
+       /* Don't re-initialize a lock while it is held. */
+       debug_check_no_locks_freed((void *)sp, sizeof(*sp));
+       lockdep_init_map(&sp->dep_map, name, key, 0);
+       return init_srcu_struct_fields(sp);
+}
+EXPORT_SYMBOL_GPL(__init_srcu_struct);
+
+#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
+
+/**
+ * init_srcu_struct - initialize a sleep-RCU structure
+ * @sp: structure to initialize.
+ *
+ * Must invoke this on a given srcu_struct before passing that srcu_struct
+ * to any other function.  Each srcu_struct represents a separate domain
+ * of SRCU protection.
+ */
+int init_srcu_struct(struct srcu_struct *sp)
+{
+       return init_srcu_struct_fields(sp);
+}
+EXPORT_SYMBOL_GPL(init_srcu_struct);
+
+#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
+
+/*
+ * Returns approximate total of the readers' ->seq[] values for the
+ * rank of per-CPU counters specified by idx.
+ */
+static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
+{
+       int cpu;
+       unsigned long sum = 0;
+       unsigned long t;
+
+       for_each_possible_cpu(cpu) {
+               t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
+               sum += t;
+       }
+       return sum;
+}
+
+/*
+ * Returns approximate number of readers active on the specified rank
+ * of the per-CPU ->c[] counters.
+ */
+static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
+{
+       int cpu;
+       unsigned long sum = 0;
+       unsigned long t;
+
+       for_each_possible_cpu(cpu) {
+               t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
+               sum += t;
+       }
+       return sum;
+}
+
+/*
+ * Return true if the number of pre-existing readers is determined to
+ * be stably zero.  An example unstable zero can occur if the call
+ * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
+ * but due to task migration, sees the corresponding __srcu_read_unlock()
+ * decrement.  This can happen because srcu_readers_active_idx() takes
+ * time to sum the array, and might in fact be interrupted or preempted
+ * partway through the summation.
+ */
+static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
+{
+       unsigned long seq;
+
+       seq = srcu_readers_seq_idx(sp, idx);
+
+       /*
+        * The following smp_mb() A pairs with the smp_mb() B located in
+        * __srcu_read_lock().  This pairing ensures that if an
+        * __srcu_read_lock() increments its counter after the summation
+        * in srcu_readers_active_idx(), then the corresponding SRCU read-side
+        * critical section will see any changes made prior to the start
+        * of the current SRCU grace period.
+        *
+        * Also, if the above call to srcu_readers_seq_idx() saw the
+        * increment of ->seq[], then the call to srcu_readers_active_idx()
+        * must see the increment of ->c[].
+        */
+       smp_mb(); /* A */
+
+       /*
+        * Note that srcu_readers_active_idx() can incorrectly return
+        * zero even though there is a pre-existing reader throughout.
+        * To see this, suppose that task A is in a very long SRCU
+        * read-side critical section that started on CPU 0, and that
+        * no other reader exists, so that the sum of the counters
+        * is equal to one.  Then suppose that task B starts executing
+        * srcu_readers_active_idx(), summing up to CPU 1, and then that
+        * task C starts reading on CPU 0, so that its increment is not
+        * summed, but finishes reading on CPU 2, so that its decrement
+        * -is- summed.  Then when task B completes its sum, it will
+        * incorrectly get zero, despite the fact that task A has been
+        * in its SRCU read-side critical section the whole time.
+        *
+        * We therefore do a validation step should srcu_readers_active_idx()
+        * return zero.
+        */
+       if (srcu_readers_active_idx(sp, idx) != 0)
+               return false;
+
+       /*
+        * The remainder of this function is the validation step.
+        * The following smp_mb() D pairs with the smp_mb() C in
+        * __srcu_read_unlock().  If the __srcu_read_unlock() was seen
+        * by srcu_readers_active_idx() above, then any destructive
+        * operation performed after the grace period will happen after
+        * the corresponding SRCU read-side critical section.
+        *
+        * Note that there can be at most NR_CPUS worth of readers using
+        * the old index, which is not enough to overflow even a 32-bit
+        * integer.  (Yes, this does mean that systems having more than
+        * a billion or so CPUs need to be 64-bit systems.)  Therefore,
+        * the sum of the ->seq[] counters cannot possibly overflow.
+        * Therefore, the only way that the return values of the two
+        * calls to srcu_readers_seq_idx() can be equal is if there were
+        * no increments of the corresponding rank of ->seq[] counts
+        * in the interim.  But the missed-increment scenario laid out
+        * above includes an increment of the ->seq[] counter by
+        * the corresponding __srcu_read_lock().  Therefore, if this
+        * scenario occurs, the return values from the two calls to
+        * srcu_readers_seq_idx() will differ, and thus the validation
+        * step below suffices.
+        */
+       smp_mb(); /* D */
+
+       return srcu_readers_seq_idx(sp, idx) == seq;
+}
+
+/**
+ * srcu_readers_active - returns approximate number of readers.
+ * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
+ *
+ * Note that this is not an atomic primitive, and can therefore suffer
+ * severe errors when invoked on an active srcu_struct.  That said, it
+ * can be useful as an error check at cleanup time.
+ */
+static int srcu_readers_active(struct srcu_struct *sp)
+{
+       int cpu;
+       unsigned long sum = 0;
+
+       for_each_possible_cpu(cpu) {
+               sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
+               sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
+       }
+       return sum;
+}
+
+/**
+ * cleanup_srcu_struct - deconstruct a sleep-RCU structure
+ * @sp: structure to clean up.
+ *
+ * Must invoke this after you are finished using a given srcu_struct that
+ * was initialized via init_srcu_struct(), else you leak memory.
+ */
+void cleanup_srcu_struct(struct srcu_struct *sp)
+{
+       if (WARN_ON(srcu_readers_active(sp)))
+               return; /* Leakage unless caller handles error. */
+       free_percpu(sp->per_cpu_ref);
+       sp->per_cpu_ref = NULL;
+}
+EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
+
+/*
+ * Counts the new reader in the appropriate per-CPU element of the
+ * srcu_struct.  Must be called from process context.
+ * Returns an index that must be passed to the matching srcu_read_unlock().
+ */
+int __srcu_read_lock(struct srcu_struct *sp)
+{
+       int idx;
+
+       idx = ACCESS_ONCE(sp->completed) & 0x1;
+       preempt_disable();
+       __this_cpu_inc(sp->per_cpu_ref->c[idx]);
+       smp_mb(); /* B */  /* Avoid leaking the critical section. */
+       __this_cpu_inc(sp->per_cpu_ref->seq[idx]);
+       preempt_enable();
+       return idx;
+}
+EXPORT_SYMBOL_GPL(__srcu_read_lock);
+
+/*
+ * Removes the count for the old reader from the appropriate per-CPU
+ * element of the srcu_struct.  Note that this may well be a different
+ * CPU than that which was incremented by the corresponding srcu_read_lock().
+ * Must be called from process context.
+ */
+void __srcu_read_unlock(struct srcu_struct *sp, int idx)
+{
+       smp_mb(); /* C */  /* Avoid leaking the critical section. */
+       this_cpu_dec(sp->per_cpu_ref->c[idx]);
+}
+EXPORT_SYMBOL_GPL(__srcu_read_unlock);
+
+/*
+ * We use an adaptive strategy for synchronize_srcu() and especially for
+ * synchronize_srcu_expedited().  We spin for a fixed time period
+ * (defined below) to allow SRCU readers to exit their read-side critical
+ * sections.  If there are still some readers after 10 microseconds,
+ * we repeatedly block for 1-millisecond time periods.  This approach
+ * has done well in testing, so there is no need for a config parameter.
+ */
+#define SRCU_RETRY_CHECK_DELAY         5
+#define SYNCHRONIZE_SRCU_TRYCOUNT      2
+#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT  12
+
+/*
+ * @@@ Wait until all pre-existing readers complete.  Such readers
+ * will have used the index specified by "idx".
+ * the caller should ensures the ->completed is not changed while checking
+ * and idx = (->completed & 1) ^ 1
+ */
+static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
+{
+       for (;;) {
+               if (srcu_readers_active_idx_check(sp, idx))
+                       return true;
+               if (--trycount <= 0)
+                       return false;
+               udelay(SRCU_RETRY_CHECK_DELAY);
+       }
+}
+
+/*
+ * Increment the ->completed counter so that future SRCU readers will
+ * use the other rank of the ->c[] and ->seq[] arrays.  This allows
+ * us to wait for pre-existing readers in a starvation-free manner.
+ */
+static void srcu_flip(struct srcu_struct *sp)
+{
+       sp->completed++;
+}
+
+/*
+ * Enqueue an SRCU callback on the specified srcu_struct structure,
+ * initiating grace-period processing if it is not already running.
+ *
+ * Note that all CPUs must agree that the grace period extended beyond
+ * all pre-existing SRCU read-side critical section.  On systems with
+ * more than one CPU, this means that when "func()" is invoked, each CPU
+ * is guaranteed to have executed a full memory barrier since the end of
+ * its last corresponding SRCU read-side critical section whose beginning
+ * preceded the call to call_rcu().  It also means that each CPU executing
+ * an SRCU read-side critical section that continues beyond the start of
+ * "func()" must have executed a memory barrier after the call_rcu()
+ * but before the beginning of that SRCU read-side critical section.
+ * Note that these guarantees include CPUs that are offline, idle, or
+ * executing in user mode, as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
+ * resulting SRCU callback function "func()", then both CPU A and CPU
+ * B are guaranteed to execute a full memory barrier during the time
+ * interval between the call to call_rcu() and the invocation of "func()".
+ * This guarantee applies even if CPU A and CPU B are the same CPU (but
+ * again only if the system has more than one CPU).
+ *
+ * Of course, these guarantees apply only for invocations of call_srcu(),
+ * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
+ * srcu_struct structure.
+ */
+void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
+               void (*func)(struct rcu_head *head))
+{
+       unsigned long flags;
+
+       head->next = NULL;
+       head->func = func;
+       spin_lock_irqsave(&sp->queue_lock, flags);
+       rcu_batch_queue(&sp->batch_queue, head);
+       if (!sp->running) {
+               sp->running = true;
+               queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
+       }
+       spin_unlock_irqrestore(&sp->queue_lock, flags);
+}
+EXPORT_SYMBOL_GPL(call_srcu);
+
+static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
+static void srcu_reschedule(struct srcu_struct *sp);
+
+/*
+ * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
+ */
+static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
+{
+       struct rcu_synchronize rcu;
+       struct rcu_head *head = &rcu.head;
+       bool done = false;
+
+       rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
+                          !lock_is_held(&rcu_bh_lock_map) &&
+                          !lock_is_held(&rcu_lock_map) &&
+                          !lock_is_held(&rcu_sched_lock_map),
+                          "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
+
+       might_sleep();
+       init_completion(&rcu.completion);
+
+       head->next = NULL;
+       head->func = wakeme_after_rcu;
+       spin_lock_irq(&sp->queue_lock);
+       if (!sp->running) {
+               /* steal the processing owner */
+               sp->running = true;
+               rcu_batch_queue(&sp->batch_check0, head);
+               spin_unlock_irq(&sp->queue_lock);
+
+               srcu_advance_batches(sp, trycount);
+               if (!rcu_batch_empty(&sp->batch_done)) {
+                       BUG_ON(sp->batch_done.head != head);
+                       rcu_batch_dequeue(&sp->batch_done);
+                       done = true;
+               }
+               /* give the processing owner to work_struct */
+               srcu_reschedule(sp);
+       } else {
+               rcu_batch_queue(&sp->batch_queue, head);
+               spin_unlock_irq(&sp->queue_lock);
+       }
+
+       if (!done)
+               wait_for_completion(&rcu.completion);
+}
+
+/**
+ * synchronize_srcu - wait for prior SRCU read-side critical-section completion
+ * @sp: srcu_struct with which to synchronize.
+ *
+ * Wait for the count to drain to zero of both indexes. To avoid the
+ * possible starvation of synchronize_srcu(), it waits for the count of
+ * the index=((->completed & 1) ^ 1) to drain to zero at first,
+ * and then flip the completed and wait for the count of the other index.
+ *
+ * Can block; must be called from process context.
+ *
+ * Note that it is illegal to call synchronize_srcu() from the corresponding
+ * SRCU read-side critical section; doing so will result in deadlock.
+ * However, it is perfectly legal to call synchronize_srcu() on one
+ * srcu_struct from some other srcu_struct's read-side critical section,
+ * as long as the resulting graph of srcu_structs is acyclic.
+ *
+ * There are memory-ordering constraints implied by synchronize_srcu().
+ * On systems with more than one CPU, when synchronize_srcu() returns,
+ * each CPU is guaranteed to have executed a full memory barrier since
+ * the end of its last corresponding SRCU-sched read-side critical section
+ * whose beginning preceded the call to synchronize_srcu().  In addition,
+ * each CPU having an SRCU read-side critical section that extends beyond
+ * the return from synchronize_srcu() is guaranteed to have executed a
+ * full memory barrier after the beginning of synchronize_srcu() and before
+ * the beginning of that SRCU read-side critical section.  Note that these
+ * guarantees include CPUs that are offline, idle, or executing in user mode,
+ * as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked synchronize_srcu(), which returned
+ * to its caller on CPU B, then both CPU A and CPU B are guaranteed
+ * to have executed a full memory barrier during the execution of
+ * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
+ * are the same CPU, but again only if the system has more than one CPU.
+ *
+ * Of course, these memory-ordering guarantees apply only when
+ * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
+ * passed the same srcu_struct structure.
+ */
+void synchronize_srcu(struct srcu_struct *sp)
+{
+       __synchronize_srcu(sp, rcu_gp_is_expedited()
+                          ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
+                          : SYNCHRONIZE_SRCU_TRYCOUNT);
+}
+EXPORT_SYMBOL_GPL(synchronize_srcu);
+
+/**
+ * synchronize_srcu_expedited - Brute-force SRCU grace period
+ * @sp: srcu_struct with which to synchronize.
+ *
+ * Wait for an SRCU grace period to elapse, but be more aggressive about
+ * spinning rather than blocking when waiting.
+ *
+ * Note that synchronize_srcu_expedited() has the same deadlock and
+ * memory-ordering properties as does synchronize_srcu().
+ */
+void synchronize_srcu_expedited(struct srcu_struct *sp)
+{
+       __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
+}
+EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
+
+/**
+ * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
+ * @sp: srcu_struct on which to wait for in-flight callbacks.
+ */
+void srcu_barrier(struct srcu_struct *sp)
+{
+       synchronize_srcu(sp);
+}
+EXPORT_SYMBOL_GPL(srcu_barrier);
+
+/**
+ * srcu_batches_completed - return batches completed.
+ * @sp: srcu_struct on which to report batch completion.
+ *
+ * Report the number of batches, correlated with, but not necessarily
+ * precisely the same as, the number of grace periods that have elapsed.
+ */
+unsigned long srcu_batches_completed(struct srcu_struct *sp)
+{
+       return sp->completed;
+}
+EXPORT_SYMBOL_GPL(srcu_batches_completed);
+
+#define SRCU_CALLBACK_BATCH    10
+#define SRCU_INTERVAL          1
+
+/*
+ * Move any new SRCU callbacks to the first stage of the SRCU grace
+ * period pipeline.
+ */
+static void srcu_collect_new(struct srcu_struct *sp)
+{
+       if (!rcu_batch_empty(&sp->batch_queue)) {
+               spin_lock_irq(&sp->queue_lock);
+               rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
+               spin_unlock_irq(&sp->queue_lock);
+       }
+}
+
+/*
+ * Core SRCU state machine.  Advance callbacks from ->batch_check0 to
+ * ->batch_check1 and then to ->batch_done as readers drain.
+ */
+static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
+{
+       int idx = 1 ^ (sp->completed & 1);
+
+       /*
+        * Because readers might be delayed for an extended period after
+        * fetching ->completed for their index, at any point in time there
+        * might well be readers using both idx=0 and idx=1.  We therefore
+        * need to wait for readers to clear from both index values before
+        * invoking a callback.
+        */
+
+       if (rcu_batch_empty(&sp->batch_check0) &&
+           rcu_batch_empty(&sp->batch_check1))
+               return; /* no callbacks need to be advanced */
+
+       if (!try_check_zero(sp, idx, trycount))
+               return; /* failed to advance, will try after SRCU_INTERVAL */
+
+       /*
+        * The callbacks in ->batch_check1 have already done with their
+        * first zero check and flip back when they were enqueued on
+        * ->batch_check0 in a previous invocation of srcu_advance_batches().
+        * (Presumably try_check_zero() returned false during that
+        * invocation, leaving the callbacks stranded on ->batch_check1.)
+        * They are therefore ready to invoke, so move them to ->batch_done.
+        */
+       rcu_batch_move(&sp->batch_done, &sp->batch_check1);
+
+       if (rcu_batch_empty(&sp->batch_check0))
+               return; /* no callbacks need to be advanced */
+       srcu_flip(sp);
+
+       /*
+        * The callbacks in ->batch_check0 just finished their
+        * first check zero and flip, so move them to ->batch_check1
+        * for future checking on the other idx.
+        */
+       rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
+
+       /*
+        * SRCU read-side critical sections are normally short, so check
+        * at least twice in quick succession after a flip.
+        */
+       trycount = trycount < 2 ? 2 : trycount;
+       if (!try_check_zero(sp, idx^1, trycount))
+               return; /* failed to advance, will try after SRCU_INTERVAL */
+
+       /*
+        * The callbacks in ->batch_check1 have now waited for all
+        * pre-existing readers using both idx values.  They are therefore
+        * ready to invoke, so move them to ->batch_done.
+        */
+       rcu_batch_move(&sp->batch_done, &sp->batch_check1);
+}
+
+/*
+ * Invoke a limited number of SRCU callbacks that have passed through
+ * their grace period.  If there are more to do, SRCU will reschedule
+ * the workqueue.
+ */
+static void srcu_invoke_callbacks(struct srcu_struct *sp)
+{
+       int i;
+       struct rcu_head *head;
+
+       for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
+               head = rcu_batch_dequeue(&sp->batch_done);
+               if (!head)
+                       break;
+               local_bh_disable();
+               head->func(head);
+               local_bh_enable();
+       }
+}
+
+/*
+ * Finished one round of SRCU grace period.  Start another if there are
+ * more SRCU callbacks queued, otherwise put SRCU into not-running state.
+ */
+static void srcu_reschedule(struct srcu_struct *sp)
+{
+       bool pending = true;
+
+       if (rcu_batch_empty(&sp->batch_done) &&
+           rcu_batch_empty(&sp->batch_check1) &&
+           rcu_batch_empty(&sp->batch_check0) &&
+           rcu_batch_empty(&sp->batch_queue)) {
+               spin_lock_irq(&sp->queue_lock);
+               if (rcu_batch_empty(&sp->batch_done) &&
+                   rcu_batch_empty(&sp->batch_check1) &&
+                   rcu_batch_empty(&sp->batch_check0) &&
+                   rcu_batch_empty(&sp->batch_queue)) {
+                       sp->running = false;
+                       pending = false;
+               }
+               spin_unlock_irq(&sp->queue_lock);
+       }
+
+       if (pending)
+               queue_delayed_work(system_power_efficient_wq,
+                                  &sp->work, SRCU_INTERVAL);
+}
+
+/*
+ * This is the work-queue function that handles SRCU grace periods.
+ */
+void process_srcu(struct work_struct *work)
+{
+       struct srcu_struct *sp;
+
+       sp = container_of(work, struct srcu_struct, work.work);
+
+       srcu_collect_new(sp);
+       srcu_advance_batches(sp, 1);
+       srcu_invoke_callbacks(sp);
+       srcu_reschedule(sp);
+}
+EXPORT_SYMBOL_GPL(process_srcu);