Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / power / snapshot.c
diff --git a/kernel/kernel/power/snapshot.c b/kernel/kernel/power/snapshot.c
new file mode 100644 (file)
index 0000000..5235dd4
--- /dev/null
@@ -0,0 +1,2607 @@
+/*
+ * linux/kernel/power/snapshot.c
+ *
+ * This file provides system snapshot/restore functionality for swsusp.
+ *
+ * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
+ * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
+ *
+ * This file is released under the GPLv2.
+ *
+ */
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/suspend.h>
+#include <linux/delay.h>
+#include <linux/bitops.h>
+#include <linux/spinlock.h>
+#include <linux/kernel.h>
+#include <linux/pm.h>
+#include <linux/device.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/syscalls.h>
+#include <linux/console.h>
+#include <linux/highmem.h>
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/compiler.h>
+#include <linux/ktime.h>
+
+#include <asm/uaccess.h>
+#include <asm/mmu_context.h>
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+
+#include "power.h"
+
+static int swsusp_page_is_free(struct page *);
+static void swsusp_set_page_forbidden(struct page *);
+static void swsusp_unset_page_forbidden(struct page *);
+
+/*
+ * Number of bytes to reserve for memory allocations made by device drivers
+ * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
+ * cause image creation to fail (tunable via /sys/power/reserved_size).
+ */
+unsigned long reserved_size;
+
+void __init hibernate_reserved_size_init(void)
+{
+       reserved_size = SPARE_PAGES * PAGE_SIZE;
+}
+
+/*
+ * Preferred image size in bytes (tunable via /sys/power/image_size).
+ * When it is set to N, swsusp will do its best to ensure the image
+ * size will not exceed N bytes, but if that is impossible, it will
+ * try to create the smallest image possible.
+ */
+unsigned long image_size;
+
+void __init hibernate_image_size_init(void)
+{
+       image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
+}
+
+/* List of PBEs needed for restoring the pages that were allocated before
+ * the suspend and included in the suspend image, but have also been
+ * allocated by the "resume" kernel, so their contents cannot be written
+ * directly to their "original" page frames.
+ */
+struct pbe *restore_pblist;
+
+/* Pointer to an auxiliary buffer (1 page) */
+static void *buffer;
+
+/**
+ *     @safe_needed - on resume, for storing the PBE list and the image,
+ *     we can only use memory pages that do not conflict with the pages
+ *     used before suspend.  The unsafe pages have PageNosaveFree set
+ *     and we count them using unsafe_pages.
+ *
+ *     Each allocated image page is marked as PageNosave and PageNosaveFree
+ *     so that swsusp_free() can release it.
+ */
+
+#define PG_ANY         0
+#define PG_SAFE                1
+#define PG_UNSAFE_CLEAR        1
+#define PG_UNSAFE_KEEP 0
+
+static unsigned int allocated_unsafe_pages;
+
+static void *get_image_page(gfp_t gfp_mask, int safe_needed)
+{
+       void *res;
+
+       res = (void *)get_zeroed_page(gfp_mask);
+       if (safe_needed)
+               while (res && swsusp_page_is_free(virt_to_page(res))) {
+                       /* The page is unsafe, mark it for swsusp_free() */
+                       swsusp_set_page_forbidden(virt_to_page(res));
+                       allocated_unsafe_pages++;
+                       res = (void *)get_zeroed_page(gfp_mask);
+               }
+       if (res) {
+               swsusp_set_page_forbidden(virt_to_page(res));
+               swsusp_set_page_free(virt_to_page(res));
+       }
+       return res;
+}
+
+unsigned long get_safe_page(gfp_t gfp_mask)
+{
+       return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
+}
+
+static struct page *alloc_image_page(gfp_t gfp_mask)
+{
+       struct page *page;
+
+       page = alloc_page(gfp_mask);
+       if (page) {
+               swsusp_set_page_forbidden(page);
+               swsusp_set_page_free(page);
+       }
+       return page;
+}
+
+/**
+ *     free_image_page - free page represented by @addr, allocated with
+ *     get_image_page (page flags set by it must be cleared)
+ */
+
+static inline void free_image_page(void *addr, int clear_nosave_free)
+{
+       struct page *page;
+
+       BUG_ON(!virt_addr_valid(addr));
+
+       page = virt_to_page(addr);
+
+       swsusp_unset_page_forbidden(page);
+       if (clear_nosave_free)
+               swsusp_unset_page_free(page);
+
+       __free_page(page);
+}
+
+/* struct linked_page is used to build chains of pages */
+
+#define LINKED_PAGE_DATA_SIZE  (PAGE_SIZE - sizeof(void *))
+
+struct linked_page {
+       struct linked_page *next;
+       char data[LINKED_PAGE_DATA_SIZE];
+} __packed;
+
+static inline void
+free_list_of_pages(struct linked_page *list, int clear_page_nosave)
+{
+       while (list) {
+               struct linked_page *lp = list->next;
+
+               free_image_page(list, clear_page_nosave);
+               list = lp;
+       }
+}
+
+/**
+  *    struct chain_allocator is used for allocating small objects out of
+  *    a linked list of pages called 'the chain'.
+  *
+  *    The chain grows each time when there is no room for a new object in
+  *    the current page.  The allocated objects cannot be freed individually.
+  *    It is only possible to free them all at once, by freeing the entire
+  *    chain.
+  *
+  *    NOTE: The chain allocator may be inefficient if the allocated objects
+  *    are not much smaller than PAGE_SIZE.
+  */
+
+struct chain_allocator {
+       struct linked_page *chain;      /* the chain */
+       unsigned int used_space;        /* total size of objects allocated out
+                                        * of the current page
+                                        */
+       gfp_t gfp_mask;         /* mask for allocating pages */
+       int safe_needed;        /* if set, only "safe" pages are allocated */
+};
+
+static void
+chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
+{
+       ca->chain = NULL;
+       ca->used_space = LINKED_PAGE_DATA_SIZE;
+       ca->gfp_mask = gfp_mask;
+       ca->safe_needed = safe_needed;
+}
+
+static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
+{
+       void *ret;
+
+       if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
+               struct linked_page *lp;
+
+               lp = get_image_page(ca->gfp_mask, ca->safe_needed);
+               if (!lp)
+                       return NULL;
+
+               lp->next = ca->chain;
+               ca->chain = lp;
+               ca->used_space = 0;
+       }
+       ret = ca->chain->data + ca->used_space;
+       ca->used_space += size;
+       return ret;
+}
+
+/**
+ *     Data types related to memory bitmaps.
+ *
+ *     Memory bitmap is a structure consiting of many linked lists of
+ *     objects.  The main list's elements are of type struct zone_bitmap
+ *     and each of them corresonds to one zone.  For each zone bitmap
+ *     object there is a list of objects of type struct bm_block that
+ *     represent each blocks of bitmap in which information is stored.
+ *
+ *     struct memory_bitmap contains a pointer to the main list of zone
+ *     bitmap objects, a struct bm_position used for browsing the bitmap,
+ *     and a pointer to the list of pages used for allocating all of the
+ *     zone bitmap objects and bitmap block objects.
+ *
+ *     NOTE: It has to be possible to lay out the bitmap in memory
+ *     using only allocations of order 0.  Additionally, the bitmap is
+ *     designed to work with arbitrary number of zones (this is over the
+ *     top for now, but let's avoid making unnecessary assumptions ;-).
+ *
+ *     struct zone_bitmap contains a pointer to a list of bitmap block
+ *     objects and a pointer to the bitmap block object that has been
+ *     most recently used for setting bits.  Additionally, it contains the
+ *     pfns that correspond to the start and end of the represented zone.
+ *
+ *     struct bm_block contains a pointer to the memory page in which
+ *     information is stored (in the form of a block of bitmap)
+ *     It also contains the pfns that correspond to the start and end of
+ *     the represented memory area.
+ *
+ *     The memory bitmap is organized as a radix tree to guarantee fast random
+ *     access to the bits. There is one radix tree for each zone (as returned
+ *     from create_mem_extents).
+ *
+ *     One radix tree is represented by one struct mem_zone_bm_rtree. There are
+ *     two linked lists for the nodes of the tree, one for the inner nodes and
+ *     one for the leave nodes. The linked leave nodes are used for fast linear
+ *     access of the memory bitmap.
+ *
+ *     The struct rtree_node represents one node of the radix tree.
+ */
+
+#define BM_END_OF_MAP  (~0UL)
+
+#define BM_BITS_PER_BLOCK      (PAGE_SIZE * BITS_PER_BYTE)
+#define BM_BLOCK_SHIFT         (PAGE_SHIFT + 3)
+#define BM_BLOCK_MASK          ((1UL << BM_BLOCK_SHIFT) - 1)
+
+/*
+ * struct rtree_node is a wrapper struct to link the nodes
+ * of the rtree together for easy linear iteration over
+ * bits and easy freeing
+ */
+struct rtree_node {
+       struct list_head list;
+       unsigned long *data;
+};
+
+/*
+ * struct mem_zone_bm_rtree represents a bitmap used for one
+ * populated memory zone.
+ */
+struct mem_zone_bm_rtree {
+       struct list_head list;          /* Link Zones together         */
+       struct list_head nodes;         /* Radix Tree inner nodes      */
+       struct list_head leaves;        /* Radix Tree leaves           */
+       unsigned long start_pfn;        /* Zone start page frame       */
+       unsigned long end_pfn;          /* Zone end page frame + 1     */
+       struct rtree_node *rtree;       /* Radix Tree Root             */
+       int levels;                     /* Number of Radix Tree Levels */
+       unsigned int blocks;            /* Number of Bitmap Blocks     */
+};
+
+/* strcut bm_position is used for browsing memory bitmaps */
+
+struct bm_position {
+       struct mem_zone_bm_rtree *zone;
+       struct rtree_node *node;
+       unsigned long node_pfn;
+       int node_bit;
+};
+
+struct memory_bitmap {
+       struct list_head zones;
+       struct linked_page *p_list;     /* list of pages used to store zone
+                                        * bitmap objects and bitmap block
+                                        * objects
+                                        */
+       struct bm_position cur; /* most recently used bit position */
+};
+
+/* Functions that operate on memory bitmaps */
+
+#define BM_ENTRIES_PER_LEVEL   (PAGE_SIZE / sizeof(unsigned long))
+#if BITS_PER_LONG == 32
+#define BM_RTREE_LEVEL_SHIFT   (PAGE_SHIFT - 2)
+#else
+#define BM_RTREE_LEVEL_SHIFT   (PAGE_SHIFT - 3)
+#endif
+#define BM_RTREE_LEVEL_MASK    ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
+
+/*
+ *     alloc_rtree_node - Allocate a new node and add it to the radix tree.
+ *
+ *     This function is used to allocate inner nodes as well as the
+ *     leave nodes of the radix tree. It also adds the node to the
+ *     corresponding linked list passed in by the *list parameter.
+ */
+static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
+                                          struct chain_allocator *ca,
+                                          struct list_head *list)
+{
+       struct rtree_node *node;
+
+       node = chain_alloc(ca, sizeof(struct rtree_node));
+       if (!node)
+               return NULL;
+
+       node->data = get_image_page(gfp_mask, safe_needed);
+       if (!node->data)
+               return NULL;
+
+       list_add_tail(&node->list, list);
+
+       return node;
+}
+
+/*
+ *     add_rtree_block - Add a new leave node to the radix tree
+ *
+ *     The leave nodes need to be allocated in order to keep the leaves
+ *     linked list in order. This is guaranteed by the zone->blocks
+ *     counter.
+ */
+static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
+                          int safe_needed, struct chain_allocator *ca)
+{
+       struct rtree_node *node, *block, **dst;
+       unsigned int levels_needed, block_nr;
+       int i;
+
+       block_nr = zone->blocks;
+       levels_needed = 0;
+
+       /* How many levels do we need for this block nr? */
+       while (block_nr) {
+               levels_needed += 1;
+               block_nr >>= BM_RTREE_LEVEL_SHIFT;
+       }
+
+       /* Make sure the rtree has enough levels */
+       for (i = zone->levels; i < levels_needed; i++) {
+               node = alloc_rtree_node(gfp_mask, safe_needed, ca,
+                                       &zone->nodes);
+               if (!node)
+                       return -ENOMEM;
+
+               node->data[0] = (unsigned long)zone->rtree;
+               zone->rtree = node;
+               zone->levels += 1;
+       }
+
+       /* Allocate new block */
+       block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
+       if (!block)
+               return -ENOMEM;
+
+       /* Now walk the rtree to insert the block */
+       node = zone->rtree;
+       dst = &zone->rtree;
+       block_nr = zone->blocks;
+       for (i = zone->levels; i > 0; i--) {
+               int index;
+
+               if (!node) {
+                       node = alloc_rtree_node(gfp_mask, safe_needed, ca,
+                                               &zone->nodes);
+                       if (!node)
+                               return -ENOMEM;
+                       *dst = node;
+               }
+
+               index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
+               index &= BM_RTREE_LEVEL_MASK;
+               dst = (struct rtree_node **)&((*dst)->data[index]);
+               node = *dst;
+       }
+
+       zone->blocks += 1;
+       *dst = block;
+
+       return 0;
+}
+
+static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
+                              int clear_nosave_free);
+
+/*
+ *     create_zone_bm_rtree - create a radix tree for one zone
+ *
+ *     Allocated the mem_zone_bm_rtree structure and initializes it.
+ *     This function also allocated and builds the radix tree for the
+ *     zone.
+ */
+static struct mem_zone_bm_rtree *
+create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
+                    struct chain_allocator *ca,
+                    unsigned long start, unsigned long end)
+{
+       struct mem_zone_bm_rtree *zone;
+       unsigned int i, nr_blocks;
+       unsigned long pages;
+
+       pages = end - start;
+       zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
+       if (!zone)
+               return NULL;
+
+       INIT_LIST_HEAD(&zone->nodes);
+       INIT_LIST_HEAD(&zone->leaves);
+       zone->start_pfn = start;
+       zone->end_pfn = end;
+       nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
+
+       for (i = 0; i < nr_blocks; i++) {
+               if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
+                       free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
+                       return NULL;
+               }
+       }
+
+       return zone;
+}
+
+/*
+ *     free_zone_bm_rtree - Free the memory of the radix tree
+ *
+ *     Free all node pages of the radix tree. The mem_zone_bm_rtree
+ *     structure itself is not freed here nor are the rtree_node
+ *     structs.
+ */
+static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
+                              int clear_nosave_free)
+{
+       struct rtree_node *node;
+
+       list_for_each_entry(node, &zone->nodes, list)
+               free_image_page(node->data, clear_nosave_free);
+
+       list_for_each_entry(node, &zone->leaves, list)
+               free_image_page(node->data, clear_nosave_free);
+}
+
+static void memory_bm_position_reset(struct memory_bitmap *bm)
+{
+       bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
+                                 list);
+       bm->cur.node = list_entry(bm->cur.zone->leaves.next,
+                                 struct rtree_node, list);
+       bm->cur.node_pfn = 0;
+       bm->cur.node_bit = 0;
+}
+
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
+
+struct mem_extent {
+       struct list_head hook;
+       unsigned long start;
+       unsigned long end;
+};
+
+/**
+ *     free_mem_extents - free a list of memory extents
+ *     @list - list of extents to empty
+ */
+static void free_mem_extents(struct list_head *list)
+{
+       struct mem_extent *ext, *aux;
+
+       list_for_each_entry_safe(ext, aux, list, hook) {
+               list_del(&ext->hook);
+               kfree(ext);
+       }
+}
+
+/**
+ *     create_mem_extents - create a list of memory extents representing
+ *                          contiguous ranges of PFNs
+ *     @list - list to put the extents into
+ *     @gfp_mask - mask to use for memory allocations
+ */
+static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
+{
+       struct zone *zone;
+
+       INIT_LIST_HEAD(list);
+
+       for_each_populated_zone(zone) {
+               unsigned long zone_start, zone_end;
+               struct mem_extent *ext, *cur, *aux;
+
+               zone_start = zone->zone_start_pfn;
+               zone_end = zone_end_pfn(zone);
+
+               list_for_each_entry(ext, list, hook)
+                       if (zone_start <= ext->end)
+                               break;
+
+               if (&ext->hook == list || zone_end < ext->start) {
+                       /* New extent is necessary */
+                       struct mem_extent *new_ext;
+
+                       new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
+                       if (!new_ext) {
+                               free_mem_extents(list);
+                               return -ENOMEM;
+                       }
+                       new_ext->start = zone_start;
+                       new_ext->end = zone_end;
+                       list_add_tail(&new_ext->hook, &ext->hook);
+                       continue;
+               }
+
+               /* Merge this zone's range of PFNs with the existing one */
+               if (zone_start < ext->start)
+                       ext->start = zone_start;
+               if (zone_end > ext->end)
+                       ext->end = zone_end;
+
+               /* More merging may be possible */
+               cur = ext;
+               list_for_each_entry_safe_continue(cur, aux, list, hook) {
+                       if (zone_end < cur->start)
+                               break;
+                       if (zone_end < cur->end)
+                               ext->end = cur->end;
+                       list_del(&cur->hook);
+                       kfree(cur);
+               }
+       }
+
+       return 0;
+}
+
+/**
+  *    memory_bm_create - allocate memory for a memory bitmap
+  */
+static int
+memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
+{
+       struct chain_allocator ca;
+       struct list_head mem_extents;
+       struct mem_extent *ext;
+       int error;
+
+       chain_init(&ca, gfp_mask, safe_needed);
+       INIT_LIST_HEAD(&bm->zones);
+
+       error = create_mem_extents(&mem_extents, gfp_mask);
+       if (error)
+               return error;
+
+       list_for_each_entry(ext, &mem_extents, hook) {
+               struct mem_zone_bm_rtree *zone;
+
+               zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
+                                           ext->start, ext->end);
+               if (!zone) {
+                       error = -ENOMEM;
+                       goto Error;
+               }
+               list_add_tail(&zone->list, &bm->zones);
+       }
+
+       bm->p_list = ca.chain;
+       memory_bm_position_reset(bm);
+ Exit:
+       free_mem_extents(&mem_extents);
+       return error;
+
+ Error:
+       bm->p_list = ca.chain;
+       memory_bm_free(bm, PG_UNSAFE_CLEAR);
+       goto Exit;
+}
+
+/**
+  *    memory_bm_free - free memory occupied by the memory bitmap @bm
+  */
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
+{
+       struct mem_zone_bm_rtree *zone;
+
+       list_for_each_entry(zone, &bm->zones, list)
+               free_zone_bm_rtree(zone, clear_nosave_free);
+
+       free_list_of_pages(bm->p_list, clear_nosave_free);
+
+       INIT_LIST_HEAD(&bm->zones);
+}
+
+/**
+ *     memory_bm_find_bit - Find the bit for pfn in the memory
+ *                          bitmap
+ *
+ *     Find the bit in the bitmap @bm that corresponds to given pfn.
+ *     The cur.zone, cur.block and cur.node_pfn member of @bm are
+ *     updated.
+ *     It walks the radix tree to find the page which contains the bit for
+ *     pfn and returns the bit position in **addr and *bit_nr.
+ */
+static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
+                             void **addr, unsigned int *bit_nr)
+{
+       struct mem_zone_bm_rtree *curr, *zone;
+       struct rtree_node *node;
+       int i, block_nr;
+
+       zone = bm->cur.zone;
+
+       if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
+               goto zone_found;
+
+       zone = NULL;
+
+       /* Find the right zone */
+       list_for_each_entry(curr, &bm->zones, list) {
+               if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
+                       zone = curr;
+                       break;
+               }
+       }
+
+       if (!zone)
+               return -EFAULT;
+
+zone_found:
+       /*
+        * We have a zone. Now walk the radix tree to find the leave
+        * node for our pfn.
+        */
+
+       node = bm->cur.node;
+       if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
+               goto node_found;
+
+       node      = zone->rtree;
+       block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
+
+       for (i = zone->levels; i > 0; i--) {
+               int index;
+
+               index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
+               index &= BM_RTREE_LEVEL_MASK;
+               BUG_ON(node->data[index] == 0);
+               node = (struct rtree_node *)node->data[index];
+       }
+
+node_found:
+       /* Update last position */
+       bm->cur.zone = zone;
+       bm->cur.node = node;
+       bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
+
+       /* Set return values */
+       *addr = node->data;
+       *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
+
+       return 0;
+}
+
+static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+       void *addr;
+       unsigned int bit;
+       int error;
+
+       error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+       BUG_ON(error);
+       set_bit(bit, addr);
+}
+
+static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
+{
+       void *addr;
+       unsigned int bit;
+       int error;
+
+       error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+       if (!error)
+               set_bit(bit, addr);
+
+       return error;
+}
+
+static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+       void *addr;
+       unsigned int bit;
+       int error;
+
+       error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+       BUG_ON(error);
+       clear_bit(bit, addr);
+}
+
+static void memory_bm_clear_current(struct memory_bitmap *bm)
+{
+       int bit;
+
+       bit = max(bm->cur.node_bit - 1, 0);
+       clear_bit(bit, bm->cur.node->data);
+}
+
+static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+       void *addr;
+       unsigned int bit;
+       int error;
+
+       error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+       BUG_ON(error);
+       return test_bit(bit, addr);
+}
+
+static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
+{
+       void *addr;
+       unsigned int bit;
+
+       return !memory_bm_find_bit(bm, pfn, &addr, &bit);
+}
+
+/*
+ *     rtree_next_node - Jumps to the next leave node
+ *
+ *     Sets the position to the beginning of the next node in the
+ *     memory bitmap. This is either the next node in the current
+ *     zone's radix tree or the first node in the radix tree of the
+ *     next zone.
+ *
+ *     Returns true if there is a next node, false otherwise.
+ */
+static bool rtree_next_node(struct memory_bitmap *bm)
+{
+       bm->cur.node = list_entry(bm->cur.node->list.next,
+                                 struct rtree_node, list);
+       if (&bm->cur.node->list != &bm->cur.zone->leaves) {
+               bm->cur.node_pfn += BM_BITS_PER_BLOCK;
+               bm->cur.node_bit  = 0;
+               touch_softlockup_watchdog();
+               return true;
+       }
+
+       /* No more nodes, goto next zone */
+       bm->cur.zone = list_entry(bm->cur.zone->list.next,
+                                 struct mem_zone_bm_rtree, list);
+       if (&bm->cur.zone->list != &bm->zones) {
+               bm->cur.node = list_entry(bm->cur.zone->leaves.next,
+                                         struct rtree_node, list);
+               bm->cur.node_pfn = 0;
+               bm->cur.node_bit = 0;
+               return true;
+       }
+
+       /* No more zones */
+       return false;
+}
+
+/**
+ *     memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
+ *
+ *     Starting from the last returned position this function searches
+ *     for the next set bit in the memory bitmap and returns its
+ *     number. If no more bit is set BM_END_OF_MAP is returned.
+ *
+ *     It is required to run memory_bm_position_reset() before the
+ *     first call to this function.
+ */
+static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
+{
+       unsigned long bits, pfn, pages;
+       int bit;
+
+       do {
+               pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
+               bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
+               bit       = find_next_bit(bm->cur.node->data, bits,
+                                         bm->cur.node_bit);
+               if (bit < bits) {
+                       pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
+                       bm->cur.node_bit = bit + 1;
+                       return pfn;
+               }
+       } while (rtree_next_node(bm));
+
+       return BM_END_OF_MAP;
+}
+
+/**
+ *     This structure represents a range of page frames the contents of which
+ *     should not be saved during the suspend.
+ */
+
+struct nosave_region {
+       struct list_head list;
+       unsigned long start_pfn;
+       unsigned long end_pfn;
+};
+
+static LIST_HEAD(nosave_regions);
+
+/**
+ *     register_nosave_region - register a range of page frames the contents
+ *     of which should not be saved during the suspend (to be used in the early
+ *     initialization code)
+ */
+
+void __init
+__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
+                        int use_kmalloc)
+{
+       struct nosave_region *region;
+
+       if (start_pfn >= end_pfn)
+               return;
+
+       if (!list_empty(&nosave_regions)) {
+               /* Try to extend the previous region (they should be sorted) */
+               region = list_entry(nosave_regions.prev,
+                                       struct nosave_region, list);
+               if (region->end_pfn == start_pfn) {
+                       region->end_pfn = end_pfn;
+                       goto Report;
+               }
+       }
+       if (use_kmalloc) {
+               /* during init, this shouldn't fail */
+               region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
+               BUG_ON(!region);
+       } else
+               /* This allocation cannot fail */
+               region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
+       region->start_pfn = start_pfn;
+       region->end_pfn = end_pfn;
+       list_add_tail(&region->list, &nosave_regions);
+ Report:
+       printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
+               (unsigned long long) start_pfn << PAGE_SHIFT,
+               ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
+}
+
+/*
+ * Set bits in this map correspond to the page frames the contents of which
+ * should not be saved during the suspend.
+ */
+static struct memory_bitmap *forbidden_pages_map;
+
+/* Set bits in this map correspond to free page frames. */
+static struct memory_bitmap *free_pages_map;
+
+/*
+ * Each page frame allocated for creating the image is marked by setting the
+ * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
+ */
+
+void swsusp_set_page_free(struct page *page)
+{
+       if (free_pages_map)
+               memory_bm_set_bit(free_pages_map, page_to_pfn(page));
+}
+
+static int swsusp_page_is_free(struct page *page)
+{
+       return free_pages_map ?
+               memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
+}
+
+void swsusp_unset_page_free(struct page *page)
+{
+       if (free_pages_map)
+               memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
+}
+
+static void swsusp_set_page_forbidden(struct page *page)
+{
+       if (forbidden_pages_map)
+               memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
+}
+
+int swsusp_page_is_forbidden(struct page *page)
+{
+       return forbidden_pages_map ?
+               memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
+}
+
+static void swsusp_unset_page_forbidden(struct page *page)
+{
+       if (forbidden_pages_map)
+               memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
+}
+
+/**
+ *     mark_nosave_pages - set bits corresponding to the page frames the
+ *     contents of which should not be saved in a given bitmap.
+ */
+
+static void mark_nosave_pages(struct memory_bitmap *bm)
+{
+       struct nosave_region *region;
+
+       if (list_empty(&nosave_regions))
+               return;
+
+       list_for_each_entry(region, &nosave_regions, list) {
+               unsigned long pfn;
+
+               pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
+                        (unsigned long long) region->start_pfn << PAGE_SHIFT,
+                        ((unsigned long long) region->end_pfn << PAGE_SHIFT)
+                               - 1);
+
+               for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
+                       if (pfn_valid(pfn)) {
+                               /*
+                                * It is safe to ignore the result of
+                                * mem_bm_set_bit_check() here, since we won't
+                                * touch the PFNs for which the error is
+                                * returned anyway.
+                                */
+                               mem_bm_set_bit_check(bm, pfn);
+                       }
+       }
+}
+
+/**
+ *     create_basic_memory_bitmaps - create bitmaps needed for marking page
+ *     frames that should not be saved and free page frames.  The pointers
+ *     forbidden_pages_map and free_pages_map are only modified if everything
+ *     goes well, because we don't want the bits to be used before both bitmaps
+ *     are set up.
+ */
+
+int create_basic_memory_bitmaps(void)
+{
+       struct memory_bitmap *bm1, *bm2;
+       int error = 0;
+
+       if (forbidden_pages_map && free_pages_map)
+               return 0;
+       else
+               BUG_ON(forbidden_pages_map || free_pages_map);
+
+       bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
+       if (!bm1)
+               return -ENOMEM;
+
+       error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
+       if (error)
+               goto Free_first_object;
+
+       bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
+       if (!bm2)
+               goto Free_first_bitmap;
+
+       error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
+       if (error)
+               goto Free_second_object;
+
+       forbidden_pages_map = bm1;
+       free_pages_map = bm2;
+       mark_nosave_pages(forbidden_pages_map);
+
+       pr_debug("PM: Basic memory bitmaps created\n");
+
+       return 0;
+
+ Free_second_object:
+       kfree(bm2);
+ Free_first_bitmap:
+       memory_bm_free(bm1, PG_UNSAFE_CLEAR);
+ Free_first_object:
+       kfree(bm1);
+       return -ENOMEM;
+}
+
+/**
+ *     free_basic_memory_bitmaps - free memory bitmaps allocated by
+ *     create_basic_memory_bitmaps().  The auxiliary pointers are necessary
+ *     so that the bitmaps themselves are not referred to while they are being
+ *     freed.
+ */
+
+void free_basic_memory_bitmaps(void)
+{
+       struct memory_bitmap *bm1, *bm2;
+
+       if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
+               return;
+
+       bm1 = forbidden_pages_map;
+       bm2 = free_pages_map;
+       forbidden_pages_map = NULL;
+       free_pages_map = NULL;
+       memory_bm_free(bm1, PG_UNSAFE_CLEAR);
+       kfree(bm1);
+       memory_bm_free(bm2, PG_UNSAFE_CLEAR);
+       kfree(bm2);
+
+       pr_debug("PM: Basic memory bitmaps freed\n");
+}
+
+/**
+ *     snapshot_additional_pages - estimate the number of additional pages
+ *     be needed for setting up the suspend image data structures for given
+ *     zone (usually the returned value is greater than the exact number)
+ */
+
+unsigned int snapshot_additional_pages(struct zone *zone)
+{
+       unsigned int rtree, nodes;
+
+       rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
+       rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
+                             LINKED_PAGE_DATA_SIZE);
+       while (nodes > 1) {
+               nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
+               rtree += nodes;
+       }
+
+       return 2 * rtree;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+ *     count_free_highmem_pages - compute the total number of free highmem
+ *     pages, system-wide.
+ */
+
+static unsigned int count_free_highmem_pages(void)
+{
+       struct zone *zone;
+       unsigned int cnt = 0;
+
+       for_each_populated_zone(zone)
+               if (is_highmem(zone))
+                       cnt += zone_page_state(zone, NR_FREE_PAGES);
+
+       return cnt;
+}
+
+/**
+ *     saveable_highmem_page - Determine whether a highmem page should be
+ *     included in the suspend image.
+ *
+ *     We should save the page if it isn't Nosave or NosaveFree, or Reserved,
+ *     and it isn't a part of a free chunk of pages.
+ */
+static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
+{
+       struct page *page;
+
+       if (!pfn_valid(pfn))
+               return NULL;
+
+       page = pfn_to_page(pfn);
+       if (page_zone(page) != zone)
+               return NULL;
+
+       BUG_ON(!PageHighMem(page));
+
+       if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
+           PageReserved(page))
+               return NULL;
+
+       if (page_is_guard(page))
+               return NULL;
+
+       return page;
+}
+
+/**
+ *     count_highmem_pages - compute the total number of saveable highmem
+ *     pages.
+ */
+
+static unsigned int count_highmem_pages(void)
+{
+       struct zone *zone;
+       unsigned int n = 0;
+
+       for_each_populated_zone(zone) {
+               unsigned long pfn, max_zone_pfn;
+
+               if (!is_highmem(zone))
+                       continue;
+
+               mark_free_pages(zone);
+               max_zone_pfn = zone_end_pfn(zone);
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (saveable_highmem_page(zone, pfn))
+                               n++;
+       }
+       return n;
+}
+#else
+static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
+{
+       return NULL;
+}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     saveable_page - Determine whether a non-highmem page should be included
+ *     in the suspend image.
+ *
+ *     We should save the page if it isn't Nosave, and is not in the range
+ *     of pages statically defined as 'unsaveable', and it isn't a part of
+ *     a free chunk of pages.
+ */
+static struct page *saveable_page(struct zone *zone, unsigned long pfn)
+{
+       struct page *page;
+
+       if (!pfn_valid(pfn))
+               return NULL;
+
+       page = pfn_to_page(pfn);
+       if (page_zone(page) != zone)
+               return NULL;
+
+       BUG_ON(PageHighMem(page));
+
+       if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
+               return NULL;
+
+       if (PageReserved(page)
+           && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
+               return NULL;
+
+       if (page_is_guard(page))
+               return NULL;
+
+       return page;
+}
+
+/**
+ *     count_data_pages - compute the total number of saveable non-highmem
+ *     pages.
+ */
+
+static unsigned int count_data_pages(void)
+{
+       struct zone *zone;
+       unsigned long pfn, max_zone_pfn;
+       unsigned int n = 0;
+
+       for_each_populated_zone(zone) {
+               if (is_highmem(zone))
+                       continue;
+
+               mark_free_pages(zone);
+               max_zone_pfn = zone_end_pfn(zone);
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (saveable_page(zone, pfn))
+                               n++;
+       }
+       return n;
+}
+
+/* This is needed, because copy_page and memcpy are not usable for copying
+ * task structs.
+ */
+static inline void do_copy_page(long *dst, long *src)
+{
+       int n;
+
+       for (n = PAGE_SIZE / sizeof(long); n; n--)
+               *dst++ = *src++;
+}
+
+
+/**
+ *     safe_copy_page - check if the page we are going to copy is marked as
+ *             present in the kernel page tables (this always is the case if
+ *             CONFIG_DEBUG_PAGEALLOC is not set and in that case
+ *             kernel_page_present() always returns 'true').
+ */
+static void safe_copy_page(void *dst, struct page *s_page)
+{
+       if (kernel_page_present(s_page)) {
+               do_copy_page(dst, page_address(s_page));
+       } else {
+               kernel_map_pages(s_page, 1, 1);
+               do_copy_page(dst, page_address(s_page));
+               kernel_map_pages(s_page, 1, 0);
+       }
+}
+
+
+#ifdef CONFIG_HIGHMEM
+static inline struct page *
+page_is_saveable(struct zone *zone, unsigned long pfn)
+{
+       return is_highmem(zone) ?
+               saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
+}
+
+static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+       struct page *s_page, *d_page;
+       void *src, *dst;
+
+       s_page = pfn_to_page(src_pfn);
+       d_page = pfn_to_page(dst_pfn);
+       if (PageHighMem(s_page)) {
+               src = kmap_atomic(s_page);
+               dst = kmap_atomic(d_page);
+               do_copy_page(dst, src);
+               kunmap_atomic(dst);
+               kunmap_atomic(src);
+       } else {
+               if (PageHighMem(d_page)) {
+                       /* Page pointed to by src may contain some kernel
+                        * data modified by kmap_atomic()
+                        */
+                       safe_copy_page(buffer, s_page);
+                       dst = kmap_atomic(d_page);
+                       copy_page(dst, buffer);
+                       kunmap_atomic(dst);
+               } else {
+                       safe_copy_page(page_address(d_page), s_page);
+               }
+       }
+}
+#else
+#define page_is_saveable(zone, pfn)    saveable_page(zone, pfn)
+
+static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+       safe_copy_page(page_address(pfn_to_page(dst_pfn)),
+                               pfn_to_page(src_pfn));
+}
+#endif /* CONFIG_HIGHMEM */
+
+static void
+copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
+{
+       struct zone *zone;
+       unsigned long pfn;
+
+       for_each_populated_zone(zone) {
+               unsigned long max_zone_pfn;
+
+               mark_free_pages(zone);
+               max_zone_pfn = zone_end_pfn(zone);
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (page_is_saveable(zone, pfn))
+                               memory_bm_set_bit(orig_bm, pfn);
+       }
+       memory_bm_position_reset(orig_bm);
+       memory_bm_position_reset(copy_bm);
+       for(;;) {
+               pfn = memory_bm_next_pfn(orig_bm);
+               if (unlikely(pfn == BM_END_OF_MAP))
+                       break;
+               copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
+       }
+}
+
+/* Total number of image pages */
+static unsigned int nr_copy_pages;
+/* Number of pages needed for saving the original pfns of the image pages */
+static unsigned int nr_meta_pages;
+/*
+ * Numbers of normal and highmem page frames allocated for hibernation image
+ * before suspending devices.
+ */
+unsigned int alloc_normal, alloc_highmem;
+/*
+ * Memory bitmap used for marking saveable pages (during hibernation) or
+ * hibernation image pages (during restore)
+ */
+static struct memory_bitmap orig_bm;
+/*
+ * Memory bitmap used during hibernation for marking allocated page frames that
+ * will contain copies of saveable pages.  During restore it is initially used
+ * for marking hibernation image pages, but then the set bits from it are
+ * duplicated in @orig_bm and it is released.  On highmem systems it is next
+ * used for marking "safe" highmem pages, but it has to be reinitialized for
+ * this purpose.
+ */
+static struct memory_bitmap copy_bm;
+
+/**
+ *     swsusp_free - free pages allocated for the suspend.
+ *
+ *     Suspend pages are alocated before the atomic copy is made, so we
+ *     need to release them after the resume.
+ */
+
+void swsusp_free(void)
+{
+       unsigned long fb_pfn, fr_pfn;
+
+       if (!forbidden_pages_map || !free_pages_map)
+               goto out;
+
+       memory_bm_position_reset(forbidden_pages_map);
+       memory_bm_position_reset(free_pages_map);
+
+loop:
+       fr_pfn = memory_bm_next_pfn(free_pages_map);
+       fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
+
+       /*
+        * Find the next bit set in both bitmaps. This is guaranteed to
+        * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
+        */
+       do {
+               if (fb_pfn < fr_pfn)
+                       fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
+               if (fr_pfn < fb_pfn)
+                       fr_pfn = memory_bm_next_pfn(free_pages_map);
+       } while (fb_pfn != fr_pfn);
+
+       if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
+               struct page *page = pfn_to_page(fr_pfn);
+
+               memory_bm_clear_current(forbidden_pages_map);
+               memory_bm_clear_current(free_pages_map);
+               __free_page(page);
+               goto loop;
+       }
+
+out:
+       nr_copy_pages = 0;
+       nr_meta_pages = 0;
+       restore_pblist = NULL;
+       buffer = NULL;
+       alloc_normal = 0;
+       alloc_highmem = 0;
+}
+
+/* Helper functions used for the shrinking of memory. */
+
+#define GFP_IMAGE      (GFP_KERNEL | __GFP_NOWARN)
+
+/**
+ * preallocate_image_pages - Allocate a number of pages for hibernation image
+ * @nr_pages: Number of page frames to allocate.
+ * @mask: GFP flags to use for the allocation.
+ *
+ * Return value: Number of page frames actually allocated
+ */
+static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
+{
+       unsigned long nr_alloc = 0;
+
+       while (nr_pages > 0) {
+               struct page *page;
+
+               page = alloc_image_page(mask);
+               if (!page)
+                       break;
+               memory_bm_set_bit(&copy_bm, page_to_pfn(page));
+               if (PageHighMem(page))
+                       alloc_highmem++;
+               else
+                       alloc_normal++;
+               nr_pages--;
+               nr_alloc++;
+       }
+
+       return nr_alloc;
+}
+
+static unsigned long preallocate_image_memory(unsigned long nr_pages,
+                                             unsigned long avail_normal)
+{
+       unsigned long alloc;
+
+       if (avail_normal <= alloc_normal)
+               return 0;
+
+       alloc = avail_normal - alloc_normal;
+       if (nr_pages < alloc)
+               alloc = nr_pages;
+
+       return preallocate_image_pages(alloc, GFP_IMAGE);
+}
+
+#ifdef CONFIG_HIGHMEM
+static unsigned long preallocate_image_highmem(unsigned long nr_pages)
+{
+       return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
+}
+
+/**
+ *  __fraction - Compute (an approximation of) x * (multiplier / base)
+ */
+static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
+{
+       x *= multiplier;
+       do_div(x, base);
+       return (unsigned long)x;
+}
+
+static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+                                               unsigned long highmem,
+                                               unsigned long total)
+{
+       unsigned long alloc = __fraction(nr_pages, highmem, total);
+
+       return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
+}
+#else /* CONFIG_HIGHMEM */
+static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
+{
+       return 0;
+}
+
+static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+                                               unsigned long highmem,
+                                               unsigned long total)
+{
+       return 0;
+}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ * free_unnecessary_pages - Release preallocated pages not needed for the image
+ */
+static unsigned long free_unnecessary_pages(void)
+{
+       unsigned long save, to_free_normal, to_free_highmem, free;
+
+       save = count_data_pages();
+       if (alloc_normal >= save) {
+               to_free_normal = alloc_normal - save;
+               save = 0;
+       } else {
+               to_free_normal = 0;
+               save -= alloc_normal;
+       }
+       save += count_highmem_pages();
+       if (alloc_highmem >= save) {
+               to_free_highmem = alloc_highmem - save;
+       } else {
+               to_free_highmem = 0;
+               save -= alloc_highmem;
+               if (to_free_normal > save)
+                       to_free_normal -= save;
+               else
+                       to_free_normal = 0;
+       }
+       free = to_free_normal + to_free_highmem;
+
+       memory_bm_position_reset(&copy_bm);
+
+       while (to_free_normal > 0 || to_free_highmem > 0) {
+               unsigned long pfn = memory_bm_next_pfn(&copy_bm);
+               struct page *page = pfn_to_page(pfn);
+
+               if (PageHighMem(page)) {
+                       if (!to_free_highmem)
+                               continue;
+                       to_free_highmem--;
+                       alloc_highmem--;
+               } else {
+                       if (!to_free_normal)
+                               continue;
+                       to_free_normal--;
+                       alloc_normal--;
+               }
+               memory_bm_clear_bit(&copy_bm, pfn);
+               swsusp_unset_page_forbidden(page);
+               swsusp_unset_page_free(page);
+               __free_page(page);
+       }
+
+       return free;
+}
+
+/**
+ * minimum_image_size - Estimate the minimum acceptable size of an image
+ * @saveable: Number of saveable pages in the system.
+ *
+ * We want to avoid attempting to free too much memory too hard, so estimate the
+ * minimum acceptable size of a hibernation image to use as the lower limit for
+ * preallocating memory.
+ *
+ * We assume that the minimum image size should be proportional to
+ *
+ * [number of saveable pages] - [number of pages that can be freed in theory]
+ *
+ * where the second term is the sum of (1) reclaimable slab pages, (2) active
+ * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
+ * minus mapped file pages.
+ */
+static unsigned long minimum_image_size(unsigned long saveable)
+{
+       unsigned long size;
+
+       size = global_page_state(NR_SLAB_RECLAIMABLE)
+               + global_page_state(NR_ACTIVE_ANON)
+               + global_page_state(NR_INACTIVE_ANON)
+               + global_page_state(NR_ACTIVE_FILE)
+               + global_page_state(NR_INACTIVE_FILE)
+               - global_page_state(NR_FILE_MAPPED);
+
+       return saveable <= size ? 0 : saveable - size;
+}
+
+/**
+ * hibernate_preallocate_memory - Preallocate memory for hibernation image
+ *
+ * To create a hibernation image it is necessary to make a copy of every page
+ * frame in use.  We also need a number of page frames to be free during
+ * hibernation for allocations made while saving the image and for device
+ * drivers, in case they need to allocate memory from their hibernation
+ * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
+ * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
+ * /sys/power/reserved_size, respectively).  To make this happen, we compute the
+ * total number of available page frames and allocate at least
+ *
+ * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
+ *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
+ *
+ * of them, which corresponds to the maximum size of a hibernation image.
+ *
+ * If image_size is set below the number following from the above formula,
+ * the preallocation of memory is continued until the total number of saveable
+ * pages in the system is below the requested image size or the minimum
+ * acceptable image size returned by minimum_image_size(), whichever is greater.
+ */
+int hibernate_preallocate_memory(void)
+{
+       struct zone *zone;
+       unsigned long saveable, size, max_size, count, highmem, pages = 0;
+       unsigned long alloc, save_highmem, pages_highmem, avail_normal;
+       ktime_t start, stop;
+       int error;
+
+       printk(KERN_INFO "PM: Preallocating image memory... ");
+       start = ktime_get();
+
+       error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
+       if (error)
+               goto err_out;
+
+       error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
+       if (error)
+               goto err_out;
+
+       alloc_normal = 0;
+       alloc_highmem = 0;
+
+       /* Count the number of saveable data pages. */
+       save_highmem = count_highmem_pages();
+       saveable = count_data_pages();
+
+       /*
+        * Compute the total number of page frames we can use (count) and the
+        * number of pages needed for image metadata (size).
+        */
+       count = saveable;
+       saveable += save_highmem;
+       highmem = save_highmem;
+       size = 0;
+       for_each_populated_zone(zone) {
+               size += snapshot_additional_pages(zone);
+               if (is_highmem(zone))
+                       highmem += zone_page_state(zone, NR_FREE_PAGES);
+               else
+                       count += zone_page_state(zone, NR_FREE_PAGES);
+       }
+       avail_normal = count;
+       count += highmem;
+       count -= totalreserve_pages;
+
+       /* Add number of pages required for page keys (s390 only). */
+       size += page_key_additional_pages(saveable);
+
+       /* Compute the maximum number of saveable pages to leave in memory. */
+       max_size = (count - (size + PAGES_FOR_IO)) / 2
+                       - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
+       /* Compute the desired number of image pages specified by image_size. */
+       size = DIV_ROUND_UP(image_size, PAGE_SIZE);
+       if (size > max_size)
+               size = max_size;
+       /*
+        * If the desired number of image pages is at least as large as the
+        * current number of saveable pages in memory, allocate page frames for
+        * the image and we're done.
+        */
+       if (size >= saveable) {
+               pages = preallocate_image_highmem(save_highmem);
+               pages += preallocate_image_memory(saveable - pages, avail_normal);
+               goto out;
+       }
+
+       /* Estimate the minimum size of the image. */
+       pages = minimum_image_size(saveable);
+       /*
+        * To avoid excessive pressure on the normal zone, leave room in it to
+        * accommodate an image of the minimum size (unless it's already too
+        * small, in which case don't preallocate pages from it at all).
+        */
+       if (avail_normal > pages)
+               avail_normal -= pages;
+       else
+               avail_normal = 0;
+       if (size < pages)
+               size = min_t(unsigned long, pages, max_size);
+
+       /*
+        * Let the memory management subsystem know that we're going to need a
+        * large number of page frames to allocate and make it free some memory.
+        * NOTE: If this is not done, performance will be hurt badly in some
+        * test cases.
+        */
+       shrink_all_memory(saveable - size);
+
+       /*
+        * The number of saveable pages in memory was too high, so apply some
+        * pressure to decrease it.  First, make room for the largest possible
+        * image and fail if that doesn't work.  Next, try to decrease the size
+        * of the image as much as indicated by 'size' using allocations from
+        * highmem and non-highmem zones separately.
+        */
+       pages_highmem = preallocate_image_highmem(highmem / 2);
+       alloc = count - max_size;
+       if (alloc > pages_highmem)
+               alloc -= pages_highmem;
+       else
+               alloc = 0;
+       pages = preallocate_image_memory(alloc, avail_normal);
+       if (pages < alloc) {
+               /* We have exhausted non-highmem pages, try highmem. */
+               alloc -= pages;
+               pages += pages_highmem;
+               pages_highmem = preallocate_image_highmem(alloc);
+               if (pages_highmem < alloc)
+                       goto err_out;
+               pages += pages_highmem;
+               /*
+                * size is the desired number of saveable pages to leave in
+                * memory, so try to preallocate (all memory - size) pages.
+                */
+               alloc = (count - pages) - size;
+               pages += preallocate_image_highmem(alloc);
+       } else {
+               /*
+                * There are approximately max_size saveable pages at this point
+                * and we want to reduce this number down to size.
+                */
+               alloc = max_size - size;
+               size = preallocate_highmem_fraction(alloc, highmem, count);
+               pages_highmem += size;
+               alloc -= size;
+               size = preallocate_image_memory(alloc, avail_normal);
+               pages_highmem += preallocate_image_highmem(alloc - size);
+               pages += pages_highmem + size;
+       }
+
+       /*
+        * We only need as many page frames for the image as there are saveable
+        * pages in memory, but we have allocated more.  Release the excessive
+        * ones now.
+        */
+       pages -= free_unnecessary_pages();
+
+ out:
+       stop = ktime_get();
+       printk(KERN_CONT "done (allocated %lu pages)\n", pages);
+       swsusp_show_speed(start, stop, pages, "Allocated");
+
+       return 0;
+
+ err_out:
+       printk(KERN_CONT "\n");
+       swsusp_free();
+       return -ENOMEM;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+  *    count_pages_for_highmem - compute the number of non-highmem pages
+  *    that will be necessary for creating copies of highmem pages.
+  */
+
+static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
+{
+       unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
+
+       if (free_highmem >= nr_highmem)
+               nr_highmem = 0;
+       else
+               nr_highmem -= free_highmem;
+
+       return nr_highmem;
+}
+#else
+static unsigned int
+count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     enough_free_mem - Make sure we have enough free memory for the
+ *     snapshot image.
+ */
+
+static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
+{
+       struct zone *zone;
+       unsigned int free = alloc_normal;
+
+       for_each_populated_zone(zone)
+               if (!is_highmem(zone))
+                       free += zone_page_state(zone, NR_FREE_PAGES);
+
+       nr_pages += count_pages_for_highmem(nr_highmem);
+       pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
+               nr_pages, PAGES_FOR_IO, free);
+
+       return free > nr_pages + PAGES_FOR_IO;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+ *     get_highmem_buffer - if there are some highmem pages in the suspend
+ *     image, we may need the buffer to copy them and/or load their data.
+ */
+
+static inline int get_highmem_buffer(int safe_needed)
+{
+       buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
+       return buffer ? 0 : -ENOMEM;
+}
+
+/**
+ *     alloc_highmem_image_pages - allocate some highmem pages for the image.
+ *     Try to allocate as many pages as needed, but if the number of free
+ *     highmem pages is lesser than that, allocate them all.
+ */
+
+static inline unsigned int
+alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
+{
+       unsigned int to_alloc = count_free_highmem_pages();
+
+       if (to_alloc > nr_highmem)
+               to_alloc = nr_highmem;
+
+       nr_highmem -= to_alloc;
+       while (to_alloc-- > 0) {
+               struct page *page;
+
+               page = alloc_image_page(__GFP_HIGHMEM);
+               memory_bm_set_bit(bm, page_to_pfn(page));
+       }
+       return nr_highmem;
+}
+#else
+static inline int get_highmem_buffer(int safe_needed) { return 0; }
+
+static inline unsigned int
+alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     swsusp_alloc - allocate memory for the suspend image
+ *
+ *     We first try to allocate as many highmem pages as there are
+ *     saveable highmem pages in the system.  If that fails, we allocate
+ *     non-highmem pages for the copies of the remaining highmem ones.
+ *
+ *     In this approach it is likely that the copies of highmem pages will
+ *     also be located in the high memory, because of the way in which
+ *     copy_data_pages() works.
+ */
+
+static int
+swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
+               unsigned int nr_pages, unsigned int nr_highmem)
+{
+       if (nr_highmem > 0) {
+               if (get_highmem_buffer(PG_ANY))
+                       goto err_out;
+               if (nr_highmem > alloc_highmem) {
+                       nr_highmem -= alloc_highmem;
+                       nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
+               }
+       }
+       if (nr_pages > alloc_normal) {
+               nr_pages -= alloc_normal;
+               while (nr_pages-- > 0) {
+                       struct page *page;
+
+                       page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
+                       if (!page)
+                               goto err_out;
+                       memory_bm_set_bit(copy_bm, page_to_pfn(page));
+               }
+       }
+
+       return 0;
+
+ err_out:
+       swsusp_free();
+       return -ENOMEM;
+}
+
+asmlinkage __visible int swsusp_save(void)
+{
+       unsigned int nr_pages, nr_highmem;
+
+       printk(KERN_INFO "PM: Creating hibernation image:\n");
+
+       drain_local_pages(NULL);
+       nr_pages = count_data_pages();
+       nr_highmem = count_highmem_pages();
+       printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
+
+       if (!enough_free_mem(nr_pages, nr_highmem)) {
+               printk(KERN_ERR "PM: Not enough free memory\n");
+               return -ENOMEM;
+       }
+
+       if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
+               printk(KERN_ERR "PM: Memory allocation failed\n");
+               return -ENOMEM;
+       }
+
+       /* During allocating of suspend pagedir, new cold pages may appear.
+        * Kill them.
+        */
+       drain_local_pages(NULL);
+       copy_data_pages(&copy_bm, &orig_bm);
+
+       /*
+        * End of critical section. From now on, we can write to memory,
+        * but we should not touch disk. This specially means we must _not_
+        * touch swap space! Except we must write out our image of course.
+        */
+
+       nr_pages += nr_highmem;
+       nr_copy_pages = nr_pages;
+       nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
+
+       printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
+               nr_pages);
+
+       return 0;
+}
+
+#ifndef CONFIG_ARCH_HIBERNATION_HEADER
+static int init_header_complete(struct swsusp_info *info)
+{
+       memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
+       info->version_code = LINUX_VERSION_CODE;
+       return 0;
+}
+
+static char *check_image_kernel(struct swsusp_info *info)
+{
+       if (info->version_code != LINUX_VERSION_CODE)
+               return "kernel version";
+       if (strcmp(info->uts.sysname,init_utsname()->sysname))
+               return "system type";
+       if (strcmp(info->uts.release,init_utsname()->release))
+               return "kernel release";
+       if (strcmp(info->uts.version,init_utsname()->version))
+               return "version";
+       if (strcmp(info->uts.machine,init_utsname()->machine))
+               return "machine";
+       return NULL;
+}
+#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
+
+unsigned long snapshot_get_image_size(void)
+{
+       return nr_copy_pages + nr_meta_pages + 1;
+}
+
+static int init_header(struct swsusp_info *info)
+{
+       memset(info, 0, sizeof(struct swsusp_info));
+       info->num_physpages = get_num_physpages();
+       info->image_pages = nr_copy_pages;
+       info->pages = snapshot_get_image_size();
+       info->size = info->pages;
+       info->size <<= PAGE_SHIFT;
+       return init_header_complete(info);
+}
+
+/**
+ *     pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
+ *     are stored in the array @buf[] (1 page at a time)
+ */
+
+static inline void
+pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+       int j;
+
+       for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+               buf[j] = memory_bm_next_pfn(bm);
+               if (unlikely(buf[j] == BM_END_OF_MAP))
+                       break;
+               /* Save page key for data page (s390 only). */
+               page_key_read(buf + j);
+       }
+}
+
+/**
+ *     snapshot_read_next - used for reading the system memory snapshot.
+ *
+ *     On the first call to it @handle should point to a zeroed
+ *     snapshot_handle structure.  The structure gets updated and a pointer
+ *     to it should be passed to this function every next time.
+ *
+ *     On success the function returns a positive number.  Then, the caller
+ *     is allowed to read up to the returned number of bytes from the memory
+ *     location computed by the data_of() macro.
+ *
+ *     The function returns 0 to indicate the end of data stream condition,
+ *     and a negative number is returned on error.  In such cases the
+ *     structure pointed to by @handle is not updated and should not be used
+ *     any more.
+ */
+
+int snapshot_read_next(struct snapshot_handle *handle)
+{
+       if (handle->cur > nr_meta_pages + nr_copy_pages)
+               return 0;
+
+       if (!buffer) {
+               /* This makes the buffer be freed by swsusp_free() */
+               buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+               if (!buffer)
+                       return -ENOMEM;
+       }
+       if (!handle->cur) {
+               int error;
+
+               error = init_header((struct swsusp_info *)buffer);
+               if (error)
+                       return error;
+               handle->buffer = buffer;
+               memory_bm_position_reset(&orig_bm);
+               memory_bm_position_reset(&copy_bm);
+       } else if (handle->cur <= nr_meta_pages) {
+               clear_page(buffer);
+               pack_pfns(buffer, &orig_bm);
+       } else {
+               struct page *page;
+
+               page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
+               if (PageHighMem(page)) {
+                       /* Highmem pages are copied to the buffer,
+                        * because we can't return with a kmapped
+                        * highmem page (we may not be called again).
+                        */
+                       void *kaddr;
+
+                       kaddr = kmap_atomic(page);
+                       copy_page(buffer, kaddr);
+                       kunmap_atomic(kaddr);
+                       handle->buffer = buffer;
+               } else {
+                       handle->buffer = page_address(page);
+               }
+       }
+       handle->cur++;
+       return PAGE_SIZE;
+}
+
+/**
+ *     mark_unsafe_pages - mark the pages that cannot be used for storing
+ *     the image during resume, because they conflict with the pages that
+ *     had been used before suspend
+ */
+
+static int mark_unsafe_pages(struct memory_bitmap *bm)
+{
+       struct zone *zone;
+       unsigned long pfn, max_zone_pfn;
+
+       /* Clear page flags */
+       for_each_populated_zone(zone) {
+               max_zone_pfn = zone_end_pfn(zone);
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (pfn_valid(pfn))
+                               swsusp_unset_page_free(pfn_to_page(pfn));
+       }
+
+       /* Mark pages that correspond to the "original" pfns as "unsafe" */
+       memory_bm_position_reset(bm);
+       do {
+               pfn = memory_bm_next_pfn(bm);
+               if (likely(pfn != BM_END_OF_MAP)) {
+                       if (likely(pfn_valid(pfn)))
+                               swsusp_set_page_free(pfn_to_page(pfn));
+                       else
+                               return -EFAULT;
+               }
+       } while (pfn != BM_END_OF_MAP);
+
+       allocated_unsafe_pages = 0;
+
+       return 0;
+}
+
+static void
+duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
+{
+       unsigned long pfn;
+
+       memory_bm_position_reset(src);
+       pfn = memory_bm_next_pfn(src);
+       while (pfn != BM_END_OF_MAP) {
+               memory_bm_set_bit(dst, pfn);
+               pfn = memory_bm_next_pfn(src);
+       }
+}
+
+static int check_header(struct swsusp_info *info)
+{
+       char *reason;
+
+       reason = check_image_kernel(info);
+       if (!reason && info->num_physpages != get_num_physpages())
+               reason = "memory size";
+       if (reason) {
+               printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
+               return -EPERM;
+       }
+       return 0;
+}
+
+/**
+ *     load header - check the image header and copy data from it
+ */
+
+static int
+load_header(struct swsusp_info *info)
+{
+       int error;
+
+       restore_pblist = NULL;
+       error = check_header(info);
+       if (!error) {
+               nr_copy_pages = info->image_pages;
+               nr_meta_pages = info->pages - info->image_pages - 1;
+       }
+       return error;
+}
+
+/**
+ *     unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
+ *     the corresponding bit in the memory bitmap @bm
+ */
+static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+       int j;
+
+       for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+               if (unlikely(buf[j] == BM_END_OF_MAP))
+                       break;
+
+               /* Extract and buffer page key for data page (s390 only). */
+               page_key_memorize(buf + j);
+
+               if (memory_bm_pfn_present(bm, buf[j]))
+                       memory_bm_set_bit(bm, buf[j]);
+               else
+                       return -EFAULT;
+       }
+
+       return 0;
+}
+
+/* List of "safe" pages that may be used to store data loaded from the suspend
+ * image
+ */
+static struct linked_page *safe_pages_list;
+
+#ifdef CONFIG_HIGHMEM
+/* struct highmem_pbe is used for creating the list of highmem pages that
+ * should be restored atomically during the resume from disk, because the page
+ * frames they have occupied before the suspend are in use.
+ */
+struct highmem_pbe {
+       struct page *copy_page; /* data is here now */
+       struct page *orig_page; /* data was here before the suspend */
+       struct highmem_pbe *next;
+};
+
+/* List of highmem PBEs needed for restoring the highmem pages that were
+ * allocated before the suspend and included in the suspend image, but have
+ * also been allocated by the "resume" kernel, so their contents cannot be
+ * written directly to their "original" page frames.
+ */
+static struct highmem_pbe *highmem_pblist;
+
+/**
+ *     count_highmem_image_pages - compute the number of highmem pages in the
+ *     suspend image.  The bits in the memory bitmap @bm that correspond to the
+ *     image pages are assumed to be set.
+ */
+
+static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
+{
+       unsigned long pfn;
+       unsigned int cnt = 0;
+
+       memory_bm_position_reset(bm);
+       pfn = memory_bm_next_pfn(bm);
+       while (pfn != BM_END_OF_MAP) {
+               if (PageHighMem(pfn_to_page(pfn)))
+                       cnt++;
+
+               pfn = memory_bm_next_pfn(bm);
+       }
+       return cnt;
+}
+
+/**
+ *     prepare_highmem_image - try to allocate as many highmem pages as
+ *     there are highmem image pages (@nr_highmem_p points to the variable
+ *     containing the number of highmem image pages).  The pages that are
+ *     "safe" (ie. will not be overwritten when the suspend image is
+ *     restored) have the corresponding bits set in @bm (it must be
+ *     unitialized).
+ *
+ *     NOTE: This function should not be called if there are no highmem
+ *     image pages.
+ */
+
+static unsigned int safe_highmem_pages;
+
+static struct memory_bitmap *safe_highmem_bm;
+
+static int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+       unsigned int to_alloc;
+
+       if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
+               return -ENOMEM;
+
+       if (get_highmem_buffer(PG_SAFE))
+               return -ENOMEM;
+
+       to_alloc = count_free_highmem_pages();
+       if (to_alloc > *nr_highmem_p)
+               to_alloc = *nr_highmem_p;
+       else
+               *nr_highmem_p = to_alloc;
+
+       safe_highmem_pages = 0;
+       while (to_alloc-- > 0) {
+               struct page *page;
+
+               page = alloc_page(__GFP_HIGHMEM);
+               if (!swsusp_page_is_free(page)) {
+                       /* The page is "safe", set its bit the bitmap */
+                       memory_bm_set_bit(bm, page_to_pfn(page));
+                       safe_highmem_pages++;
+               }
+               /* Mark the page as allocated */
+               swsusp_set_page_forbidden(page);
+               swsusp_set_page_free(page);
+       }
+       memory_bm_position_reset(bm);
+       safe_highmem_bm = bm;
+       return 0;
+}
+
+/**
+ *     get_highmem_page_buffer - for given highmem image page find the buffer
+ *     that suspend_write_next() should set for its caller to write to.
+ *
+ *     If the page is to be saved to its "original" page frame or a copy of
+ *     the page is to be made in the highmem, @buffer is returned.  Otherwise,
+ *     the copy of the page is to be made in normal memory, so the address of
+ *     the copy is returned.
+ *
+ *     If @buffer is returned, the caller of suspend_write_next() will write
+ *     the page's contents to @buffer, so they will have to be copied to the
+ *     right location on the next call to suspend_write_next() and it is done
+ *     with the help of copy_last_highmem_page().  For this purpose, if
+ *     @buffer is returned, @last_highmem page is set to the page to which
+ *     the data will have to be copied from @buffer.
+ */
+
+static struct page *last_highmem_page;
+
+static void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+       struct highmem_pbe *pbe;
+       void *kaddr;
+
+       if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
+               /* We have allocated the "original" page frame and we can
+                * use it directly to store the loaded page.
+                */
+               last_highmem_page = page;
+               return buffer;
+       }
+       /* The "original" page frame has not been allocated and we have to
+        * use a "safe" page frame to store the loaded page.
+        */
+       pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
+       if (!pbe) {
+               swsusp_free();
+               return ERR_PTR(-ENOMEM);
+       }
+       pbe->orig_page = page;
+       if (safe_highmem_pages > 0) {
+               struct page *tmp;
+
+               /* Copy of the page will be stored in high memory */
+               kaddr = buffer;
+               tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
+               safe_highmem_pages--;
+               last_highmem_page = tmp;
+               pbe->copy_page = tmp;
+       } else {
+               /* Copy of the page will be stored in normal memory */
+               kaddr = safe_pages_list;
+               safe_pages_list = safe_pages_list->next;
+               pbe->copy_page = virt_to_page(kaddr);
+       }
+       pbe->next = highmem_pblist;
+       highmem_pblist = pbe;
+       return kaddr;
+}
+
+/**
+ *     copy_last_highmem_page - copy the contents of a highmem image from
+ *     @buffer, where the caller of snapshot_write_next() has place them,
+ *     to the right location represented by @last_highmem_page .
+ */
+
+static void copy_last_highmem_page(void)
+{
+       if (last_highmem_page) {
+               void *dst;
+
+               dst = kmap_atomic(last_highmem_page);
+               copy_page(dst, buffer);
+               kunmap_atomic(dst);
+               last_highmem_page = NULL;
+       }
+}
+
+static inline int last_highmem_page_copied(void)
+{
+       return !last_highmem_page;
+}
+
+static inline void free_highmem_data(void)
+{
+       if (safe_highmem_bm)
+               memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
+
+       if (buffer)
+               free_image_page(buffer, PG_UNSAFE_CLEAR);
+}
+#else
+static unsigned int
+count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
+
+static inline int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+       return 0;
+}
+
+static inline void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+       return ERR_PTR(-EINVAL);
+}
+
+static inline void copy_last_highmem_page(void) {}
+static inline int last_highmem_page_copied(void) { return 1; }
+static inline void free_highmem_data(void) {}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     prepare_image - use the memory bitmap @bm to mark the pages that will
+ *     be overwritten in the process of restoring the system memory state
+ *     from the suspend image ("unsafe" pages) and allocate memory for the
+ *     image.
+ *
+ *     The idea is to allocate a new memory bitmap first and then allocate
+ *     as many pages as needed for the image data, but not to assign these
+ *     pages to specific tasks initially.  Instead, we just mark them as
+ *     allocated and create a lists of "safe" pages that will be used
+ *     later.  On systems with high memory a list of "safe" highmem pages is
+ *     also created.
+ */
+
+#define PBES_PER_LINKED_PAGE   (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
+
+static int
+prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
+{
+       unsigned int nr_pages, nr_highmem;
+       struct linked_page *sp_list, *lp;
+       int error;
+
+       /* If there is no highmem, the buffer will not be necessary */
+       free_image_page(buffer, PG_UNSAFE_CLEAR);
+       buffer = NULL;
+
+       nr_highmem = count_highmem_image_pages(bm);
+       error = mark_unsafe_pages(bm);
+       if (error)
+               goto Free;
+
+       error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
+       if (error)
+               goto Free;
+
+       duplicate_memory_bitmap(new_bm, bm);
+       memory_bm_free(bm, PG_UNSAFE_KEEP);
+       if (nr_highmem > 0) {
+               error = prepare_highmem_image(bm, &nr_highmem);
+               if (error)
+                       goto Free;
+       }
+       /* Reserve some safe pages for potential later use.
+        *
+        * NOTE: This way we make sure there will be enough safe pages for the
+        * chain_alloc() in get_buffer().  It is a bit wasteful, but
+        * nr_copy_pages cannot be greater than 50% of the memory anyway.
+        */
+       sp_list = NULL;
+       /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
+       nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+       nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
+       while (nr_pages > 0) {
+               lp = get_image_page(GFP_ATOMIC, PG_SAFE);
+               if (!lp) {
+                       error = -ENOMEM;
+                       goto Free;
+               }
+               lp->next = sp_list;
+               sp_list = lp;
+               nr_pages--;
+       }
+       /* Preallocate memory for the image */
+       safe_pages_list = NULL;
+       nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+       while (nr_pages > 0) {
+               lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
+               if (!lp) {
+                       error = -ENOMEM;
+                       goto Free;
+               }
+               if (!swsusp_page_is_free(virt_to_page(lp))) {
+                       /* The page is "safe", add it to the list */
+                       lp->next = safe_pages_list;
+                       safe_pages_list = lp;
+               }
+               /* Mark the page as allocated */
+               swsusp_set_page_forbidden(virt_to_page(lp));
+               swsusp_set_page_free(virt_to_page(lp));
+               nr_pages--;
+       }
+       /* Free the reserved safe pages so that chain_alloc() can use them */
+       while (sp_list) {
+               lp = sp_list->next;
+               free_image_page(sp_list, PG_UNSAFE_CLEAR);
+               sp_list = lp;
+       }
+       return 0;
+
+ Free:
+       swsusp_free();
+       return error;
+}
+
+/**
+ *     get_buffer - compute the address that snapshot_write_next() should
+ *     set for its caller to write to.
+ */
+
+static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
+{
+       struct pbe *pbe;
+       struct page *page;
+       unsigned long pfn = memory_bm_next_pfn(bm);
+
+       if (pfn == BM_END_OF_MAP)
+               return ERR_PTR(-EFAULT);
+
+       page = pfn_to_page(pfn);
+       if (PageHighMem(page))
+               return get_highmem_page_buffer(page, ca);
+
+       if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
+               /* We have allocated the "original" page frame and we can
+                * use it directly to store the loaded page.
+                */
+               return page_address(page);
+
+       /* The "original" page frame has not been allocated and we have to
+        * use a "safe" page frame to store the loaded page.
+        */
+       pbe = chain_alloc(ca, sizeof(struct pbe));
+       if (!pbe) {
+               swsusp_free();
+               return ERR_PTR(-ENOMEM);
+       }
+       pbe->orig_address = page_address(page);
+       pbe->address = safe_pages_list;
+       safe_pages_list = safe_pages_list->next;
+       pbe->next = restore_pblist;
+       restore_pblist = pbe;
+       return pbe->address;
+}
+
+/**
+ *     snapshot_write_next - used for writing the system memory snapshot.
+ *
+ *     On the first call to it @handle should point to a zeroed
+ *     snapshot_handle structure.  The structure gets updated and a pointer
+ *     to it should be passed to this function every next time.
+ *
+ *     On success the function returns a positive number.  Then, the caller
+ *     is allowed to write up to the returned number of bytes to the memory
+ *     location computed by the data_of() macro.
+ *
+ *     The function returns 0 to indicate the "end of file" condition,
+ *     and a negative number is returned on error.  In such cases the
+ *     structure pointed to by @handle is not updated and should not be used
+ *     any more.
+ */
+
+int snapshot_write_next(struct snapshot_handle *handle)
+{
+       static struct chain_allocator ca;
+       int error = 0;
+
+       /* Check if we have already loaded the entire image */
+       if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
+               return 0;
+
+       handle->sync_read = 1;
+
+       if (!handle->cur) {
+               if (!buffer)
+                       /* This makes the buffer be freed by swsusp_free() */
+                       buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+
+               if (!buffer)
+                       return -ENOMEM;
+
+               handle->buffer = buffer;
+       } else if (handle->cur == 1) {
+               error = load_header(buffer);
+               if (error)
+                       return error;
+
+               error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
+               if (error)
+                       return error;
+
+               /* Allocate buffer for page keys. */
+               error = page_key_alloc(nr_copy_pages);
+               if (error)
+                       return error;
+
+       } else if (handle->cur <= nr_meta_pages + 1) {
+               error = unpack_orig_pfns(buffer, &copy_bm);
+               if (error)
+                       return error;
+
+               if (handle->cur == nr_meta_pages + 1) {
+                       error = prepare_image(&orig_bm, &copy_bm);
+                       if (error)
+                               return error;
+
+                       chain_init(&ca, GFP_ATOMIC, PG_SAFE);
+                       memory_bm_position_reset(&orig_bm);
+                       restore_pblist = NULL;
+                       handle->buffer = get_buffer(&orig_bm, &ca);
+                       handle->sync_read = 0;
+                       if (IS_ERR(handle->buffer))
+                               return PTR_ERR(handle->buffer);
+               }
+       } else {
+               copy_last_highmem_page();
+               /* Restore page key for data page (s390 only). */
+               page_key_write(handle->buffer);
+               handle->buffer = get_buffer(&orig_bm, &ca);
+               if (IS_ERR(handle->buffer))
+                       return PTR_ERR(handle->buffer);
+               if (handle->buffer != buffer)
+                       handle->sync_read = 0;
+       }
+       handle->cur++;
+       return PAGE_SIZE;
+}
+
+/**
+ *     snapshot_write_finalize - must be called after the last call to
+ *     snapshot_write_next() in case the last page in the image happens
+ *     to be a highmem page and its contents should be stored in the
+ *     highmem.  Additionally, it releases the memory that will not be
+ *     used any more.
+ */
+
+void snapshot_write_finalize(struct snapshot_handle *handle)
+{
+       copy_last_highmem_page();
+       /* Restore page key for data page (s390 only). */
+       page_key_write(handle->buffer);
+       page_key_free();
+       /* Free only if we have loaded the image entirely */
+       if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
+               memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
+               free_highmem_data();
+       }
+}
+
+int snapshot_image_loaded(struct snapshot_handle *handle)
+{
+       return !(!nr_copy_pages || !last_highmem_page_copied() ||
+                       handle->cur <= nr_meta_pages + nr_copy_pages);
+}
+
+#ifdef CONFIG_HIGHMEM
+/* Assumes that @buf is ready and points to a "safe" page */
+static inline void
+swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
+{
+       void *kaddr1, *kaddr2;
+
+       kaddr1 = kmap_atomic(p1);
+       kaddr2 = kmap_atomic(p2);
+       copy_page(buf, kaddr1);
+       copy_page(kaddr1, kaddr2);
+       copy_page(kaddr2, buf);
+       kunmap_atomic(kaddr2);
+       kunmap_atomic(kaddr1);
+}
+
+/**
+ *     restore_highmem - for each highmem page that was allocated before
+ *     the suspend and included in the suspend image, and also has been
+ *     allocated by the "resume" kernel swap its current (ie. "before
+ *     resume") contents with the previous (ie. "before suspend") one.
+ *
+ *     If the resume eventually fails, we can call this function once
+ *     again and restore the "before resume" highmem state.
+ */
+
+int restore_highmem(void)
+{
+       struct highmem_pbe *pbe = highmem_pblist;
+       void *buf;
+
+       if (!pbe)
+               return 0;
+
+       buf = get_image_page(GFP_ATOMIC, PG_SAFE);
+       if (!buf)
+               return -ENOMEM;
+
+       while (pbe) {
+               swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
+               pbe = pbe->next;
+       }
+       free_image_page(buf, PG_UNSAFE_CLEAR);
+       return 0;
+}
+#endif /* CONFIG_HIGHMEM */