Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / kexec.c
diff --git a/kernel/kernel/kexec.c b/kernel/kernel/kexec.c
new file mode 100644 (file)
index 0000000..7a36fdc
--- /dev/null
@@ -0,0 +1,2769 @@
+/*
+ * kexec.c - kexec system call
+ * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
+ *
+ * This source code is licensed under the GNU General Public License,
+ * Version 2.  See the file COPYING for more details.
+ */
+
+#define pr_fmt(fmt)    "kexec: " fmt
+
+#include <linux/capability.h>
+#include <linux/mm.h>
+#include <linux/file.h>
+#include <linux/slab.h>
+#include <linux/fs.h>
+#include <linux/kexec.h>
+#include <linux/mutex.h>
+#include <linux/list.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <linux/reboot.h>
+#include <linux/ioport.h>
+#include <linux/hardirq.h>
+#include <linux/elf.h>
+#include <linux/elfcore.h>
+#include <linux/utsname.h>
+#include <linux/numa.h>
+#include <linux/suspend.h>
+#include <linux/device.h>
+#include <linux/freezer.h>
+#include <linux/pm.h>
+#include <linux/cpu.h>
+#include <linux/console.h>
+#include <linux/vmalloc.h>
+#include <linux/swap.h>
+#include <linux/syscore_ops.h>
+#include <linux/compiler.h>
+#include <linux/hugetlb.h>
+
+#include <asm/page.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/sections.h>
+
+#include <crypto/hash.h>
+#include <crypto/sha.h>
+
+/* Per cpu memory for storing cpu states in case of system crash. */
+note_buf_t __percpu *crash_notes;
+
+/* vmcoreinfo stuff */
+static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
+u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
+size_t vmcoreinfo_size;
+size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
+
+/* Flag to indicate we are going to kexec a new kernel */
+bool kexec_in_progress = false;
+
+/*
+ * Declare these symbols weak so that if architecture provides a purgatory,
+ * these will be overridden.
+ */
+char __weak kexec_purgatory[0];
+size_t __weak kexec_purgatory_size = 0;
+
+#ifdef CONFIG_KEXEC_FILE
+static int kexec_calculate_store_digests(struct kimage *image);
+#endif
+
+/* Location of the reserved area for the crash kernel */
+struct resource crashk_res = {
+       .name  = "Crash kernel",
+       .start = 0,
+       .end   = 0,
+       .flags = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+struct resource crashk_low_res = {
+       .name  = "Crash kernel",
+       .start = 0,
+       .end   = 0,
+       .flags = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+
+int kexec_should_crash(struct task_struct *p)
+{
+       if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
+               return 1;
+       return 0;
+}
+
+/*
+ * When kexec transitions to the new kernel there is a one-to-one
+ * mapping between physical and virtual addresses.  On processors
+ * where you can disable the MMU this is trivial, and easy.  For
+ * others it is still a simple predictable page table to setup.
+ *
+ * In that environment kexec copies the new kernel to its final
+ * resting place.  This means I can only support memory whose
+ * physical address can fit in an unsigned long.  In particular
+ * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
+ * If the assembly stub has more restrictive requirements
+ * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
+ * defined more restrictively in <asm/kexec.h>.
+ *
+ * The code for the transition from the current kernel to the
+ * the new kernel is placed in the control_code_buffer, whose size
+ * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
+ * page of memory is necessary, but some architectures require more.
+ * Because this memory must be identity mapped in the transition from
+ * virtual to physical addresses it must live in the range
+ * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
+ * modifiable.
+ *
+ * The assembly stub in the control code buffer is passed a linked list
+ * of descriptor pages detailing the source pages of the new kernel,
+ * and the destination addresses of those source pages.  As this data
+ * structure is not used in the context of the current OS, it must
+ * be self-contained.
+ *
+ * The code has been made to work with highmem pages and will use a
+ * destination page in its final resting place (if it happens
+ * to allocate it).  The end product of this is that most of the
+ * physical address space, and most of RAM can be used.
+ *
+ * Future directions include:
+ *  - allocating a page table with the control code buffer identity
+ *    mapped, to simplify machine_kexec and make kexec_on_panic more
+ *    reliable.
+ */
+
+/*
+ * KIMAGE_NO_DEST is an impossible destination address..., for
+ * allocating pages whose destination address we do not care about.
+ */
+#define KIMAGE_NO_DEST (-1UL)
+
+static int kimage_is_destination_range(struct kimage *image,
+                                      unsigned long start, unsigned long end);
+static struct page *kimage_alloc_page(struct kimage *image,
+                                      gfp_t gfp_mask,
+                                      unsigned long dest);
+
+static int copy_user_segment_list(struct kimage *image,
+                                 unsigned long nr_segments,
+                                 struct kexec_segment __user *segments)
+{
+       int ret;
+       size_t segment_bytes;
+
+       /* Read in the segments */
+       image->nr_segments = nr_segments;
+       segment_bytes = nr_segments * sizeof(*segments);
+       ret = copy_from_user(image->segment, segments, segment_bytes);
+       if (ret)
+               ret = -EFAULT;
+
+       return ret;
+}
+
+static int sanity_check_segment_list(struct kimage *image)
+{
+       int result, i;
+       unsigned long nr_segments = image->nr_segments;
+
+       /*
+        * Verify we have good destination addresses.  The caller is
+        * responsible for making certain we don't attempt to load
+        * the new image into invalid or reserved areas of RAM.  This
+        * just verifies it is an address we can use.
+        *
+        * Since the kernel does everything in page size chunks ensure
+        * the destination addresses are page aligned.  Too many
+        * special cases crop of when we don't do this.  The most
+        * insidious is getting overlapping destination addresses
+        * simply because addresses are changed to page size
+        * granularity.
+        */
+       result = -EADDRNOTAVAIL;
+       for (i = 0; i < nr_segments; i++) {
+               unsigned long mstart, mend;
+
+               mstart = image->segment[i].mem;
+               mend   = mstart + image->segment[i].memsz;
+               if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
+                       return result;
+               if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
+                       return result;
+       }
+
+       /* Verify our destination addresses do not overlap.
+        * If we alloed overlapping destination addresses
+        * through very weird things can happen with no
+        * easy explanation as one segment stops on another.
+        */
+       result = -EINVAL;
+       for (i = 0; i < nr_segments; i++) {
+               unsigned long mstart, mend;
+               unsigned long j;
+
+               mstart = image->segment[i].mem;
+               mend   = mstart + image->segment[i].memsz;
+               for (j = 0; j < i; j++) {
+                       unsigned long pstart, pend;
+                       pstart = image->segment[j].mem;
+                       pend   = pstart + image->segment[j].memsz;
+                       /* Do the segments overlap ? */
+                       if ((mend > pstart) && (mstart < pend))
+                               return result;
+               }
+       }
+
+       /* Ensure our buffer sizes are strictly less than
+        * our memory sizes.  This should always be the case,
+        * and it is easier to check up front than to be surprised
+        * later on.
+        */
+       result = -EINVAL;
+       for (i = 0; i < nr_segments; i++) {
+               if (image->segment[i].bufsz > image->segment[i].memsz)
+                       return result;
+       }
+
+       /*
+        * Verify we have good destination addresses.  Normally
+        * the caller is responsible for making certain we don't
+        * attempt to load the new image into invalid or reserved
+        * areas of RAM.  But crash kernels are preloaded into a
+        * reserved area of ram.  We must ensure the addresses
+        * are in the reserved area otherwise preloading the
+        * kernel could corrupt things.
+        */
+
+       if (image->type == KEXEC_TYPE_CRASH) {
+               result = -EADDRNOTAVAIL;
+               for (i = 0; i < nr_segments; i++) {
+                       unsigned long mstart, mend;
+
+                       mstart = image->segment[i].mem;
+                       mend = mstart + image->segment[i].memsz - 1;
+                       /* Ensure we are within the crash kernel limits */
+                       if ((mstart < crashk_res.start) ||
+                           (mend > crashk_res.end))
+                               return result;
+               }
+       }
+
+       return 0;
+}
+
+static struct kimage *do_kimage_alloc_init(void)
+{
+       struct kimage *image;
+
+       /* Allocate a controlling structure */
+       image = kzalloc(sizeof(*image), GFP_KERNEL);
+       if (!image)
+               return NULL;
+
+       image->head = 0;
+       image->entry = &image->head;
+       image->last_entry = &image->head;
+       image->control_page = ~0; /* By default this does not apply */
+       image->type = KEXEC_TYPE_DEFAULT;
+
+       /* Initialize the list of control pages */
+       INIT_LIST_HEAD(&image->control_pages);
+
+       /* Initialize the list of destination pages */
+       INIT_LIST_HEAD(&image->dest_pages);
+
+       /* Initialize the list of unusable pages */
+       INIT_LIST_HEAD(&image->unusable_pages);
+
+       return image;
+}
+
+static void kimage_free_page_list(struct list_head *list);
+
+static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
+                            unsigned long nr_segments,
+                            struct kexec_segment __user *segments,
+                            unsigned long flags)
+{
+       int ret;
+       struct kimage *image;
+       bool kexec_on_panic = flags & KEXEC_ON_CRASH;
+
+       if (kexec_on_panic) {
+               /* Verify we have a valid entry point */
+               if ((entry < crashk_res.start) || (entry > crashk_res.end))
+                       return -EADDRNOTAVAIL;
+       }
+
+       /* Allocate and initialize a controlling structure */
+       image = do_kimage_alloc_init();
+       if (!image)
+               return -ENOMEM;
+
+       image->start = entry;
+
+       ret = copy_user_segment_list(image, nr_segments, segments);
+       if (ret)
+               goto out_free_image;
+
+       ret = sanity_check_segment_list(image);
+       if (ret)
+               goto out_free_image;
+
+        /* Enable the special crash kernel control page allocation policy. */
+       if (kexec_on_panic) {
+               image->control_page = crashk_res.start;
+               image->type = KEXEC_TYPE_CRASH;
+       }
+
+       /*
+        * Find a location for the control code buffer, and add it
+        * the vector of segments so that it's pages will also be
+        * counted as destination pages.
+        */
+       ret = -ENOMEM;
+       image->control_code_page = kimage_alloc_control_pages(image,
+                                          get_order(KEXEC_CONTROL_PAGE_SIZE));
+       if (!image->control_code_page) {
+               pr_err("Could not allocate control_code_buffer\n");
+               goto out_free_image;
+       }
+
+       if (!kexec_on_panic) {
+               image->swap_page = kimage_alloc_control_pages(image, 0);
+               if (!image->swap_page) {
+                       pr_err("Could not allocate swap buffer\n");
+                       goto out_free_control_pages;
+               }
+       }
+
+       *rimage = image;
+       return 0;
+out_free_control_pages:
+       kimage_free_page_list(&image->control_pages);
+out_free_image:
+       kfree(image);
+       return ret;
+}
+
+#ifdef CONFIG_KEXEC_FILE
+static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
+{
+       struct fd f = fdget(fd);
+       int ret;
+       struct kstat stat;
+       loff_t pos;
+       ssize_t bytes = 0;
+
+       if (!f.file)
+               return -EBADF;
+
+       ret = vfs_getattr(&f.file->f_path, &stat);
+       if (ret)
+               goto out;
+
+       if (stat.size > INT_MAX) {
+               ret = -EFBIG;
+               goto out;
+       }
+
+       /* Don't hand 0 to vmalloc, it whines. */
+       if (stat.size == 0) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       *buf = vmalloc(stat.size);
+       if (!*buf) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       pos = 0;
+       while (pos < stat.size) {
+               bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
+                                   stat.size - pos);
+               if (bytes < 0) {
+                       vfree(*buf);
+                       ret = bytes;
+                       goto out;
+               }
+
+               if (bytes == 0)
+                       break;
+               pos += bytes;
+       }
+
+       if (pos != stat.size) {
+               ret = -EBADF;
+               vfree(*buf);
+               goto out;
+       }
+
+       *buf_len = pos;
+out:
+       fdput(f);
+       return ret;
+}
+
+/* Architectures can provide this probe function */
+int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
+                                        unsigned long buf_len)
+{
+       return -ENOEXEC;
+}
+
+void * __weak arch_kexec_kernel_image_load(struct kimage *image)
+{
+       return ERR_PTR(-ENOEXEC);
+}
+
+void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
+{
+}
+
+int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
+                                       unsigned long buf_len)
+{
+       return -EKEYREJECTED;
+}
+
+/* Apply relocations of type RELA */
+int __weak
+arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
+                                unsigned int relsec)
+{
+       pr_err("RELA relocation unsupported.\n");
+       return -ENOEXEC;
+}
+
+/* Apply relocations of type REL */
+int __weak
+arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
+                            unsigned int relsec)
+{
+       pr_err("REL relocation unsupported.\n");
+       return -ENOEXEC;
+}
+
+/*
+ * Free up memory used by kernel, initrd, and command line. This is temporary
+ * memory allocation which is not needed any more after these buffers have
+ * been loaded into separate segments and have been copied elsewhere.
+ */
+static void kimage_file_post_load_cleanup(struct kimage *image)
+{
+       struct purgatory_info *pi = &image->purgatory_info;
+
+       vfree(image->kernel_buf);
+       image->kernel_buf = NULL;
+
+       vfree(image->initrd_buf);
+       image->initrd_buf = NULL;
+
+       kfree(image->cmdline_buf);
+       image->cmdline_buf = NULL;
+
+       vfree(pi->purgatory_buf);
+       pi->purgatory_buf = NULL;
+
+       vfree(pi->sechdrs);
+       pi->sechdrs = NULL;
+
+       /* See if architecture has anything to cleanup post load */
+       arch_kimage_file_post_load_cleanup(image);
+
+       /*
+        * Above call should have called into bootloader to free up
+        * any data stored in kimage->image_loader_data. It should
+        * be ok now to free it up.
+        */
+       kfree(image->image_loader_data);
+       image->image_loader_data = NULL;
+}
+
+/*
+ * In file mode list of segments is prepared by kernel. Copy relevant
+ * data from user space, do error checking, prepare segment list
+ */
+static int
+kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
+                            const char __user *cmdline_ptr,
+                            unsigned long cmdline_len, unsigned flags)
+{
+       int ret = 0;
+       void *ldata;
+
+       ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
+                               &image->kernel_buf_len);
+       if (ret)
+               return ret;
+
+       /* Call arch image probe handlers */
+       ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
+                                           image->kernel_buf_len);
+
+       if (ret)
+               goto out;
+
+#ifdef CONFIG_KEXEC_VERIFY_SIG
+       ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
+                                          image->kernel_buf_len);
+       if (ret) {
+               pr_debug("kernel signature verification failed.\n");
+               goto out;
+       }
+       pr_debug("kernel signature verification successful.\n");
+#endif
+       /* It is possible that there no initramfs is being loaded */
+       if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
+               ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
+                                       &image->initrd_buf_len);
+               if (ret)
+                       goto out;
+       }
+
+       if (cmdline_len) {
+               image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
+               if (!image->cmdline_buf) {
+                       ret = -ENOMEM;
+                       goto out;
+               }
+
+               ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
+                                    cmdline_len);
+               if (ret) {
+                       ret = -EFAULT;
+                       goto out;
+               }
+
+               image->cmdline_buf_len = cmdline_len;
+
+               /* command line should be a string with last byte null */
+               if (image->cmdline_buf[cmdline_len - 1] != '\0') {
+                       ret = -EINVAL;
+                       goto out;
+               }
+       }
+
+       /* Call arch image load handlers */
+       ldata = arch_kexec_kernel_image_load(image);
+
+       if (IS_ERR(ldata)) {
+               ret = PTR_ERR(ldata);
+               goto out;
+       }
+
+       image->image_loader_data = ldata;
+out:
+       /* In case of error, free up all allocated memory in this function */
+       if (ret)
+               kimage_file_post_load_cleanup(image);
+       return ret;
+}
+
+static int
+kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
+                      int initrd_fd, const char __user *cmdline_ptr,
+                      unsigned long cmdline_len, unsigned long flags)
+{
+       int ret;
+       struct kimage *image;
+       bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
+
+       image = do_kimage_alloc_init();
+       if (!image)
+               return -ENOMEM;
+
+       image->file_mode = 1;
+
+       if (kexec_on_panic) {
+               /* Enable special crash kernel control page alloc policy. */
+               image->control_page = crashk_res.start;
+               image->type = KEXEC_TYPE_CRASH;
+       }
+
+       ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
+                                          cmdline_ptr, cmdline_len, flags);
+       if (ret)
+               goto out_free_image;
+
+       ret = sanity_check_segment_list(image);
+       if (ret)
+               goto out_free_post_load_bufs;
+
+       ret = -ENOMEM;
+       image->control_code_page = kimage_alloc_control_pages(image,
+                                          get_order(KEXEC_CONTROL_PAGE_SIZE));
+       if (!image->control_code_page) {
+               pr_err("Could not allocate control_code_buffer\n");
+               goto out_free_post_load_bufs;
+       }
+
+       if (!kexec_on_panic) {
+               image->swap_page = kimage_alloc_control_pages(image, 0);
+               if (!image->swap_page) {
+                       pr_err("Could not allocate swap buffer\n");
+                       goto out_free_control_pages;
+               }
+       }
+
+       *rimage = image;
+       return 0;
+out_free_control_pages:
+       kimage_free_page_list(&image->control_pages);
+out_free_post_load_bufs:
+       kimage_file_post_load_cleanup(image);
+out_free_image:
+       kfree(image);
+       return ret;
+}
+#else /* CONFIG_KEXEC_FILE */
+static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
+#endif /* CONFIG_KEXEC_FILE */
+
+static int kimage_is_destination_range(struct kimage *image,
+                                       unsigned long start,
+                                       unsigned long end)
+{
+       unsigned long i;
+
+       for (i = 0; i < image->nr_segments; i++) {
+               unsigned long mstart, mend;
+
+               mstart = image->segment[i].mem;
+               mend = mstart + image->segment[i].memsz;
+               if ((end > mstart) && (start < mend))
+                       return 1;
+       }
+
+       return 0;
+}
+
+static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
+{
+       struct page *pages;
+
+       pages = alloc_pages(gfp_mask, order);
+       if (pages) {
+               unsigned int count, i;
+               pages->mapping = NULL;
+               set_page_private(pages, order);
+               count = 1 << order;
+               for (i = 0; i < count; i++)
+                       SetPageReserved(pages + i);
+       }
+
+       return pages;
+}
+
+static void kimage_free_pages(struct page *page)
+{
+       unsigned int order, count, i;
+
+       order = page_private(page);
+       count = 1 << order;
+       for (i = 0; i < count; i++)
+               ClearPageReserved(page + i);
+       __free_pages(page, order);
+}
+
+static void kimage_free_page_list(struct list_head *list)
+{
+       struct list_head *pos, *next;
+
+       list_for_each_safe(pos, next, list) {
+               struct page *page;
+
+               page = list_entry(pos, struct page, lru);
+               list_del(&page->lru);
+               kimage_free_pages(page);
+       }
+}
+
+static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
+                                                       unsigned int order)
+{
+       /* Control pages are special, they are the intermediaries
+        * that are needed while we copy the rest of the pages
+        * to their final resting place.  As such they must
+        * not conflict with either the destination addresses
+        * or memory the kernel is already using.
+        *
+        * The only case where we really need more than one of
+        * these are for architectures where we cannot disable
+        * the MMU and must instead generate an identity mapped
+        * page table for all of the memory.
+        *
+        * At worst this runs in O(N) of the image size.
+        */
+       struct list_head extra_pages;
+       struct page *pages;
+       unsigned int count;
+
+       count = 1 << order;
+       INIT_LIST_HEAD(&extra_pages);
+
+       /* Loop while I can allocate a page and the page allocated
+        * is a destination page.
+        */
+       do {
+               unsigned long pfn, epfn, addr, eaddr;
+
+               pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
+               if (!pages)
+                       break;
+               pfn   = page_to_pfn(pages);
+               epfn  = pfn + count;
+               addr  = pfn << PAGE_SHIFT;
+               eaddr = epfn << PAGE_SHIFT;
+               if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
+                             kimage_is_destination_range(image, addr, eaddr)) {
+                       list_add(&pages->lru, &extra_pages);
+                       pages = NULL;
+               }
+       } while (!pages);
+
+       if (pages) {
+               /* Remember the allocated page... */
+               list_add(&pages->lru, &image->control_pages);
+
+               /* Because the page is already in it's destination
+                * location we will never allocate another page at
+                * that address.  Therefore kimage_alloc_pages
+                * will not return it (again) and we don't need
+                * to give it an entry in image->segment[].
+                */
+       }
+       /* Deal with the destination pages I have inadvertently allocated.
+        *
+        * Ideally I would convert multi-page allocations into single
+        * page allocations, and add everything to image->dest_pages.
+        *
+        * For now it is simpler to just free the pages.
+        */
+       kimage_free_page_list(&extra_pages);
+
+       return pages;
+}
+
+static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
+                                                     unsigned int order)
+{
+       /* Control pages are special, they are the intermediaries
+        * that are needed while we copy the rest of the pages
+        * to their final resting place.  As such they must
+        * not conflict with either the destination addresses
+        * or memory the kernel is already using.
+        *
+        * Control pages are also the only pags we must allocate
+        * when loading a crash kernel.  All of the other pages
+        * are specified by the segments and we just memcpy
+        * into them directly.
+        *
+        * The only case where we really need more than one of
+        * these are for architectures where we cannot disable
+        * the MMU and must instead generate an identity mapped
+        * page table for all of the memory.
+        *
+        * Given the low demand this implements a very simple
+        * allocator that finds the first hole of the appropriate
+        * size in the reserved memory region, and allocates all
+        * of the memory up to and including the hole.
+        */
+       unsigned long hole_start, hole_end, size;
+       struct page *pages;
+
+       pages = NULL;
+       size = (1 << order) << PAGE_SHIFT;
+       hole_start = (image->control_page + (size - 1)) & ~(size - 1);
+       hole_end   = hole_start + size - 1;
+       while (hole_end <= crashk_res.end) {
+               unsigned long i;
+
+               if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
+                       break;
+               /* See if I overlap any of the segments */
+               for (i = 0; i < image->nr_segments; i++) {
+                       unsigned long mstart, mend;
+
+                       mstart = image->segment[i].mem;
+                       mend   = mstart + image->segment[i].memsz - 1;
+                       if ((hole_end >= mstart) && (hole_start <= mend)) {
+                               /* Advance the hole to the end of the segment */
+                               hole_start = (mend + (size - 1)) & ~(size - 1);
+                               hole_end   = hole_start + size - 1;
+                               break;
+                       }
+               }
+               /* If I don't overlap any segments I have found my hole! */
+               if (i == image->nr_segments) {
+                       pages = pfn_to_page(hole_start >> PAGE_SHIFT);
+                       break;
+               }
+       }
+       if (pages)
+               image->control_page = hole_end;
+
+       return pages;
+}
+
+
+struct page *kimage_alloc_control_pages(struct kimage *image,
+                                        unsigned int order)
+{
+       struct page *pages = NULL;
+
+       switch (image->type) {
+       case KEXEC_TYPE_DEFAULT:
+               pages = kimage_alloc_normal_control_pages(image, order);
+               break;
+       case KEXEC_TYPE_CRASH:
+               pages = kimage_alloc_crash_control_pages(image, order);
+               break;
+       }
+
+       return pages;
+}
+
+static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
+{
+       if (*image->entry != 0)
+               image->entry++;
+
+       if (image->entry == image->last_entry) {
+               kimage_entry_t *ind_page;
+               struct page *page;
+
+               page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
+               if (!page)
+                       return -ENOMEM;
+
+               ind_page = page_address(page);
+               *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
+               image->entry = ind_page;
+               image->last_entry = ind_page +
+                                     ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
+       }
+       *image->entry = entry;
+       image->entry++;
+       *image->entry = 0;
+
+       return 0;
+}
+
+static int kimage_set_destination(struct kimage *image,
+                                  unsigned long destination)
+{
+       int result;
+
+       destination &= PAGE_MASK;
+       result = kimage_add_entry(image, destination | IND_DESTINATION);
+
+       return result;
+}
+
+
+static int kimage_add_page(struct kimage *image, unsigned long page)
+{
+       int result;
+
+       page &= PAGE_MASK;
+       result = kimage_add_entry(image, page | IND_SOURCE);
+
+       return result;
+}
+
+
+static void kimage_free_extra_pages(struct kimage *image)
+{
+       /* Walk through and free any extra destination pages I may have */
+       kimage_free_page_list(&image->dest_pages);
+
+       /* Walk through and free any unusable pages I have cached */
+       kimage_free_page_list(&image->unusable_pages);
+
+}
+static void kimage_terminate(struct kimage *image)
+{
+       if (*image->entry != 0)
+               image->entry++;
+
+       *image->entry = IND_DONE;
+}
+
+#define for_each_kimage_entry(image, ptr, entry) \
+       for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
+               ptr = (entry & IND_INDIRECTION) ? \
+                       phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
+
+static void kimage_free_entry(kimage_entry_t entry)
+{
+       struct page *page;
+
+       page = pfn_to_page(entry >> PAGE_SHIFT);
+       kimage_free_pages(page);
+}
+
+static void kimage_free(struct kimage *image)
+{
+       kimage_entry_t *ptr, entry;
+       kimage_entry_t ind = 0;
+
+       if (!image)
+               return;
+
+       kimage_free_extra_pages(image);
+       for_each_kimage_entry(image, ptr, entry) {
+               if (entry & IND_INDIRECTION) {
+                       /* Free the previous indirection page */
+                       if (ind & IND_INDIRECTION)
+                               kimage_free_entry(ind);
+                       /* Save this indirection page until we are
+                        * done with it.
+                        */
+                       ind = entry;
+               } else if (entry & IND_SOURCE)
+                       kimage_free_entry(entry);
+       }
+       /* Free the final indirection page */
+       if (ind & IND_INDIRECTION)
+               kimage_free_entry(ind);
+
+       /* Handle any machine specific cleanup */
+       machine_kexec_cleanup(image);
+
+       /* Free the kexec control pages... */
+       kimage_free_page_list(&image->control_pages);
+
+       /*
+        * Free up any temporary buffers allocated. This might hit if
+        * error occurred much later after buffer allocation.
+        */
+       if (image->file_mode)
+               kimage_file_post_load_cleanup(image);
+
+       kfree(image);
+}
+
+static kimage_entry_t *kimage_dst_used(struct kimage *image,
+                                       unsigned long page)
+{
+       kimage_entry_t *ptr, entry;
+       unsigned long destination = 0;
+
+       for_each_kimage_entry(image, ptr, entry) {
+               if (entry & IND_DESTINATION)
+                       destination = entry & PAGE_MASK;
+               else if (entry & IND_SOURCE) {
+                       if (page == destination)
+                               return ptr;
+                       destination += PAGE_SIZE;
+               }
+       }
+
+       return NULL;
+}
+
+static struct page *kimage_alloc_page(struct kimage *image,
+                                       gfp_t gfp_mask,
+                                       unsigned long destination)
+{
+       /*
+        * Here we implement safeguards to ensure that a source page
+        * is not copied to its destination page before the data on
+        * the destination page is no longer useful.
+        *
+        * To do this we maintain the invariant that a source page is
+        * either its own destination page, or it is not a
+        * destination page at all.
+        *
+        * That is slightly stronger than required, but the proof
+        * that no problems will not occur is trivial, and the
+        * implementation is simply to verify.
+        *
+        * When allocating all pages normally this algorithm will run
+        * in O(N) time, but in the worst case it will run in O(N^2)
+        * time.   If the runtime is a problem the data structures can
+        * be fixed.
+        */
+       struct page *page;
+       unsigned long addr;
+
+       /*
+        * Walk through the list of destination pages, and see if I
+        * have a match.
+        */
+       list_for_each_entry(page, &image->dest_pages, lru) {
+               addr = page_to_pfn(page) << PAGE_SHIFT;
+               if (addr == destination) {
+                       list_del(&page->lru);
+                       return page;
+               }
+       }
+       page = NULL;
+       while (1) {
+               kimage_entry_t *old;
+
+               /* Allocate a page, if we run out of memory give up */
+               page = kimage_alloc_pages(gfp_mask, 0);
+               if (!page)
+                       return NULL;
+               /* If the page cannot be used file it away */
+               if (page_to_pfn(page) >
+                               (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
+                       list_add(&page->lru, &image->unusable_pages);
+                       continue;
+               }
+               addr = page_to_pfn(page) << PAGE_SHIFT;
+
+               /* If it is the destination page we want use it */
+               if (addr == destination)
+                       break;
+
+               /* If the page is not a destination page use it */
+               if (!kimage_is_destination_range(image, addr,
+                                                 addr + PAGE_SIZE))
+                       break;
+
+               /*
+                * I know that the page is someones destination page.
+                * See if there is already a source page for this
+                * destination page.  And if so swap the source pages.
+                */
+               old = kimage_dst_used(image, addr);
+               if (old) {
+                       /* If so move it */
+                       unsigned long old_addr;
+                       struct page *old_page;
+
+                       old_addr = *old & PAGE_MASK;
+                       old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
+                       copy_highpage(page, old_page);
+                       *old = addr | (*old & ~PAGE_MASK);
+
+                       /* The old page I have found cannot be a
+                        * destination page, so return it if it's
+                        * gfp_flags honor the ones passed in.
+                        */
+                       if (!(gfp_mask & __GFP_HIGHMEM) &&
+                           PageHighMem(old_page)) {
+                               kimage_free_pages(old_page);
+                               continue;
+                       }
+                       addr = old_addr;
+                       page = old_page;
+                       break;
+               } else {
+                       /* Place the page on the destination list I
+                        * will use it later.
+                        */
+                       list_add(&page->lru, &image->dest_pages);
+               }
+       }
+
+       return page;
+}
+
+static int kimage_load_normal_segment(struct kimage *image,
+                                        struct kexec_segment *segment)
+{
+       unsigned long maddr;
+       size_t ubytes, mbytes;
+       int result;
+       unsigned char __user *buf = NULL;
+       unsigned char *kbuf = NULL;
+
+       result = 0;
+       if (image->file_mode)
+               kbuf = segment->kbuf;
+       else
+               buf = segment->buf;
+       ubytes = segment->bufsz;
+       mbytes = segment->memsz;
+       maddr = segment->mem;
+
+       result = kimage_set_destination(image, maddr);
+       if (result < 0)
+               goto out;
+
+       while (mbytes) {
+               struct page *page;
+               char *ptr;
+               size_t uchunk, mchunk;
+
+               page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
+               if (!page) {
+                       result  = -ENOMEM;
+                       goto out;
+               }
+               result = kimage_add_page(image, page_to_pfn(page)
+                                                               << PAGE_SHIFT);
+               if (result < 0)
+                       goto out;
+
+               ptr = kmap(page);
+               /* Start with a clear page */
+               clear_page(ptr);
+               ptr += maddr & ~PAGE_MASK;
+               mchunk = min_t(size_t, mbytes,
+                               PAGE_SIZE - (maddr & ~PAGE_MASK));
+               uchunk = min(ubytes, mchunk);
+
+               /* For file based kexec, source pages are in kernel memory */
+               if (image->file_mode)
+                       memcpy(ptr, kbuf, uchunk);
+               else
+                       result = copy_from_user(ptr, buf, uchunk);
+               kunmap(page);
+               if (result) {
+                       result = -EFAULT;
+                       goto out;
+               }
+               ubytes -= uchunk;
+               maddr  += mchunk;
+               if (image->file_mode)
+                       kbuf += mchunk;
+               else
+                       buf += mchunk;
+               mbytes -= mchunk;
+       }
+out:
+       return result;
+}
+
+static int kimage_load_crash_segment(struct kimage *image,
+                                       struct kexec_segment *segment)
+{
+       /* For crash dumps kernels we simply copy the data from
+        * user space to it's destination.
+        * We do things a page at a time for the sake of kmap.
+        */
+       unsigned long maddr;
+       size_t ubytes, mbytes;
+       int result;
+       unsigned char __user *buf = NULL;
+       unsigned char *kbuf = NULL;
+
+       result = 0;
+       if (image->file_mode)
+               kbuf = segment->kbuf;
+       else
+               buf = segment->buf;
+       ubytes = segment->bufsz;
+       mbytes = segment->memsz;
+       maddr = segment->mem;
+       while (mbytes) {
+               struct page *page;
+               char *ptr;
+               size_t uchunk, mchunk;
+
+               page = pfn_to_page(maddr >> PAGE_SHIFT);
+               if (!page) {
+                       result  = -ENOMEM;
+                       goto out;
+               }
+               ptr = kmap(page);
+               ptr += maddr & ~PAGE_MASK;
+               mchunk = min_t(size_t, mbytes,
+                               PAGE_SIZE - (maddr & ~PAGE_MASK));
+               uchunk = min(ubytes, mchunk);
+               if (mchunk > uchunk) {
+                       /* Zero the trailing part of the page */
+                       memset(ptr + uchunk, 0, mchunk - uchunk);
+               }
+
+               /* For file based kexec, source pages are in kernel memory */
+               if (image->file_mode)
+                       memcpy(ptr, kbuf, uchunk);
+               else
+                       result = copy_from_user(ptr, buf, uchunk);
+               kexec_flush_icache_page(page);
+               kunmap(page);
+               if (result) {
+                       result = -EFAULT;
+                       goto out;
+               }
+               ubytes -= uchunk;
+               maddr  += mchunk;
+               if (image->file_mode)
+                       kbuf += mchunk;
+               else
+                       buf += mchunk;
+               mbytes -= mchunk;
+       }
+out:
+       return result;
+}
+
+static int kimage_load_segment(struct kimage *image,
+                               struct kexec_segment *segment)
+{
+       int result = -ENOMEM;
+
+       switch (image->type) {
+       case KEXEC_TYPE_DEFAULT:
+               result = kimage_load_normal_segment(image, segment);
+               break;
+       case KEXEC_TYPE_CRASH:
+               result = kimage_load_crash_segment(image, segment);
+               break;
+       }
+
+       return result;
+}
+
+/*
+ * Exec Kernel system call: for obvious reasons only root may call it.
+ *
+ * This call breaks up into three pieces.
+ * - A generic part which loads the new kernel from the current
+ *   address space, and very carefully places the data in the
+ *   allocated pages.
+ *
+ * - A generic part that interacts with the kernel and tells all of
+ *   the devices to shut down.  Preventing on-going dmas, and placing
+ *   the devices in a consistent state so a later kernel can
+ *   reinitialize them.
+ *
+ * - A machine specific part that includes the syscall number
+ *   and then copies the image to it's final destination.  And
+ *   jumps into the image at entry.
+ *
+ * kexec does not sync, or unmount filesystems so if you need
+ * that to happen you need to do that yourself.
+ */
+struct kimage *kexec_image;
+struct kimage *kexec_crash_image;
+int kexec_load_disabled;
+
+static DEFINE_MUTEX(kexec_mutex);
+
+SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
+               struct kexec_segment __user *, segments, unsigned long, flags)
+{
+       struct kimage **dest_image, *image;
+       int result;
+
+       /* We only trust the superuser with rebooting the system. */
+       if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
+               return -EPERM;
+
+       /*
+        * Verify we have a legal set of flags
+        * This leaves us room for future extensions.
+        */
+       if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
+               return -EINVAL;
+
+       /* Verify we are on the appropriate architecture */
+       if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
+               ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
+               return -EINVAL;
+
+       /* Put an artificial cap on the number
+        * of segments passed to kexec_load.
+        */
+       if (nr_segments > KEXEC_SEGMENT_MAX)
+               return -EINVAL;
+
+       image = NULL;
+       result = 0;
+
+       /* Because we write directly to the reserved memory
+        * region when loading crash kernels we need a mutex here to
+        * prevent multiple crash  kernels from attempting to load
+        * simultaneously, and to prevent a crash kernel from loading
+        * over the top of a in use crash kernel.
+        *
+        * KISS: always take the mutex.
+        */
+       if (!mutex_trylock(&kexec_mutex))
+               return -EBUSY;
+
+       dest_image = &kexec_image;
+       if (flags & KEXEC_ON_CRASH)
+               dest_image = &kexec_crash_image;
+       if (nr_segments > 0) {
+               unsigned long i;
+
+               if (flags & KEXEC_ON_CRASH) {
+                       /*
+                        * Loading another kernel to switch to if this one
+                        * crashes.  Free any current crash dump kernel before
+                        * we corrupt it.
+                        */
+
+                       kimage_free(xchg(&kexec_crash_image, NULL));
+                       result = kimage_alloc_init(&image, entry, nr_segments,
+                                                  segments, flags);
+                       crash_map_reserved_pages();
+               } else {
+                       /* Loading another kernel to reboot into. */
+
+                       result = kimage_alloc_init(&image, entry, nr_segments,
+                                                  segments, flags);
+               }
+               if (result)
+                       goto out;
+
+               if (flags & KEXEC_PRESERVE_CONTEXT)
+                       image->preserve_context = 1;
+               result = machine_kexec_prepare(image);
+               if (result)
+                       goto out;
+
+               for (i = 0; i < nr_segments; i++) {
+                       result = kimage_load_segment(image, &image->segment[i]);
+                       if (result)
+                               goto out;
+               }
+               kimage_terminate(image);
+               if (flags & KEXEC_ON_CRASH)
+                       crash_unmap_reserved_pages();
+       }
+       /* Install the new kernel, and  Uninstall the old */
+       image = xchg(dest_image, image);
+
+out:
+       mutex_unlock(&kexec_mutex);
+       kimage_free(image);
+
+       return result;
+}
+
+/*
+ * Add and remove page tables for crashkernel memory
+ *
+ * Provide an empty default implementation here -- architecture
+ * code may override this
+ */
+void __weak crash_map_reserved_pages(void)
+{}
+
+void __weak crash_unmap_reserved_pages(void)
+{}
+
+#ifdef CONFIG_COMPAT
+COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
+                      compat_ulong_t, nr_segments,
+                      struct compat_kexec_segment __user *, segments,
+                      compat_ulong_t, flags)
+{
+       struct compat_kexec_segment in;
+       struct kexec_segment out, __user *ksegments;
+       unsigned long i, result;
+
+       /* Don't allow clients that don't understand the native
+        * architecture to do anything.
+        */
+       if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
+               return -EINVAL;
+
+       if (nr_segments > KEXEC_SEGMENT_MAX)
+               return -EINVAL;
+
+       ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
+       for (i = 0; i < nr_segments; i++) {
+               result = copy_from_user(&in, &segments[i], sizeof(in));
+               if (result)
+                       return -EFAULT;
+
+               out.buf   = compat_ptr(in.buf);
+               out.bufsz = in.bufsz;
+               out.mem   = in.mem;
+               out.memsz = in.memsz;
+
+               result = copy_to_user(&ksegments[i], &out, sizeof(out));
+               if (result)
+                       return -EFAULT;
+       }
+
+       return sys_kexec_load(entry, nr_segments, ksegments, flags);
+}
+#endif
+
+#ifdef CONFIG_KEXEC_FILE
+SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
+               unsigned long, cmdline_len, const char __user *, cmdline_ptr,
+               unsigned long, flags)
+{
+       int ret = 0, i;
+       struct kimage **dest_image, *image;
+
+       /* We only trust the superuser with rebooting the system. */
+       if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
+               return -EPERM;
+
+       /* Make sure we have a legal set of flags */
+       if (flags != (flags & KEXEC_FILE_FLAGS))
+               return -EINVAL;
+
+       image = NULL;
+
+       if (!mutex_trylock(&kexec_mutex))
+               return -EBUSY;
+
+       dest_image = &kexec_image;
+       if (flags & KEXEC_FILE_ON_CRASH)
+               dest_image = &kexec_crash_image;
+
+       if (flags & KEXEC_FILE_UNLOAD)
+               goto exchange;
+
+       /*
+        * In case of crash, new kernel gets loaded in reserved region. It is
+        * same memory where old crash kernel might be loaded. Free any
+        * current crash dump kernel before we corrupt it.
+        */
+       if (flags & KEXEC_FILE_ON_CRASH)
+               kimage_free(xchg(&kexec_crash_image, NULL));
+
+       ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
+                                    cmdline_len, flags);
+       if (ret)
+               goto out;
+
+       ret = machine_kexec_prepare(image);
+       if (ret)
+               goto out;
+
+       ret = kexec_calculate_store_digests(image);
+       if (ret)
+               goto out;
+
+       for (i = 0; i < image->nr_segments; i++) {
+               struct kexec_segment *ksegment;
+
+               ksegment = &image->segment[i];
+               pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
+                        i, ksegment->buf, ksegment->bufsz, ksegment->mem,
+                        ksegment->memsz);
+
+               ret = kimage_load_segment(image, &image->segment[i]);
+               if (ret)
+                       goto out;
+       }
+
+       kimage_terminate(image);
+
+       /*
+        * Free up any temporary buffers allocated which are not needed
+        * after image has been loaded
+        */
+       kimage_file_post_load_cleanup(image);
+exchange:
+       image = xchg(dest_image, image);
+out:
+       mutex_unlock(&kexec_mutex);
+       kimage_free(image);
+       return ret;
+}
+
+#endif /* CONFIG_KEXEC_FILE */
+
+void crash_kexec(struct pt_regs *regs)
+{
+       /* Take the kexec_mutex here to prevent sys_kexec_load
+        * running on one cpu from replacing the crash kernel
+        * we are using after a panic on a different cpu.
+        *
+        * If the crash kernel was not located in a fixed area
+        * of memory the xchg(&kexec_crash_image) would be
+        * sufficient.  But since I reuse the memory...
+        */
+       if (mutex_trylock(&kexec_mutex)) {
+               if (kexec_crash_image) {
+                       struct pt_regs fixed_regs;
+
+                       crash_setup_regs(&fixed_regs, regs);
+                       crash_save_vmcoreinfo();
+                       machine_crash_shutdown(&fixed_regs);
+                       machine_kexec(kexec_crash_image);
+               }
+               mutex_unlock(&kexec_mutex);
+       }
+}
+
+size_t crash_get_memory_size(void)
+{
+       size_t size = 0;
+       mutex_lock(&kexec_mutex);
+       if (crashk_res.end != crashk_res.start)
+               size = resource_size(&crashk_res);
+       mutex_unlock(&kexec_mutex);
+       return size;
+}
+
+void __weak crash_free_reserved_phys_range(unsigned long begin,
+                                          unsigned long end)
+{
+       unsigned long addr;
+
+       for (addr = begin; addr < end; addr += PAGE_SIZE)
+               free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
+}
+
+int crash_shrink_memory(unsigned long new_size)
+{
+       int ret = 0;
+       unsigned long start, end;
+       unsigned long old_size;
+       struct resource *ram_res;
+
+       mutex_lock(&kexec_mutex);
+
+       if (kexec_crash_image) {
+               ret = -ENOENT;
+               goto unlock;
+       }
+       start = crashk_res.start;
+       end = crashk_res.end;
+       old_size = (end == 0) ? 0 : end - start + 1;
+       if (new_size >= old_size) {
+               ret = (new_size == old_size) ? 0 : -EINVAL;
+               goto unlock;
+       }
+
+       ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
+       if (!ram_res) {
+               ret = -ENOMEM;
+               goto unlock;
+       }
+
+       start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
+       end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
+
+       crash_map_reserved_pages();
+       crash_free_reserved_phys_range(end, crashk_res.end);
+
+       if ((start == end) && (crashk_res.parent != NULL))
+               release_resource(&crashk_res);
+
+       ram_res->start = end;
+       ram_res->end = crashk_res.end;
+       ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
+       ram_res->name = "System RAM";
+
+       crashk_res.end = end - 1;
+
+       insert_resource(&iomem_resource, ram_res);
+       crash_unmap_reserved_pages();
+
+unlock:
+       mutex_unlock(&kexec_mutex);
+       return ret;
+}
+
+static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
+                           size_t data_len)
+{
+       struct elf_note note;
+
+       note.n_namesz = strlen(name) + 1;
+       note.n_descsz = data_len;
+       note.n_type   = type;
+       memcpy(buf, &note, sizeof(note));
+       buf += (sizeof(note) + 3)/4;
+       memcpy(buf, name, note.n_namesz);
+       buf += (note.n_namesz + 3)/4;
+       memcpy(buf, data, note.n_descsz);
+       buf += (note.n_descsz + 3)/4;
+
+       return buf;
+}
+
+static void final_note(u32 *buf)
+{
+       struct elf_note note;
+
+       note.n_namesz = 0;
+       note.n_descsz = 0;
+       note.n_type   = 0;
+       memcpy(buf, &note, sizeof(note));
+}
+
+void crash_save_cpu(struct pt_regs *regs, int cpu)
+{
+       struct elf_prstatus prstatus;
+       u32 *buf;
+
+       if ((cpu < 0) || (cpu >= nr_cpu_ids))
+               return;
+
+       /* Using ELF notes here is opportunistic.
+        * I need a well defined structure format
+        * for the data I pass, and I need tags
+        * on the data to indicate what information I have
+        * squirrelled away.  ELF notes happen to provide
+        * all of that, so there is no need to invent something new.
+        */
+       buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
+       if (!buf)
+               return;
+       memset(&prstatus, 0, sizeof(prstatus));
+       prstatus.pr_pid = current->pid;
+       elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
+       buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
+                             &prstatus, sizeof(prstatus));
+       final_note(buf);
+}
+
+static int __init crash_notes_memory_init(void)
+{
+       /* Allocate memory for saving cpu registers. */
+       crash_notes = alloc_percpu(note_buf_t);
+       if (!crash_notes) {
+               pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
+               return -ENOMEM;
+       }
+       return 0;
+}
+subsys_initcall(crash_notes_memory_init);
+
+
+/*
+ * parsing the "crashkernel" commandline
+ *
+ * this code is intended to be called from architecture specific code
+ */
+
+
+/*
+ * This function parses command lines in the format
+ *
+ *   crashkernel=ramsize-range:size[,...][@offset]
+ *
+ * The function returns 0 on success and -EINVAL on failure.
+ */
+static int __init parse_crashkernel_mem(char *cmdline,
+                                       unsigned long long system_ram,
+                                       unsigned long long *crash_size,
+                                       unsigned long long *crash_base)
+{
+       char *cur = cmdline, *tmp;
+
+       /* for each entry of the comma-separated list */
+       do {
+               unsigned long long start, end = ULLONG_MAX, size;
+
+               /* get the start of the range */
+               start = memparse(cur, &tmp);
+               if (cur == tmp) {
+                       pr_warn("crashkernel: Memory value expected\n");
+                       return -EINVAL;
+               }
+               cur = tmp;
+               if (*cur != '-') {
+                       pr_warn("crashkernel: '-' expected\n");
+                       return -EINVAL;
+               }
+               cur++;
+
+               /* if no ':' is here, than we read the end */
+               if (*cur != ':') {
+                       end = memparse(cur, &tmp);
+                       if (cur == tmp) {
+                               pr_warn("crashkernel: Memory value expected\n");
+                               return -EINVAL;
+                       }
+                       cur = tmp;
+                       if (end <= start) {
+                               pr_warn("crashkernel: end <= start\n");
+                               return -EINVAL;
+                       }
+               }
+
+               if (*cur != ':') {
+                       pr_warn("crashkernel: ':' expected\n");
+                       return -EINVAL;
+               }
+               cur++;
+
+               size = memparse(cur, &tmp);
+               if (cur == tmp) {
+                       pr_warn("Memory value expected\n");
+                       return -EINVAL;
+               }
+               cur = tmp;
+               if (size >= system_ram) {
+                       pr_warn("crashkernel: invalid size\n");
+                       return -EINVAL;
+               }
+
+               /* match ? */
+               if (system_ram >= start && system_ram < end) {
+                       *crash_size = size;
+                       break;
+               }
+       } while (*cur++ == ',');
+
+       if (*crash_size > 0) {
+               while (*cur && *cur != ' ' && *cur != '@')
+                       cur++;
+               if (*cur == '@') {
+                       cur++;
+                       *crash_base = memparse(cur, &tmp);
+                       if (cur == tmp) {
+                               pr_warn("Memory value expected after '@'\n");
+                               return -EINVAL;
+                       }
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * That function parses "simple" (old) crashkernel command lines like
+ *
+ *     crashkernel=size[@offset]
+ *
+ * It returns 0 on success and -EINVAL on failure.
+ */
+static int __init parse_crashkernel_simple(char *cmdline,
+                                          unsigned long long *crash_size,
+                                          unsigned long long *crash_base)
+{
+       char *cur = cmdline;
+
+       *crash_size = memparse(cmdline, &cur);
+       if (cmdline == cur) {
+               pr_warn("crashkernel: memory value expected\n");
+               return -EINVAL;
+       }
+
+       if (*cur == '@')
+               *crash_base = memparse(cur+1, &cur);
+       else if (*cur != ' ' && *cur != '\0') {
+               pr_warn("crashkernel: unrecognized char\n");
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+#define SUFFIX_HIGH 0
+#define SUFFIX_LOW  1
+#define SUFFIX_NULL 2
+static __initdata char *suffix_tbl[] = {
+       [SUFFIX_HIGH] = ",high",
+       [SUFFIX_LOW]  = ",low",
+       [SUFFIX_NULL] = NULL,
+};
+
+/*
+ * That function parses "suffix"  crashkernel command lines like
+ *
+ *     crashkernel=size,[high|low]
+ *
+ * It returns 0 on success and -EINVAL on failure.
+ */
+static int __init parse_crashkernel_suffix(char *cmdline,
+                                          unsigned long long   *crash_size,
+                                          const char *suffix)
+{
+       char *cur = cmdline;
+
+       *crash_size = memparse(cmdline, &cur);
+       if (cmdline == cur) {
+               pr_warn("crashkernel: memory value expected\n");
+               return -EINVAL;
+       }
+
+       /* check with suffix */
+       if (strncmp(cur, suffix, strlen(suffix))) {
+               pr_warn("crashkernel: unrecognized char\n");
+               return -EINVAL;
+       }
+       cur += strlen(suffix);
+       if (*cur != ' ' && *cur != '\0') {
+               pr_warn("crashkernel: unrecognized char\n");
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static __init char *get_last_crashkernel(char *cmdline,
+                            const char *name,
+                            const char *suffix)
+{
+       char *p = cmdline, *ck_cmdline = NULL;
+
+       /* find crashkernel and use the last one if there are more */
+       p = strstr(p, name);
+       while (p) {
+               char *end_p = strchr(p, ' ');
+               char *q;
+
+               if (!end_p)
+                       end_p = p + strlen(p);
+
+               if (!suffix) {
+                       int i;
+
+                       /* skip the one with any known suffix */
+                       for (i = 0; suffix_tbl[i]; i++) {
+                               q = end_p - strlen(suffix_tbl[i]);
+                               if (!strncmp(q, suffix_tbl[i],
+                                            strlen(suffix_tbl[i])))
+                                       goto next;
+                       }
+                       ck_cmdline = p;
+               } else {
+                       q = end_p - strlen(suffix);
+                       if (!strncmp(q, suffix, strlen(suffix)))
+                               ck_cmdline = p;
+               }
+next:
+               p = strstr(p+1, name);
+       }
+
+       if (!ck_cmdline)
+               return NULL;
+
+       return ck_cmdline;
+}
+
+static int __init __parse_crashkernel(char *cmdline,
+                            unsigned long long system_ram,
+                            unsigned long long *crash_size,
+                            unsigned long long *crash_base,
+                            const char *name,
+                            const char *suffix)
+{
+       char    *first_colon, *first_space;
+       char    *ck_cmdline;
+
+       BUG_ON(!crash_size || !crash_base);
+       *crash_size = 0;
+       *crash_base = 0;
+
+       ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
+
+       if (!ck_cmdline)
+               return -EINVAL;
+
+       ck_cmdline += strlen(name);
+
+       if (suffix)
+               return parse_crashkernel_suffix(ck_cmdline, crash_size,
+                               suffix);
+       /*
+        * if the commandline contains a ':', then that's the extended
+        * syntax -- if not, it must be the classic syntax
+        */
+       first_colon = strchr(ck_cmdline, ':');
+       first_space = strchr(ck_cmdline, ' ');
+       if (first_colon && (!first_space || first_colon < first_space))
+               return parse_crashkernel_mem(ck_cmdline, system_ram,
+                               crash_size, crash_base);
+
+       return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
+}
+
+/*
+ * That function is the entry point for command line parsing and should be
+ * called from the arch-specific code.
+ */
+int __init parse_crashkernel(char *cmdline,
+                            unsigned long long system_ram,
+                            unsigned long long *crash_size,
+                            unsigned long long *crash_base)
+{
+       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
+                                       "crashkernel=", NULL);
+}
+
+int __init parse_crashkernel_high(char *cmdline,
+                            unsigned long long system_ram,
+                            unsigned long long *crash_size,
+                            unsigned long long *crash_base)
+{
+       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
+                               "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
+}
+
+int __init parse_crashkernel_low(char *cmdline,
+                            unsigned long long system_ram,
+                            unsigned long long *crash_size,
+                            unsigned long long *crash_base)
+{
+       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
+                               "crashkernel=", suffix_tbl[SUFFIX_LOW]);
+}
+
+static void update_vmcoreinfo_note(void)
+{
+       u32 *buf = vmcoreinfo_note;
+
+       if (!vmcoreinfo_size)
+               return;
+       buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
+                             vmcoreinfo_size);
+       final_note(buf);
+}
+
+void crash_save_vmcoreinfo(void)
+{
+       vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
+       update_vmcoreinfo_note();
+}
+
+void vmcoreinfo_append_str(const char *fmt, ...)
+{
+       va_list args;
+       char buf[0x50];
+       size_t r;
+
+       va_start(args, fmt);
+       r = vscnprintf(buf, sizeof(buf), fmt, args);
+       va_end(args);
+
+       r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
+
+       memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
+
+       vmcoreinfo_size += r;
+}
+
+/*
+ * provide an empty default implementation here -- architecture
+ * code may override this
+ */
+void __weak arch_crash_save_vmcoreinfo(void)
+{}
+
+unsigned long __weak paddr_vmcoreinfo_note(void)
+{
+       return __pa((unsigned long)(char *)&vmcoreinfo_note);
+}
+
+static int __init crash_save_vmcoreinfo_init(void)
+{
+       VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
+       VMCOREINFO_PAGESIZE(PAGE_SIZE);
+
+       VMCOREINFO_SYMBOL(init_uts_ns);
+       VMCOREINFO_SYMBOL(node_online_map);
+#ifdef CONFIG_MMU
+       VMCOREINFO_SYMBOL(swapper_pg_dir);
+#endif
+       VMCOREINFO_SYMBOL(_stext);
+       VMCOREINFO_SYMBOL(vmap_area_list);
+
+#ifndef CONFIG_NEED_MULTIPLE_NODES
+       VMCOREINFO_SYMBOL(mem_map);
+       VMCOREINFO_SYMBOL(contig_page_data);
+#endif
+#ifdef CONFIG_SPARSEMEM
+       VMCOREINFO_SYMBOL(mem_section);
+       VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
+       VMCOREINFO_STRUCT_SIZE(mem_section);
+       VMCOREINFO_OFFSET(mem_section, section_mem_map);
+#endif
+       VMCOREINFO_STRUCT_SIZE(page);
+       VMCOREINFO_STRUCT_SIZE(pglist_data);
+       VMCOREINFO_STRUCT_SIZE(zone);
+       VMCOREINFO_STRUCT_SIZE(free_area);
+       VMCOREINFO_STRUCT_SIZE(list_head);
+       VMCOREINFO_SIZE(nodemask_t);
+       VMCOREINFO_OFFSET(page, flags);
+       VMCOREINFO_OFFSET(page, _count);
+       VMCOREINFO_OFFSET(page, mapping);
+       VMCOREINFO_OFFSET(page, lru);
+       VMCOREINFO_OFFSET(page, _mapcount);
+       VMCOREINFO_OFFSET(page, private);
+       VMCOREINFO_OFFSET(pglist_data, node_zones);
+       VMCOREINFO_OFFSET(pglist_data, nr_zones);
+#ifdef CONFIG_FLAT_NODE_MEM_MAP
+       VMCOREINFO_OFFSET(pglist_data, node_mem_map);
+#endif
+       VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
+       VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
+       VMCOREINFO_OFFSET(pglist_data, node_id);
+       VMCOREINFO_OFFSET(zone, free_area);
+       VMCOREINFO_OFFSET(zone, vm_stat);
+       VMCOREINFO_OFFSET(zone, spanned_pages);
+       VMCOREINFO_OFFSET(free_area, free_list);
+       VMCOREINFO_OFFSET(list_head, next);
+       VMCOREINFO_OFFSET(list_head, prev);
+       VMCOREINFO_OFFSET(vmap_area, va_start);
+       VMCOREINFO_OFFSET(vmap_area, list);
+       VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
+       log_buf_kexec_setup();
+       VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
+       VMCOREINFO_NUMBER(NR_FREE_PAGES);
+       VMCOREINFO_NUMBER(PG_lru);
+       VMCOREINFO_NUMBER(PG_private);
+       VMCOREINFO_NUMBER(PG_swapcache);
+       VMCOREINFO_NUMBER(PG_slab);
+#ifdef CONFIG_MEMORY_FAILURE
+       VMCOREINFO_NUMBER(PG_hwpoison);
+#endif
+       VMCOREINFO_NUMBER(PG_head_mask);
+       VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
+#ifdef CONFIG_HUGETLBFS
+       VMCOREINFO_SYMBOL(free_huge_page);
+#endif
+
+       arch_crash_save_vmcoreinfo();
+       update_vmcoreinfo_note();
+
+       return 0;
+}
+
+subsys_initcall(crash_save_vmcoreinfo_init);
+
+#ifdef CONFIG_KEXEC_FILE
+static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
+                                   struct kexec_buf *kbuf)
+{
+       struct kimage *image = kbuf->image;
+       unsigned long temp_start, temp_end;
+
+       temp_end = min(end, kbuf->buf_max);
+       temp_start = temp_end - kbuf->memsz;
+
+       do {
+               /* align down start */
+               temp_start = temp_start & (~(kbuf->buf_align - 1));
+
+               if (temp_start < start || temp_start < kbuf->buf_min)
+                       return 0;
+
+               temp_end = temp_start + kbuf->memsz - 1;
+
+               /*
+                * Make sure this does not conflict with any of existing
+                * segments
+                */
+               if (kimage_is_destination_range(image, temp_start, temp_end)) {
+                       temp_start = temp_start - PAGE_SIZE;
+                       continue;
+               }
+
+               /* We found a suitable memory range */
+               break;
+       } while (1);
+
+       /* If we are here, we found a suitable memory range */
+       kbuf->mem = temp_start;
+
+       /* Success, stop navigating through remaining System RAM ranges */
+       return 1;
+}
+
+static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
+                                    struct kexec_buf *kbuf)
+{
+       struct kimage *image = kbuf->image;
+       unsigned long temp_start, temp_end;
+
+       temp_start = max(start, kbuf->buf_min);
+
+       do {
+               temp_start = ALIGN(temp_start, kbuf->buf_align);
+               temp_end = temp_start + kbuf->memsz - 1;
+
+               if (temp_end > end || temp_end > kbuf->buf_max)
+                       return 0;
+               /*
+                * Make sure this does not conflict with any of existing
+                * segments
+                */
+               if (kimage_is_destination_range(image, temp_start, temp_end)) {
+                       temp_start = temp_start + PAGE_SIZE;
+                       continue;
+               }
+
+               /* We found a suitable memory range */
+               break;
+       } while (1);
+
+       /* If we are here, we found a suitable memory range */
+       kbuf->mem = temp_start;
+
+       /* Success, stop navigating through remaining System RAM ranges */
+       return 1;
+}
+
+static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
+{
+       struct kexec_buf *kbuf = (struct kexec_buf *)arg;
+       unsigned long sz = end - start + 1;
+
+       /* Returning 0 will take to next memory range */
+       if (sz < kbuf->memsz)
+               return 0;
+
+       if (end < kbuf->buf_min || start > kbuf->buf_max)
+               return 0;
+
+       /*
+        * Allocate memory top down with-in ram range. Otherwise bottom up
+        * allocation.
+        */
+       if (kbuf->top_down)
+               return locate_mem_hole_top_down(start, end, kbuf);
+       return locate_mem_hole_bottom_up(start, end, kbuf);
+}
+
+/*
+ * Helper function for placing a buffer in a kexec segment. This assumes
+ * that kexec_mutex is held.
+ */
+int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
+                    unsigned long memsz, unsigned long buf_align,
+                    unsigned long buf_min, unsigned long buf_max,
+                    bool top_down, unsigned long *load_addr)
+{
+
+       struct kexec_segment *ksegment;
+       struct kexec_buf buf, *kbuf;
+       int ret;
+
+       /* Currently adding segment this way is allowed only in file mode */
+       if (!image->file_mode)
+               return -EINVAL;
+
+       if (image->nr_segments >= KEXEC_SEGMENT_MAX)
+               return -EINVAL;
+
+       /*
+        * Make sure we are not trying to add buffer after allocating
+        * control pages. All segments need to be placed first before
+        * any control pages are allocated. As control page allocation
+        * logic goes through list of segments to make sure there are
+        * no destination overlaps.
+        */
+       if (!list_empty(&image->control_pages)) {
+               WARN_ON(1);
+               return -EINVAL;
+       }
+
+       memset(&buf, 0, sizeof(struct kexec_buf));
+       kbuf = &buf;
+       kbuf->image = image;
+       kbuf->buffer = buffer;
+       kbuf->bufsz = bufsz;
+
+       kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
+       kbuf->buf_align = max(buf_align, PAGE_SIZE);
+       kbuf->buf_min = buf_min;
+       kbuf->buf_max = buf_max;
+       kbuf->top_down = top_down;
+
+       /* Walk the RAM ranges and allocate a suitable range for the buffer */
+       if (image->type == KEXEC_TYPE_CRASH)
+               ret = walk_iomem_res("Crash kernel",
+                                    IORESOURCE_MEM | IORESOURCE_BUSY,
+                                    crashk_res.start, crashk_res.end, kbuf,
+                                    locate_mem_hole_callback);
+       else
+               ret = walk_system_ram_res(0, -1, kbuf,
+                                         locate_mem_hole_callback);
+       if (ret != 1) {
+               /* A suitable memory range could not be found for buffer */
+               return -EADDRNOTAVAIL;
+       }
+
+       /* Found a suitable memory range */
+       ksegment = &image->segment[image->nr_segments];
+       ksegment->kbuf = kbuf->buffer;
+       ksegment->bufsz = kbuf->bufsz;
+       ksegment->mem = kbuf->mem;
+       ksegment->memsz = kbuf->memsz;
+       image->nr_segments++;
+       *load_addr = ksegment->mem;
+       return 0;
+}
+
+/* Calculate and store the digest of segments */
+static int kexec_calculate_store_digests(struct kimage *image)
+{
+       struct crypto_shash *tfm;
+       struct shash_desc *desc;
+       int ret = 0, i, j, zero_buf_sz, sha_region_sz;
+       size_t desc_size, nullsz;
+       char *digest;
+       void *zero_buf;
+       struct kexec_sha_region *sha_regions;
+       struct purgatory_info *pi = &image->purgatory_info;
+
+       zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
+       zero_buf_sz = PAGE_SIZE;
+
+       tfm = crypto_alloc_shash("sha256", 0, 0);
+       if (IS_ERR(tfm)) {
+               ret = PTR_ERR(tfm);
+               goto out;
+       }
+
+       desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
+       desc = kzalloc(desc_size, GFP_KERNEL);
+       if (!desc) {
+               ret = -ENOMEM;
+               goto out_free_tfm;
+       }
+
+       sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
+       sha_regions = vzalloc(sha_region_sz);
+       if (!sha_regions)
+               goto out_free_desc;
+
+       desc->tfm   = tfm;
+       desc->flags = 0;
+
+       ret = crypto_shash_init(desc);
+       if (ret < 0)
+               goto out_free_sha_regions;
+
+       digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
+       if (!digest) {
+               ret = -ENOMEM;
+               goto out_free_sha_regions;
+       }
+
+       for (j = i = 0; i < image->nr_segments; i++) {
+               struct kexec_segment *ksegment;
+
+               ksegment = &image->segment[i];
+               /*
+                * Skip purgatory as it will be modified once we put digest
+                * info in purgatory.
+                */
+               if (ksegment->kbuf == pi->purgatory_buf)
+                       continue;
+
+               ret = crypto_shash_update(desc, ksegment->kbuf,
+                                         ksegment->bufsz);
+               if (ret)
+                       break;
+
+               /*
+                * Assume rest of the buffer is filled with zero and
+                * update digest accordingly.
+                */
+               nullsz = ksegment->memsz - ksegment->bufsz;
+               while (nullsz) {
+                       unsigned long bytes = nullsz;
+
+                       if (bytes > zero_buf_sz)
+                               bytes = zero_buf_sz;
+                       ret = crypto_shash_update(desc, zero_buf, bytes);
+                       if (ret)
+                               break;
+                       nullsz -= bytes;
+               }
+
+               if (ret)
+                       break;
+
+               sha_regions[j].start = ksegment->mem;
+               sha_regions[j].len = ksegment->memsz;
+               j++;
+       }
+
+       if (!ret) {
+               ret = crypto_shash_final(desc, digest);
+               if (ret)
+                       goto out_free_digest;
+               ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
+                                               sha_regions, sha_region_sz, 0);
+               if (ret)
+                       goto out_free_digest;
+
+               ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
+                                               digest, SHA256_DIGEST_SIZE, 0);
+               if (ret)
+                       goto out_free_digest;
+       }
+
+out_free_digest:
+       kfree(digest);
+out_free_sha_regions:
+       vfree(sha_regions);
+out_free_desc:
+       kfree(desc);
+out_free_tfm:
+       kfree(tfm);
+out:
+       return ret;
+}
+
+/* Actually load purgatory. Lot of code taken from kexec-tools */
+static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
+                                 unsigned long max, int top_down)
+{
+       struct purgatory_info *pi = &image->purgatory_info;
+       unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
+       unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
+       unsigned char *buf_addr, *src;
+       int i, ret = 0, entry_sidx = -1;
+       const Elf_Shdr *sechdrs_c;
+       Elf_Shdr *sechdrs = NULL;
+       void *purgatory_buf = NULL;
+
+       /*
+        * sechdrs_c points to section headers in purgatory and are read
+        * only. No modifications allowed.
+        */
+       sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
+
+       /*
+        * We can not modify sechdrs_c[] and its fields. It is read only.
+        * Copy it over to a local copy where one can store some temporary
+        * data and free it at the end. We need to modify ->sh_addr and
+        * ->sh_offset fields to keep track of permanent and temporary
+        * locations of sections.
+        */
+       sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
+       if (!sechdrs)
+               return -ENOMEM;
+
+       memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
+
+       /*
+        * We seem to have multiple copies of sections. First copy is which
+        * is embedded in kernel in read only section. Some of these sections
+        * will be copied to a temporary buffer and relocated. And these
+        * sections will finally be copied to their final destination at
+        * segment load time.
+        *
+        * Use ->sh_offset to reflect section address in memory. It will
+        * point to original read only copy if section is not allocatable.
+        * Otherwise it will point to temporary copy which will be relocated.
+        *
+        * Use ->sh_addr to contain final address of the section where it
+        * will go during execution time.
+        */
+       for (i = 0; i < pi->ehdr->e_shnum; i++) {
+               if (sechdrs[i].sh_type == SHT_NOBITS)
+                       continue;
+
+               sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
+                                               sechdrs[i].sh_offset;
+       }
+
+       /*
+        * Identify entry point section and make entry relative to section
+        * start.
+        */
+       entry = pi->ehdr->e_entry;
+       for (i = 0; i < pi->ehdr->e_shnum; i++) {
+               if (!(sechdrs[i].sh_flags & SHF_ALLOC))
+                       continue;
+
+               if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
+                       continue;
+
+               /* Make entry section relative */
+               if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
+                   ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
+                    pi->ehdr->e_entry)) {
+                       entry_sidx = i;
+                       entry -= sechdrs[i].sh_addr;
+                       break;
+               }
+       }
+
+       /* Determine how much memory is needed to load relocatable object. */
+       buf_align = 1;
+       bss_align = 1;
+       buf_sz = 0;
+       bss_sz = 0;
+
+       for (i = 0; i < pi->ehdr->e_shnum; i++) {
+               if (!(sechdrs[i].sh_flags & SHF_ALLOC))
+                       continue;
+
+               align = sechdrs[i].sh_addralign;
+               if (sechdrs[i].sh_type != SHT_NOBITS) {
+                       if (buf_align < align)
+                               buf_align = align;
+                       buf_sz = ALIGN(buf_sz, align);
+                       buf_sz += sechdrs[i].sh_size;
+               } else {
+                       /* bss section */
+                       if (bss_align < align)
+                               bss_align = align;
+                       bss_sz = ALIGN(bss_sz, align);
+                       bss_sz += sechdrs[i].sh_size;
+               }
+       }
+
+       /* Determine the bss padding required to align bss properly */
+       bss_pad = 0;
+       if (buf_sz & (bss_align - 1))
+               bss_pad = bss_align - (buf_sz & (bss_align - 1));
+
+       memsz = buf_sz + bss_pad + bss_sz;
+
+       /* Allocate buffer for purgatory */
+       purgatory_buf = vzalloc(buf_sz);
+       if (!purgatory_buf) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       if (buf_align < bss_align)
+               buf_align = bss_align;
+
+       /* Add buffer to segment list */
+       ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
+                               buf_align, min, max, top_down,
+                               &pi->purgatory_load_addr);
+       if (ret)
+               goto out;
+
+       /* Load SHF_ALLOC sections */
+       buf_addr = purgatory_buf;
+       load_addr = curr_load_addr = pi->purgatory_load_addr;
+       bss_addr = load_addr + buf_sz + bss_pad;
+
+       for (i = 0; i < pi->ehdr->e_shnum; i++) {
+               if (!(sechdrs[i].sh_flags & SHF_ALLOC))
+                       continue;
+
+               align = sechdrs[i].sh_addralign;
+               if (sechdrs[i].sh_type != SHT_NOBITS) {
+                       curr_load_addr = ALIGN(curr_load_addr, align);
+                       offset = curr_load_addr - load_addr;
+                       /* We already modifed ->sh_offset to keep src addr */
+                       src = (char *) sechdrs[i].sh_offset;
+                       memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
+
+                       /* Store load address and source address of section */
+                       sechdrs[i].sh_addr = curr_load_addr;
+
+                       /*
+                        * This section got copied to temporary buffer. Update
+                        * ->sh_offset accordingly.
+                        */
+                       sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
+
+                       /* Advance to the next address */
+                       curr_load_addr += sechdrs[i].sh_size;
+               } else {
+                       bss_addr = ALIGN(bss_addr, align);
+                       sechdrs[i].sh_addr = bss_addr;
+                       bss_addr += sechdrs[i].sh_size;
+               }
+       }
+
+       /* Update entry point based on load address of text section */
+       if (entry_sidx >= 0)
+               entry += sechdrs[entry_sidx].sh_addr;
+
+       /* Make kernel jump to purgatory after shutdown */
+       image->start = entry;
+
+       /* Used later to get/set symbol values */
+       pi->sechdrs = sechdrs;
+
+       /*
+        * Used later to identify which section is purgatory and skip it
+        * from checksumming.
+        */
+       pi->purgatory_buf = purgatory_buf;
+       return ret;
+out:
+       vfree(sechdrs);
+       vfree(purgatory_buf);
+       return ret;
+}
+
+static int kexec_apply_relocations(struct kimage *image)
+{
+       int i, ret;
+       struct purgatory_info *pi = &image->purgatory_info;
+       Elf_Shdr *sechdrs = pi->sechdrs;
+
+       /* Apply relocations */
+       for (i = 0; i < pi->ehdr->e_shnum; i++) {
+               Elf_Shdr *section, *symtab;
+
+               if (sechdrs[i].sh_type != SHT_RELA &&
+                   sechdrs[i].sh_type != SHT_REL)
+                       continue;
+
+               /*
+                * For section of type SHT_RELA/SHT_REL,
+                * ->sh_link contains section header index of associated
+                * symbol table. And ->sh_info contains section header
+                * index of section to which relocations apply.
+                */
+               if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
+                   sechdrs[i].sh_link >= pi->ehdr->e_shnum)
+                       return -ENOEXEC;
+
+               section = &sechdrs[sechdrs[i].sh_info];
+               symtab = &sechdrs[sechdrs[i].sh_link];
+
+               if (!(section->sh_flags & SHF_ALLOC))
+                       continue;
+
+               /*
+                * symtab->sh_link contain section header index of associated
+                * string table.
+                */
+               if (symtab->sh_link >= pi->ehdr->e_shnum)
+                       /* Invalid section number? */
+                       continue;
+
+               /*
+                * Respective architecture needs to provide support for applying
+                * relocations of type SHT_RELA/SHT_REL.
+                */
+               if (sechdrs[i].sh_type == SHT_RELA)
+                       ret = arch_kexec_apply_relocations_add(pi->ehdr,
+                                                              sechdrs, i);
+               else if (sechdrs[i].sh_type == SHT_REL)
+                       ret = arch_kexec_apply_relocations(pi->ehdr,
+                                                          sechdrs, i);
+               if (ret)
+                       return ret;
+       }
+
+       return 0;
+}
+
+/* Load relocatable purgatory object and relocate it appropriately */
+int kexec_load_purgatory(struct kimage *image, unsigned long min,
+                        unsigned long max, int top_down,
+                        unsigned long *load_addr)
+{
+       struct purgatory_info *pi = &image->purgatory_info;
+       int ret;
+
+       if (kexec_purgatory_size <= 0)
+               return -EINVAL;
+
+       if (kexec_purgatory_size < sizeof(Elf_Ehdr))
+               return -ENOEXEC;
+
+       pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
+
+       if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
+           || pi->ehdr->e_type != ET_REL
+           || !elf_check_arch(pi->ehdr)
+           || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
+               return -ENOEXEC;
+
+       if (pi->ehdr->e_shoff >= kexec_purgatory_size
+           || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
+           kexec_purgatory_size - pi->ehdr->e_shoff))
+               return -ENOEXEC;
+
+       ret = __kexec_load_purgatory(image, min, max, top_down);
+       if (ret)
+               return ret;
+
+       ret = kexec_apply_relocations(image);
+       if (ret)
+               goto out;
+
+       *load_addr = pi->purgatory_load_addr;
+       return 0;
+out:
+       vfree(pi->sechdrs);
+       vfree(pi->purgatory_buf);
+       return ret;
+}
+
+static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
+                                           const char *name)
+{
+       Elf_Sym *syms;
+       Elf_Shdr *sechdrs;
+       Elf_Ehdr *ehdr;
+       int i, k;
+       const char *strtab;
+
+       if (!pi->sechdrs || !pi->ehdr)
+               return NULL;
+
+       sechdrs = pi->sechdrs;
+       ehdr = pi->ehdr;
+
+       for (i = 0; i < ehdr->e_shnum; i++) {
+               if (sechdrs[i].sh_type != SHT_SYMTAB)
+                       continue;
+
+               if (sechdrs[i].sh_link >= ehdr->e_shnum)
+                       /* Invalid strtab section number */
+                       continue;
+               strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
+               syms = (Elf_Sym *)sechdrs[i].sh_offset;
+
+               /* Go through symbols for a match */
+               for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
+                       if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
+                               continue;
+
+                       if (strcmp(strtab + syms[k].st_name, name) != 0)
+                               continue;
+
+                       if (syms[k].st_shndx == SHN_UNDEF ||
+                           syms[k].st_shndx >= ehdr->e_shnum) {
+                               pr_debug("Symbol: %s has bad section index %d.\n",
+                                               name, syms[k].st_shndx);
+                               return NULL;
+                       }
+
+                       /* Found the symbol we are looking for */
+                       return &syms[k];
+               }
+       }
+
+       return NULL;
+}
+
+void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
+{
+       struct purgatory_info *pi = &image->purgatory_info;
+       Elf_Sym *sym;
+       Elf_Shdr *sechdr;
+
+       sym = kexec_purgatory_find_symbol(pi, name);
+       if (!sym)
+               return ERR_PTR(-EINVAL);
+
+       sechdr = &pi->sechdrs[sym->st_shndx];
+
+       /*
+        * Returns the address where symbol will finally be loaded after
+        * kexec_load_segment()
+        */
+       return (void *)(sechdr->sh_addr + sym->st_value);
+}
+
+/*
+ * Get or set value of a symbol. If "get_value" is true, symbol value is
+ * returned in buf otherwise symbol value is set based on value in buf.
+ */
+int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
+                                  void *buf, unsigned int size, bool get_value)
+{
+       Elf_Sym *sym;
+       Elf_Shdr *sechdrs;
+       struct purgatory_info *pi = &image->purgatory_info;
+       char *sym_buf;
+
+       sym = kexec_purgatory_find_symbol(pi, name);
+       if (!sym)
+               return -EINVAL;
+
+       if (sym->st_size != size) {
+               pr_err("symbol %s size mismatch: expected %lu actual %u\n",
+                      name, (unsigned long)sym->st_size, size);
+               return -EINVAL;
+       }
+
+       sechdrs = pi->sechdrs;
+
+       if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
+               pr_err("symbol %s is in a bss section. Cannot %s\n", name,
+                      get_value ? "get" : "set");
+               return -EINVAL;
+       }
+
+       sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
+                                       sym->st_value;
+
+       if (get_value)
+               memcpy((void *)buf, sym_buf, size);
+       else
+               memcpy((void *)sym_buf, buf, size);
+
+       return 0;
+}
+#endif /* CONFIG_KEXEC_FILE */
+
+/*
+ * Move into place and start executing a preloaded standalone
+ * executable.  If nothing was preloaded return an error.
+ */
+int kernel_kexec(void)
+{
+       int error = 0;
+
+       if (!mutex_trylock(&kexec_mutex))
+               return -EBUSY;
+       if (!kexec_image) {
+               error = -EINVAL;
+               goto Unlock;
+       }
+
+#ifdef CONFIG_KEXEC_JUMP
+       if (kexec_image->preserve_context) {
+               lock_system_sleep();
+               pm_prepare_console();
+               error = freeze_processes();
+               if (error) {
+                       error = -EBUSY;
+                       goto Restore_console;
+               }
+               suspend_console();
+               error = dpm_suspend_start(PMSG_FREEZE);
+               if (error)
+                       goto Resume_console;
+               /* At this point, dpm_suspend_start() has been called,
+                * but *not* dpm_suspend_end(). We *must* call
+                * dpm_suspend_end() now.  Otherwise, drivers for
+                * some devices (e.g. interrupt controllers) become
+                * desynchronized with the actual state of the
+                * hardware at resume time, and evil weirdness ensues.
+                */
+               error = dpm_suspend_end(PMSG_FREEZE);
+               if (error)
+                       goto Resume_devices;
+               error = disable_nonboot_cpus();
+               if (error)
+                       goto Enable_cpus;
+               local_irq_disable();
+               error = syscore_suspend();
+               if (error)
+                       goto Enable_irqs;
+       } else
+#endif
+       {
+               kexec_in_progress = true;
+               kernel_restart_prepare(NULL);
+               migrate_to_reboot_cpu();
+
+               /*
+                * migrate_to_reboot_cpu() disables CPU hotplug assuming that
+                * no further code needs to use CPU hotplug (which is true in
+                * the reboot case). However, the kexec path depends on using
+                * CPU hotplug again; so re-enable it here.
+                */
+               cpu_hotplug_enable();
+               pr_emerg("Starting new kernel\n");
+               machine_shutdown();
+       }
+
+       machine_kexec(kexec_image);
+
+#ifdef CONFIG_KEXEC_JUMP
+       if (kexec_image->preserve_context) {
+               syscore_resume();
+ Enable_irqs:
+               local_irq_enable();
+ Enable_cpus:
+               enable_nonboot_cpus();
+               dpm_resume_start(PMSG_RESTORE);
+ Resume_devices:
+               dpm_resume_end(PMSG_RESTORE);
+ Resume_console:
+               resume_console();
+               thaw_processes();
+ Restore_console:
+               pm_restore_console();
+               unlock_system_sleep();
+       }
+#endif
+
+ Unlock:
+       mutex_unlock(&kexec_mutex);
+       return error;
+}