Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / futex.c
diff --git a/kernel/kernel/futex.c b/kernel/kernel/futex.c
new file mode 100644 (file)
index 0000000..bf20e0a
--- /dev/null
@@ -0,0 +1,3126 @@
+/*
+ *  Fast Userspace Mutexes (which I call "Futexes!").
+ *  (C) Rusty Russell, IBM 2002
+ *
+ *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
+ *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
+ *
+ *  Removed page pinning, fix privately mapped COW pages and other cleanups
+ *  (C) Copyright 2003, 2004 Jamie Lokier
+ *
+ *  Robust futex support started by Ingo Molnar
+ *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
+ *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
+ *
+ *  PI-futex support started by Ingo Molnar and Thomas Gleixner
+ *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *
+ *  PRIVATE futexes by Eric Dumazet
+ *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
+ *
+ *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
+ *  Copyright (C) IBM Corporation, 2009
+ *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
+ *
+ *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
+ *  enough at me, Linus for the original (flawed) idea, Matthew
+ *  Kirkwood for proof-of-concept implementation.
+ *
+ *  "The futexes are also cursed."
+ *  "But they come in a choice of three flavours!"
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+#include <linux/slab.h>
+#include <linux/poll.h>
+#include <linux/fs.h>
+#include <linux/file.h>
+#include <linux/jhash.h>
+#include <linux/init.h>
+#include <linux/futex.h>
+#include <linux/mount.h>
+#include <linux/pagemap.h>
+#include <linux/syscalls.h>
+#include <linux/signal.h>
+#include <linux/export.h>
+#include <linux/magic.h>
+#include <linux/pid.h>
+#include <linux/nsproxy.h>
+#include <linux/ptrace.h>
+#include <linux/sched/rt.h>
+#include <linux/hugetlb.h>
+#include <linux/freezer.h>
+#include <linux/bootmem.h>
+
+#include <asm/futex.h>
+
+#include "locking/rtmutex_common.h"
+
+/*
+ * READ this before attempting to hack on futexes!
+ *
+ * Basic futex operation and ordering guarantees
+ * =============================================
+ *
+ * The waiter reads the futex value in user space and calls
+ * futex_wait(). This function computes the hash bucket and acquires
+ * the hash bucket lock. After that it reads the futex user space value
+ * again and verifies that the data has not changed. If it has not changed
+ * it enqueues itself into the hash bucket, releases the hash bucket lock
+ * and schedules.
+ *
+ * The waker side modifies the user space value of the futex and calls
+ * futex_wake(). This function computes the hash bucket and acquires the
+ * hash bucket lock. Then it looks for waiters on that futex in the hash
+ * bucket and wakes them.
+ *
+ * In futex wake up scenarios where no tasks are blocked on a futex, taking
+ * the hb spinlock can be avoided and simply return. In order for this
+ * optimization to work, ordering guarantees must exist so that the waiter
+ * being added to the list is acknowledged when the list is concurrently being
+ * checked by the waker, avoiding scenarios like the following:
+ *
+ * CPU 0                               CPU 1
+ * val = *futex;
+ * sys_futex(WAIT, futex, val);
+ *   futex_wait(futex, val);
+ *   uval = *futex;
+ *                                     *futex = newval;
+ *                                     sys_futex(WAKE, futex);
+ *                                       futex_wake(futex);
+ *                                       if (queue_empty())
+ *                                         return;
+ *   if (uval == val)
+ *      lock(hash_bucket(futex));
+ *      queue();
+ *     unlock(hash_bucket(futex));
+ *     schedule();
+ *
+ * This would cause the waiter on CPU 0 to wait forever because it
+ * missed the transition of the user space value from val to newval
+ * and the waker did not find the waiter in the hash bucket queue.
+ *
+ * The correct serialization ensures that a waiter either observes
+ * the changed user space value before blocking or is woken by a
+ * concurrent waker:
+ *
+ * CPU 0                                 CPU 1
+ * val = *futex;
+ * sys_futex(WAIT, futex, val);
+ *   futex_wait(futex, val);
+ *
+ *   waiters++; (a)
+ *   mb(); (A) <-- paired with -.
+ *                              |
+ *   lock(hash_bucket(futex));  |
+ *                              |
+ *   uval = *futex;             |
+ *                              |        *futex = newval;
+ *                              |        sys_futex(WAKE, futex);
+ *                              |          futex_wake(futex);
+ *                              |
+ *                              `------->  mb(); (B)
+ *   if (uval == val)
+ *     queue();
+ *     unlock(hash_bucket(futex));
+ *     schedule();                         if (waiters)
+ *                                           lock(hash_bucket(futex));
+ *   else                                    wake_waiters(futex);
+ *     waiters--; (b)                        unlock(hash_bucket(futex));
+ *
+ * Where (A) orders the waiters increment and the futex value read through
+ * atomic operations (see hb_waiters_inc) and where (B) orders the write
+ * to futex and the waiters read -- this is done by the barriers for both
+ * shared and private futexes in get_futex_key_refs().
+ *
+ * This yields the following case (where X:=waiters, Y:=futex):
+ *
+ *     X = Y = 0
+ *
+ *     w[X]=1          w[Y]=1
+ *     MB              MB
+ *     r[Y]=y          r[X]=x
+ *
+ * Which guarantees that x==0 && y==0 is impossible; which translates back into
+ * the guarantee that we cannot both miss the futex variable change and the
+ * enqueue.
+ *
+ * Note that a new waiter is accounted for in (a) even when it is possible that
+ * the wait call can return error, in which case we backtrack from it in (b).
+ * Refer to the comment in queue_lock().
+ *
+ * Similarly, in order to account for waiters being requeued on another
+ * address we always increment the waiters for the destination bucket before
+ * acquiring the lock. It then decrements them again  after releasing it -
+ * the code that actually moves the futex(es) between hash buckets (requeue_futex)
+ * will do the additional required waiter count housekeeping. This is done for
+ * double_lock_hb() and double_unlock_hb(), respectively.
+ */
+
+#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
+int __read_mostly futex_cmpxchg_enabled;
+#endif
+
+/*
+ * Futex flags used to encode options to functions and preserve them across
+ * restarts.
+ */
+#define FLAGS_SHARED           0x01
+#define FLAGS_CLOCKRT          0x02
+#define FLAGS_HAS_TIMEOUT      0x04
+
+/*
+ * Priority Inheritance state:
+ */
+struct futex_pi_state {
+       /*
+        * list of 'owned' pi_state instances - these have to be
+        * cleaned up in do_exit() if the task exits prematurely:
+        */
+       struct list_head list;
+
+       /*
+        * The PI object:
+        */
+       struct rt_mutex pi_mutex;
+
+       struct task_struct *owner;
+       atomic_t refcount;
+
+       union futex_key key;
+};
+
+/**
+ * struct futex_q - The hashed futex queue entry, one per waiting task
+ * @list:              priority-sorted list of tasks waiting on this futex
+ * @task:              the task waiting on the futex
+ * @lock_ptr:          the hash bucket lock
+ * @key:               the key the futex is hashed on
+ * @pi_state:          optional priority inheritance state
+ * @rt_waiter:         rt_waiter storage for use with requeue_pi
+ * @requeue_pi_key:    the requeue_pi target futex key
+ * @bitset:            bitset for the optional bitmasked wakeup
+ *
+ * We use this hashed waitqueue, instead of a normal wait_queue_t, so
+ * we can wake only the relevant ones (hashed queues may be shared).
+ *
+ * A futex_q has a woken state, just like tasks have TASK_RUNNING.
+ * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
+ * The order of wakeup is always to make the first condition true, then
+ * the second.
+ *
+ * PI futexes are typically woken before they are removed from the hash list via
+ * the rt_mutex code. See unqueue_me_pi().
+ */
+struct futex_q {
+       struct plist_node list;
+
+       struct task_struct *task;
+       spinlock_t *lock_ptr;
+       union futex_key key;
+       struct futex_pi_state *pi_state;
+       struct rt_mutex_waiter *rt_waiter;
+       union futex_key *requeue_pi_key;
+       u32 bitset;
+};
+
+static const struct futex_q futex_q_init = {
+       /* list gets initialized in queue_me()*/
+       .key = FUTEX_KEY_INIT,
+       .bitset = FUTEX_BITSET_MATCH_ANY
+};
+
+/*
+ * Hash buckets are shared by all the futex_keys that hash to the same
+ * location.  Each key may have multiple futex_q structures, one for each task
+ * waiting on a futex.
+ */
+struct futex_hash_bucket {
+       atomic_t waiters;
+       spinlock_t lock;
+       struct plist_head chain;
+} ____cacheline_aligned_in_smp;
+
+static unsigned long __read_mostly futex_hashsize;
+
+static struct futex_hash_bucket *futex_queues;
+
+static inline void futex_get_mm(union futex_key *key)
+{
+       atomic_inc(&key->private.mm->mm_count);
+       /*
+        * Ensure futex_get_mm() implies a full barrier such that
+        * get_futex_key() implies a full barrier. This is relied upon
+        * as full barrier (B), see the ordering comment above.
+        */
+       smp_mb__after_atomic();
+}
+
+/*
+ * Reflects a new waiter being added to the waitqueue.
+ */
+static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
+{
+#ifdef CONFIG_SMP
+       atomic_inc(&hb->waiters);
+       /*
+        * Full barrier (A), see the ordering comment above.
+        */
+       smp_mb__after_atomic();
+#endif
+}
+
+/*
+ * Reflects a waiter being removed from the waitqueue by wakeup
+ * paths.
+ */
+static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
+{
+#ifdef CONFIG_SMP
+       atomic_dec(&hb->waiters);
+#endif
+}
+
+static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
+{
+#ifdef CONFIG_SMP
+       return atomic_read(&hb->waiters);
+#else
+       return 1;
+#endif
+}
+
+/*
+ * We hash on the keys returned from get_futex_key (see below).
+ */
+static struct futex_hash_bucket *hash_futex(union futex_key *key)
+{
+       u32 hash = jhash2((u32*)&key->both.word,
+                         (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
+                         key->both.offset);
+       return &futex_queues[hash & (futex_hashsize - 1)];
+}
+
+/*
+ * Return 1 if two futex_keys are equal, 0 otherwise.
+ */
+static inline int match_futex(union futex_key *key1, union futex_key *key2)
+{
+       return (key1 && key2
+               && key1->both.word == key2->both.word
+               && key1->both.ptr == key2->both.ptr
+               && key1->both.offset == key2->both.offset);
+}
+
+/*
+ * Take a reference to the resource addressed by a key.
+ * Can be called while holding spinlocks.
+ *
+ */
+static void get_futex_key_refs(union futex_key *key)
+{
+       if (!key->both.ptr)
+               return;
+
+       switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+       case FUT_OFF_INODE:
+               ihold(key->shared.inode); /* implies MB (B) */
+               break;
+       case FUT_OFF_MMSHARED:
+               futex_get_mm(key); /* implies MB (B) */
+               break;
+       default:
+               /*
+                * Private futexes do not hold reference on an inode or
+                * mm, therefore the only purpose of calling get_futex_key_refs
+                * is because we need the barrier for the lockless waiter check.
+                */
+               smp_mb(); /* explicit MB (B) */
+       }
+}
+
+/*
+ * Drop a reference to the resource addressed by a key.
+ * The hash bucket spinlock must not be held. This is
+ * a no-op for private futexes, see comment in the get
+ * counterpart.
+ */
+static void drop_futex_key_refs(union futex_key *key)
+{
+       if (!key->both.ptr) {
+               /* If we're here then we tried to put a key we failed to get */
+               WARN_ON_ONCE(1);
+               return;
+       }
+
+       switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+       case FUT_OFF_INODE:
+               iput(key->shared.inode);
+               break;
+       case FUT_OFF_MMSHARED:
+               mmdrop(key->private.mm);
+               break;
+       }
+}
+
+/**
+ * get_futex_key() - Get parameters which are the keys for a futex
+ * @uaddr:     virtual address of the futex
+ * @fshared:   0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
+ * @key:       address where result is stored.
+ * @rw:                mapping needs to be read/write (values: VERIFY_READ,
+ *              VERIFY_WRITE)
+ *
+ * Return: a negative error code or 0
+ *
+ * The key words are stored in *key on success.
+ *
+ * For shared mappings, it's (page->index, file_inode(vma->vm_file),
+ * offset_within_page).  For private mappings, it's (uaddr, current->mm).
+ * We can usually work out the index without swapping in the page.
+ *
+ * lock_page() might sleep, the caller should not hold a spinlock.
+ */
+static int
+get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
+{
+       unsigned long address = (unsigned long)uaddr;
+       struct mm_struct *mm = current->mm;
+       struct page *page, *page_head;
+       int err, ro = 0;
+
+       /*
+        * The futex address must be "naturally" aligned.
+        */
+       key->both.offset = address % PAGE_SIZE;
+       if (unlikely((address % sizeof(u32)) != 0))
+               return -EINVAL;
+       address -= key->both.offset;
+
+       if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
+               return -EFAULT;
+
+       /*
+        * PROCESS_PRIVATE futexes are fast.
+        * As the mm cannot disappear under us and the 'key' only needs
+        * virtual address, we dont even have to find the underlying vma.
+        * Note : We do have to check 'uaddr' is a valid user address,
+        *        but access_ok() should be faster than find_vma()
+        */
+       if (!fshared) {
+               key->private.mm = mm;
+               key->private.address = address;
+               get_futex_key_refs(key);  /* implies MB (B) */
+               return 0;
+       }
+
+again:
+       err = get_user_pages_fast(address, 1, 1, &page);
+       /*
+        * If write access is not required (eg. FUTEX_WAIT), try
+        * and get read-only access.
+        */
+       if (err == -EFAULT && rw == VERIFY_READ) {
+               err = get_user_pages_fast(address, 1, 0, &page);
+               ro = 1;
+       }
+       if (err < 0)
+               return err;
+       else
+               err = 0;
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+       page_head = page;
+       if (unlikely(PageTail(page))) {
+               put_page(page);
+               /* serialize against __split_huge_page_splitting() */
+               local_irq_disable();
+               if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
+                       page_head = compound_head(page);
+                       /*
+                        * page_head is valid pointer but we must pin
+                        * it before taking the PG_lock and/or
+                        * PG_compound_lock. The moment we re-enable
+                        * irqs __split_huge_page_splitting() can
+                        * return and the head page can be freed from
+                        * under us. We can't take the PG_lock and/or
+                        * PG_compound_lock on a page that could be
+                        * freed from under us.
+                        */
+                       if (page != page_head) {
+                               get_page(page_head);
+                               put_page(page);
+                       }
+                       local_irq_enable();
+               } else {
+                       local_irq_enable();
+                       goto again;
+               }
+       }
+#else
+       page_head = compound_head(page);
+       if (page != page_head) {
+               get_page(page_head);
+               put_page(page);
+       }
+#endif
+
+       lock_page(page_head);
+
+       /*
+        * If page_head->mapping is NULL, then it cannot be a PageAnon
+        * page; but it might be the ZERO_PAGE or in the gate area or
+        * in a special mapping (all cases which we are happy to fail);
+        * or it may have been a good file page when get_user_pages_fast
+        * found it, but truncated or holepunched or subjected to
+        * invalidate_complete_page2 before we got the page lock (also
+        * cases which we are happy to fail).  And we hold a reference,
+        * so refcount care in invalidate_complete_page's remove_mapping
+        * prevents drop_caches from setting mapping to NULL beneath us.
+        *
+        * The case we do have to guard against is when memory pressure made
+        * shmem_writepage move it from filecache to swapcache beneath us:
+        * an unlikely race, but we do need to retry for page_head->mapping.
+        */
+       if (!page_head->mapping) {
+               int shmem_swizzled = PageSwapCache(page_head);
+               unlock_page(page_head);
+               put_page(page_head);
+               if (shmem_swizzled)
+                       goto again;
+               return -EFAULT;
+       }
+
+       /*
+        * Private mappings are handled in a simple way.
+        *
+        * NOTE: When userspace waits on a MAP_SHARED mapping, even if
+        * it's a read-only handle, it's expected that futexes attach to
+        * the object not the particular process.
+        */
+       if (PageAnon(page_head)) {
+               /*
+                * A RO anonymous page will never change and thus doesn't make
+                * sense for futex operations.
+                */
+               if (ro) {
+                       err = -EFAULT;
+                       goto out;
+               }
+
+               key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
+               key->private.mm = mm;
+               key->private.address = address;
+       } else {
+               key->both.offset |= FUT_OFF_INODE; /* inode-based key */
+               key->shared.inode = page_head->mapping->host;
+               key->shared.pgoff = basepage_index(page);
+       }
+
+       get_futex_key_refs(key); /* implies MB (B) */
+
+out:
+       unlock_page(page_head);
+       put_page(page_head);
+       return err;
+}
+
+static inline void put_futex_key(union futex_key *key)
+{
+       drop_futex_key_refs(key);
+}
+
+/**
+ * fault_in_user_writeable() - Fault in user address and verify RW access
+ * @uaddr:     pointer to faulting user space address
+ *
+ * Slow path to fixup the fault we just took in the atomic write
+ * access to @uaddr.
+ *
+ * We have no generic implementation of a non-destructive write to the
+ * user address. We know that we faulted in the atomic pagefault
+ * disabled section so we can as well avoid the #PF overhead by
+ * calling get_user_pages() right away.
+ */
+static int fault_in_user_writeable(u32 __user *uaddr)
+{
+       struct mm_struct *mm = current->mm;
+       int ret;
+
+       down_read(&mm->mmap_sem);
+       ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
+                              FAULT_FLAG_WRITE);
+       up_read(&mm->mmap_sem);
+
+       return ret < 0 ? ret : 0;
+}
+
+/**
+ * futex_top_waiter() - Return the highest priority waiter on a futex
+ * @hb:                the hash bucket the futex_q's reside in
+ * @key:       the futex key (to distinguish it from other futex futex_q's)
+ *
+ * Must be called with the hb lock held.
+ */
+static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
+                                       union futex_key *key)
+{
+       struct futex_q *this;
+
+       plist_for_each_entry(this, &hb->chain, list) {
+               if (match_futex(&this->key, key))
+                       return this;
+       }
+       return NULL;
+}
+
+static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
+                                     u32 uval, u32 newval)
+{
+       int ret;
+
+       pagefault_disable();
+       ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
+       pagefault_enable();
+
+       return ret;
+}
+
+static int get_futex_value_locked(u32 *dest, u32 __user *from)
+{
+       int ret;
+
+       pagefault_disable();
+       ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
+       pagefault_enable();
+
+       return ret ? -EFAULT : 0;
+}
+
+
+/*
+ * PI code:
+ */
+static int refill_pi_state_cache(void)
+{
+       struct futex_pi_state *pi_state;
+
+       if (likely(current->pi_state_cache))
+               return 0;
+
+       pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
+
+       if (!pi_state)
+               return -ENOMEM;
+
+       INIT_LIST_HEAD(&pi_state->list);
+       /* pi_mutex gets initialized later */
+       pi_state->owner = NULL;
+       atomic_set(&pi_state->refcount, 1);
+       pi_state->key = FUTEX_KEY_INIT;
+
+       current->pi_state_cache = pi_state;
+
+       return 0;
+}
+
+static struct futex_pi_state * alloc_pi_state(void)
+{
+       struct futex_pi_state *pi_state = current->pi_state_cache;
+
+       WARN_ON(!pi_state);
+       current->pi_state_cache = NULL;
+
+       return pi_state;
+}
+
+/*
+ * Must be called with the hb lock held.
+ */
+static void free_pi_state(struct futex_pi_state *pi_state)
+{
+       if (!pi_state)
+               return;
+
+       if (!atomic_dec_and_test(&pi_state->refcount))
+               return;
+
+       /*
+        * If pi_state->owner is NULL, the owner is most probably dying
+        * and has cleaned up the pi_state already
+        */
+       if (pi_state->owner) {
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
+               list_del_init(&pi_state->list);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+
+               rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
+       }
+
+       if (current->pi_state_cache)
+               kfree(pi_state);
+       else {
+               /*
+                * pi_state->list is already empty.
+                * clear pi_state->owner.
+                * refcount is at 0 - put it back to 1.
+                */
+               pi_state->owner = NULL;
+               atomic_set(&pi_state->refcount, 1);
+               current->pi_state_cache = pi_state;
+       }
+}
+
+/*
+ * Look up the task based on what TID userspace gave us.
+ * We dont trust it.
+ */
+static struct task_struct * futex_find_get_task(pid_t pid)
+{
+       struct task_struct *p;
+
+       rcu_read_lock();
+       p = find_task_by_vpid(pid);
+       if (p)
+               get_task_struct(p);
+
+       rcu_read_unlock();
+
+       return p;
+}
+
+/*
+ * This task is holding PI mutexes at exit time => bad.
+ * Kernel cleans up PI-state, but userspace is likely hosed.
+ * (Robust-futex cleanup is separate and might save the day for userspace.)
+ */
+void exit_pi_state_list(struct task_struct *curr)
+{
+       struct list_head *next, *head = &curr->pi_state_list;
+       struct futex_pi_state *pi_state;
+       struct futex_hash_bucket *hb;
+       union futex_key key = FUTEX_KEY_INIT;
+
+       if (!futex_cmpxchg_enabled)
+               return;
+       /*
+        * We are a ZOMBIE and nobody can enqueue itself on
+        * pi_state_list anymore, but we have to be careful
+        * versus waiters unqueueing themselves:
+        */
+       raw_spin_lock_irq(&curr->pi_lock);
+       while (!list_empty(head)) {
+
+               next = head->next;
+               pi_state = list_entry(next, struct futex_pi_state, list);
+               key = pi_state->key;
+               hb = hash_futex(&key);
+               raw_spin_unlock_irq(&curr->pi_lock);
+
+               spin_lock(&hb->lock);
+
+               raw_spin_lock_irq(&curr->pi_lock);
+               /*
+                * We dropped the pi-lock, so re-check whether this
+                * task still owns the PI-state:
+                */
+               if (head->next != next) {
+                       raw_spin_unlock_irq(&curr->pi_lock);
+                       spin_unlock(&hb->lock);
+                       raw_spin_lock_irq(&curr->pi_lock);
+                       continue;
+               }
+
+               WARN_ON(pi_state->owner != curr);
+               WARN_ON(list_empty(&pi_state->list));
+               list_del_init(&pi_state->list);
+               pi_state->owner = NULL;
+               raw_spin_unlock_irq(&curr->pi_lock);
+
+               rt_mutex_unlock(&pi_state->pi_mutex);
+
+               spin_unlock(&hb->lock);
+
+               raw_spin_lock_irq(&curr->pi_lock);
+       }
+       raw_spin_unlock_irq(&curr->pi_lock);
+}
+
+/*
+ * We need to check the following states:
+ *
+ *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
+ *
+ * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
+ * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
+ *
+ * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
+ *
+ * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
+ * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
+ *
+ * [6]  Found  | Found    | task      | 0         | 1      | Valid
+ *
+ * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
+ *
+ * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
+ * [9]  Found  | Found    | task      | 0         | 0      | Invalid
+ * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
+ *
+ * [1] Indicates that the kernel can acquire the futex atomically. We
+ *     came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
+ *
+ * [2] Valid, if TID does not belong to a kernel thread. If no matching
+ *      thread is found then it indicates that the owner TID has died.
+ *
+ * [3] Invalid. The waiter is queued on a non PI futex
+ *
+ * [4] Valid state after exit_robust_list(), which sets the user space
+ *     value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
+ *
+ * [5] The user space value got manipulated between exit_robust_list()
+ *     and exit_pi_state_list()
+ *
+ * [6] Valid state after exit_pi_state_list() which sets the new owner in
+ *     the pi_state but cannot access the user space value.
+ *
+ * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
+ *
+ * [8] Owner and user space value match
+ *
+ * [9] There is no transient state which sets the user space TID to 0
+ *     except exit_robust_list(), but this is indicated by the
+ *     FUTEX_OWNER_DIED bit. See [4]
+ *
+ * [10] There is no transient state which leaves owner and user space
+ *     TID out of sync.
+ */
+
+/*
+ * Validate that the existing waiter has a pi_state and sanity check
+ * the pi_state against the user space value. If correct, attach to
+ * it.
+ */
+static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
+                             struct futex_pi_state **ps)
+{
+       pid_t pid = uval & FUTEX_TID_MASK;
+
+       /*
+        * Userspace might have messed up non-PI and PI futexes [3]
+        */
+       if (unlikely(!pi_state))
+               return -EINVAL;
+
+       WARN_ON(!atomic_read(&pi_state->refcount));
+
+       /*
+        * Handle the owner died case:
+        */
+       if (uval & FUTEX_OWNER_DIED) {
+               /*
+                * exit_pi_state_list sets owner to NULL and wakes the
+                * topmost waiter. The task which acquires the
+                * pi_state->rt_mutex will fixup owner.
+                */
+               if (!pi_state->owner) {
+                       /*
+                        * No pi state owner, but the user space TID
+                        * is not 0. Inconsistent state. [5]
+                        */
+                       if (pid)
+                               return -EINVAL;
+                       /*
+                        * Take a ref on the state and return success. [4]
+                        */
+                       goto out_state;
+               }
+
+               /*
+                * If TID is 0, then either the dying owner has not
+                * yet executed exit_pi_state_list() or some waiter
+                * acquired the rtmutex in the pi state, but did not
+                * yet fixup the TID in user space.
+                *
+                * Take a ref on the state and return success. [6]
+                */
+               if (!pid)
+                       goto out_state;
+       } else {
+               /*
+                * If the owner died bit is not set, then the pi_state
+                * must have an owner. [7]
+                */
+               if (!pi_state->owner)
+                       return -EINVAL;
+       }
+
+       /*
+        * Bail out if user space manipulated the futex value. If pi
+        * state exists then the owner TID must be the same as the
+        * user space TID. [9/10]
+        */
+       if (pid != task_pid_vnr(pi_state->owner))
+               return -EINVAL;
+out_state:
+       atomic_inc(&pi_state->refcount);
+       *ps = pi_state;
+       return 0;
+}
+
+/*
+ * Lookup the task for the TID provided from user space and attach to
+ * it after doing proper sanity checks.
+ */
+static int attach_to_pi_owner(u32 uval, union futex_key *key,
+                             struct futex_pi_state **ps)
+{
+       pid_t pid = uval & FUTEX_TID_MASK;
+       struct futex_pi_state *pi_state;
+       struct task_struct *p;
+
+       /*
+        * We are the first waiter - try to look up the real owner and attach
+        * the new pi_state to it, but bail out when TID = 0 [1]
+        */
+       if (!pid)
+               return -ESRCH;
+       p = futex_find_get_task(pid);
+       if (!p)
+               return -ESRCH;
+
+       if (unlikely(p->flags & PF_KTHREAD)) {
+               put_task_struct(p);
+               return -EPERM;
+       }
+
+       /*
+        * We need to look at the task state flags to figure out,
+        * whether the task is exiting. To protect against the do_exit
+        * change of the task flags, we do this protected by
+        * p->pi_lock:
+        */
+       raw_spin_lock_irq(&p->pi_lock);
+       if (unlikely(p->flags & PF_EXITING)) {
+               /*
+                * The task is on the way out. When PF_EXITPIDONE is
+                * set, we know that the task has finished the
+                * cleanup:
+                */
+               int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
+
+               raw_spin_unlock_irq(&p->pi_lock);
+               put_task_struct(p);
+               return ret;
+       }
+
+       /*
+        * No existing pi state. First waiter. [2]
+        */
+       pi_state = alloc_pi_state();
+
+       /*
+        * Initialize the pi_mutex in locked state and make @p
+        * the owner of it:
+        */
+       rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
+
+       /* Store the key for possible exit cleanups: */
+       pi_state->key = *key;
+
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &p->pi_state_list);
+       pi_state->owner = p;
+       raw_spin_unlock_irq(&p->pi_lock);
+
+       put_task_struct(p);
+
+       *ps = pi_state;
+
+       return 0;
+}
+
+static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
+                          union futex_key *key, struct futex_pi_state **ps)
+{
+       struct futex_q *match = futex_top_waiter(hb, key);
+
+       /*
+        * If there is a waiter on that futex, validate it and
+        * attach to the pi_state when the validation succeeds.
+        */
+       if (match)
+               return attach_to_pi_state(uval, match->pi_state, ps);
+
+       /*
+        * We are the first waiter - try to look up the owner based on
+        * @uval and attach to it.
+        */
+       return attach_to_pi_owner(uval, key, ps);
+}
+
+static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
+{
+       u32 uninitialized_var(curval);
+
+       if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
+               return -EFAULT;
+
+       /*If user space value changed, let the caller retry */
+       return curval != uval ? -EAGAIN : 0;
+}
+
+/**
+ * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
+ * @uaddr:             the pi futex user address
+ * @hb:                        the pi futex hash bucket
+ * @key:               the futex key associated with uaddr and hb
+ * @ps:                        the pi_state pointer where we store the result of the
+ *                     lookup
+ * @task:              the task to perform the atomic lock work for.  This will
+ *                     be "current" except in the case of requeue pi.
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Return:
+ *  0 - ready to wait;
+ *  1 - acquired the lock;
+ * <0 - error
+ *
+ * The hb->lock and futex_key refs shall be held by the caller.
+ */
+static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
+                               union futex_key *key,
+                               struct futex_pi_state **ps,
+                               struct task_struct *task, int set_waiters)
+{
+       u32 uval, newval, vpid = task_pid_vnr(task);
+       struct futex_q *match;
+       int ret;
+
+       /*
+        * Read the user space value first so we can validate a few
+        * things before proceeding further.
+        */
+       if (get_futex_value_locked(&uval, uaddr))
+               return -EFAULT;
+
+       /*
+        * Detect deadlocks.
+        */
+       if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
+               return -EDEADLK;
+
+       /*
+        * Lookup existing state first. If it exists, try to attach to
+        * its pi_state.
+        */
+       match = futex_top_waiter(hb, key);
+       if (match)
+               return attach_to_pi_state(uval, match->pi_state, ps);
+
+       /*
+        * No waiter and user TID is 0. We are here because the
+        * waiters or the owner died bit is set or called from
+        * requeue_cmp_pi or for whatever reason something took the
+        * syscall.
+        */
+       if (!(uval & FUTEX_TID_MASK)) {
+               /*
+                * We take over the futex. No other waiters and the user space
+                * TID is 0. We preserve the owner died bit.
+                */
+               newval = uval & FUTEX_OWNER_DIED;
+               newval |= vpid;
+
+               /* The futex requeue_pi code can enforce the waiters bit */
+               if (set_waiters)
+                       newval |= FUTEX_WAITERS;
+
+               ret = lock_pi_update_atomic(uaddr, uval, newval);
+               /* If the take over worked, return 1 */
+               return ret < 0 ? ret : 1;
+       }
+
+       /*
+        * First waiter. Set the waiters bit before attaching ourself to
+        * the owner. If owner tries to unlock, it will be forced into
+        * the kernel and blocked on hb->lock.
+        */
+       newval = uval | FUTEX_WAITERS;
+       ret = lock_pi_update_atomic(uaddr, uval, newval);
+       if (ret)
+               return ret;
+       /*
+        * If the update of the user space value succeeded, we try to
+        * attach to the owner. If that fails, no harm done, we only
+        * set the FUTEX_WAITERS bit in the user space variable.
+        */
+       return attach_to_pi_owner(uval, key, ps);
+}
+
+/**
+ * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
+ * @q: The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be NULL and must be held by the caller.
+ */
+static void __unqueue_futex(struct futex_q *q)
+{
+       struct futex_hash_bucket *hb;
+
+       if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
+           || WARN_ON(plist_node_empty(&q->list)))
+               return;
+
+       hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
+       plist_del(&q->list, &hb->chain);
+       hb_waiters_dec(hb);
+}
+
+/*
+ * The hash bucket lock must be held when this is called.
+ * Afterwards, the futex_q must not be accessed. Callers
+ * must ensure to later call wake_up_q() for the actual
+ * wakeups to occur.
+ */
+static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
+{
+       struct task_struct *p = q->task;
+
+       if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
+               return;
+
+       /*
+        * Queue the task for later wakeup for after we've released
+        * the hb->lock. wake_q_add() grabs reference to p.
+        */
+       wake_q_add(wake_q, p);
+       __unqueue_futex(q);
+       /*
+        * The waiting task can free the futex_q as soon as
+        * q->lock_ptr = NULL is written, without taking any locks. A
+        * memory barrier is required here to prevent the following
+        * store to lock_ptr from getting ahead of the plist_del.
+        */
+       smp_wmb();
+       q->lock_ptr = NULL;
+}
+
+static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
+                        struct futex_hash_bucket *hb)
+{
+       struct task_struct *new_owner;
+       struct futex_pi_state *pi_state = this->pi_state;
+       u32 uninitialized_var(curval), newval;
+       bool deboost;
+       int ret = 0;
+
+       if (!pi_state)
+               return -EINVAL;
+
+       /*
+        * If current does not own the pi_state then the futex is
+        * inconsistent and user space fiddled with the futex value.
+        */
+       if (pi_state->owner != current)
+               return -EINVAL;
+
+       raw_spin_lock(&pi_state->pi_mutex.wait_lock);
+       new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
+
+       /*
+        * It is possible that the next waiter (the one that brought
+        * this owner to the kernel) timed out and is no longer
+        * waiting on the lock.
+        */
+       if (!new_owner)
+               new_owner = this->task;
+
+       /*
+        * We pass it to the next owner. The WAITERS bit is always
+        * kept enabled while there is PI state around. We cleanup the
+        * owner died bit, because we are the owner.
+        */
+       newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
+
+       if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
+               ret = -EFAULT;
+       else if (curval != uval)
+               ret = -EINVAL;
+       if (ret) {
+               raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+               return ret;
+       }
+
+       raw_spin_lock_irq(&pi_state->owner->pi_lock);
+       WARN_ON(list_empty(&pi_state->list));
+       list_del_init(&pi_state->list);
+       raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+
+       raw_spin_lock_irq(&new_owner->pi_lock);
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &new_owner->pi_state_list);
+       pi_state->owner = new_owner;
+       raw_spin_unlock_irq(&new_owner->pi_lock);
+
+       raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+
+       deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex);
+
+       /*
+        * We deboost after dropping hb->lock. That prevents a double
+        * wakeup on RT.
+        */
+       spin_unlock(&hb->lock);
+
+       if (deboost)
+               rt_mutex_adjust_prio(current);
+
+       return 0;
+}
+
+/*
+ * Express the locking dependencies for lockdep:
+ */
+static inline void
+double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+       if (hb1 <= hb2) {
+               spin_lock(&hb1->lock);
+               if (hb1 < hb2)
+                       spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
+       } else { /* hb1 > hb2 */
+               spin_lock(&hb2->lock);
+               spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
+       }
+}
+
+static inline void
+double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+       spin_unlock(&hb1->lock);
+       if (hb1 != hb2)
+               spin_unlock(&hb2->lock);
+}
+
+/*
+ * Wake up waiters matching bitset queued on this futex (uaddr).
+ */
+static int
+futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
+{
+       struct futex_hash_bucket *hb;
+       struct futex_q *this, *next;
+       union futex_key key = FUTEX_KEY_INIT;
+       int ret;
+       WAKE_Q(wake_q);
+
+       if (!bitset)
+               return -EINVAL;
+
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
+       if (unlikely(ret != 0))
+               goto out;
+
+       hb = hash_futex(&key);
+
+       /* Make sure we really have tasks to wakeup */
+       if (!hb_waiters_pending(hb))
+               goto out_put_key;
+
+       spin_lock(&hb->lock);
+
+       plist_for_each_entry_safe(this, next, &hb->chain, list) {
+               if (match_futex (&this->key, &key)) {
+                       if (this->pi_state || this->rt_waiter) {
+                               ret = -EINVAL;
+                               break;
+                       }
+
+                       /* Check if one of the bits is set in both bitsets */
+                       if (!(this->bitset & bitset))
+                               continue;
+
+                       mark_wake_futex(&wake_q, this);
+                       if (++ret >= nr_wake)
+                               break;
+               }
+       }
+
+       spin_unlock(&hb->lock);
+       wake_up_q(&wake_q);
+out_put_key:
+       put_futex_key(&key);
+out:
+       return ret;
+}
+
+/*
+ * Wake up all waiters hashed on the physical page that is mapped
+ * to this virtual address:
+ */
+static int
+futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
+             int nr_wake, int nr_wake2, int op)
+{
+       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+       struct futex_hash_bucket *hb1, *hb2;
+       struct futex_q *this, *next;
+       int ret, op_ret;
+       WAKE_Q(wake_q);
+
+retry:
+       ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
+       if (unlikely(ret != 0))
+               goto out;
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
+       if (unlikely(ret != 0))
+               goto out_put_key1;
+
+       hb1 = hash_futex(&key1);
+       hb2 = hash_futex(&key2);
+
+retry_private:
+       double_lock_hb(hb1, hb2);
+       op_ret = futex_atomic_op_inuser(op, uaddr2);
+       if (unlikely(op_ret < 0)) {
+
+               double_unlock_hb(hb1, hb2);
+
+#ifndef CONFIG_MMU
+               /*
+                * we don't get EFAULT from MMU faults if we don't have an MMU,
+                * but we might get them from range checking
+                */
+               ret = op_ret;
+               goto out_put_keys;
+#endif
+
+               if (unlikely(op_ret != -EFAULT)) {
+                       ret = op_ret;
+                       goto out_put_keys;
+               }
+
+               ret = fault_in_user_writeable(uaddr2);
+               if (ret)
+                       goto out_put_keys;
+
+               if (!(flags & FLAGS_SHARED))
+                       goto retry_private;
+
+               put_futex_key(&key2);
+               put_futex_key(&key1);
+               goto retry;
+       }
+
+       plist_for_each_entry_safe(this, next, &hb1->chain, list) {
+               if (match_futex (&this->key, &key1)) {
+                       if (this->pi_state || this->rt_waiter) {
+                               ret = -EINVAL;
+                               goto out_unlock;
+                       }
+                       mark_wake_futex(&wake_q, this);
+                       if (++ret >= nr_wake)
+                               break;
+               }
+       }
+
+       if (op_ret > 0) {
+               op_ret = 0;
+               plist_for_each_entry_safe(this, next, &hb2->chain, list) {
+                       if (match_futex (&this->key, &key2)) {
+                               if (this->pi_state || this->rt_waiter) {
+                                       ret = -EINVAL;
+                                       goto out_unlock;
+                               }
+                               mark_wake_futex(&wake_q, this);
+                               if (++op_ret >= nr_wake2)
+                                       break;
+                       }
+               }
+               ret += op_ret;
+       }
+
+out_unlock:
+       double_unlock_hb(hb1, hb2);
+       wake_up_q(&wake_q);
+out_put_keys:
+       put_futex_key(&key2);
+out_put_key1:
+       put_futex_key(&key1);
+out:
+       return ret;
+}
+
+/**
+ * requeue_futex() - Requeue a futex_q from one hb to another
+ * @q:         the futex_q to requeue
+ * @hb1:       the source hash_bucket
+ * @hb2:       the target hash_bucket
+ * @key2:      the new key for the requeued futex_q
+ */
+static inline
+void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
+                  struct futex_hash_bucket *hb2, union futex_key *key2)
+{
+
+       /*
+        * If key1 and key2 hash to the same bucket, no need to
+        * requeue.
+        */
+       if (likely(&hb1->chain != &hb2->chain)) {
+               plist_del(&q->list, &hb1->chain);
+               hb_waiters_dec(hb1);
+               plist_add(&q->list, &hb2->chain);
+               hb_waiters_inc(hb2);
+               q->lock_ptr = &hb2->lock;
+       }
+       get_futex_key_refs(key2);
+       q->key = *key2;
+}
+
+/**
+ * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
+ * @q:         the futex_q
+ * @key:       the key of the requeue target futex
+ * @hb:                the hash_bucket of the requeue target futex
+ *
+ * During futex_requeue, with requeue_pi=1, it is possible to acquire the
+ * target futex if it is uncontended or via a lock steal.  Set the futex_q key
+ * to the requeue target futex so the waiter can detect the wakeup on the right
+ * futex, but remove it from the hb and NULL the rt_waiter so it can detect
+ * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
+ * to protect access to the pi_state to fixup the owner later.  Must be called
+ * with both q->lock_ptr and hb->lock held.
+ */
+static inline
+void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
+                          struct futex_hash_bucket *hb)
+{
+       get_futex_key_refs(key);
+       q->key = *key;
+
+       __unqueue_futex(q);
+
+       WARN_ON(!q->rt_waiter);
+       q->rt_waiter = NULL;
+
+       q->lock_ptr = &hb->lock;
+
+       wake_up_state(q->task, TASK_NORMAL);
+}
+
+/**
+ * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
+ * @pifutex:           the user address of the to futex
+ * @hb1:               the from futex hash bucket, must be locked by the caller
+ * @hb2:               the to futex hash bucket, must be locked by the caller
+ * @key1:              the from futex key
+ * @key2:              the to futex key
+ * @ps:                        address to store the pi_state pointer
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Try and get the lock on behalf of the top waiter if we can do it atomically.
+ * Wake the top waiter if we succeed.  If the caller specified set_waiters,
+ * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
+ * hb1 and hb2 must be held by the caller.
+ *
+ * Return:
+ *  0 - failed to acquire the lock atomically;
+ * >0 - acquired the lock, return value is vpid of the top_waiter
+ * <0 - error
+ */
+static int futex_proxy_trylock_atomic(u32 __user *pifutex,
+                                struct futex_hash_bucket *hb1,
+                                struct futex_hash_bucket *hb2,
+                                union futex_key *key1, union futex_key *key2,
+                                struct futex_pi_state **ps, int set_waiters)
+{
+       struct futex_q *top_waiter = NULL;
+       u32 curval;
+       int ret, vpid;
+
+       if (get_futex_value_locked(&curval, pifutex))
+               return -EFAULT;
+
+       /*
+        * Find the top_waiter and determine if there are additional waiters.
+        * If the caller intends to requeue more than 1 waiter to pifutex,
+        * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
+        * as we have means to handle the possible fault.  If not, don't set
+        * the bit unecessarily as it will force the subsequent unlock to enter
+        * the kernel.
+        */
+       top_waiter = futex_top_waiter(hb1, key1);
+
+       /* There are no waiters, nothing for us to do. */
+       if (!top_waiter)
+               return 0;
+
+       /* Ensure we requeue to the expected futex. */
+       if (!match_futex(top_waiter->requeue_pi_key, key2))
+               return -EINVAL;
+
+       /*
+        * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
+        * the contended case or if set_waiters is 1.  The pi_state is returned
+        * in ps in contended cases.
+        */
+       vpid = task_pid_vnr(top_waiter->task);
+       ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
+                                  set_waiters);
+       if (ret == 1) {
+               requeue_pi_wake_futex(top_waiter, key2, hb2);
+               return vpid;
+       }
+       return ret;
+}
+
+/**
+ * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
+ * @uaddr1:    source futex user address
+ * @flags:     futex flags (FLAGS_SHARED, etc.)
+ * @uaddr2:    target futex user address
+ * @nr_wake:   number of waiters to wake (must be 1 for requeue_pi)
+ * @nr_requeue:        number of waiters to requeue (0-INT_MAX)
+ * @cmpval:    @uaddr1 expected value (or %NULL)
+ * @requeue_pi:        if we are attempting to requeue from a non-pi futex to a
+ *             pi futex (pi to pi requeue is not supported)
+ *
+ * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
+ * uaddr2 atomically on behalf of the top waiter.
+ *
+ * Return:
+ * >=0 - on success, the number of tasks requeued or woken;
+ *  <0 - on error
+ */
+static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
+                        u32 __user *uaddr2, int nr_wake, int nr_requeue,
+                        u32 *cmpval, int requeue_pi)
+{
+       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+       int drop_count = 0, task_count = 0, ret;
+       struct futex_pi_state *pi_state = NULL;
+       struct futex_hash_bucket *hb1, *hb2;
+       struct futex_q *this, *next;
+       WAKE_Q(wake_q);
+
+       if (requeue_pi) {
+               /*
+                * Requeue PI only works on two distinct uaddrs. This
+                * check is only valid for private futexes. See below.
+                */
+               if (uaddr1 == uaddr2)
+                       return -EINVAL;
+
+               /*
+                * requeue_pi requires a pi_state, try to allocate it now
+                * without any locks in case it fails.
+                */
+               if (refill_pi_state_cache())
+                       return -ENOMEM;
+               /*
+                * requeue_pi must wake as many tasks as it can, up to nr_wake
+                * + nr_requeue, since it acquires the rt_mutex prior to
+                * returning to userspace, so as to not leave the rt_mutex with
+                * waiters and no owner.  However, second and third wake-ups
+                * cannot be predicted as they involve race conditions with the
+                * first wake and a fault while looking up the pi_state.  Both
+                * pthread_cond_signal() and pthread_cond_broadcast() should
+                * use nr_wake=1.
+                */
+               if (nr_wake != 1)
+                       return -EINVAL;
+       }
+
+retry:
+       ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
+       if (unlikely(ret != 0))
+               goto out;
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
+                           requeue_pi ? VERIFY_WRITE : VERIFY_READ);
+       if (unlikely(ret != 0))
+               goto out_put_key1;
+
+       /*
+        * The check above which compares uaddrs is not sufficient for
+        * shared futexes. We need to compare the keys:
+        */
+       if (requeue_pi && match_futex(&key1, &key2)) {
+               ret = -EINVAL;
+               goto out_put_keys;
+       }
+
+       hb1 = hash_futex(&key1);
+       hb2 = hash_futex(&key2);
+
+retry_private:
+       hb_waiters_inc(hb2);
+       double_lock_hb(hb1, hb2);
+
+       if (likely(cmpval != NULL)) {
+               u32 curval;
+
+               ret = get_futex_value_locked(&curval, uaddr1);
+
+               if (unlikely(ret)) {
+                       double_unlock_hb(hb1, hb2);
+                       hb_waiters_dec(hb2);
+
+                       ret = get_user(curval, uaddr1);
+                       if (ret)
+                               goto out_put_keys;
+
+                       if (!(flags & FLAGS_SHARED))
+                               goto retry_private;
+
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       goto retry;
+               }
+               if (curval != *cmpval) {
+                       ret = -EAGAIN;
+                       goto out_unlock;
+               }
+       }
+
+       if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+               /*
+                * Attempt to acquire uaddr2 and wake the top waiter. If we
+                * intend to requeue waiters, force setting the FUTEX_WAITERS
+                * bit.  We force this here where we are able to easily handle
+                * faults rather in the requeue loop below.
+                */
+               ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
+                                                &key2, &pi_state, nr_requeue);
+
+               /*
+                * At this point the top_waiter has either taken uaddr2 or is
+                * waiting on it.  If the former, then the pi_state will not
+                * exist yet, look it up one more time to ensure we have a
+                * reference to it. If the lock was taken, ret contains the
+                * vpid of the top waiter task.
+                */
+               if (ret > 0) {
+                       WARN_ON(pi_state);
+                       drop_count++;
+                       task_count++;
+                       /*
+                        * If we acquired the lock, then the user
+                        * space value of uaddr2 should be vpid. It
+                        * cannot be changed by the top waiter as it
+                        * is blocked on hb2 lock if it tries to do
+                        * so. If something fiddled with it behind our
+                        * back the pi state lookup might unearth
+                        * it. So we rather use the known value than
+                        * rereading and handing potential crap to
+                        * lookup_pi_state.
+                        */
+                       ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
+               }
+
+               switch (ret) {
+               case 0:
+                       break;
+               case -EFAULT:
+                       free_pi_state(pi_state);
+                       pi_state = NULL;
+                       double_unlock_hb(hb1, hb2);
+                       hb_waiters_dec(hb2);
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       ret = fault_in_user_writeable(uaddr2);
+                       if (!ret)
+                               goto retry;
+                       goto out;
+               case -EAGAIN:
+                       /*
+                        * Two reasons for this:
+                        * - Owner is exiting and we just wait for the
+                        *   exit to complete.
+                        * - The user space value changed.
+                        */
+                       free_pi_state(pi_state);
+                       pi_state = NULL;
+                       double_unlock_hb(hb1, hb2);
+                       hb_waiters_dec(hb2);
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       cond_resched();
+                       goto retry;
+               default:
+                       goto out_unlock;
+               }
+       }
+
+       plist_for_each_entry_safe(this, next, &hb1->chain, list) {
+               if (task_count - nr_wake >= nr_requeue)
+                       break;
+
+               if (!match_futex(&this->key, &key1))
+                       continue;
+
+               /*
+                * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
+                * be paired with each other and no other futex ops.
+                *
+                * We should never be requeueing a futex_q with a pi_state,
+                * which is awaiting a futex_unlock_pi().
+                */
+               if ((requeue_pi && !this->rt_waiter) ||
+                   (!requeue_pi && this->rt_waiter) ||
+                   this->pi_state) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Wake nr_wake waiters.  For requeue_pi, if we acquired the
+                * lock, we already woke the top_waiter.  If not, it will be
+                * woken by futex_unlock_pi().
+                */
+               if (++task_count <= nr_wake && !requeue_pi) {
+                       mark_wake_futex(&wake_q, this);
+                       continue;
+               }
+
+               /* Ensure we requeue to the expected futex for requeue_pi. */
+               if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Requeue nr_requeue waiters and possibly one more in the case
+                * of requeue_pi if we couldn't acquire the lock atomically.
+                */
+               if (requeue_pi) {
+                       /* Prepare the waiter to take the rt_mutex. */
+                       atomic_inc(&pi_state->refcount);
+                       this->pi_state = pi_state;
+                       ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+                                                       this->rt_waiter,
+                                                       this->task);
+                       if (ret == 1) {
+                               /* We got the lock. */
+                               requeue_pi_wake_futex(this, &key2, hb2);
+                               drop_count++;
+                               continue;
+                       } else if (ret == -EAGAIN) {
+                               /*
+                                * Waiter was woken by timeout or
+                                * signal and has set pi_blocked_on to
+                                * PI_WAKEUP_INPROGRESS before we
+                                * tried to enqueue it on the rtmutex.
+                                */
+                               this->pi_state = NULL;
+                               free_pi_state(pi_state);
+                               continue;
+                       } else if (ret) {
+                               /* -EDEADLK */
+                               this->pi_state = NULL;
+                               free_pi_state(pi_state);
+                               goto out_unlock;
+                       }
+               }
+               requeue_futex(this, hb1, hb2, &key2);
+               drop_count++;
+       }
+
+out_unlock:
+       free_pi_state(pi_state);
+       double_unlock_hb(hb1, hb2);
+       wake_up_q(&wake_q);
+       hb_waiters_dec(hb2);
+
+       /*
+        * drop_futex_key_refs() must be called outside the spinlocks. During
+        * the requeue we moved futex_q's from the hash bucket at key1 to the
+        * one at key2 and updated their key pointer.  We no longer need to
+        * hold the references to key1.
+        */
+       while (--drop_count >= 0)
+               drop_futex_key_refs(&key1);
+
+out_put_keys:
+       put_futex_key(&key2);
+out_put_key1:
+       put_futex_key(&key1);
+out:
+       return ret ? ret : task_count;
+}
+
+/* The key must be already stored in q->key. */
+static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
+       __acquires(&hb->lock)
+{
+       struct futex_hash_bucket *hb;
+
+       hb = hash_futex(&q->key);
+
+       /*
+        * Increment the counter before taking the lock so that
+        * a potential waker won't miss a to-be-slept task that is
+        * waiting for the spinlock. This is safe as all queue_lock()
+        * users end up calling queue_me(). Similarly, for housekeeping,
+        * decrement the counter at queue_unlock() when some error has
+        * occurred and we don't end up adding the task to the list.
+        */
+       hb_waiters_inc(hb);
+
+       q->lock_ptr = &hb->lock;
+
+       spin_lock(&hb->lock); /* implies MB (A) */
+       return hb;
+}
+
+static inline void
+queue_unlock(struct futex_hash_bucket *hb)
+       __releases(&hb->lock)
+{
+       spin_unlock(&hb->lock);
+       hb_waiters_dec(hb);
+}
+
+/**
+ * queue_me() - Enqueue the futex_q on the futex_hash_bucket
+ * @q: The futex_q to enqueue
+ * @hb:        The destination hash bucket
+ *
+ * The hb->lock must be held by the caller, and is released here. A call to
+ * queue_me() is typically paired with exactly one call to unqueue_me().  The
+ * exceptions involve the PI related operations, which may use unqueue_me_pi()
+ * or nothing if the unqueue is done as part of the wake process and the unqueue
+ * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
+ * an example).
+ */
+static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
+       __releases(&hb->lock)
+{
+       int prio;
+
+       /*
+        * The priority used to register this element is
+        * - either the real thread-priority for the real-time threads
+        * (i.e. threads with a priority lower than MAX_RT_PRIO)
+        * - or MAX_RT_PRIO for non-RT threads.
+        * Thus, all RT-threads are woken first in priority order, and
+        * the others are woken last, in FIFO order.
+        */
+       prio = min(current->normal_prio, MAX_RT_PRIO);
+
+       plist_node_init(&q->list, prio);
+       plist_add(&q->list, &hb->chain);
+       q->task = current;
+       spin_unlock(&hb->lock);
+}
+
+/**
+ * unqueue_me() - Remove the futex_q from its futex_hash_bucket
+ * @q: The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
+ * be paired with exactly one earlier call to queue_me().
+ *
+ * Return:
+ *   1 - if the futex_q was still queued (and we removed unqueued it);
+ *   0 - if the futex_q was already removed by the waking thread
+ */
+static int unqueue_me(struct futex_q *q)
+{
+       spinlock_t *lock_ptr;
+       int ret = 0;
+
+       /* In the common case we don't take the spinlock, which is nice. */
+retry:
+       lock_ptr = q->lock_ptr;
+       barrier();
+       if (lock_ptr != NULL) {
+               spin_lock(lock_ptr);
+               /*
+                * q->lock_ptr can change between reading it and
+                * spin_lock(), causing us to take the wrong lock.  This
+                * corrects the race condition.
+                *
+                * Reasoning goes like this: if we have the wrong lock,
+                * q->lock_ptr must have changed (maybe several times)
+                * between reading it and the spin_lock().  It can
+                * change again after the spin_lock() but only if it was
+                * already changed before the spin_lock().  It cannot,
+                * however, change back to the original value.  Therefore
+                * we can detect whether we acquired the correct lock.
+                */
+               if (unlikely(lock_ptr != q->lock_ptr)) {
+                       spin_unlock(lock_ptr);
+                       goto retry;
+               }
+               __unqueue_futex(q);
+
+               BUG_ON(q->pi_state);
+
+               spin_unlock(lock_ptr);
+               ret = 1;
+       }
+
+       drop_futex_key_refs(&q->key);
+       return ret;
+}
+
+/*
+ * PI futexes can not be requeued and must remove themself from the
+ * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
+ * and dropped here.
+ */
+static void unqueue_me_pi(struct futex_q *q)
+       __releases(q->lock_ptr)
+{
+       __unqueue_futex(q);
+
+       BUG_ON(!q->pi_state);
+       free_pi_state(q->pi_state);
+       q->pi_state = NULL;
+
+       spin_unlock(q->lock_ptr);
+}
+
+/*
+ * Fixup the pi_state owner with the new owner.
+ *
+ * Must be called with hash bucket lock held and mm->sem held for non
+ * private futexes.
+ */
+static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
+                               struct task_struct *newowner)
+{
+       u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
+       struct futex_pi_state *pi_state = q->pi_state;
+       struct task_struct *oldowner = pi_state->owner;
+       u32 uval, uninitialized_var(curval), newval;
+       int ret;
+
+       /* Owner died? */
+       if (!pi_state->owner)
+               newtid |= FUTEX_OWNER_DIED;
+
+       /*
+        * We are here either because we stole the rtmutex from the
+        * previous highest priority waiter or we are the highest priority
+        * waiter but failed to get the rtmutex the first time.
+        * We have to replace the newowner TID in the user space variable.
+        * This must be atomic as we have to preserve the owner died bit here.
+        *
+        * Note: We write the user space value _before_ changing the pi_state
+        * because we can fault here. Imagine swapped out pages or a fork
+        * that marked all the anonymous memory readonly for cow.
+        *
+        * Modifying pi_state _before_ the user space value would
+        * leave the pi_state in an inconsistent state when we fault
+        * here, because we need to drop the hash bucket lock to
+        * handle the fault. This might be observed in the PID check
+        * in lookup_pi_state.
+        */
+retry:
+       if (get_futex_value_locked(&uval, uaddr))
+               goto handle_fault;
+
+       while (1) {
+               newval = (uval & FUTEX_OWNER_DIED) | newtid;
+
+               if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
+                       goto handle_fault;
+               if (curval == uval)
+                       break;
+               uval = curval;
+       }
+
+       /*
+        * We fixed up user space. Now we need to fix the pi_state
+        * itself.
+        */
+       if (pi_state->owner != NULL) {
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
+               WARN_ON(list_empty(&pi_state->list));
+               list_del_init(&pi_state->list);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+       }
+
+       pi_state->owner = newowner;
+
+       raw_spin_lock_irq(&newowner->pi_lock);
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &newowner->pi_state_list);
+       raw_spin_unlock_irq(&newowner->pi_lock);
+       return 0;
+
+       /*
+        * To handle the page fault we need to drop the hash bucket
+        * lock here. That gives the other task (either the highest priority
+        * waiter itself or the task which stole the rtmutex) the
+        * chance to try the fixup of the pi_state. So once we are
+        * back from handling the fault we need to check the pi_state
+        * after reacquiring the hash bucket lock and before trying to
+        * do another fixup. When the fixup has been done already we
+        * simply return.
+        */
+handle_fault:
+       spin_unlock(q->lock_ptr);
+
+       ret = fault_in_user_writeable(uaddr);
+
+       spin_lock(q->lock_ptr);
+
+       /*
+        * Check if someone else fixed it for us:
+        */
+       if (pi_state->owner != oldowner)
+               return 0;
+
+       if (ret)
+               return ret;
+
+       goto retry;
+}
+
+static long futex_wait_restart(struct restart_block *restart);
+
+/**
+ * fixup_owner() - Post lock pi_state and corner case management
+ * @uaddr:     user address of the futex
+ * @q:         futex_q (contains pi_state and access to the rt_mutex)
+ * @locked:    if the attempt to take the rt_mutex succeeded (1) or not (0)
+ *
+ * After attempting to lock an rt_mutex, this function is called to cleanup
+ * the pi_state owner as well as handle race conditions that may allow us to
+ * acquire the lock. Must be called with the hb lock held.
+ *
+ * Return:
+ *  1 - success, lock taken;
+ *  0 - success, lock not taken;
+ * <0 - on error (-EFAULT)
+ */
+static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
+{
+       struct task_struct *owner;
+       int ret = 0;
+
+       if (locked) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case:
+                */
+               if (q->pi_state->owner != current)
+                       ret = fixup_pi_state_owner(uaddr, q, current);
+               goto out;
+       }
+
+       /*
+        * Catch the rare case, where the lock was released when we were on the
+        * way back before we locked the hash bucket.
+        */
+       if (q->pi_state->owner == current) {
+               /*
+                * Try to get the rt_mutex now. This might fail as some other
+                * task acquired the rt_mutex after we removed ourself from the
+                * rt_mutex waiters list.
+                */
+               if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
+                       locked = 1;
+                       goto out;
+               }
+
+               /*
+                * pi_state is incorrect, some other task did a lock steal and
+                * we returned due to timeout or signal without taking the
+                * rt_mutex. Too late.
+                */
+               raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
+               owner = rt_mutex_owner(&q->pi_state->pi_mutex);
+               if (!owner)
+                       owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
+               raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
+               ret = fixup_pi_state_owner(uaddr, q, owner);
+               goto out;
+       }
+
+       /*
+        * Paranoia check. If we did not take the lock, then we should not be
+        * the owner of the rt_mutex.
+        */
+       if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
+               printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
+                               "pi-state %p\n", ret,
+                               q->pi_state->pi_mutex.owner,
+                               q->pi_state->owner);
+
+out:
+       return ret ? ret : locked;
+}
+
+/**
+ * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
+ * @hb:                the futex hash bucket, must be locked by the caller
+ * @q:         the futex_q to queue up on
+ * @timeout:   the prepared hrtimer_sleeper, or null for no timeout
+ */
+static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
+                               struct hrtimer_sleeper *timeout)
+{
+       /*
+        * The task state is guaranteed to be set before another task can
+        * wake it. set_current_state() is implemented using set_mb() and
+        * queue_me() calls spin_unlock() upon completion, both serializing
+        * access to the hash list and forcing another memory barrier.
+        */
+       set_current_state(TASK_INTERRUPTIBLE);
+       queue_me(q, hb);
+
+       /* Arm the timer */
+       if (timeout) {
+               hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
+               if (!hrtimer_active(&timeout->timer))
+                       timeout->task = NULL;
+       }
+
+       /*
+        * If we have been removed from the hash list, then another task
+        * has tried to wake us, and we can skip the call to schedule().
+        */
+       if (likely(!plist_node_empty(&q->list))) {
+               /*
+                * If the timer has already expired, current will already be
+                * flagged for rescheduling. Only call schedule if there
+                * is no timeout, or if it has yet to expire.
+                */
+               if (!timeout || timeout->task)
+                       freezable_schedule();
+       }
+       __set_current_state(TASK_RUNNING);
+}
+
+/**
+ * futex_wait_setup() - Prepare to wait on a futex
+ * @uaddr:     the futex userspace address
+ * @val:       the expected value
+ * @flags:     futex flags (FLAGS_SHARED, etc.)
+ * @q:         the associated futex_q
+ * @hb:                storage for hash_bucket pointer to be returned to caller
+ *
+ * Setup the futex_q and locate the hash_bucket.  Get the futex value and
+ * compare it with the expected value.  Handle atomic faults internally.
+ * Return with the hb lock held and a q.key reference on success, and unlocked
+ * with no q.key reference on failure.
+ *
+ * Return:
+ *  0 - uaddr contains val and hb has been locked;
+ * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
+ */
+static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
+                          struct futex_q *q, struct futex_hash_bucket **hb)
+{
+       u32 uval;
+       int ret;
+
+       /*
+        * Access the page AFTER the hash-bucket is locked.
+        * Order is important:
+        *
+        *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
+        *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
+        *
+        * The basic logical guarantee of a futex is that it blocks ONLY
+        * if cond(var) is known to be true at the time of blocking, for
+        * any cond.  If we locked the hash-bucket after testing *uaddr, that
+        * would open a race condition where we could block indefinitely with
+        * cond(var) false, which would violate the guarantee.
+        *
+        * On the other hand, we insert q and release the hash-bucket only
+        * after testing *uaddr.  This guarantees that futex_wait() will NOT
+        * absorb a wakeup if *uaddr does not match the desired values
+        * while the syscall executes.
+        */
+retry:
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
+       if (unlikely(ret != 0))
+               return ret;
+
+retry_private:
+       *hb = queue_lock(q);
+
+       ret = get_futex_value_locked(&uval, uaddr);
+
+       if (ret) {
+               queue_unlock(*hb);
+
+               ret = get_user(uval, uaddr);
+               if (ret)
+                       goto out;
+
+               if (!(flags & FLAGS_SHARED))
+                       goto retry_private;
+
+               put_futex_key(&q->key);
+               goto retry;
+       }
+
+       if (uval != val) {
+               queue_unlock(*hb);
+               ret = -EWOULDBLOCK;
+       }
+
+out:
+       if (ret)
+               put_futex_key(&q->key);
+       return ret;
+}
+
+static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
+                     ktime_t *abs_time, u32 bitset)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct restart_block *restart;
+       struct futex_hash_bucket *hb;
+       struct futex_q q = futex_q_init;
+       int ret;
+
+       if (!bitset)
+               return -EINVAL;
+       q.bitset = bitset;
+
+       if (abs_time) {
+               to = &timeout;
+
+               hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+                                     CLOCK_REALTIME : CLOCK_MONOTONIC,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
+       }
+
+retry:
+       /*
+        * Prepare to wait on uaddr. On success, holds hb lock and increments
+        * q.key refs.
+        */
+       ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+       if (ret)
+               goto out;
+
+       /* queue_me and wait for wakeup, timeout, or a signal. */
+       futex_wait_queue_me(hb, &q, to);
+
+       /* If we were woken (and unqueued), we succeeded, whatever. */
+       ret = 0;
+       /* unqueue_me() drops q.key ref */
+       if (!unqueue_me(&q))
+               goto out;
+       ret = -ETIMEDOUT;
+       if (to && !to->task)
+               goto out;
+
+       /*
+        * We expect signal_pending(current), but we might be the
+        * victim of a spurious wakeup as well.
+        */
+       if (!signal_pending(current))
+               goto retry;
+
+       ret = -ERESTARTSYS;
+       if (!abs_time)
+               goto out;
+
+       restart = &current->restart_block;
+       restart->fn = futex_wait_restart;
+       restart->futex.uaddr = uaddr;
+       restart->futex.val = val;
+       restart->futex.time = abs_time->tv64;
+       restart->futex.bitset = bitset;
+       restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
+
+       ret = -ERESTART_RESTARTBLOCK;
+
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
+       }
+       return ret;
+}
+
+
+static long futex_wait_restart(struct restart_block *restart)
+{
+       u32 __user *uaddr = restart->futex.uaddr;
+       ktime_t t, *tp = NULL;
+
+       if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
+               t.tv64 = restart->futex.time;
+               tp = &t;
+       }
+       restart->fn = do_no_restart_syscall;
+
+       return (long)futex_wait(uaddr, restart->futex.flags,
+                               restart->futex.val, tp, restart->futex.bitset);
+}
+
+
+/*
+ * Userspace tried a 0 -> TID atomic transition of the futex value
+ * and failed. The kernel side here does the whole locking operation:
+ * if there are waiters then it will block, it does PI, etc. (Due to
+ * races the kernel might see a 0 value of the futex too.)
+ */
+static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
+                        ktime_t *time, int trylock)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct futex_hash_bucket *hb;
+       struct futex_q q = futex_q_init;
+       int res, ret;
+
+       if (refill_pi_state_cache())
+               return -ENOMEM;
+
+       if (time) {
+               to = &timeout;
+               hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires(&to->timer, *time);
+       }
+
+retry:
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
+       if (unlikely(ret != 0))
+               goto out;
+
+retry_private:
+       hb = queue_lock(&q);
+
+       ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
+       if (unlikely(ret)) {
+               switch (ret) {
+               case 1:
+                       /* We got the lock. */
+                       ret = 0;
+                       goto out_unlock_put_key;
+               case -EFAULT:
+                       goto uaddr_faulted;
+               case -EAGAIN:
+                       /*
+                        * Two reasons for this:
+                        * - Task is exiting and we just wait for the
+                        *   exit to complete.
+                        * - The user space value changed.
+                        */
+                       queue_unlock(hb);
+                       put_futex_key(&q.key);
+                       cond_resched();
+                       goto retry;
+               default:
+                       goto out_unlock_put_key;
+               }
+       }
+
+       /*
+        * Only actually queue now that the atomic ops are done:
+        */
+       queue_me(&q, hb);
+
+       WARN_ON(!q.pi_state);
+       /*
+        * Block on the PI mutex:
+        */
+       if (!trylock) {
+               ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
+       } else {
+               ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
+               /* Fixup the trylock return value: */
+               ret = ret ? 0 : -EWOULDBLOCK;
+       }
+
+       spin_lock(q.lock_ptr);
+       /*
+        * Fixup the pi_state owner and possibly acquire the lock if we
+        * haven't already.
+        */
+       res = fixup_owner(uaddr, &q, !ret);
+       /*
+        * If fixup_owner() returned an error, proprogate that.  If it acquired
+        * the lock, clear our -ETIMEDOUT or -EINTR.
+        */
+       if (res)
+               ret = (res < 0) ? res : 0;
+
+       /*
+        * If fixup_owner() faulted and was unable to handle the fault, unlock
+        * it and return the fault to userspace.
+        */
+       if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
+               rt_mutex_unlock(&q.pi_state->pi_mutex);
+
+       /* Unqueue and drop the lock */
+       unqueue_me_pi(&q);
+
+       goto out_put_key;
+
+out_unlock_put_key:
+       queue_unlock(hb);
+
+out_put_key:
+       put_futex_key(&q.key);
+out:
+       if (to)
+               destroy_hrtimer_on_stack(&to->timer);
+       return ret != -EINTR ? ret : -ERESTARTNOINTR;
+
+uaddr_faulted:
+       queue_unlock(hb);
+
+       ret = fault_in_user_writeable(uaddr);
+       if (ret)
+               goto out_put_key;
+
+       if (!(flags & FLAGS_SHARED))
+               goto retry_private;
+
+       put_futex_key(&q.key);
+       goto retry;
+}
+
+/*
+ * Userspace attempted a TID -> 0 atomic transition, and failed.
+ * This is the in-kernel slowpath: we look up the PI state (if any),
+ * and do the rt-mutex unlock.
+ */
+static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
+{
+       u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
+       union futex_key key = FUTEX_KEY_INIT;
+       struct futex_hash_bucket *hb;
+       struct futex_q *match;
+       int ret;
+
+retry:
+       if (get_user(uval, uaddr))
+               return -EFAULT;
+       /*
+        * We release only a lock we actually own:
+        */
+       if ((uval & FUTEX_TID_MASK) != vpid)
+               return -EPERM;
+
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
+       if (ret)
+               return ret;
+
+       hb = hash_futex(&key);
+       spin_lock(&hb->lock);
+
+       /*
+        * Check waiters first. We do not trust user space values at
+        * all and we at least want to know if user space fiddled
+        * with the futex value instead of blindly unlocking.
+        */
+       match = futex_top_waiter(hb, &key);
+       if (match) {
+               ret = wake_futex_pi(uaddr, uval, match, hb);
+
+               /*
+                * In case of success wake_futex_pi dropped the hash
+                * bucket lock.
+                */
+               if (!ret)
+                       goto out_putkey;
+
+               /*
+                * The atomic access to the futex value generated a
+                * pagefault, so retry the user-access and the wakeup:
+                */
+               if (ret == -EFAULT)
+                       goto pi_faulted;
+
+               /*
+                * wake_futex_pi has detected invalid state. Tell user
+                * space.
+                */
+               goto out_unlock;
+       }
+
+       /*
+        * We have no kernel internal state, i.e. no waiters in the
+        * kernel. Waiters which are about to queue themselves are stuck
+        * on hb->lock. So we can safely ignore them. We do neither
+        * preserve the WAITERS bit not the OWNER_DIED one. We are the
+        * owner.
+        */
+       if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
+               goto pi_faulted;
+
+       /*
+        * If uval has changed, let user space handle it.
+        */
+       ret = (curval == uval) ? 0 : -EAGAIN;
+
+out_unlock:
+       spin_unlock(&hb->lock);
+out_putkey:
+       put_futex_key(&key);
+       return ret;
+
+pi_faulted:
+       spin_unlock(&hb->lock);
+       put_futex_key(&key);
+
+       ret = fault_in_user_writeable(uaddr);
+       if (!ret)
+               goto retry;
+
+       return ret;
+}
+
+/**
+ * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * @hb:                the hash_bucket futex_q was original enqueued on
+ * @q:         the futex_q woken while waiting to be requeued
+ * @key2:      the futex_key of the requeue target futex
+ * @timeout:   the timeout associated with the wait (NULL if none)
+ *
+ * Detect if the task was woken on the initial futex as opposed to the requeue
+ * target futex.  If so, determine if it was a timeout or a signal that caused
+ * the wakeup and return the appropriate error code to the caller.  Must be
+ * called with the hb lock held.
+ *
+ * Return:
+ *  0 = no early wakeup detected;
+ * <0 = -ETIMEDOUT or -ERESTARTNOINTR
+ */
+static inline
+int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
+                                  struct futex_q *q, union futex_key *key2,
+                                  struct hrtimer_sleeper *timeout)
+{
+       int ret = 0;
+
+       /*
+        * With the hb lock held, we avoid races while we process the wakeup.
+        * We only need to hold hb (and not hb2) to ensure atomicity as the
+        * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
+        * It can't be requeued from uaddr2 to something else since we don't
+        * support a PI aware source futex for requeue.
+        */
+       if (!match_futex(&q->key, key2)) {
+               WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
+               /*
+                * We were woken prior to requeue by a timeout or a signal.
+                * Unqueue the futex_q and determine which it was.
+                */
+               plist_del(&q->list, &hb->chain);
+               hb_waiters_dec(hb);
+
+               /* Handle spurious wakeups gracefully */
+               ret = -EWOULDBLOCK;
+               if (timeout && !timeout->task)
+                       ret = -ETIMEDOUT;
+               else if (signal_pending(current))
+                       ret = -ERESTARTNOINTR;
+       }
+       return ret;
+}
+
+/**
+ * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
+ * @uaddr:     the futex we initially wait on (non-pi)
+ * @flags:     futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
+ *             the same type, no requeueing from private to shared, etc.
+ * @val:       the expected value of uaddr
+ * @abs_time:  absolute timeout
+ * @bitset:    32 bit wakeup bitset set by userspace, defaults to all
+ * @uaddr2:    the pi futex we will take prior to returning to user-space
+ *
+ * The caller will wait on uaddr and will be requeued by futex_requeue() to
+ * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
+ * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
+ * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
+ * without one, the pi logic would not know which task to boost/deboost, if
+ * there was a need to.
+ *
+ * We call schedule in futex_wait_queue_me() when we enqueue and return there
+ * via the following--
+ * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
+ * 2) wakeup on uaddr2 after a requeue
+ * 3) signal
+ * 4) timeout
+ *
+ * If 3, cleanup and return -ERESTARTNOINTR.
+ *
+ * If 2, we may then block on trying to take the rt_mutex and return via:
+ * 5) successful lock
+ * 6) signal
+ * 7) timeout
+ * 8) other lock acquisition failure
+ *
+ * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
+ *
+ * If 4 or 7, we cleanup and return with -ETIMEDOUT.
+ *
+ * Return:
+ *  0 - On success;
+ * <0 - On error
+ */
+static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
+                                u32 val, ktime_t *abs_time, u32 bitset,
+                                u32 __user *uaddr2)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct rt_mutex_waiter rt_waiter;
+       struct rt_mutex *pi_mutex = NULL;
+       struct futex_hash_bucket *hb, *hb2;
+       union futex_key key2 = FUTEX_KEY_INIT;
+       struct futex_q q = futex_q_init;
+       int res, ret;
+
+       if (uaddr == uaddr2)
+               return -EINVAL;
+
+       if (!bitset)
+               return -EINVAL;
+
+       if (abs_time) {
+               to = &timeout;
+               hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+                                     CLOCK_REALTIME : CLOCK_MONOTONIC,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
+       }
+
+       /*
+        * The waiter is allocated on our stack, manipulated by the requeue
+        * code while we sleep on uaddr.
+        */
+       rt_mutex_init_waiter(&rt_waiter, false);
+
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
+       if (unlikely(ret != 0))
+               goto out;
+
+       q.bitset = bitset;
+       q.rt_waiter = &rt_waiter;
+       q.requeue_pi_key = &key2;
+
+       /*
+        * Prepare to wait on uaddr. On success, increments q.key (key1) ref
+        * count.
+        */
+       ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+       if (ret)
+               goto out_key2;
+
+       /*
+        * The check above which compares uaddrs is not sufficient for
+        * shared futexes. We need to compare the keys:
+        */
+       if (match_futex(&q.key, &key2)) {
+               queue_unlock(hb);
+               ret = -EINVAL;
+               goto out_put_keys;
+       }
+
+       /* Queue the futex_q, drop the hb lock, wait for wakeup. */
+       futex_wait_queue_me(hb, &q, to);
+
+       /*
+        * On RT we must avoid races with requeue and trying to block
+        * on two mutexes (hb->lock and uaddr2's rtmutex) by
+        * serializing access to pi_blocked_on with pi_lock.
+        */
+       raw_spin_lock_irq(&current->pi_lock);
+       if (current->pi_blocked_on) {
+               /*
+                * We have been requeued or are in the process of
+                * being requeued.
+                */
+               raw_spin_unlock_irq(&current->pi_lock);
+       } else {
+               /*
+                * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
+                * prevents a concurrent requeue from moving us to the
+                * uaddr2 rtmutex. After that we can safely acquire
+                * (and possibly block on) hb->lock.
+                */
+               current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
+               raw_spin_unlock_irq(&current->pi_lock);
+
+               spin_lock(&hb->lock);
+
+               /*
+                * Clean up pi_blocked_on. We might leak it otherwise
+                * when we succeeded with the hb->lock in the fast
+                * path.
+                */
+               raw_spin_lock_irq(&current->pi_lock);
+               current->pi_blocked_on = NULL;
+               raw_spin_unlock_irq(&current->pi_lock);
+
+               ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
+               spin_unlock(&hb->lock);
+               if (ret)
+                       goto out_put_keys;
+       }
+
+       /*
+        * In order to be here, we have either been requeued, are in
+        * the process of being requeued, or requeue successfully
+        * acquired uaddr2 on our behalf.  If pi_blocked_on was
+        * non-null above, we may be racing with a requeue.  Do not
+        * rely on q->lock_ptr to be hb2->lock until after blocking on
+        * hb->lock or hb2->lock. The futex_requeue dropped our key1
+        * reference and incremented our key2 reference count.
+        */
+       hb2 = hash_futex(&key2);
+
+       /* Check if the requeue code acquired the second futex for us. */
+       if (!q.rt_waiter) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case.
+                */
+               if (q.pi_state && (q.pi_state->owner != current)) {
+                       spin_lock(&hb2->lock);
+                       BUG_ON(&hb2->lock != q.lock_ptr);
+                       ret = fixup_pi_state_owner(uaddr2, &q, current);
+                       spin_unlock(&hb2->lock);
+               }
+       } else {
+               /*
+                * We have been woken up by futex_unlock_pi(), a timeout, or a
+                * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
+                * the pi_state.
+                */
+               WARN_ON(!q.pi_state);
+               pi_mutex = &q.pi_state->pi_mutex;
+               ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
+               debug_rt_mutex_free_waiter(&rt_waiter);
+
+               spin_lock(&hb2->lock);
+               BUG_ON(&hb2->lock != q.lock_ptr);
+               /*
+                * Fixup the pi_state owner and possibly acquire the lock if we
+                * haven't already.
+                */
+               res = fixup_owner(uaddr2, &q, !ret);
+               /*
+                * If fixup_owner() returned an error, proprogate that.  If it
+                * acquired the lock, clear -ETIMEDOUT or -EINTR.
+                */
+               if (res)
+                       ret = (res < 0) ? res : 0;
+
+               /* Unqueue and drop the lock. */
+               unqueue_me_pi(&q);
+       }
+
+       /*
+        * If fixup_pi_state_owner() faulted and was unable to handle the
+        * fault, unlock the rt_mutex and return the fault to userspace.
+        */
+       if (ret == -EFAULT) {
+               if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
+                       rt_mutex_unlock(pi_mutex);
+       } else if (ret == -EINTR) {
+               /*
+                * We've already been requeued, but cannot restart by calling
+                * futex_lock_pi() directly. We could restart this syscall, but
+                * it would detect that the user space "val" changed and return
+                * -EWOULDBLOCK.  Save the overhead of the restart and return
+                * -EWOULDBLOCK directly.
+                */
+               ret = -EWOULDBLOCK;
+       }
+
+out_put_keys:
+       put_futex_key(&q.key);
+out_key2:
+       put_futex_key(&key2);
+
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
+       }
+       return ret;
+}
+
+/*
+ * Support for robust futexes: the kernel cleans up held futexes at
+ * thread exit time.
+ *
+ * Implementation: user-space maintains a per-thread list of locks it
+ * is holding. Upon do_exit(), the kernel carefully walks this list,
+ * and marks all locks that are owned by this thread with the
+ * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
+ * always manipulated with the lock held, so the list is private and
+ * per-thread. Userspace also maintains a per-thread 'list_op_pending'
+ * field, to allow the kernel to clean up if the thread dies after
+ * acquiring the lock, but just before it could have added itself to
+ * the list. There can only be one such pending lock.
+ */
+
+/**
+ * sys_set_robust_list() - Set the robust-futex list head of a task
+ * @head:      pointer to the list-head
+ * @len:       length of the list-head, as userspace expects
+ */
+SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
+               size_t, len)
+{
+       if (!futex_cmpxchg_enabled)
+               return -ENOSYS;
+       /*
+        * The kernel knows only one size for now:
+        */
+       if (unlikely(len != sizeof(*head)))
+               return -EINVAL;
+
+       current->robust_list = head;
+
+       return 0;
+}
+
+/**
+ * sys_get_robust_list() - Get the robust-futex list head of a task
+ * @pid:       pid of the process [zero for current task]
+ * @head_ptr:  pointer to a list-head pointer, the kernel fills it in
+ * @len_ptr:   pointer to a length field, the kernel fills in the header size
+ */
+SYSCALL_DEFINE3(get_robust_list, int, pid,
+               struct robust_list_head __user * __user *, head_ptr,
+               size_t __user *, len_ptr)
+{
+       struct robust_list_head __user *head;
+       unsigned long ret;
+       struct task_struct *p;
+
+       if (!futex_cmpxchg_enabled)
+               return -ENOSYS;
+
+       rcu_read_lock();
+
+       ret = -ESRCH;
+       if (!pid)
+               p = current;
+       else {
+               p = find_task_by_vpid(pid);
+               if (!p)
+                       goto err_unlock;
+       }
+
+       ret = -EPERM;
+       if (!ptrace_may_access(p, PTRACE_MODE_READ))
+               goto err_unlock;
+
+       head = p->robust_list;
+       rcu_read_unlock();
+
+       if (put_user(sizeof(*head), len_ptr))
+               return -EFAULT;
+       return put_user(head, head_ptr);
+
+err_unlock:
+       rcu_read_unlock();
+
+       return ret;
+}
+
+/*
+ * Process a futex-list entry, check whether it's owned by the
+ * dying task, and do notification if so:
+ */
+int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
+{
+       u32 uval, uninitialized_var(nval), mval;
+
+retry:
+       if (get_user(uval, uaddr))
+               return -1;
+
+       if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
+               /*
+                * Ok, this dying thread is truly holding a futex
+                * of interest. Set the OWNER_DIED bit atomically
+                * via cmpxchg, and if the value had FUTEX_WAITERS
+                * set, wake up a waiter (if any). (We have to do a
+                * futex_wake() even if OWNER_DIED is already set -
+                * to handle the rare but possible case of recursive
+                * thread-death.) The rest of the cleanup is done in
+                * userspace.
+                */
+               mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
+               /*
+                * We are not holding a lock here, but we want to have
+                * the pagefault_disable/enable() protection because
+                * we want to handle the fault gracefully. If the
+                * access fails we try to fault in the futex with R/W
+                * verification via get_user_pages. get_user() above
+                * does not guarantee R/W access. If that fails we
+                * give up and leave the futex locked.
+                */
+               if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
+                       if (fault_in_user_writeable(uaddr))
+                               return -1;
+                       goto retry;
+               }
+               if (nval != uval)
+                       goto retry;
+
+               /*
+                * Wake robust non-PI futexes here. The wakeup of
+                * PI futexes happens in exit_pi_state():
+                */
+               if (!pi && (uval & FUTEX_WAITERS))
+                       futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
+       }
+       return 0;
+}
+
+/*
+ * Fetch a robust-list pointer. Bit 0 signals PI futexes:
+ */
+static inline int fetch_robust_entry(struct robust_list __user **entry,
+                                    struct robust_list __user * __user *head,
+                                    unsigned int *pi)
+{
+       unsigned long uentry;
+
+       if (get_user(uentry, (unsigned long __user *)head))
+               return -EFAULT;
+
+       *entry = (void __user *)(uentry & ~1UL);
+       *pi = uentry & 1;
+
+       return 0;
+}
+
+/*
+ * Walk curr->robust_list (very carefully, it's a userspace list!)
+ * and mark any locks found there dead, and notify any waiters.
+ *
+ * We silently return on any sign of list-walking problem.
+ */
+void exit_robust_list(struct task_struct *curr)
+{
+       struct robust_list_head __user *head = curr->robust_list;
+       struct robust_list __user *entry, *next_entry, *pending;
+       unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
+       unsigned int uninitialized_var(next_pi);
+       unsigned long futex_offset;
+       int rc;
+
+       if (!futex_cmpxchg_enabled)
+               return;
+
+       /*
+        * Fetch the list head (which was registered earlier, via
+        * sys_set_robust_list()):
+        */
+       if (fetch_robust_entry(&entry, &head->list.next, &pi))
+               return;
+       /*
+        * Fetch the relative futex offset:
+        */
+       if (get_user(futex_offset, &head->futex_offset))
+               return;
+       /*
+        * Fetch any possibly pending lock-add first, and handle it
+        * if it exists:
+        */
+       if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
+               return;
+
+       next_entry = NULL;      /* avoid warning with gcc */
+       while (entry != &head->list) {
+               /*
+                * Fetch the next entry in the list before calling
+                * handle_futex_death:
+                */
+               rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
+               /*
+                * A pending lock might already be on the list, so
+                * don't process it twice:
+                */
+               if (entry != pending)
+                       if (handle_futex_death((void __user *)entry + futex_offset,
+                                               curr, pi))
+                               return;
+               if (rc)
+                       return;
+               entry = next_entry;
+               pi = next_pi;
+               /*
+                * Avoid excessively long or circular lists:
+                */
+               if (!--limit)
+                       break;
+
+               cond_resched();
+       }
+
+       if (pending)
+               handle_futex_death((void __user *)pending + futex_offset,
+                                  curr, pip);
+}
+
+long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
+               u32 __user *uaddr2, u32 val2, u32 val3)
+{
+       int cmd = op & FUTEX_CMD_MASK;
+       unsigned int flags = 0;
+
+       if (!(op & FUTEX_PRIVATE_FLAG))
+               flags |= FLAGS_SHARED;
+
+       if (op & FUTEX_CLOCK_REALTIME) {
+               flags |= FLAGS_CLOCKRT;
+               if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
+                       return -ENOSYS;
+       }
+
+       switch (cmd) {
+       case FUTEX_LOCK_PI:
+       case FUTEX_UNLOCK_PI:
+       case FUTEX_TRYLOCK_PI:
+       case FUTEX_WAIT_REQUEUE_PI:
+       case FUTEX_CMP_REQUEUE_PI:
+               if (!futex_cmpxchg_enabled)
+                       return -ENOSYS;
+       }
+
+       switch (cmd) {
+       case FUTEX_WAIT:
+               val3 = FUTEX_BITSET_MATCH_ANY;
+       case FUTEX_WAIT_BITSET:
+               return futex_wait(uaddr, flags, val, timeout, val3);
+       case FUTEX_WAKE:
+               val3 = FUTEX_BITSET_MATCH_ANY;
+       case FUTEX_WAKE_BITSET:
+               return futex_wake(uaddr, flags, val, val3);
+       case FUTEX_REQUEUE:
+               return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
+       case FUTEX_CMP_REQUEUE:
+               return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
+       case FUTEX_WAKE_OP:
+               return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
+       case FUTEX_LOCK_PI:
+               return futex_lock_pi(uaddr, flags, timeout, 0);
+       case FUTEX_UNLOCK_PI:
+               return futex_unlock_pi(uaddr, flags);
+       case FUTEX_TRYLOCK_PI:
+               return futex_lock_pi(uaddr, flags, NULL, 1);
+       case FUTEX_WAIT_REQUEUE_PI:
+               val3 = FUTEX_BITSET_MATCH_ANY;
+               return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
+                                            uaddr2);
+       case FUTEX_CMP_REQUEUE_PI:
+               return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
+       }
+       return -ENOSYS;
+}
+
+
+SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
+               struct timespec __user *, utime, u32 __user *, uaddr2,
+               u32, val3)
+{
+       struct timespec ts;
+       ktime_t t, *tp = NULL;
+       u32 val2 = 0;
+       int cmd = op & FUTEX_CMD_MASK;
+
+       if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
+                     cmd == FUTEX_WAIT_BITSET ||
+                     cmd == FUTEX_WAIT_REQUEUE_PI)) {
+               if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
+                       return -EFAULT;
+               if (!timespec_valid(&ts))
+                       return -EINVAL;
+
+               t = timespec_to_ktime(ts);
+               if (cmd == FUTEX_WAIT)
+                       t = ktime_add_safe(ktime_get(), t);
+               tp = &t;
+       }
+       /*
+        * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
+        * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
+        */
+       if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
+           cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
+               val2 = (u32) (unsigned long) utime;
+
+       return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
+}
+
+static void __init futex_detect_cmpxchg(void)
+{
+#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
+       u32 curval;
+
+       /*
+        * This will fail and we want it. Some arch implementations do
+        * runtime detection of the futex_atomic_cmpxchg_inatomic()
+        * functionality. We want to know that before we call in any
+        * of the complex code paths. Also we want to prevent
+        * registration of robust lists in that case. NULL is
+        * guaranteed to fault and we get -EFAULT on functional
+        * implementation, the non-functional ones will return
+        * -ENOSYS.
+        */
+       if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
+               futex_cmpxchg_enabled = 1;
+#endif
+}
+
+static int __init futex_init(void)
+{
+       unsigned int futex_shift;
+       unsigned long i;
+
+#if CONFIG_BASE_SMALL
+       futex_hashsize = 16;
+#else
+       futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
+#endif
+
+       futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
+                                              futex_hashsize, 0,
+                                              futex_hashsize < 256 ? HASH_SMALL : 0,
+                                              &futex_shift, NULL,
+                                              futex_hashsize, futex_hashsize);
+       futex_hashsize = 1UL << futex_shift;
+
+       futex_detect_cmpxchg();
+
+       for (i = 0; i < futex_hashsize; i++) {
+               atomic_set(&futex_queues[i].waiters, 0);
+               plist_head_init(&futex_queues[i].chain);
+               spin_lock_init(&futex_queues[i].lock);
+       }
+
+       return 0;
+}
+__initcall(futex_init);