Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / kernel / cpu.c
diff --git a/kernel/kernel/cpu.c b/kernel/kernel/cpu.c
new file mode 100644 (file)
index 0000000..0351ac4
--- /dev/null
@@ -0,0 +1,1146 @@
+/* CPU control.
+ * (C) 2001, 2002, 2003, 2004 Rusty Russell
+ *
+ * This code is licenced under the GPL.
+ */
+#include <linux/proc_fs.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/notifier.h>
+#include <linux/sched.h>
+#include <linux/unistd.h>
+#include <linux/cpu.h>
+#include <linux/oom.h>
+#include <linux/rcupdate.h>
+#include <linux/export.h>
+#include <linux/bug.h>
+#include <linux/kthread.h>
+#include <linux/stop_machine.h>
+#include <linux/mutex.h>
+#include <linux/gfp.h>
+#include <linux/suspend.h>
+#include <linux/lockdep.h>
+#include <linux/tick.h>
+#include <trace/events/power.h>
+
+#include "smpboot.h"
+
+#ifdef CONFIG_SMP
+/* Serializes the updates to cpu_online_mask, cpu_present_mask */
+static DEFINE_MUTEX(cpu_add_remove_lock);
+
+/*
+ * The following two APIs (cpu_maps_update_begin/done) must be used when
+ * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
+ * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
+ * hotplug callback (un)registration performed using __register_cpu_notifier()
+ * or __unregister_cpu_notifier().
+ */
+void cpu_maps_update_begin(void)
+{
+       mutex_lock(&cpu_add_remove_lock);
+}
+EXPORT_SYMBOL(cpu_notifier_register_begin);
+
+void cpu_maps_update_done(void)
+{
+       mutex_unlock(&cpu_add_remove_lock);
+}
+EXPORT_SYMBOL(cpu_notifier_register_done);
+
+static RAW_NOTIFIER_HEAD(cpu_chain);
+
+/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
+ * Should always be manipulated under cpu_add_remove_lock
+ */
+static int cpu_hotplug_disabled;
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+static struct {
+       struct task_struct *active_writer;
+       /* wait queue to wake up the active_writer */
+       wait_queue_head_t wq;
+       /* verifies that no writer will get active while readers are active */
+       struct mutex lock;
+       /*
+        * Also blocks the new readers during
+        * an ongoing cpu hotplug operation.
+        */
+       atomic_t refcount;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+       struct lockdep_map dep_map;
+#endif
+} cpu_hotplug = {
+       .active_writer = NULL,
+       .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
+       .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+       .dep_map = {.name = "cpu_hotplug.lock" },
+#endif
+};
+
+/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
+#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
+#define cpuhp_lock_acquire_tryread() \
+                                 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
+#define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
+#define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
+
+/**
+ * hotplug_pcp - per cpu hotplug descriptor
+ * @unplug:    set when pin_current_cpu() needs to sync tasks
+ * @sync_tsk:  the task that waits for tasks to finish pinned sections
+ * @refcount:  counter of tasks in pinned sections
+ * @grab_lock: set when the tasks entering pinned sections should wait
+ * @synced:    notifier for @sync_tsk to tell cpu_down it's finished
+ * @mutex:     the mutex to make tasks wait (used when @grab_lock is true)
+ * @mutex_init:        zero if the mutex hasn't been initialized yet.
+ *
+ * Although @unplug and @sync_tsk may point to the same task, the @unplug
+ * is used as a flag and still exists after @sync_tsk has exited and
+ * @sync_tsk set to NULL.
+ */
+struct hotplug_pcp {
+       struct task_struct *unplug;
+       struct task_struct *sync_tsk;
+       int refcount;
+       int grab_lock;
+       struct completion synced;
+       struct completion unplug_wait;
+#ifdef CONFIG_PREEMPT_RT_FULL
+       /*
+        * Note, on PREEMPT_RT, the hotplug lock must save the state of
+        * the task, otherwise the mutex will cause the task to fail
+        * to sleep when required. (Because it's called from migrate_disable())
+        *
+        * The spinlock_t on PREEMPT_RT is a mutex that saves the task's
+        * state.
+        */
+       spinlock_t lock;
+#else
+       struct mutex mutex;
+#endif
+       int mutex_init;
+};
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+# define hotplug_lock(hp) rt_spin_lock(&(hp)->lock)
+# define hotplug_unlock(hp) rt_spin_unlock(&(hp)->lock)
+#else
+# define hotplug_lock(hp) mutex_lock(&(hp)->mutex)
+# define hotplug_unlock(hp) mutex_unlock(&(hp)->mutex)
+#endif
+
+static DEFINE_PER_CPU(struct hotplug_pcp, hotplug_pcp);
+
+/**
+ * pin_current_cpu - Prevent the current cpu from being unplugged
+ *
+ * Lightweight version of get_online_cpus() to prevent cpu from being
+ * unplugged when code runs in a migration disabled region.
+ *
+ * Must be called with preemption disabled (preempt_count = 1)!
+ */
+void pin_current_cpu(void)
+{
+       struct hotplug_pcp *hp;
+       int force = 0;
+
+retry:
+       hp = this_cpu_ptr(&hotplug_pcp);
+
+       if (!hp->unplug || hp->refcount || force || preempt_count() > 1 ||
+           hp->unplug == current) {
+               hp->refcount++;
+               return;
+       }
+       if (hp->grab_lock) {
+               preempt_enable();
+               hotplug_lock(hp);
+               hotplug_unlock(hp);
+       } else {
+               preempt_enable();
+               /*
+                * Try to push this task off of this CPU.
+                */
+               if (!migrate_me()) {
+                       preempt_disable();
+                       hp = this_cpu_ptr(&hotplug_pcp);
+                       if (!hp->grab_lock) {
+                               /*
+                                * Just let it continue it's already pinned
+                                * or about to sleep.
+                                */
+                               force = 1;
+                               goto retry;
+                       }
+                       preempt_enable();
+               }
+       }
+       preempt_disable();
+       goto retry;
+}
+
+/**
+ * unpin_current_cpu - Allow unplug of current cpu
+ *
+ * Must be called with preemption or interrupts disabled!
+ */
+void unpin_current_cpu(void)
+{
+       struct hotplug_pcp *hp = this_cpu_ptr(&hotplug_pcp);
+
+       WARN_ON(hp->refcount <= 0);
+
+       /* This is safe. sync_unplug_thread is pinned to this cpu */
+       if (!--hp->refcount && hp->unplug && hp->unplug != current)
+               wake_up_process(hp->unplug);
+}
+
+static void wait_for_pinned_cpus(struct hotplug_pcp *hp)
+{
+       set_current_state(TASK_UNINTERRUPTIBLE);
+       while (hp->refcount) {
+               schedule_preempt_disabled();
+               set_current_state(TASK_UNINTERRUPTIBLE);
+       }
+}
+
+static int sync_unplug_thread(void *data)
+{
+       struct hotplug_pcp *hp = data;
+
+       wait_for_completion(&hp->unplug_wait);
+       preempt_disable();
+       hp->unplug = current;
+       wait_for_pinned_cpus(hp);
+
+       /*
+        * This thread will synchronize the cpu_down() with threads
+        * that have pinned the CPU. When the pinned CPU count reaches
+        * zero, we inform the cpu_down code to continue to the next step.
+        */
+       set_current_state(TASK_UNINTERRUPTIBLE);
+       preempt_enable();
+       complete(&hp->synced);
+
+       /*
+        * If all succeeds, the next step will need tasks to wait till
+        * the CPU is offline before continuing. To do this, the grab_lock
+        * is set and tasks going into pin_current_cpu() will block on the
+        * mutex. But we still need to wait for those that are already in
+        * pinned CPU sections. If the cpu_down() failed, the kthread_should_stop()
+        * will kick this thread out.
+        */
+       while (!hp->grab_lock && !kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_UNINTERRUPTIBLE);
+       }
+
+       /* Make sure grab_lock is seen before we see a stale completion */
+       smp_mb();
+
+       /*
+        * Now just before cpu_down() enters stop machine, we need to make
+        * sure all tasks that are in pinned CPU sections are out, and new
+        * tasks will now grab the lock, keeping them from entering pinned
+        * CPU sections.
+        */
+       if (!kthread_should_stop()) {
+               preempt_disable();
+               wait_for_pinned_cpus(hp);
+               preempt_enable();
+               complete(&hp->synced);
+       }
+
+       set_current_state(TASK_UNINTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_UNINTERRUPTIBLE);
+       }
+       set_current_state(TASK_RUNNING);
+
+       /*
+        * Force this thread off this CPU as it's going down and
+        * we don't want any more work on this CPU.
+        */
+       current->flags &= ~PF_NO_SETAFFINITY;
+       set_cpus_allowed_ptr(current, cpu_present_mask);
+       migrate_me();
+       return 0;
+}
+
+static void __cpu_unplug_sync(struct hotplug_pcp *hp)
+{
+       wake_up_process(hp->sync_tsk);
+       wait_for_completion(&hp->synced);
+}
+
+static void __cpu_unplug_wait(unsigned int cpu)
+{
+       struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+
+       complete(&hp->unplug_wait);
+       wait_for_completion(&hp->synced);
+}
+
+/*
+ * Start the sync_unplug_thread on the target cpu and wait for it to
+ * complete.
+ */
+static int cpu_unplug_begin(unsigned int cpu)
+{
+       struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+       int err;
+
+       /* Protected by cpu_hotplug.lock */
+       if (!hp->mutex_init) {
+#ifdef CONFIG_PREEMPT_RT_FULL
+               spin_lock_init(&hp->lock);
+#else
+               mutex_init(&hp->mutex);
+#endif
+               hp->mutex_init = 1;
+       }
+
+       /* Inform the scheduler to migrate tasks off this CPU */
+       tell_sched_cpu_down_begin(cpu);
+
+       init_completion(&hp->synced);
+       init_completion(&hp->unplug_wait);
+
+       hp->sync_tsk = kthread_create(sync_unplug_thread, hp, "sync_unplug/%d", cpu);
+       if (IS_ERR(hp->sync_tsk)) {
+               err = PTR_ERR(hp->sync_tsk);
+               hp->sync_tsk = NULL;
+               return err;
+       }
+       kthread_bind(hp->sync_tsk, cpu);
+
+       /*
+        * Wait for tasks to get out of the pinned sections,
+        * it's still OK if new tasks enter. Some CPU notifiers will
+        * wait for tasks that are going to enter these sections and
+        * we must not have them block.
+        */
+       wake_up_process(hp->sync_tsk);
+       return 0;
+}
+
+static void cpu_unplug_sync(unsigned int cpu)
+{
+       struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+
+       init_completion(&hp->synced);
+       /* The completion needs to be initialzied before setting grab_lock */
+       smp_wmb();
+
+       /* Grab the mutex before setting grab_lock */
+       hotplug_lock(hp);
+       hp->grab_lock = 1;
+
+       /*
+        * The CPU notifiers have been completed.
+        * Wait for tasks to get out of pinned CPU sections and have new
+        * tasks block until the CPU is completely down.
+        */
+       __cpu_unplug_sync(hp);
+
+       /* All done with the sync thread */
+       kthread_stop(hp->sync_tsk);
+       hp->sync_tsk = NULL;
+}
+
+static void cpu_unplug_done(unsigned int cpu)
+{
+       struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
+
+       hp->unplug = NULL;
+       /* Let all tasks know cpu unplug is finished before cleaning up */
+       smp_wmb();
+
+       if (hp->sync_tsk)
+               kthread_stop(hp->sync_tsk);
+
+       if (hp->grab_lock) {
+               hotplug_unlock(hp);
+               /* protected by cpu_hotplug.lock */
+               hp->grab_lock = 0;
+       }
+       tell_sched_cpu_down_done(cpu);
+}
+
+void get_online_cpus(void)
+{
+       might_sleep();
+       if (cpu_hotplug.active_writer == current)
+               return;
+       cpuhp_lock_acquire_read();
+       mutex_lock(&cpu_hotplug.lock);
+       atomic_inc(&cpu_hotplug.refcount);
+       mutex_unlock(&cpu_hotplug.lock);
+}
+EXPORT_SYMBOL_GPL(get_online_cpus);
+
+bool try_get_online_cpus(void)
+{
+       if (cpu_hotplug.active_writer == current)
+               return true;
+       if (!mutex_trylock(&cpu_hotplug.lock))
+               return false;
+       cpuhp_lock_acquire_tryread();
+       atomic_inc(&cpu_hotplug.refcount);
+       mutex_unlock(&cpu_hotplug.lock);
+       return true;
+}
+EXPORT_SYMBOL_GPL(try_get_online_cpus);
+
+void put_online_cpus(void)
+{
+       int refcount;
+
+       if (cpu_hotplug.active_writer == current)
+               return;
+
+       refcount = atomic_dec_return(&cpu_hotplug.refcount);
+       if (WARN_ON(refcount < 0)) /* try to fix things up */
+               atomic_inc(&cpu_hotplug.refcount);
+
+       if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
+               wake_up(&cpu_hotplug.wq);
+
+       cpuhp_lock_release();
+
+}
+EXPORT_SYMBOL_GPL(put_online_cpus);
+
+/*
+ * This ensures that the hotplug operation can begin only when the
+ * refcount goes to zero.
+ *
+ * Note that during a cpu-hotplug operation, the new readers, if any,
+ * will be blocked by the cpu_hotplug.lock
+ *
+ * Since cpu_hotplug_begin() is always called after invoking
+ * cpu_maps_update_begin(), we can be sure that only one writer is active.
+ *
+ * Note that theoretically, there is a possibility of a livelock:
+ * - Refcount goes to zero, last reader wakes up the sleeping
+ *   writer.
+ * - Last reader unlocks the cpu_hotplug.lock.
+ * - A new reader arrives at this moment, bumps up the refcount.
+ * - The writer acquires the cpu_hotplug.lock finds the refcount
+ *   non zero and goes to sleep again.
+ *
+ * However, this is very difficult to achieve in practice since
+ * get_online_cpus() not an api which is called all that often.
+ *
+ */
+void cpu_hotplug_begin(void)
+{
+       DEFINE_WAIT(wait);
+
+       cpu_hotplug.active_writer = current;
+       cpuhp_lock_acquire();
+
+       for (;;) {
+               mutex_lock(&cpu_hotplug.lock);
+               prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
+               if (likely(!atomic_read(&cpu_hotplug.refcount)))
+                               break;
+               mutex_unlock(&cpu_hotplug.lock);
+               schedule();
+       }
+       finish_wait(&cpu_hotplug.wq, &wait);
+}
+
+void cpu_hotplug_done(void)
+{
+       cpu_hotplug.active_writer = NULL;
+       mutex_unlock(&cpu_hotplug.lock);
+       cpuhp_lock_release();
+}
+
+/*
+ * Wait for currently running CPU hotplug operations to complete (if any) and
+ * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
+ * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
+ * hotplug path before performing hotplug operations. So acquiring that lock
+ * guarantees mutual exclusion from any currently running hotplug operations.
+ */
+void cpu_hotplug_disable(void)
+{
+       cpu_maps_update_begin();
+       cpu_hotplug_disabled = 1;
+       cpu_maps_update_done();
+}
+
+void cpu_hotplug_enable(void)
+{
+       cpu_maps_update_begin();
+       cpu_hotplug_disabled = 0;
+       cpu_maps_update_done();
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+/* Need to know about CPUs going up/down? */
+int __ref register_cpu_notifier(struct notifier_block *nb)
+{
+       int ret;
+       cpu_maps_update_begin();
+       ret = raw_notifier_chain_register(&cpu_chain, nb);
+       cpu_maps_update_done();
+       return ret;
+}
+
+int __ref __register_cpu_notifier(struct notifier_block *nb)
+{
+       return raw_notifier_chain_register(&cpu_chain, nb);
+}
+
+static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
+                       int *nr_calls)
+{
+       int ret;
+
+       ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
+                                       nr_calls);
+
+       return notifier_to_errno(ret);
+}
+
+static int cpu_notify(unsigned long val, void *v)
+{
+       return __cpu_notify(val, v, -1, NULL);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+static void cpu_notify_nofail(unsigned long val, void *v)
+{
+       BUG_ON(cpu_notify(val, v));
+}
+EXPORT_SYMBOL(register_cpu_notifier);
+EXPORT_SYMBOL(__register_cpu_notifier);
+
+void __ref unregister_cpu_notifier(struct notifier_block *nb)
+{
+       cpu_maps_update_begin();
+       raw_notifier_chain_unregister(&cpu_chain, nb);
+       cpu_maps_update_done();
+}
+EXPORT_SYMBOL(unregister_cpu_notifier);
+
+void __ref __unregister_cpu_notifier(struct notifier_block *nb)
+{
+       raw_notifier_chain_unregister(&cpu_chain, nb);
+}
+EXPORT_SYMBOL(__unregister_cpu_notifier);
+
+/**
+ * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
+ * @cpu: a CPU id
+ *
+ * This function walks all processes, finds a valid mm struct for each one and
+ * then clears a corresponding bit in mm's cpumask.  While this all sounds
+ * trivial, there are various non-obvious corner cases, which this function
+ * tries to solve in a safe manner.
+ *
+ * Also note that the function uses a somewhat relaxed locking scheme, so it may
+ * be called only for an already offlined CPU.
+ */
+void clear_tasks_mm_cpumask(int cpu)
+{
+       struct task_struct *p;
+
+       /*
+        * This function is called after the cpu is taken down and marked
+        * offline, so its not like new tasks will ever get this cpu set in
+        * their mm mask. -- Peter Zijlstra
+        * Thus, we may use rcu_read_lock() here, instead of grabbing
+        * full-fledged tasklist_lock.
+        */
+       WARN_ON(cpu_online(cpu));
+       rcu_read_lock();
+       for_each_process(p) {
+               struct task_struct *t;
+
+               /*
+                * Main thread might exit, but other threads may still have
+                * a valid mm. Find one.
+                */
+               t = find_lock_task_mm(p);
+               if (!t)
+                       continue;
+               cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
+               task_unlock(t);
+       }
+       rcu_read_unlock();
+}
+
+static inline void check_for_tasks(int dead_cpu)
+{
+       struct task_struct *g, *p;
+
+       read_lock_irq(&tasklist_lock);
+       do_each_thread(g, p) {
+               if (!p->on_rq)
+                       continue;
+               /*
+                * We do the check with unlocked task_rq(p)->lock.
+                * Order the reading to do not warn about a task,
+                * which was running on this cpu in the past, and
+                * it's just been woken on another cpu.
+                */
+               rmb();
+               if (task_cpu(p) != dead_cpu)
+                       continue;
+
+               pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
+                       p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
+       } while_each_thread(g, p);
+       read_unlock_irq(&tasklist_lock);
+}
+
+struct take_cpu_down_param {
+       unsigned long mod;
+       void *hcpu;
+};
+
+/* Take this CPU down. */
+static int __ref take_cpu_down(void *_param)
+{
+       struct take_cpu_down_param *param = _param;
+       int err;
+
+       /* Ensure this CPU doesn't handle any more interrupts. */
+       err = __cpu_disable();
+       if (err < 0)
+               return err;
+
+       cpu_notify(CPU_DYING | param->mod, param->hcpu);
+       /* Give up timekeeping duties */
+       tick_handover_do_timer();
+       /* Park the stopper thread */
+       kthread_park(current);
+       return 0;
+}
+
+/* Requires cpu_add_remove_lock to be held */
+static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
+{
+       int mycpu, err, nr_calls = 0;
+       void *hcpu = (void *)(long)cpu;
+       unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
+       struct take_cpu_down_param tcd_param = {
+               .mod = mod,
+               .hcpu = hcpu,
+       };
+       cpumask_var_t cpumask;
+       cpumask_var_t cpumask_org;
+
+       if (num_online_cpus() == 1)
+               return -EBUSY;
+
+       if (!cpu_online(cpu))
+               return -EINVAL;
+
+       /* Move the downtaker off the unplug cpu */
+       if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
+               return -ENOMEM;
+       if (!alloc_cpumask_var(&cpumask_org, GFP_KERNEL))  {
+               free_cpumask_var(cpumask);
+               return -ENOMEM;
+       }
+
+       cpumask_copy(cpumask_org, tsk_cpus_allowed(current));
+       cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu));
+       set_cpus_allowed_ptr(current, cpumask);
+       free_cpumask_var(cpumask);
+       migrate_disable();
+       mycpu = smp_processor_id();
+       if (mycpu == cpu) {
+               printk(KERN_ERR "Yuck! Still on unplug CPU\n!");
+               migrate_enable();
+               err = -EBUSY;
+               goto restore_cpus;
+       }
+       migrate_enable();
+
+       cpu_hotplug_begin();
+       err = cpu_unplug_begin(cpu);
+       if (err) {
+               printk("cpu_unplug_begin(%d) failed\n", cpu);
+               goto out_cancel;
+       }
+
+       err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
+       if (err) {
+               nr_calls--;
+               __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
+               pr_warn("%s: attempt to take down CPU %u failed\n",
+                       __func__, cpu);
+               goto out_release;
+       }
+
+       /*
+        * By now we've cleared cpu_active_mask, wait for all preempt-disabled
+        * and RCU users of this state to go away such that all new such users
+        * will observe it.
+        *
+        * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
+        * not imply sync_sched(), so explicitly call both.
+        *
+        * Do sync before park smpboot threads to take care the rcu boost case.
+        */
+#ifdef CONFIG_PREEMPT
+       synchronize_sched();
+#endif
+       synchronize_rcu();
+
+       __cpu_unplug_wait(cpu);
+       smpboot_park_threads(cpu);
+
+       /* Notifiers are done. Don't let any more tasks pin this CPU. */
+       cpu_unplug_sync(cpu);
+
+       /*
+        * So now all preempt/rcu users must observe !cpu_active().
+        */
+
+       err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
+       if (err) {
+               /* CPU didn't die: tell everyone.  Can't complain. */
+               smpboot_unpark_threads(cpu);
+               cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
+               goto out_release;
+       }
+       BUG_ON(cpu_online(cpu));
+
+       /*
+        * The migration_call() CPU_DYING callback will have removed all
+        * runnable tasks from the cpu, there's only the idle task left now
+        * that the migration thread is done doing the stop_machine thing.
+        *
+        * Wait for the stop thread to go away.
+        */
+       while (!per_cpu(cpu_dead_idle, cpu))
+               cpu_relax();
+       smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
+       per_cpu(cpu_dead_idle, cpu) = false;
+
+       hotplug_cpu__broadcast_tick_pull(cpu);
+       /* This actually kills the CPU. */
+       __cpu_die(cpu);
+
+       /* CPU is completely dead: tell everyone.  Too late to complain. */
+       tick_cleanup_dead_cpu(cpu);
+       cpu_notify_nofail(CPU_DEAD | mod, hcpu);
+
+       check_for_tasks(cpu);
+
+out_release:
+       cpu_unplug_done(cpu);
+out_cancel:
+       cpu_hotplug_done();
+       if (!err)
+               cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
+restore_cpus:
+       set_cpus_allowed_ptr(current, cpumask_org);
+       free_cpumask_var(cpumask_org);
+       return err;
+}
+
+int __ref cpu_down(unsigned int cpu)
+{
+       int err;
+
+       cpu_maps_update_begin();
+
+       if (cpu_hotplug_disabled) {
+               err = -EBUSY;
+               goto out;
+       }
+
+       err = _cpu_down(cpu, 0);
+
+out:
+       cpu_maps_update_done();
+       return err;
+}
+EXPORT_SYMBOL(cpu_down);
+#endif /*CONFIG_HOTPLUG_CPU*/
+
+/*
+ * Unpark per-CPU smpboot kthreads at CPU-online time.
+ */
+static int smpboot_thread_call(struct notifier_block *nfb,
+                              unsigned long action, void *hcpu)
+{
+       int cpu = (long)hcpu;
+
+       switch (action & ~CPU_TASKS_FROZEN) {
+
+       case CPU_ONLINE:
+               smpboot_unpark_threads(cpu);
+               break;
+
+       default:
+               break;
+       }
+
+       return NOTIFY_OK;
+}
+
+static struct notifier_block smpboot_thread_notifier = {
+       .notifier_call = smpboot_thread_call,
+       .priority = CPU_PRI_SMPBOOT,
+};
+
+void __cpuinit smpboot_thread_init(void)
+{
+       register_cpu_notifier(&smpboot_thread_notifier);
+}
+
+/* Requires cpu_add_remove_lock to be held */
+static int _cpu_up(unsigned int cpu, int tasks_frozen)
+{
+       int ret, nr_calls = 0;
+       void *hcpu = (void *)(long)cpu;
+       unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
+       struct task_struct *idle;
+
+       cpu_hotplug_begin();
+
+       if (cpu_online(cpu) || !cpu_present(cpu)) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       idle = idle_thread_get(cpu);
+       if (IS_ERR(idle)) {
+               ret = PTR_ERR(idle);
+               goto out;
+       }
+
+       ret = smpboot_create_threads(cpu);
+       if (ret)
+               goto out;
+
+       ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
+       if (ret) {
+               nr_calls--;
+               pr_warn("%s: attempt to bring up CPU %u failed\n",
+                       __func__, cpu);
+               goto out_notify;
+       }
+
+       /* Arch-specific enabling code. */
+       ret = __cpu_up(cpu, idle);
+       if (ret != 0)
+               goto out_notify;
+       BUG_ON(!cpu_online(cpu));
+
+       /* Now call notifier in preparation. */
+       cpu_notify(CPU_ONLINE | mod, hcpu);
+
+out_notify:
+       if (ret != 0)
+               __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
+out:
+       cpu_hotplug_done();
+
+       return ret;
+}
+
+int cpu_up(unsigned int cpu)
+{
+       int err = 0;
+
+       if (!cpu_possible(cpu)) {
+               pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
+                      cpu);
+#if defined(CONFIG_IA64)
+               pr_err("please check additional_cpus= boot parameter\n");
+#endif
+               return -EINVAL;
+       }
+
+       err = try_online_node(cpu_to_node(cpu));
+       if (err)
+               return err;
+
+       cpu_maps_update_begin();
+
+       if (cpu_hotplug_disabled) {
+               err = -EBUSY;
+               goto out;
+       }
+
+       err = _cpu_up(cpu, 0);
+
+out:
+       cpu_maps_update_done();
+       return err;
+}
+EXPORT_SYMBOL_GPL(cpu_up);
+
+#ifdef CONFIG_PM_SLEEP_SMP
+static cpumask_var_t frozen_cpus;
+
+int disable_nonboot_cpus(void)
+{
+       int cpu, first_cpu, error = 0;
+
+       cpu_maps_update_begin();
+       first_cpu = cpumask_first(cpu_online_mask);
+       /*
+        * We take down all of the non-boot CPUs in one shot to avoid races
+        * with the userspace trying to use the CPU hotplug at the same time
+        */
+       cpumask_clear(frozen_cpus);
+
+       pr_info("Disabling non-boot CPUs ...\n");
+       for_each_online_cpu(cpu) {
+               if (cpu == first_cpu)
+                       continue;
+               trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
+               error = _cpu_down(cpu, 1);
+               trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
+               if (!error)
+                       cpumask_set_cpu(cpu, frozen_cpus);
+               else {
+                       pr_err("Error taking CPU%d down: %d\n", cpu, error);
+                       break;
+               }
+       }
+
+       if (!error) {
+               BUG_ON(num_online_cpus() > 1);
+               /* Make sure the CPUs won't be enabled by someone else */
+               cpu_hotplug_disabled = 1;
+       } else {
+               pr_err("Non-boot CPUs are not disabled\n");
+       }
+       cpu_maps_update_done();
+       return error;
+}
+
+void __weak arch_enable_nonboot_cpus_begin(void)
+{
+}
+
+void __weak arch_enable_nonboot_cpus_end(void)
+{
+}
+
+void __ref enable_nonboot_cpus(void)
+{
+       int cpu, error;
+
+       /* Allow everyone to use the CPU hotplug again */
+       cpu_maps_update_begin();
+       cpu_hotplug_disabled = 0;
+       if (cpumask_empty(frozen_cpus))
+               goto out;
+
+       pr_info("Enabling non-boot CPUs ...\n");
+
+       arch_enable_nonboot_cpus_begin();
+
+       for_each_cpu(cpu, frozen_cpus) {
+               trace_suspend_resume(TPS("CPU_ON"), cpu, true);
+               error = _cpu_up(cpu, 1);
+               trace_suspend_resume(TPS("CPU_ON"), cpu, false);
+               if (!error) {
+                       pr_info("CPU%d is up\n", cpu);
+                       continue;
+               }
+               pr_warn("Error taking CPU%d up: %d\n", cpu, error);
+       }
+
+       arch_enable_nonboot_cpus_end();
+
+       cpumask_clear(frozen_cpus);
+out:
+       cpu_maps_update_done();
+}
+
+static int __init alloc_frozen_cpus(void)
+{
+       if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
+               return -ENOMEM;
+       return 0;
+}
+core_initcall(alloc_frozen_cpus);
+
+/*
+ * When callbacks for CPU hotplug notifications are being executed, we must
+ * ensure that the state of the system with respect to the tasks being frozen
+ * or not, as reported by the notification, remains unchanged *throughout the
+ * duration* of the execution of the callbacks.
+ * Hence we need to prevent the freezer from racing with regular CPU hotplug.
+ *
+ * This synchronization is implemented by mutually excluding regular CPU
+ * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
+ * Hibernate notifications.
+ */
+static int
+cpu_hotplug_pm_callback(struct notifier_block *nb,
+                       unsigned long action, void *ptr)
+{
+       switch (action) {
+
+       case PM_SUSPEND_PREPARE:
+       case PM_HIBERNATION_PREPARE:
+               cpu_hotplug_disable();
+               break;
+
+       case PM_POST_SUSPEND:
+       case PM_POST_HIBERNATION:
+               cpu_hotplug_enable();
+               break;
+
+       default:
+               return NOTIFY_DONE;
+       }
+
+       return NOTIFY_OK;
+}
+
+
+static int __init cpu_hotplug_pm_sync_init(void)
+{
+       /*
+        * cpu_hotplug_pm_callback has higher priority than x86
+        * bsp_pm_callback which depends on cpu_hotplug_pm_callback
+        * to disable cpu hotplug to avoid cpu hotplug race.
+        */
+       pm_notifier(cpu_hotplug_pm_callback, 0);
+       return 0;
+}
+core_initcall(cpu_hotplug_pm_sync_init);
+
+#endif /* CONFIG_PM_SLEEP_SMP */
+
+/**
+ * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
+ * @cpu: cpu that just started
+ *
+ * This function calls the cpu_chain notifiers with CPU_STARTING.
+ * It must be called by the arch code on the new cpu, before the new cpu
+ * enables interrupts and before the "boot" cpu returns from __cpu_up().
+ */
+void notify_cpu_starting(unsigned int cpu)
+{
+       unsigned long val = CPU_STARTING;
+
+#ifdef CONFIG_PM_SLEEP_SMP
+       if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
+               val = CPU_STARTING_FROZEN;
+#endif /* CONFIG_PM_SLEEP_SMP */
+       cpu_notify(val, (void *)(long)cpu);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * cpu_bit_bitmap[] is a special, "compressed" data structure that
+ * represents all NR_CPUS bits binary values of 1<<nr.
+ *
+ * It is used by cpumask_of() to get a constant address to a CPU
+ * mask value that has a single bit set only.
+ */
+
+/* cpu_bit_bitmap[0] is empty - so we can back into it */
+#define MASK_DECLARE_1(x)      [x+1][0] = (1UL << (x))
+#define MASK_DECLARE_2(x)      MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
+#define MASK_DECLARE_4(x)      MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
+#define MASK_DECLARE_8(x)      MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
+
+const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
+
+       MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
+       MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
+#if BITS_PER_LONG > 32
+       MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
+       MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
+#endif
+};
+EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
+
+const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
+EXPORT_SYMBOL(cpu_all_bits);
+
+#ifdef CONFIG_INIT_ALL_POSSIBLE
+static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
+       = CPU_BITS_ALL;
+#else
+static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
+#endif
+const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
+EXPORT_SYMBOL(cpu_possible_mask);
+
+static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
+const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
+EXPORT_SYMBOL(cpu_online_mask);
+
+static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
+const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
+EXPORT_SYMBOL(cpu_present_mask);
+
+static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
+const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
+EXPORT_SYMBOL(cpu_active_mask);
+
+void set_cpu_possible(unsigned int cpu, bool possible)
+{
+       if (possible)
+               cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
+       else
+               cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
+}
+
+void set_cpu_present(unsigned int cpu, bool present)
+{
+       if (present)
+               cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
+       else
+               cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
+}
+
+void set_cpu_online(unsigned int cpu, bool online)
+{
+       if (online) {
+               cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
+               cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
+       } else {
+               cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
+       }
+}
+
+void set_cpu_active(unsigned int cpu, bool active)
+{
+       if (active)
+               cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
+       else
+               cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
+}
+
+void init_cpu_present(const struct cpumask *src)
+{
+       cpumask_copy(to_cpumask(cpu_present_bits), src);
+}
+
+void init_cpu_possible(const struct cpumask *src)
+{
+       cpumask_copy(to_cpumask(cpu_possible_bits), src);
+}
+
+void init_cpu_online(const struct cpumask *src)
+{
+       cpumask_copy(to_cpumask(cpu_online_bits), src);
+}