Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / include / net / red.h
diff --git a/kernel/include/net/red.h b/kernel/include/net/red.h
new file mode 100644 (file)
index 0000000..76e0b5f
--- /dev/null
@@ -0,0 +1,406 @@
+#ifndef __NET_SCHED_RED_H
+#define __NET_SCHED_RED_H
+
+#include <linux/types.h>
+#include <linux/bug.h>
+#include <net/pkt_sched.h>
+#include <net/inet_ecn.h>
+#include <net/dsfield.h>
+#include <linux/reciprocal_div.h>
+
+/*     Random Early Detection (RED) algorithm.
+       =======================================
+
+       Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
+       for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
+
+       This file codes a "divisionless" version of RED algorithm
+       as written down in Fig.17 of the paper.
+
+       Short description.
+       ------------------
+
+       When a new packet arrives we calculate the average queue length:
+
+       avg = (1-W)*avg + W*current_queue_len,
+
+       W is the filter time constant (chosen as 2^(-Wlog)), it controls
+       the inertia of the algorithm. To allow larger bursts, W should be
+       decreased.
+
+       if (avg > th_max) -> packet marked (dropped).
+       if (avg < th_min) -> packet passes.
+       if (th_min < avg < th_max) we calculate probability:
+
+       Pb = max_P * (avg - th_min)/(th_max-th_min)
+
+       and mark (drop) packet with this probability.
+       Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
+       max_P should be small (not 1), usually 0.01..0.02 is good value.
+
+       max_P is chosen as a number, so that max_P/(th_max-th_min)
+       is a negative power of two in order arithmetics to contain
+       only shifts.
+
+
+       Parameters, settable by user:
+       -----------------------------
+
+       qth_min         - bytes (should be < qth_max/2)
+       qth_max         - bytes (should be at least 2*qth_min and less limit)
+       Wlog            - bits (<32) log(1/W).
+       Plog            - bits (<32)
+
+       Plog is related to max_P by formula:
+
+       max_P = (qth_max-qth_min)/2^Plog;
+
+       F.e. if qth_max=128K and qth_min=32K, then Plog=22
+       corresponds to max_P=0.02
+
+       Scell_log
+       Stab
+
+       Lookup table for log((1-W)^(t/t_ave).
+
+
+       NOTES:
+
+       Upper bound on W.
+       -----------------
+
+       If you want to allow bursts of L packets of size S,
+       you should choose W:
+
+       L + 1 - th_min/S < (1-(1-W)^L)/W
+
+       th_min/S = 32         th_min/S = 4
+
+       log(W)  L
+       -1      33
+       -2      35
+       -3      39
+       -4      46
+       -5      57
+       -6      75
+       -7      101
+       -8      135
+       -9      190
+       etc.
+ */
+
+/*
+ * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
+ * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
+ *
+ * Every 500 ms:
+ *  if (avg > target and max_p <= 0.5)
+ *   increase max_p : max_p += alpha;
+ *  else if (avg < target and max_p >= 0.01)
+ *   decrease max_p : max_p *= beta;
+ *
+ * target :[qth_min + 0.4*(qth_min - qth_max),
+ *          qth_min + 0.6*(qth_min - qth_max)].
+ * alpha : min(0.01, max_p / 4)
+ * beta : 0.9
+ * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
+ * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
+ */
+#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
+
+#define MAX_P_MIN (1 * RED_ONE_PERCENT)
+#define MAX_P_MAX (50 * RED_ONE_PERCENT)
+#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
+
+#define RED_STAB_SIZE  256
+#define RED_STAB_MASK  (RED_STAB_SIZE - 1)
+
+struct red_stats {
+       u32             prob_drop;      /* Early probability drops */
+       u32             prob_mark;      /* Early probability marks */
+       u32             forced_drop;    /* Forced drops, qavg > max_thresh */
+       u32             forced_mark;    /* Forced marks, qavg > max_thresh */
+       u32             pdrop;          /* Drops due to queue limits */
+       u32             other;          /* Drops due to drop() calls */
+};
+
+struct red_parms {
+       /* Parameters */
+       u32             qth_min;        /* Min avg length threshold: Wlog scaled */
+       u32             qth_max;        /* Max avg length threshold: Wlog scaled */
+       u32             Scell_max;
+       u32             max_P;          /* probability, [0 .. 1.0] 32 scaled */
+       /* reciprocal_value(max_P / qth_delta) */
+       struct reciprocal_value max_P_reciprocal;
+       u32             qth_delta;      /* max_th - min_th */
+       u32             target_min;     /* min_th + 0.4*(max_th - min_th) */
+       u32             target_max;     /* min_th + 0.6*(max_th - min_th) */
+       u8              Scell_log;
+       u8              Wlog;           /* log(W)               */
+       u8              Plog;           /* random number bits   */
+       u8              Stab[RED_STAB_SIZE];
+};
+
+struct red_vars {
+       /* Variables */
+       int             qcount;         /* Number of packets since last random
+                                          number generation */
+       u32             qR;             /* Cached random number */
+
+       unsigned long   qavg;           /* Average queue length: Wlog scaled */
+       ktime_t         qidlestart;     /* Start of current idle period */
+};
+
+static inline u32 red_maxp(u8 Plog)
+{
+       return Plog < 32 ? (~0U >> Plog) : ~0U;
+}
+
+static inline void red_set_vars(struct red_vars *v)
+{
+       /* Reset average queue length, the value is strictly bound
+        * to the parameters below, reseting hurts a bit but leaving
+        * it might result in an unreasonable qavg for a while. --TGR
+        */
+       v->qavg         = 0;
+
+       v->qcount       = -1;
+}
+
+static inline void red_set_parms(struct red_parms *p,
+                                u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
+                                u8 Scell_log, u8 *stab, u32 max_P)
+{
+       int delta = qth_max - qth_min;
+       u32 max_p_delta;
+
+       p->qth_min      = qth_min << Wlog;
+       p->qth_max      = qth_max << Wlog;
+       p->Wlog         = Wlog;
+       p->Plog         = Plog;
+       if (delta < 0)
+               delta = 1;
+       p->qth_delta    = delta;
+       if (!max_P) {
+               max_P = red_maxp(Plog);
+               max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
+       }
+       p->max_P = max_P;
+       max_p_delta = max_P / delta;
+       max_p_delta = max(max_p_delta, 1U);
+       p->max_P_reciprocal  = reciprocal_value(max_p_delta);
+
+       /* RED Adaptative target :
+        * [min_th + 0.4*(min_th - max_th),
+        *  min_th + 0.6*(min_th - max_th)].
+        */
+       delta /= 5;
+       p->target_min = qth_min + 2*delta;
+       p->target_max = qth_min + 3*delta;
+
+       p->Scell_log    = Scell_log;
+       p->Scell_max    = (255 << Scell_log);
+
+       if (stab)
+               memcpy(p->Stab, stab, sizeof(p->Stab));
+}
+
+static inline int red_is_idling(const struct red_vars *v)
+{
+       return v->qidlestart.tv64 != 0;
+}
+
+static inline void red_start_of_idle_period(struct red_vars *v)
+{
+       v->qidlestart = ktime_get();
+}
+
+static inline void red_end_of_idle_period(struct red_vars *v)
+{
+       v->qidlestart.tv64 = 0;
+}
+
+static inline void red_restart(struct red_vars *v)
+{
+       red_end_of_idle_period(v);
+       v->qavg = 0;
+       v->qcount = -1;
+}
+
+static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
+                                                        const struct red_vars *v)
+{
+       s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
+       long us_idle = min_t(s64, delta, p->Scell_max);
+       int  shift;
+
+       /*
+        * The problem: ideally, average length queue recalcultion should
+        * be done over constant clock intervals. This is too expensive, so
+        * that the calculation is driven by outgoing packets.
+        * When the queue is idle we have to model this clock by hand.
+        *
+        * SF+VJ proposed to "generate":
+        *
+        *      m = idletime / (average_pkt_size / bandwidth)
+        *
+        * dummy packets as a burst after idle time, i.e.
+        *
+        *      v->qavg *= (1-W)^m
+        *
+        * This is an apparently overcomplicated solution (f.e. we have to
+        * precompute a table to make this calculation in reasonable time)
+        * I believe that a simpler model may be used here,
+        * but it is field for experiments.
+        */
+
+       shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
+
+       if (shift)
+               return v->qavg >> shift;
+       else {
+               /* Approximate initial part of exponent with linear function:
+                *
+                *      (1-W)^m ~= 1-mW + ...
+                *
+                * Seems, it is the best solution to
+                * problem of too coarse exponent tabulation.
+                */
+               us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
+
+               if (us_idle < (v->qavg >> 1))
+                       return v->qavg - us_idle;
+               else
+                       return v->qavg >> 1;
+       }
+}
+
+static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
+                                                      const struct red_vars *v,
+                                                      unsigned int backlog)
+{
+       /*
+        * NOTE: v->qavg is fixed point number with point at Wlog.
+        * The formula below is equvalent to floating point
+        * version:
+        *
+        *      qavg = qavg*(1-W) + backlog*W;
+        *
+        * --ANK (980924)
+        */
+       return v->qavg + (backlog - (v->qavg >> p->Wlog));
+}
+
+static inline unsigned long red_calc_qavg(const struct red_parms *p,
+                                         const struct red_vars *v,
+                                         unsigned int backlog)
+{
+       if (!red_is_idling(v))
+               return red_calc_qavg_no_idle_time(p, v, backlog);
+       else
+               return red_calc_qavg_from_idle_time(p, v);
+}
+
+
+static inline u32 red_random(const struct red_parms *p)
+{
+       return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
+}
+
+static inline int red_mark_probability(const struct red_parms *p,
+                                      const struct red_vars *v,
+                                      unsigned long qavg)
+{
+       /* The formula used below causes questions.
+
+          OK. qR is random number in the interval
+               (0..1/max_P)*(qth_max-qth_min)
+          i.e. 0..(2^Plog). If we used floating point
+          arithmetics, it would be: (2^Plog)*rnd_num,
+          where rnd_num is less 1.
+
+          Taking into account, that qavg have fixed
+          point at Wlog, two lines
+          below have the following floating point equivalent:
+
+          max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
+
+          Any questions? --ANK (980924)
+        */
+       return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
+}
+
+enum {
+       RED_BELOW_MIN_THRESH,
+       RED_BETWEEN_TRESH,
+       RED_ABOVE_MAX_TRESH,
+};
+
+static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
+{
+       if (qavg < p->qth_min)
+               return RED_BELOW_MIN_THRESH;
+       else if (qavg >= p->qth_max)
+               return RED_ABOVE_MAX_TRESH;
+       else
+               return RED_BETWEEN_TRESH;
+}
+
+enum {
+       RED_DONT_MARK,
+       RED_PROB_MARK,
+       RED_HARD_MARK,
+};
+
+static inline int red_action(const struct red_parms *p,
+                            struct red_vars *v,
+                            unsigned long qavg)
+{
+       switch (red_cmp_thresh(p, qavg)) {
+               case RED_BELOW_MIN_THRESH:
+                       v->qcount = -1;
+                       return RED_DONT_MARK;
+
+               case RED_BETWEEN_TRESH:
+                       if (++v->qcount) {
+                               if (red_mark_probability(p, v, qavg)) {
+                                       v->qcount = 0;
+                                       v->qR = red_random(p);
+                                       return RED_PROB_MARK;
+                               }
+                       } else
+                               v->qR = red_random(p);
+
+                       return RED_DONT_MARK;
+
+               case RED_ABOVE_MAX_TRESH:
+                       v->qcount = -1;
+                       return RED_HARD_MARK;
+       }
+
+       BUG();
+       return RED_DONT_MARK;
+}
+
+static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
+{
+       unsigned long qavg;
+       u32 max_p_delta;
+
+       qavg = v->qavg;
+       if (red_is_idling(v))
+               qavg = red_calc_qavg_from_idle_time(p, v);
+
+       /* v->qavg is fixed point number with point at Wlog */
+       qavg >>= p->Wlog;
+
+       if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
+               p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
+       else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
+               p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
+
+       max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
+       max_p_delta = max(max_p_delta, 1U);
+       p->max_P_reciprocal = reciprocal_value(max_p_delta);
+}
+#endif