Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / xfs / xfs_file.c
diff --git a/kernel/fs/xfs/xfs_file.c b/kernel/fs/xfs/xfs_file.c
new file mode 100644 (file)
index 0000000..3b75912
--- /dev/null
@@ -0,0 +1,1534 @@
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_da_format.h"
+#include "xfs_da_btree.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_error.h"
+#include "xfs_dir2.h"
+#include "xfs_dir2_priv.h"
+#include "xfs_ioctl.h"
+#include "xfs_trace.h"
+#include "xfs_log.h"
+#include "xfs_icache.h"
+#include "xfs_pnfs.h"
+
+#include <linux/dcache.h>
+#include <linux/falloc.h>
+#include <linux/pagevec.h>
+
+static const struct vm_operations_struct xfs_file_vm_ops;
+
+/*
+ * Locking primitives for read and write IO paths to ensure we consistently use
+ * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
+ */
+static inline void
+xfs_rw_ilock(
+       struct xfs_inode        *ip,
+       int                     type)
+{
+       if (type & XFS_IOLOCK_EXCL)
+               mutex_lock(&VFS_I(ip)->i_mutex);
+       xfs_ilock(ip, type);
+}
+
+static inline void
+xfs_rw_iunlock(
+       struct xfs_inode        *ip,
+       int                     type)
+{
+       xfs_iunlock(ip, type);
+       if (type & XFS_IOLOCK_EXCL)
+               mutex_unlock(&VFS_I(ip)->i_mutex);
+}
+
+static inline void
+xfs_rw_ilock_demote(
+       struct xfs_inode        *ip,
+       int                     type)
+{
+       xfs_ilock_demote(ip, type);
+       if (type & XFS_IOLOCK_EXCL)
+               mutex_unlock(&VFS_I(ip)->i_mutex);
+}
+
+/*
+ *     xfs_iozero
+ *
+ *     xfs_iozero clears the specified range of buffer supplied,
+ *     and marks all the affected blocks as valid and modified.  If
+ *     an affected block is not allocated, it will be allocated.  If
+ *     an affected block is not completely overwritten, and is not
+ *     valid before the operation, it will be read from disk before
+ *     being partially zeroed.
+ */
+int
+xfs_iozero(
+       struct xfs_inode        *ip,    /* inode                        */
+       loff_t                  pos,    /* offset in file               */
+       size_t                  count)  /* size of data to zero         */
+{
+       struct page             *page;
+       struct address_space    *mapping;
+       int                     status;
+
+       mapping = VFS_I(ip)->i_mapping;
+       do {
+               unsigned offset, bytes;
+               void *fsdata;
+
+               offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
+               bytes = PAGE_CACHE_SIZE - offset;
+               if (bytes > count)
+                       bytes = count;
+
+               status = pagecache_write_begin(NULL, mapping, pos, bytes,
+                                       AOP_FLAG_UNINTERRUPTIBLE,
+                                       &page, &fsdata);
+               if (status)
+                       break;
+
+               zero_user(page, offset, bytes);
+
+               status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
+                                       page, fsdata);
+               WARN_ON(status <= 0); /* can't return less than zero! */
+               pos += bytes;
+               count -= bytes;
+               status = 0;
+       } while (count);
+
+       return status;
+}
+
+int
+xfs_update_prealloc_flags(
+       struct xfs_inode        *ip,
+       enum xfs_prealloc_flags flags)
+{
+       struct xfs_trans        *tp;
+       int                     error;
+
+       tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
+       error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
+       if (error) {
+               xfs_trans_cancel(tp, 0);
+               return error;
+       }
+
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
+       xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+
+       if (!(flags & XFS_PREALLOC_INVISIBLE)) {
+               ip->i_d.di_mode &= ~S_ISUID;
+               if (ip->i_d.di_mode & S_IXGRP)
+                       ip->i_d.di_mode &= ~S_ISGID;
+               xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+       }
+
+       if (flags & XFS_PREALLOC_SET)
+               ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
+       if (flags & XFS_PREALLOC_CLEAR)
+               ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
+
+       xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+       if (flags & XFS_PREALLOC_SYNC)
+               xfs_trans_set_sync(tp);
+       return xfs_trans_commit(tp, 0);
+}
+
+/*
+ * Fsync operations on directories are much simpler than on regular files,
+ * as there is no file data to flush, and thus also no need for explicit
+ * cache flush operations, and there are no non-transaction metadata updates
+ * on directories either.
+ */
+STATIC int
+xfs_dir_fsync(
+       struct file             *file,
+       loff_t                  start,
+       loff_t                  end,
+       int                     datasync)
+{
+       struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
+       struct xfs_mount        *mp = ip->i_mount;
+       xfs_lsn_t               lsn = 0;
+
+       trace_xfs_dir_fsync(ip);
+
+       xfs_ilock(ip, XFS_ILOCK_SHARED);
+       if (xfs_ipincount(ip))
+               lsn = ip->i_itemp->ili_last_lsn;
+       xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+       if (!lsn)
+               return 0;
+       return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
+}
+
+STATIC int
+xfs_file_fsync(
+       struct file             *file,
+       loff_t                  start,
+       loff_t                  end,
+       int                     datasync)
+{
+       struct inode            *inode = file->f_mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       int                     error = 0;
+       int                     log_flushed = 0;
+       xfs_lsn_t               lsn = 0;
+
+       trace_xfs_file_fsync(ip);
+
+       error = filemap_write_and_wait_range(inode->i_mapping, start, end);
+       if (error)
+               return error;
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               return -EIO;
+
+       xfs_iflags_clear(ip, XFS_ITRUNCATED);
+
+       if (mp->m_flags & XFS_MOUNT_BARRIER) {
+               /*
+                * If we have an RT and/or log subvolume we need to make sure
+                * to flush the write cache the device used for file data
+                * first.  This is to ensure newly written file data make
+                * it to disk before logging the new inode size in case of
+                * an extending write.
+                */
+               if (XFS_IS_REALTIME_INODE(ip))
+                       xfs_blkdev_issue_flush(mp->m_rtdev_targp);
+               else if (mp->m_logdev_targp != mp->m_ddev_targp)
+                       xfs_blkdev_issue_flush(mp->m_ddev_targp);
+       }
+
+       /*
+        * All metadata updates are logged, which means that we just have
+        * to flush the log up to the latest LSN that touched the inode.
+        */
+       xfs_ilock(ip, XFS_ILOCK_SHARED);
+       if (xfs_ipincount(ip)) {
+               if (!datasync ||
+                   (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
+                       lsn = ip->i_itemp->ili_last_lsn;
+       }
+       xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+       if (lsn)
+               error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
+
+       /*
+        * If we only have a single device, and the log force about was
+        * a no-op we might have to flush the data device cache here.
+        * This can only happen for fdatasync/O_DSYNC if we were overwriting
+        * an already allocated file and thus do not have any metadata to
+        * commit.
+        */
+       if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
+           mp->m_logdev_targp == mp->m_ddev_targp &&
+           !XFS_IS_REALTIME_INODE(ip) &&
+           !log_flushed)
+               xfs_blkdev_issue_flush(mp->m_ddev_targp);
+
+       return error;
+}
+
+STATIC ssize_t
+xfs_file_read_iter(
+       struct kiocb            *iocb,
+       struct iov_iter         *to)
+{
+       struct file             *file = iocb->ki_filp;
+       struct inode            *inode = file->f_mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       size_t                  size = iov_iter_count(to);
+       ssize_t                 ret = 0;
+       int                     ioflags = 0;
+       xfs_fsize_t             n;
+       loff_t                  pos = iocb->ki_pos;
+
+       XFS_STATS_INC(xs_read_calls);
+
+       if (unlikely(iocb->ki_flags & IOCB_DIRECT))
+               ioflags |= XFS_IO_ISDIRECT;
+       if (file->f_mode & FMODE_NOCMTIME)
+               ioflags |= XFS_IO_INVIS;
+
+       if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
+               xfs_buftarg_t   *target =
+                       XFS_IS_REALTIME_INODE(ip) ?
+                               mp->m_rtdev_targp : mp->m_ddev_targp;
+               /* DIO must be aligned to device logical sector size */
+               if ((pos | size) & target->bt_logical_sectormask) {
+                       if (pos == i_size_read(inode))
+                               return 0;
+                       return -EINVAL;
+               }
+       }
+
+       n = mp->m_super->s_maxbytes - pos;
+       if (n <= 0 || size == 0)
+               return 0;
+
+       if (n < size)
+               size = n;
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               return -EIO;
+
+       /*
+        * Locking is a bit tricky here. If we take an exclusive lock
+        * for direct IO, we effectively serialise all new concurrent
+        * read IO to this file and block it behind IO that is currently in
+        * progress because IO in progress holds the IO lock shared. We only
+        * need to hold the lock exclusive to blow away the page cache, so
+        * only take lock exclusively if the page cache needs invalidation.
+        * This allows the normal direct IO case of no page cache pages to
+        * proceeed concurrently without serialisation.
+        */
+       xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
+       if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
+               xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
+               xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
+
+               if (inode->i_mapping->nrpages) {
+                       ret = filemap_write_and_wait_range(
+                                                       VFS_I(ip)->i_mapping,
+                                                       pos, pos + size - 1);
+                       if (ret) {
+                               xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
+                               return ret;
+                       }
+
+                       /*
+                        * Invalidate whole pages. This can return an error if
+                        * we fail to invalidate a page, but this should never
+                        * happen on XFS. Warn if it does fail.
+                        */
+                       ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
+                                       pos >> PAGE_CACHE_SHIFT,
+                                       (pos + size - 1) >> PAGE_CACHE_SHIFT);
+                       WARN_ON_ONCE(ret);
+                       ret = 0;
+               }
+               xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
+       }
+
+       trace_xfs_file_read(ip, size, pos, ioflags);
+
+       ret = generic_file_read_iter(iocb, to);
+       if (ret > 0)
+               XFS_STATS_ADD(xs_read_bytes, ret);
+
+       xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
+       return ret;
+}
+
+STATIC ssize_t
+xfs_file_splice_read(
+       struct file             *infilp,
+       loff_t                  *ppos,
+       struct pipe_inode_info  *pipe,
+       size_t                  count,
+       unsigned int            flags)
+{
+       struct xfs_inode        *ip = XFS_I(infilp->f_mapping->host);
+       int                     ioflags = 0;
+       ssize_t                 ret;
+
+       XFS_STATS_INC(xs_read_calls);
+
+       if (infilp->f_mode & FMODE_NOCMTIME)
+               ioflags |= XFS_IO_INVIS;
+
+       if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+               return -EIO;
+
+       xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
+
+       trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
+
+       ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
+       if (ret > 0)
+               XFS_STATS_ADD(xs_read_bytes, ret);
+
+       xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
+       return ret;
+}
+
+/*
+ * This routine is called to handle zeroing any space in the last block of the
+ * file that is beyond the EOF.  We do this since the size is being increased
+ * without writing anything to that block and we don't want to read the
+ * garbage on the disk.
+ */
+STATIC int                             /* error (positive) */
+xfs_zero_last_block(
+       struct xfs_inode        *ip,
+       xfs_fsize_t             offset,
+       xfs_fsize_t             isize,
+       bool                    *did_zeroing)
+{
+       struct xfs_mount        *mp = ip->i_mount;
+       xfs_fileoff_t           last_fsb = XFS_B_TO_FSBT(mp, isize);
+       int                     zero_offset = XFS_B_FSB_OFFSET(mp, isize);
+       int                     zero_len;
+       int                     nimaps = 1;
+       int                     error = 0;
+       struct xfs_bmbt_irec    imap;
+
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
+       error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
+       xfs_iunlock(ip, XFS_ILOCK_EXCL);
+       if (error)
+               return error;
+
+       ASSERT(nimaps > 0);
+
+       /*
+        * If the block underlying isize is just a hole, then there
+        * is nothing to zero.
+        */
+       if (imap.br_startblock == HOLESTARTBLOCK)
+               return 0;
+
+       zero_len = mp->m_sb.sb_blocksize - zero_offset;
+       if (isize + zero_len > offset)
+               zero_len = offset - isize;
+       *did_zeroing = true;
+       return xfs_iozero(ip, isize, zero_len);
+}
+
+/*
+ * Zero any on disk space between the current EOF and the new, larger EOF.
+ *
+ * This handles the normal case of zeroing the remainder of the last block in
+ * the file and the unusual case of zeroing blocks out beyond the size of the
+ * file.  This second case only happens with fixed size extents and when the
+ * system crashes before the inode size was updated but after blocks were
+ * allocated.
+ *
+ * Expects the iolock to be held exclusive, and will take the ilock internally.
+ */
+int                                    /* error (positive) */
+xfs_zero_eof(
+       struct xfs_inode        *ip,
+       xfs_off_t               offset,         /* starting I/O offset */
+       xfs_fsize_t             isize,          /* current inode size */
+       bool                    *did_zeroing)
+{
+       struct xfs_mount        *mp = ip->i_mount;
+       xfs_fileoff_t           start_zero_fsb;
+       xfs_fileoff_t           end_zero_fsb;
+       xfs_fileoff_t           zero_count_fsb;
+       xfs_fileoff_t           last_fsb;
+       xfs_fileoff_t           zero_off;
+       xfs_fsize_t             zero_len;
+       int                     nimaps;
+       int                     error = 0;
+       struct xfs_bmbt_irec    imap;
+
+       ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
+       ASSERT(offset > isize);
+
+       /*
+        * First handle zeroing the block on which isize resides.
+        *
+        * We only zero a part of that block so it is handled specially.
+        */
+       if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
+               error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
+               if (error)
+                       return error;
+       }
+
+       /*
+        * Calculate the range between the new size and the old where blocks
+        * needing to be zeroed may exist.
+        *
+        * To get the block where the last byte in the file currently resides,
+        * we need to subtract one from the size and truncate back to a block
+        * boundary.  We subtract 1 in case the size is exactly on a block
+        * boundary.
+        */
+       last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
+       start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
+       end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
+       ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
+       if (last_fsb == end_zero_fsb) {
+               /*
+                * The size was only incremented on its last block.
+                * We took care of that above, so just return.
+                */
+               return 0;
+       }
+
+       ASSERT(start_zero_fsb <= end_zero_fsb);
+       while (start_zero_fsb <= end_zero_fsb) {
+               nimaps = 1;
+               zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
+
+               xfs_ilock(ip, XFS_ILOCK_EXCL);
+               error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
+                                         &imap, &nimaps, 0);
+               xfs_iunlock(ip, XFS_ILOCK_EXCL);
+               if (error)
+                       return error;
+
+               ASSERT(nimaps > 0);
+
+               if (imap.br_state == XFS_EXT_UNWRITTEN ||
+                   imap.br_startblock == HOLESTARTBLOCK) {
+                       start_zero_fsb = imap.br_startoff + imap.br_blockcount;
+                       ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
+                       continue;
+               }
+
+               /*
+                * There are blocks we need to zero.
+                */
+               zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
+               zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
+
+               if ((zero_off + zero_len) > offset)
+                       zero_len = offset - zero_off;
+
+               error = xfs_iozero(ip, zero_off, zero_len);
+               if (error)
+                       return error;
+
+               *did_zeroing = true;
+               start_zero_fsb = imap.br_startoff + imap.br_blockcount;
+               ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
+       }
+
+       return 0;
+}
+
+/*
+ * Common pre-write limit and setup checks.
+ *
+ * Called with the iolocked held either shared and exclusive according to
+ * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
+ * if called for a direct write beyond i_size.
+ */
+STATIC ssize_t
+xfs_file_aio_write_checks(
+       struct kiocb            *iocb,
+       struct iov_iter         *from,
+       int                     *iolock)
+{
+       struct file             *file = iocb->ki_filp;
+       struct inode            *inode = file->f_mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       ssize_t                 error = 0;
+       size_t                  count = iov_iter_count(from);
+
+restart:
+       error = generic_write_checks(iocb, from);
+       if (error <= 0)
+               return error;
+
+       error = xfs_break_layouts(inode, iolock, true);
+       if (error)
+               return error;
+
+       /*
+        * If the offset is beyond the size of the file, we need to zero any
+        * blocks that fall between the existing EOF and the start of this
+        * write.  If zeroing is needed and we are currently holding the
+        * iolock shared, we need to update it to exclusive which implies
+        * having to redo all checks before.
+        *
+        * We need to serialise against EOF updates that occur in IO
+        * completions here. We want to make sure that nobody is changing the
+        * size while we do this check until we have placed an IO barrier (i.e.
+        * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
+        * The spinlock effectively forms a memory barrier once we have the
+        * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
+        * and hence be able to correctly determine if we need to run zeroing.
+        */
+       spin_lock(&ip->i_flags_lock);
+       if (iocb->ki_pos > i_size_read(inode)) {
+               bool    zero = false;
+
+               spin_unlock(&ip->i_flags_lock);
+               if (*iolock == XFS_IOLOCK_SHARED) {
+                       xfs_rw_iunlock(ip, *iolock);
+                       *iolock = XFS_IOLOCK_EXCL;
+                       xfs_rw_ilock(ip, *iolock);
+                       iov_iter_reexpand(from, count);
+
+                       /*
+                        * We now have an IO submission barrier in place, but
+                        * AIO can do EOF updates during IO completion and hence
+                        * we now need to wait for all of them to drain. Non-AIO
+                        * DIO will have drained before we are given the
+                        * XFS_IOLOCK_EXCL, and so for most cases this wait is a
+                        * no-op.
+                        */
+                       inode_dio_wait(inode);
+                       goto restart;
+               }
+               error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
+               if (error)
+                       return error;
+       } else
+               spin_unlock(&ip->i_flags_lock);
+
+       /*
+        * Updating the timestamps will grab the ilock again from
+        * xfs_fs_dirty_inode, so we have to call it after dropping the
+        * lock above.  Eventually we should look into a way to avoid
+        * the pointless lock roundtrip.
+        */
+       if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
+               error = file_update_time(file);
+               if (error)
+                       return error;
+       }
+
+       /*
+        * If we're writing the file then make sure to clear the setuid and
+        * setgid bits if the process is not being run by root.  This keeps
+        * people from modifying setuid and setgid binaries.
+        */
+       return file_remove_suid(file);
+}
+
+/*
+ * xfs_file_dio_aio_write - handle direct IO writes
+ *
+ * Lock the inode appropriately to prepare for and issue a direct IO write.
+ * By separating it from the buffered write path we remove all the tricky to
+ * follow locking changes and looping.
+ *
+ * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
+ * until we're sure the bytes at the new EOF have been zeroed and/or the cached
+ * pages are flushed out.
+ *
+ * In most cases the direct IO writes will be done holding IOLOCK_SHARED
+ * allowing them to be done in parallel with reads and other direct IO writes.
+ * However, if the IO is not aligned to filesystem blocks, the direct IO layer
+ * needs to do sub-block zeroing and that requires serialisation against other
+ * direct IOs to the same block. In this case we need to serialise the
+ * submission of the unaligned IOs so that we don't get racing block zeroing in
+ * the dio layer.  To avoid the problem with aio, we also need to wait for
+ * outstanding IOs to complete so that unwritten extent conversion is completed
+ * before we try to map the overlapping block. This is currently implemented by
+ * hitting it with a big hammer (i.e. inode_dio_wait()).
+ *
+ * Returns with locks held indicated by @iolock and errors indicated by
+ * negative return values.
+ */
+STATIC ssize_t
+xfs_file_dio_aio_write(
+       struct kiocb            *iocb,
+       struct iov_iter         *from)
+{
+       struct file             *file = iocb->ki_filp;
+       struct address_space    *mapping = file->f_mapping;
+       struct inode            *inode = mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       ssize_t                 ret = 0;
+       int                     unaligned_io = 0;
+       int                     iolock;
+       size_t                  count = iov_iter_count(from);
+       loff_t                  pos = iocb->ki_pos;
+       loff_t                  end;
+       struct iov_iter         data;
+       struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
+                                       mp->m_rtdev_targp : mp->m_ddev_targp;
+
+       /* DIO must be aligned to device logical sector size */
+       if ((pos | count) & target->bt_logical_sectormask)
+               return -EINVAL;
+
+       /* "unaligned" here means not aligned to a filesystem block */
+       if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
+               unaligned_io = 1;
+
+       /*
+        * We don't need to take an exclusive lock unless there page cache needs
+        * to be invalidated or unaligned IO is being executed. We don't need to
+        * consider the EOF extension case here because
+        * xfs_file_aio_write_checks() will relock the inode as necessary for
+        * EOF zeroing cases and fill out the new inode size as appropriate.
+        */
+       if (unaligned_io || mapping->nrpages)
+               iolock = XFS_IOLOCK_EXCL;
+       else
+               iolock = XFS_IOLOCK_SHARED;
+       xfs_rw_ilock(ip, iolock);
+
+       /*
+        * Recheck if there are cached pages that need invalidate after we got
+        * the iolock to protect against other threads adding new pages while
+        * we were waiting for the iolock.
+        */
+       if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
+               xfs_rw_iunlock(ip, iolock);
+               iolock = XFS_IOLOCK_EXCL;
+               xfs_rw_ilock(ip, iolock);
+       }
+
+       ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+       if (ret)
+               goto out;
+       count = iov_iter_count(from);
+       pos = iocb->ki_pos;
+       end = pos + count - 1;
+
+       if (mapping->nrpages) {
+               ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
+                                                  pos, end);
+               if (ret)
+                       goto out;
+               /*
+                * Invalidate whole pages. This can return an error if
+                * we fail to invalidate a page, but this should never
+                * happen on XFS. Warn if it does fail.
+                */
+               ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
+                                       pos >> PAGE_CACHE_SHIFT,
+                                       end >> PAGE_CACHE_SHIFT);
+               WARN_ON_ONCE(ret);
+               ret = 0;
+       }
+
+       /*
+        * If we are doing unaligned IO, wait for all other IO to drain,
+        * otherwise demote the lock if we had to flush cached pages
+        */
+       if (unaligned_io)
+               inode_dio_wait(inode);
+       else if (iolock == XFS_IOLOCK_EXCL) {
+               xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
+               iolock = XFS_IOLOCK_SHARED;
+       }
+
+       trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
+
+       data = *from;
+       ret = mapping->a_ops->direct_IO(iocb, &data, pos);
+
+       /* see generic_file_direct_write() for why this is necessary */
+       if (mapping->nrpages) {
+               invalidate_inode_pages2_range(mapping,
+                                             pos >> PAGE_CACHE_SHIFT,
+                                             end >> PAGE_CACHE_SHIFT);
+       }
+
+       if (ret > 0) {
+               pos += ret;
+               iov_iter_advance(from, ret);
+               iocb->ki_pos = pos;
+       }
+out:
+       xfs_rw_iunlock(ip, iolock);
+
+       /* No fallback to buffered IO on errors for XFS. */
+       ASSERT(ret < 0 || ret == count);
+       return ret;
+}
+
+STATIC ssize_t
+xfs_file_buffered_aio_write(
+       struct kiocb            *iocb,
+       struct iov_iter         *from)
+{
+       struct file             *file = iocb->ki_filp;
+       struct address_space    *mapping = file->f_mapping;
+       struct inode            *inode = mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       ssize_t                 ret;
+       int                     enospc = 0;
+       int                     iolock = XFS_IOLOCK_EXCL;
+
+       xfs_rw_ilock(ip, iolock);
+
+       ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+       if (ret)
+               goto out;
+
+       /* We can write back this queue in page reclaim */
+       current->backing_dev_info = inode_to_bdi(inode);
+
+write_retry:
+       trace_xfs_file_buffered_write(ip, iov_iter_count(from),
+                                     iocb->ki_pos, 0);
+       ret = generic_perform_write(file, from, iocb->ki_pos);
+       if (likely(ret >= 0))
+               iocb->ki_pos += ret;
+
+       /*
+        * If we hit a space limit, try to free up some lingering preallocated
+        * space before returning an error. In the case of ENOSPC, first try to
+        * write back all dirty inodes to free up some of the excess reserved
+        * metadata space. This reduces the chances that the eofblocks scan
+        * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
+        * also behaves as a filter to prevent too many eofblocks scans from
+        * running at the same time.
+        */
+       if (ret == -EDQUOT && !enospc) {
+               enospc = xfs_inode_free_quota_eofblocks(ip);
+               if (enospc)
+                       goto write_retry;
+       } else if (ret == -ENOSPC && !enospc) {
+               struct xfs_eofblocks eofb = {0};
+
+               enospc = 1;
+               xfs_flush_inodes(ip->i_mount);
+               eofb.eof_scan_owner = ip->i_ino; /* for locking */
+               eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
+               xfs_icache_free_eofblocks(ip->i_mount, &eofb);
+               goto write_retry;
+       }
+
+       current->backing_dev_info = NULL;
+out:
+       xfs_rw_iunlock(ip, iolock);
+       return ret;
+}
+
+STATIC ssize_t
+xfs_file_write_iter(
+       struct kiocb            *iocb,
+       struct iov_iter         *from)
+{
+       struct file             *file = iocb->ki_filp;
+       struct address_space    *mapping = file->f_mapping;
+       struct inode            *inode = mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       ssize_t                 ret;
+       size_t                  ocount = iov_iter_count(from);
+
+       XFS_STATS_INC(xs_write_calls);
+
+       if (ocount == 0)
+               return 0;
+
+       if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+               return -EIO;
+
+       if (unlikely(iocb->ki_flags & IOCB_DIRECT))
+               ret = xfs_file_dio_aio_write(iocb, from);
+       else
+               ret = xfs_file_buffered_aio_write(iocb, from);
+
+       if (ret > 0) {
+               ssize_t err;
+
+               XFS_STATS_ADD(xs_write_bytes, ret);
+
+               /* Handle various SYNC-type writes */
+               err = generic_write_sync(file, iocb->ki_pos - ret, ret);
+               if (err < 0)
+                       ret = err;
+       }
+       return ret;
+}
+
+#define        XFS_FALLOC_FL_SUPPORTED                                         \
+               (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
+                FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
+                FALLOC_FL_INSERT_RANGE)
+
+STATIC long
+xfs_file_fallocate(
+       struct file             *file,
+       int                     mode,
+       loff_t                  offset,
+       loff_t                  len)
+{
+       struct inode            *inode = file_inode(file);
+       struct xfs_inode        *ip = XFS_I(inode);
+       long                    error;
+       enum xfs_prealloc_flags flags = 0;
+       uint                    iolock = XFS_IOLOCK_EXCL;
+       loff_t                  new_size = 0;
+       bool                    do_file_insert = 0;
+
+       if (!S_ISREG(inode->i_mode))
+               return -EINVAL;
+       if (mode & ~XFS_FALLOC_FL_SUPPORTED)
+               return -EOPNOTSUPP;
+
+       xfs_ilock(ip, iolock);
+       error = xfs_break_layouts(inode, &iolock, false);
+       if (error)
+               goto out_unlock;
+
+       xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
+       iolock |= XFS_MMAPLOCK_EXCL;
+
+       if (mode & FALLOC_FL_PUNCH_HOLE) {
+               error = xfs_free_file_space(ip, offset, len);
+               if (error)
+                       goto out_unlock;
+       } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
+               unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
+
+               if (offset & blksize_mask || len & blksize_mask) {
+                       error = -EINVAL;
+                       goto out_unlock;
+               }
+
+               /*
+                * There is no need to overlap collapse range with EOF,
+                * in which case it is effectively a truncate operation
+                */
+               if (offset + len >= i_size_read(inode)) {
+                       error = -EINVAL;
+                       goto out_unlock;
+               }
+
+               new_size = i_size_read(inode) - len;
+
+               error = xfs_collapse_file_space(ip, offset, len);
+               if (error)
+                       goto out_unlock;
+       } else if (mode & FALLOC_FL_INSERT_RANGE) {
+               unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
+
+               new_size = i_size_read(inode) + len;
+               if (offset & blksize_mask || len & blksize_mask) {
+                       error = -EINVAL;
+                       goto out_unlock;
+               }
+
+               /* check the new inode size does not wrap through zero */
+               if (new_size > inode->i_sb->s_maxbytes) {
+                       error = -EFBIG;
+                       goto out_unlock;
+               }
+
+               /* Offset should be less than i_size */
+               if (offset >= i_size_read(inode)) {
+                       error = -EINVAL;
+                       goto out_unlock;
+               }
+               do_file_insert = 1;
+       } else {
+               flags |= XFS_PREALLOC_SET;
+
+               if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+                   offset + len > i_size_read(inode)) {
+                       new_size = offset + len;
+                       error = inode_newsize_ok(inode, new_size);
+                       if (error)
+                               goto out_unlock;
+               }
+
+               if (mode & FALLOC_FL_ZERO_RANGE)
+                       error = xfs_zero_file_space(ip, offset, len);
+               else
+                       error = xfs_alloc_file_space(ip, offset, len,
+                                                    XFS_BMAPI_PREALLOC);
+               if (error)
+                       goto out_unlock;
+       }
+
+       if (file->f_flags & O_DSYNC)
+               flags |= XFS_PREALLOC_SYNC;
+
+       error = xfs_update_prealloc_flags(ip, flags);
+       if (error)
+               goto out_unlock;
+
+       /* Change file size if needed */
+       if (new_size) {
+               struct iattr iattr;
+
+               iattr.ia_valid = ATTR_SIZE;
+               iattr.ia_size = new_size;
+               error = xfs_setattr_size(ip, &iattr);
+               if (error)
+                       goto out_unlock;
+       }
+
+       /*
+        * Perform hole insertion now that the file size has been
+        * updated so that if we crash during the operation we don't
+        * leave shifted extents past EOF and hence losing access to
+        * the data that is contained within them.
+        */
+       if (do_file_insert)
+               error = xfs_insert_file_space(ip, offset, len);
+
+out_unlock:
+       xfs_iunlock(ip, iolock);
+       return error;
+}
+
+
+STATIC int
+xfs_file_open(
+       struct inode    *inode,
+       struct file     *file)
+{
+       if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
+               return -EFBIG;
+       if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
+               return -EIO;
+       return 0;
+}
+
+STATIC int
+xfs_dir_open(
+       struct inode    *inode,
+       struct file     *file)
+{
+       struct xfs_inode *ip = XFS_I(inode);
+       int             mode;
+       int             error;
+
+       error = xfs_file_open(inode, file);
+       if (error)
+               return error;
+
+       /*
+        * If there are any blocks, read-ahead block 0 as we're almost
+        * certain to have the next operation be a read there.
+        */
+       mode = xfs_ilock_data_map_shared(ip);
+       if (ip->i_d.di_nextents > 0)
+               xfs_dir3_data_readahead(ip, 0, -1);
+       xfs_iunlock(ip, mode);
+       return 0;
+}
+
+STATIC int
+xfs_file_release(
+       struct inode    *inode,
+       struct file     *filp)
+{
+       return xfs_release(XFS_I(inode));
+}
+
+STATIC int
+xfs_file_readdir(
+       struct file     *file,
+       struct dir_context *ctx)
+{
+       struct inode    *inode = file_inode(file);
+       xfs_inode_t     *ip = XFS_I(inode);
+       size_t          bufsize;
+
+       /*
+        * The Linux API doesn't pass down the total size of the buffer
+        * we read into down to the filesystem.  With the filldir concept
+        * it's not needed for correct information, but the XFS dir2 leaf
+        * code wants an estimate of the buffer size to calculate it's
+        * readahead window and size the buffers used for mapping to
+        * physical blocks.
+        *
+        * Try to give it an estimate that's good enough, maybe at some
+        * point we can change the ->readdir prototype to include the
+        * buffer size.  For now we use the current glibc buffer size.
+        */
+       bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
+
+       return xfs_readdir(ip, ctx, bufsize);
+}
+
+STATIC int
+xfs_file_mmap(
+       struct file     *filp,
+       struct vm_area_struct *vma)
+{
+       vma->vm_ops = &xfs_file_vm_ops;
+
+       file_accessed(filp);
+       return 0;
+}
+
+/*
+ * This type is designed to indicate the type of offset we would like
+ * to search from page cache for xfs_seek_hole_data().
+ */
+enum {
+       HOLE_OFF = 0,
+       DATA_OFF,
+};
+
+/*
+ * Lookup the desired type of offset from the given page.
+ *
+ * On success, return true and the offset argument will point to the
+ * start of the region that was found.  Otherwise this function will
+ * return false and keep the offset argument unchanged.
+ */
+STATIC bool
+xfs_lookup_buffer_offset(
+       struct page             *page,
+       loff_t                  *offset,
+       unsigned int            type)
+{
+       loff_t                  lastoff = page_offset(page);
+       bool                    found = false;
+       struct buffer_head      *bh, *head;
+
+       bh = head = page_buffers(page);
+       do {
+               /*
+                * Unwritten extents that have data in the page
+                * cache covering them can be identified by the
+                * BH_Unwritten state flag.  Pages with multiple
+                * buffers might have a mix of holes, data and
+                * unwritten extents - any buffer with valid
+                * data in it should have BH_Uptodate flag set
+                * on it.
+                */
+               if (buffer_unwritten(bh) ||
+                   buffer_uptodate(bh)) {
+                       if (type == DATA_OFF)
+                               found = true;
+               } else {
+                       if (type == HOLE_OFF)
+                               found = true;
+               }
+
+               if (found) {
+                       *offset = lastoff;
+                       break;
+               }
+               lastoff += bh->b_size;
+       } while ((bh = bh->b_this_page) != head);
+
+       return found;
+}
+
+/*
+ * This routine is called to find out and return a data or hole offset
+ * from the page cache for unwritten extents according to the desired
+ * type for xfs_seek_hole_data().
+ *
+ * The argument offset is used to tell where we start to search from the
+ * page cache.  Map is used to figure out the end points of the range to
+ * lookup pages.
+ *
+ * Return true if the desired type of offset was found, and the argument
+ * offset is filled with that address.  Otherwise, return false and keep
+ * offset unchanged.
+ */
+STATIC bool
+xfs_find_get_desired_pgoff(
+       struct inode            *inode,
+       struct xfs_bmbt_irec    *map,
+       unsigned int            type,
+       loff_t                  *offset)
+{
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       struct pagevec          pvec;
+       pgoff_t                 index;
+       pgoff_t                 end;
+       loff_t                  endoff;
+       loff_t                  startoff = *offset;
+       loff_t                  lastoff = startoff;
+       bool                    found = false;
+
+       pagevec_init(&pvec, 0);
+
+       index = startoff >> PAGE_CACHE_SHIFT;
+       endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
+       end = endoff >> PAGE_CACHE_SHIFT;
+       do {
+               int             want;
+               unsigned        nr_pages;
+               unsigned int    i;
+
+               want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
+               nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
+                                         want);
+               /*
+                * No page mapped into given range.  If we are searching holes
+                * and if this is the first time we got into the loop, it means
+                * that the given offset is landed in a hole, return it.
+                *
+                * If we have already stepped through some block buffers to find
+                * holes but they all contains data.  In this case, the last
+                * offset is already updated and pointed to the end of the last
+                * mapped page, if it does not reach the endpoint to search,
+                * that means there should be a hole between them.
+                */
+               if (nr_pages == 0) {
+                       /* Data search found nothing */
+                       if (type == DATA_OFF)
+                               break;
+
+                       ASSERT(type == HOLE_OFF);
+                       if (lastoff == startoff || lastoff < endoff) {
+                               found = true;
+                               *offset = lastoff;
+                       }
+                       break;
+               }
+
+               /*
+                * At lease we found one page.  If this is the first time we
+                * step into the loop, and if the first page index offset is
+                * greater than the given search offset, a hole was found.
+                */
+               if (type == HOLE_OFF && lastoff == startoff &&
+                   lastoff < page_offset(pvec.pages[0])) {
+                       found = true;
+                       break;
+               }
+
+               for (i = 0; i < nr_pages; i++) {
+                       struct page     *page = pvec.pages[i];
+                       loff_t          b_offset;
+
+                       /*
+                        * At this point, the page may be truncated or
+                        * invalidated (changing page->mapping to NULL),
+                        * or even swizzled back from swapper_space to tmpfs
+                        * file mapping. However, page->index will not change
+                        * because we have a reference on the page.
+                        *
+                        * Searching done if the page index is out of range.
+                        * If the current offset is not reaches the end of
+                        * the specified search range, there should be a hole
+                        * between them.
+                        */
+                       if (page->index > end) {
+                               if (type == HOLE_OFF && lastoff < endoff) {
+                                       *offset = lastoff;
+                                       found = true;
+                               }
+                               goto out;
+                       }
+
+                       lock_page(page);
+                       /*
+                        * Page truncated or invalidated(page->mapping == NULL).
+                        * We can freely skip it and proceed to check the next
+                        * page.
+                        */
+                       if (unlikely(page->mapping != inode->i_mapping)) {
+                               unlock_page(page);
+                               continue;
+                       }
+
+                       if (!page_has_buffers(page)) {
+                               unlock_page(page);
+                               continue;
+                       }
+
+                       found = xfs_lookup_buffer_offset(page, &b_offset, type);
+                       if (found) {
+                               /*
+                                * The found offset may be less than the start
+                                * point to search if this is the first time to
+                                * come here.
+                                */
+                               *offset = max_t(loff_t, startoff, b_offset);
+                               unlock_page(page);
+                               goto out;
+                       }
+
+                       /*
+                        * We either searching data but nothing was found, or
+                        * searching hole but found a data buffer.  In either
+                        * case, probably the next page contains the desired
+                        * things, update the last offset to it so.
+                        */
+                       lastoff = page_offset(page) + PAGE_SIZE;
+                       unlock_page(page);
+               }
+
+               /*
+                * The number of returned pages less than our desired, search
+                * done.  In this case, nothing was found for searching data,
+                * but we found a hole behind the last offset.
+                */
+               if (nr_pages < want) {
+                       if (type == HOLE_OFF) {
+                               *offset = lastoff;
+                               found = true;
+                       }
+                       break;
+               }
+
+               index = pvec.pages[i - 1]->index + 1;
+               pagevec_release(&pvec);
+       } while (index <= end);
+
+out:
+       pagevec_release(&pvec);
+       return found;
+}
+
+STATIC loff_t
+xfs_seek_hole_data(
+       struct file             *file,
+       loff_t                  start,
+       int                     whence)
+{
+       struct inode            *inode = file->f_mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       loff_t                  uninitialized_var(offset);
+       xfs_fsize_t             isize;
+       xfs_fileoff_t           fsbno;
+       xfs_filblks_t           end;
+       uint                    lock;
+       int                     error;
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               return -EIO;
+
+       lock = xfs_ilock_data_map_shared(ip);
+
+       isize = i_size_read(inode);
+       if (start >= isize) {
+               error = -ENXIO;
+               goto out_unlock;
+       }
+
+       /*
+        * Try to read extents from the first block indicated
+        * by fsbno to the end block of the file.
+        */
+       fsbno = XFS_B_TO_FSBT(mp, start);
+       end = XFS_B_TO_FSB(mp, isize);
+
+       for (;;) {
+               struct xfs_bmbt_irec    map[2];
+               int                     nmap = 2;
+               unsigned int            i;
+
+               error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
+                                      XFS_BMAPI_ENTIRE);
+               if (error)
+                       goto out_unlock;
+
+               /* No extents at given offset, must be beyond EOF */
+               if (nmap == 0) {
+                       error = -ENXIO;
+                       goto out_unlock;
+               }
+
+               for (i = 0; i < nmap; i++) {
+                       offset = max_t(loff_t, start,
+                                      XFS_FSB_TO_B(mp, map[i].br_startoff));
+
+                       /* Landed in the hole we wanted? */
+                       if (whence == SEEK_HOLE &&
+                           map[i].br_startblock == HOLESTARTBLOCK)
+                               goto out;
+
+                       /* Landed in the data extent we wanted? */
+                       if (whence == SEEK_DATA &&
+                           (map[i].br_startblock == DELAYSTARTBLOCK ||
+                            (map[i].br_state == XFS_EXT_NORM &&
+                             !isnullstartblock(map[i].br_startblock))))
+                               goto out;
+
+                       /*
+                        * Landed in an unwritten extent, try to search
+                        * for hole or data from page cache.
+                        */
+                       if (map[i].br_state == XFS_EXT_UNWRITTEN) {
+                               if (xfs_find_get_desired_pgoff(inode, &map[i],
+                                     whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
+                                                       &offset))
+                                       goto out;
+                       }
+               }
+
+               /*
+                * We only received one extent out of the two requested. This
+                * means we've hit EOF and didn't find what we are looking for.
+                */
+               if (nmap == 1) {
+                       /*
+                        * If we were looking for a hole, set offset to
+                        * the end of the file (i.e., there is an implicit
+                        * hole at the end of any file).
+                        */
+                       if (whence == SEEK_HOLE) {
+                               offset = isize;
+                               break;
+                       }
+                       /*
+                        * If we were looking for data, it's nowhere to be found
+                        */
+                       ASSERT(whence == SEEK_DATA);
+                       error = -ENXIO;
+                       goto out_unlock;
+               }
+
+               ASSERT(i > 1);
+
+               /*
+                * Nothing was found, proceed to the next round of search
+                * if the next reading offset is not at or beyond EOF.
+                */
+               fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
+               start = XFS_FSB_TO_B(mp, fsbno);
+               if (start >= isize) {
+                       if (whence == SEEK_HOLE) {
+                               offset = isize;
+                               break;
+                       }
+                       ASSERT(whence == SEEK_DATA);
+                       error = -ENXIO;
+                       goto out_unlock;
+               }
+       }
+
+out:
+       /*
+        * If at this point we have found the hole we wanted, the returned
+        * offset may be bigger than the file size as it may be aligned to
+        * page boundary for unwritten extents.  We need to deal with this
+        * situation in particular.
+        */
+       if (whence == SEEK_HOLE)
+               offset = min_t(loff_t, offset, isize);
+       offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
+
+out_unlock:
+       xfs_iunlock(ip, lock);
+
+       if (error)
+               return error;
+       return offset;
+}
+
+STATIC loff_t
+xfs_file_llseek(
+       struct file     *file,
+       loff_t          offset,
+       int             whence)
+{
+       switch (whence) {
+       case SEEK_END:
+       case SEEK_CUR:
+       case SEEK_SET:
+               return generic_file_llseek(file, offset, whence);
+       case SEEK_HOLE:
+       case SEEK_DATA:
+               return xfs_seek_hole_data(file, offset, whence);
+       default:
+               return -EINVAL;
+       }
+}
+
+/*
+ * Locking for serialisation of IO during page faults. This results in a lock
+ * ordering of:
+ *
+ * mmap_sem (MM)
+ *   i_mmap_lock (XFS - truncate serialisation)
+ *     page_lock (MM)
+ *       i_lock (XFS - extent map serialisation)
+ */
+STATIC int
+xfs_filemap_fault(
+       struct vm_area_struct   *vma,
+       struct vm_fault         *vmf)
+{
+       struct xfs_inode        *ip = XFS_I(vma->vm_file->f_mapping->host);
+       int                     error;
+
+       trace_xfs_filemap_fault(ip);
+
+       xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
+       error = filemap_fault(vma, vmf);
+       xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
+
+       return error;
+}
+
+/*
+ * mmap()d file has taken write protection fault and is being made writable. We
+ * can set the page state up correctly for a writable page, which means we can
+ * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
+ * mapping.
+ */
+STATIC int
+xfs_filemap_page_mkwrite(
+       struct vm_area_struct   *vma,
+       struct vm_fault         *vmf)
+{
+       struct xfs_inode        *ip = XFS_I(vma->vm_file->f_mapping->host);
+       int                     error;
+
+       trace_xfs_filemap_page_mkwrite(ip);
+
+       xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
+       error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
+       xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
+
+       return error;
+}
+
+const struct file_operations xfs_file_operations = {
+       .llseek         = xfs_file_llseek,
+       .read_iter      = xfs_file_read_iter,
+       .write_iter     = xfs_file_write_iter,
+       .splice_read    = xfs_file_splice_read,
+       .splice_write   = iter_file_splice_write,
+       .unlocked_ioctl = xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+       .compat_ioctl   = xfs_file_compat_ioctl,
+#endif
+       .mmap           = xfs_file_mmap,
+       .open           = xfs_file_open,
+       .release        = xfs_file_release,
+       .fsync          = xfs_file_fsync,
+       .fallocate      = xfs_file_fallocate,
+};
+
+const struct file_operations xfs_dir_file_operations = {
+       .open           = xfs_dir_open,
+       .read           = generic_read_dir,
+       .iterate        = xfs_file_readdir,
+       .llseek         = generic_file_llseek,
+       .unlocked_ioctl = xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+       .compat_ioctl   = xfs_file_compat_ioctl,
+#endif
+       .fsync          = xfs_dir_fsync,
+};
+
+static const struct vm_operations_struct xfs_file_vm_ops = {
+       .fault          = xfs_filemap_fault,
+       .map_pages      = filemap_map_pages,
+       .page_mkwrite   = xfs_filemap_page_mkwrite,
+};