Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / xfs / xfs_aops.c
diff --git a/kernel/fs/xfs/xfs_aops.c b/kernel/fs/xfs/xfs_aops.c
new file mode 100644 (file)
index 0000000..a56960d
--- /dev/null
@@ -0,0 +1,1931 @@
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+#include "xfs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_alloc.h"
+#include "xfs_error.h"
+#include "xfs_iomap.h"
+#include "xfs_trace.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_bmap_btree.h"
+#include <linux/gfp.h>
+#include <linux/mpage.h>
+#include <linux/pagevec.h>
+#include <linux/writeback.h>
+
+void
+xfs_count_page_state(
+       struct page             *page,
+       int                     *delalloc,
+       int                     *unwritten)
+{
+       struct buffer_head      *bh, *head;
+
+       *delalloc = *unwritten = 0;
+
+       bh = head = page_buffers(page);
+       do {
+               if (buffer_unwritten(bh))
+                       (*unwritten) = 1;
+               else if (buffer_delay(bh))
+                       (*delalloc) = 1;
+       } while ((bh = bh->b_this_page) != head);
+}
+
+STATIC struct block_device *
+xfs_find_bdev_for_inode(
+       struct inode            *inode)
+{
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+
+       if (XFS_IS_REALTIME_INODE(ip))
+               return mp->m_rtdev_targp->bt_bdev;
+       else
+               return mp->m_ddev_targp->bt_bdev;
+}
+
+/*
+ * We're now finished for good with this ioend structure.
+ * Update the page state via the associated buffer_heads,
+ * release holds on the inode and bio, and finally free
+ * up memory.  Do not use the ioend after this.
+ */
+STATIC void
+xfs_destroy_ioend(
+       xfs_ioend_t             *ioend)
+{
+       struct buffer_head      *bh, *next;
+
+       for (bh = ioend->io_buffer_head; bh; bh = next) {
+               next = bh->b_private;
+               bh->b_end_io(bh, !ioend->io_error);
+       }
+
+       mempool_free(ioend, xfs_ioend_pool);
+}
+
+/*
+ * Fast and loose check if this write could update the on-disk inode size.
+ */
+static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
+{
+       return ioend->io_offset + ioend->io_size >
+               XFS_I(ioend->io_inode)->i_d.di_size;
+}
+
+STATIC int
+xfs_setfilesize_trans_alloc(
+       struct xfs_ioend        *ioend)
+{
+       struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
+       struct xfs_trans        *tp;
+       int                     error;
+
+       tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
+
+       error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
+       if (error) {
+               xfs_trans_cancel(tp, 0);
+               return error;
+       }
+
+       ioend->io_append_trans = tp;
+
+       /*
+        * We may pass freeze protection with a transaction.  So tell lockdep
+        * we released it.
+        */
+       rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
+                     1, _THIS_IP_);
+       /*
+        * We hand off the transaction to the completion thread now, so
+        * clear the flag here.
+        */
+       current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
+       return 0;
+}
+
+/*
+ * Update on-disk file size now that data has been written to disk.
+ */
+STATIC int
+xfs_setfilesize(
+       struct xfs_inode        *ip,
+       struct xfs_trans        *tp,
+       xfs_off_t               offset,
+       size_t                  size)
+{
+       xfs_fsize_t             isize;
+
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
+       isize = xfs_new_eof(ip, offset + size);
+       if (!isize) {
+               xfs_iunlock(ip, XFS_ILOCK_EXCL);
+               xfs_trans_cancel(tp, 0);
+               return 0;
+       }
+
+       trace_xfs_setfilesize(ip, offset, size);
+
+       ip->i_d.di_size = isize;
+       xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+       xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+       return xfs_trans_commit(tp, 0);
+}
+
+STATIC int
+xfs_setfilesize_ioend(
+       struct xfs_ioend        *ioend)
+{
+       struct xfs_inode        *ip = XFS_I(ioend->io_inode);
+       struct xfs_trans        *tp = ioend->io_append_trans;
+
+       /*
+        * The transaction may have been allocated in the I/O submission thread,
+        * thus we need to mark ourselves as being in a transaction manually.
+        * Similarly for freeze protection.
+        */
+       current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
+       rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
+                          0, 1, _THIS_IP_);
+
+       return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
+}
+
+/*
+ * Schedule IO completion handling on the final put of an ioend.
+ *
+ * If there is no work to do we might as well call it a day and free the
+ * ioend right now.
+ */
+STATIC void
+xfs_finish_ioend(
+       struct xfs_ioend        *ioend)
+{
+       if (atomic_dec_and_test(&ioend->io_remaining)) {
+               struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
+
+               if (ioend->io_type == XFS_IO_UNWRITTEN)
+                       queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
+               else if (ioend->io_append_trans)
+                       queue_work(mp->m_data_workqueue, &ioend->io_work);
+               else
+                       xfs_destroy_ioend(ioend);
+       }
+}
+
+/*
+ * IO write completion.
+ */
+STATIC void
+xfs_end_io(
+       struct work_struct *work)
+{
+       xfs_ioend_t     *ioend = container_of(work, xfs_ioend_t, io_work);
+       struct xfs_inode *ip = XFS_I(ioend->io_inode);
+       int             error = 0;
+
+       if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+               ioend->io_error = -EIO;
+               goto done;
+       }
+       if (ioend->io_error)
+               goto done;
+
+       /*
+        * For unwritten extents we need to issue transactions to convert a
+        * range to normal written extens after the data I/O has finished.
+        */
+       if (ioend->io_type == XFS_IO_UNWRITTEN) {
+               error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
+                                                 ioend->io_size);
+       } else if (ioend->io_append_trans) {
+               error = xfs_setfilesize_ioend(ioend);
+       } else {
+               ASSERT(!xfs_ioend_is_append(ioend));
+       }
+
+done:
+       if (error)
+               ioend->io_error = error;
+       xfs_destroy_ioend(ioend);
+}
+
+/*
+ * Allocate and initialise an IO completion structure.
+ * We need to track unwritten extent write completion here initially.
+ * We'll need to extend this for updating the ondisk inode size later
+ * (vs. incore size).
+ */
+STATIC xfs_ioend_t *
+xfs_alloc_ioend(
+       struct inode            *inode,
+       unsigned int            type)
+{
+       xfs_ioend_t             *ioend;
+
+       ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
+
+       /*
+        * Set the count to 1 initially, which will prevent an I/O
+        * completion callback from happening before we have started
+        * all the I/O from calling the completion routine too early.
+        */
+       atomic_set(&ioend->io_remaining, 1);
+       ioend->io_error = 0;
+       ioend->io_list = NULL;
+       ioend->io_type = type;
+       ioend->io_inode = inode;
+       ioend->io_buffer_head = NULL;
+       ioend->io_buffer_tail = NULL;
+       ioend->io_offset = 0;
+       ioend->io_size = 0;
+       ioend->io_append_trans = NULL;
+
+       INIT_WORK(&ioend->io_work, xfs_end_io);
+       return ioend;
+}
+
+STATIC int
+xfs_map_blocks(
+       struct inode            *inode,
+       loff_t                  offset,
+       struct xfs_bmbt_irec    *imap,
+       int                     type,
+       int                     nonblocking)
+{
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       ssize_t                 count = 1 << inode->i_blkbits;
+       xfs_fileoff_t           offset_fsb, end_fsb;
+       int                     error = 0;
+       int                     bmapi_flags = XFS_BMAPI_ENTIRE;
+       int                     nimaps = 1;
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               return -EIO;
+
+       if (type == XFS_IO_UNWRITTEN)
+               bmapi_flags |= XFS_BMAPI_IGSTATE;
+
+       if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
+               if (nonblocking)
+                       return -EAGAIN;
+               xfs_ilock(ip, XFS_ILOCK_SHARED);
+       }
+
+       ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+              (ip->i_df.if_flags & XFS_IFEXTENTS));
+       ASSERT(offset <= mp->m_super->s_maxbytes);
+
+       if (offset + count > mp->m_super->s_maxbytes)
+               count = mp->m_super->s_maxbytes - offset;
+       end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
+       offset_fsb = XFS_B_TO_FSBT(mp, offset);
+       error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
+                               imap, &nimaps, bmapi_flags);
+       xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+       if (error)
+               return error;
+
+       if (type == XFS_IO_DELALLOC &&
+           (!nimaps || isnullstartblock(imap->br_startblock))) {
+               error = xfs_iomap_write_allocate(ip, offset, imap);
+               if (!error)
+                       trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
+               return error;
+       }
+
+#ifdef DEBUG
+       if (type == XFS_IO_UNWRITTEN) {
+               ASSERT(nimaps);
+               ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+               ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+       }
+#endif
+       if (nimaps)
+               trace_xfs_map_blocks_found(ip, offset, count, type, imap);
+       return 0;
+}
+
+STATIC int
+xfs_imap_valid(
+       struct inode            *inode,
+       struct xfs_bmbt_irec    *imap,
+       xfs_off_t               offset)
+{
+       offset >>= inode->i_blkbits;
+
+       return offset >= imap->br_startoff &&
+               offset < imap->br_startoff + imap->br_blockcount;
+}
+
+/*
+ * BIO completion handler for buffered IO.
+ */
+STATIC void
+xfs_end_bio(
+       struct bio              *bio,
+       int                     error)
+{
+       xfs_ioend_t             *ioend = bio->bi_private;
+
+       ASSERT(atomic_read(&bio->bi_cnt) >= 1);
+       ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
+
+       /* Toss bio and pass work off to an xfsdatad thread */
+       bio->bi_private = NULL;
+       bio->bi_end_io = NULL;
+       bio_put(bio);
+
+       xfs_finish_ioend(ioend);
+}
+
+STATIC void
+xfs_submit_ioend_bio(
+       struct writeback_control *wbc,
+       xfs_ioend_t             *ioend,
+       struct bio              *bio)
+{
+       atomic_inc(&ioend->io_remaining);
+       bio->bi_private = ioend;
+       bio->bi_end_io = xfs_end_bio;
+       submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
+}
+
+STATIC struct bio *
+xfs_alloc_ioend_bio(
+       struct buffer_head      *bh)
+{
+       int                     nvecs = bio_get_nr_vecs(bh->b_bdev);
+       struct bio              *bio = bio_alloc(GFP_NOIO, nvecs);
+
+       ASSERT(bio->bi_private == NULL);
+       bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
+       bio->bi_bdev = bh->b_bdev;
+       return bio;
+}
+
+STATIC void
+xfs_start_buffer_writeback(
+       struct buffer_head      *bh)
+{
+       ASSERT(buffer_mapped(bh));
+       ASSERT(buffer_locked(bh));
+       ASSERT(!buffer_delay(bh));
+       ASSERT(!buffer_unwritten(bh));
+
+       mark_buffer_async_write(bh);
+       set_buffer_uptodate(bh);
+       clear_buffer_dirty(bh);
+}
+
+STATIC void
+xfs_start_page_writeback(
+       struct page             *page,
+       int                     clear_dirty,
+       int                     buffers)
+{
+       ASSERT(PageLocked(page));
+       ASSERT(!PageWriteback(page));
+
+       /*
+        * if the page was not fully cleaned, we need to ensure that the higher
+        * layers come back to it correctly. That means we need to keep the page
+        * dirty, and for WB_SYNC_ALL writeback we need to ensure the
+        * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
+        * write this page in this writeback sweep will be made.
+        */
+       if (clear_dirty) {
+               clear_page_dirty_for_io(page);
+               set_page_writeback(page);
+       } else
+               set_page_writeback_keepwrite(page);
+
+       unlock_page(page);
+
+       /* If no buffers on the page are to be written, finish it here */
+       if (!buffers)
+               end_page_writeback(page);
+}
+
+static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
+{
+       return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
+}
+
+/*
+ * Submit all of the bios for all of the ioends we have saved up, covering the
+ * initial writepage page and also any probed pages.
+ *
+ * Because we may have multiple ioends spanning a page, we need to start
+ * writeback on all the buffers before we submit them for I/O. If we mark the
+ * buffers as we got, then we can end up with a page that only has buffers
+ * marked async write and I/O complete on can occur before we mark the other
+ * buffers async write.
+ *
+ * The end result of this is that we trip a bug in end_page_writeback() because
+ * we call it twice for the one page as the code in end_buffer_async_write()
+ * assumes that all buffers on the page are started at the same time.
+ *
+ * The fix is two passes across the ioend list - one to start writeback on the
+ * buffer_heads, and then submit them for I/O on the second pass.
+ *
+ * If @fail is non-zero, it means that we have a situation where some part of
+ * the submission process has failed after we have marked paged for writeback
+ * and unlocked them. In this situation, we need to fail the ioend chain rather
+ * than submit it to IO. This typically only happens on a filesystem shutdown.
+ */
+STATIC void
+xfs_submit_ioend(
+       struct writeback_control *wbc,
+       xfs_ioend_t             *ioend,
+       int                     fail)
+{
+       xfs_ioend_t             *head = ioend;
+       xfs_ioend_t             *next;
+       struct buffer_head      *bh;
+       struct bio              *bio;
+       sector_t                lastblock = 0;
+
+       /* Pass 1 - start writeback */
+       do {
+               next = ioend->io_list;
+               for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
+                       xfs_start_buffer_writeback(bh);
+       } while ((ioend = next) != NULL);
+
+       /* Pass 2 - submit I/O */
+       ioend = head;
+       do {
+               next = ioend->io_list;
+               bio = NULL;
+
+               /*
+                * If we are failing the IO now, just mark the ioend with an
+                * error and finish it. This will run IO completion immediately
+                * as there is only one reference to the ioend at this point in
+                * time.
+                */
+               if (fail) {
+                       ioend->io_error = fail;
+                       xfs_finish_ioend(ioend);
+                       continue;
+               }
+
+               for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
+
+                       if (!bio) {
+ retry:
+                               bio = xfs_alloc_ioend_bio(bh);
+                       } else if (bh->b_blocknr != lastblock + 1) {
+                               xfs_submit_ioend_bio(wbc, ioend, bio);
+                               goto retry;
+                       }
+
+                       if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
+                               xfs_submit_ioend_bio(wbc, ioend, bio);
+                               goto retry;
+                       }
+
+                       lastblock = bh->b_blocknr;
+               }
+               if (bio)
+                       xfs_submit_ioend_bio(wbc, ioend, bio);
+               xfs_finish_ioend(ioend);
+       } while ((ioend = next) != NULL);
+}
+
+/*
+ * Cancel submission of all buffer_heads so far in this endio.
+ * Toss the endio too.  Only ever called for the initial page
+ * in a writepage request, so only ever one page.
+ */
+STATIC void
+xfs_cancel_ioend(
+       xfs_ioend_t             *ioend)
+{
+       xfs_ioend_t             *next;
+       struct buffer_head      *bh, *next_bh;
+
+       do {
+               next = ioend->io_list;
+               bh = ioend->io_buffer_head;
+               do {
+                       next_bh = bh->b_private;
+                       clear_buffer_async_write(bh);
+                       /*
+                        * The unwritten flag is cleared when added to the
+                        * ioend. We're not submitting for I/O so mark the
+                        * buffer unwritten again for next time around.
+                        */
+                       if (ioend->io_type == XFS_IO_UNWRITTEN)
+                               set_buffer_unwritten(bh);
+                       unlock_buffer(bh);
+               } while ((bh = next_bh) != NULL);
+
+               mempool_free(ioend, xfs_ioend_pool);
+       } while ((ioend = next) != NULL);
+}
+
+/*
+ * Test to see if we've been building up a completion structure for
+ * earlier buffers -- if so, we try to append to this ioend if we
+ * can, otherwise we finish off any current ioend and start another.
+ * Return true if we've finished the given ioend.
+ */
+STATIC void
+xfs_add_to_ioend(
+       struct inode            *inode,
+       struct buffer_head      *bh,
+       xfs_off_t               offset,
+       unsigned int            type,
+       xfs_ioend_t             **result,
+       int                     need_ioend)
+{
+       xfs_ioend_t             *ioend = *result;
+
+       if (!ioend || need_ioend || type != ioend->io_type) {
+               xfs_ioend_t     *previous = *result;
+
+               ioend = xfs_alloc_ioend(inode, type);
+               ioend->io_offset = offset;
+               ioend->io_buffer_head = bh;
+               ioend->io_buffer_tail = bh;
+               if (previous)
+                       previous->io_list = ioend;
+               *result = ioend;
+       } else {
+               ioend->io_buffer_tail->b_private = bh;
+               ioend->io_buffer_tail = bh;
+       }
+
+       bh->b_private = NULL;
+       ioend->io_size += bh->b_size;
+}
+
+STATIC void
+xfs_map_buffer(
+       struct inode            *inode,
+       struct buffer_head      *bh,
+       struct xfs_bmbt_irec    *imap,
+       xfs_off_t               offset)
+{
+       sector_t                bn;
+       struct xfs_mount        *m = XFS_I(inode)->i_mount;
+       xfs_off_t               iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
+       xfs_daddr_t             iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
+
+       ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+       ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+
+       bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
+             ((offset - iomap_offset) >> inode->i_blkbits);
+
+       ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
+
+       bh->b_blocknr = bn;
+       set_buffer_mapped(bh);
+}
+
+STATIC void
+xfs_map_at_offset(
+       struct inode            *inode,
+       struct buffer_head      *bh,
+       struct xfs_bmbt_irec    *imap,
+       xfs_off_t               offset)
+{
+       ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+       ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+
+       xfs_map_buffer(inode, bh, imap, offset);
+       set_buffer_mapped(bh);
+       clear_buffer_delay(bh);
+       clear_buffer_unwritten(bh);
+}
+
+/*
+ * Test if a given page contains at least one buffer of a given @type.
+ * If @check_all_buffers is true, then we walk all the buffers in the page to
+ * try to find one of the type passed in. If it is not set, then the caller only
+ * needs to check the first buffer on the page for a match.
+ */
+STATIC bool
+xfs_check_page_type(
+       struct page             *page,
+       unsigned int            type,
+       bool                    check_all_buffers)
+{
+       struct buffer_head      *bh;
+       struct buffer_head      *head;
+
+       if (PageWriteback(page))
+               return false;
+       if (!page->mapping)
+               return false;
+       if (!page_has_buffers(page))
+               return false;
+
+       bh = head = page_buffers(page);
+       do {
+               if (buffer_unwritten(bh)) {
+                       if (type == XFS_IO_UNWRITTEN)
+                               return true;
+               } else if (buffer_delay(bh)) {
+                       if (type == XFS_IO_DELALLOC)
+                               return true;
+               } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
+                       if (type == XFS_IO_OVERWRITE)
+                               return true;
+               }
+
+               /* If we are only checking the first buffer, we are done now. */
+               if (!check_all_buffers)
+                       break;
+       } while ((bh = bh->b_this_page) != head);
+
+       return false;
+}
+
+/*
+ * Allocate & map buffers for page given the extent map. Write it out.
+ * except for the original page of a writepage, this is called on
+ * delalloc/unwritten pages only, for the original page it is possible
+ * that the page has no mapping at all.
+ */
+STATIC int
+xfs_convert_page(
+       struct inode            *inode,
+       struct page             *page,
+       loff_t                  tindex,
+       struct xfs_bmbt_irec    *imap,
+       xfs_ioend_t             **ioendp,
+       struct writeback_control *wbc)
+{
+       struct buffer_head      *bh, *head;
+       xfs_off_t               end_offset;
+       unsigned long           p_offset;
+       unsigned int            type;
+       int                     len, page_dirty;
+       int                     count = 0, done = 0, uptodate = 1;
+       xfs_off_t               offset = page_offset(page);
+
+       if (page->index != tindex)
+               goto fail;
+       if (!trylock_page(page))
+               goto fail;
+       if (PageWriteback(page))
+               goto fail_unlock_page;
+       if (page->mapping != inode->i_mapping)
+               goto fail_unlock_page;
+       if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
+               goto fail_unlock_page;
+
+       /*
+        * page_dirty is initially a count of buffers on the page before
+        * EOF and is decremented as we move each into a cleanable state.
+        *
+        * Derivation:
+        *
+        * End offset is the highest offset that this page should represent.
+        * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
+        * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
+        * hence give us the correct page_dirty count. On any other page,
+        * it will be zero and in that case we need page_dirty to be the
+        * count of buffers on the page.
+        */
+       end_offset = min_t(unsigned long long,
+                       (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
+                       i_size_read(inode));
+
+       /*
+        * If the current map does not span the entire page we are about to try
+        * to write, then give up. The only way we can write a page that spans
+        * multiple mappings in a single writeback iteration is via the
+        * xfs_vm_writepage() function. Data integrity writeback requires the
+        * entire page to be written in a single attempt, otherwise the part of
+        * the page we don't write here doesn't get written as part of the data
+        * integrity sync.
+        *
+        * For normal writeback, we also don't attempt to write partial pages
+        * here as it simply means that write_cache_pages() will see it under
+        * writeback and ignore the page until some point in the future, at
+        * which time this will be the only page in the file that needs
+        * writeback.  Hence for more optimal IO patterns, we should always
+        * avoid partial page writeback due to multiple mappings on a page here.
+        */
+       if (!xfs_imap_valid(inode, imap, end_offset))
+               goto fail_unlock_page;
+
+       len = 1 << inode->i_blkbits;
+       p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
+                                       PAGE_CACHE_SIZE);
+       p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
+       page_dirty = p_offset / len;
+
+       /*
+        * The moment we find a buffer that doesn't match our current type
+        * specification or can't be written, abort the loop and start
+        * writeback. As per the above xfs_imap_valid() check, only
+        * xfs_vm_writepage() can handle partial page writeback fully - we are
+        * limited here to the buffers that are contiguous with the current
+        * ioend, and hence a buffer we can't write breaks that contiguity and
+        * we have to defer the rest of the IO to xfs_vm_writepage().
+        */
+       bh = head = page_buffers(page);
+       do {
+               if (offset >= end_offset)
+                       break;
+               if (!buffer_uptodate(bh))
+                       uptodate = 0;
+               if (!(PageUptodate(page) || buffer_uptodate(bh))) {
+                       done = 1;
+                       break;
+               }
+
+               if (buffer_unwritten(bh) || buffer_delay(bh) ||
+                   buffer_mapped(bh)) {
+                       if (buffer_unwritten(bh))
+                               type = XFS_IO_UNWRITTEN;
+                       else if (buffer_delay(bh))
+                               type = XFS_IO_DELALLOC;
+                       else
+                               type = XFS_IO_OVERWRITE;
+
+                       /*
+                        * imap should always be valid because of the above
+                        * partial page end_offset check on the imap.
+                        */
+                       ASSERT(xfs_imap_valid(inode, imap, offset));
+
+                       lock_buffer(bh);
+                       if (type != XFS_IO_OVERWRITE)
+                               xfs_map_at_offset(inode, bh, imap, offset);
+                       xfs_add_to_ioend(inode, bh, offset, type,
+                                        ioendp, done);
+
+                       page_dirty--;
+                       count++;
+               } else {
+                       done = 1;
+                       break;
+               }
+       } while (offset += len, (bh = bh->b_this_page) != head);
+
+       if (uptodate && bh == head)
+               SetPageUptodate(page);
+
+       if (count) {
+               if (--wbc->nr_to_write <= 0 &&
+                   wbc->sync_mode == WB_SYNC_NONE)
+                       done = 1;
+       }
+       xfs_start_page_writeback(page, !page_dirty, count);
+
+       return done;
+ fail_unlock_page:
+       unlock_page(page);
+ fail:
+       return 1;
+}
+
+/*
+ * Convert & write out a cluster of pages in the same extent as defined
+ * by mp and following the start page.
+ */
+STATIC void
+xfs_cluster_write(
+       struct inode            *inode,
+       pgoff_t                 tindex,
+       struct xfs_bmbt_irec    *imap,
+       xfs_ioend_t             **ioendp,
+       struct writeback_control *wbc,
+       pgoff_t                 tlast)
+{
+       struct pagevec          pvec;
+       int                     done = 0, i;
+
+       pagevec_init(&pvec, 0);
+       while (!done && tindex <= tlast) {
+               unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
+
+               if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
+                       break;
+
+               for (i = 0; i < pagevec_count(&pvec); i++) {
+                       done = xfs_convert_page(inode, pvec.pages[i], tindex++,
+                                       imap, ioendp, wbc);
+                       if (done)
+                               break;
+               }
+
+               pagevec_release(&pvec);
+               cond_resched();
+       }
+}
+
+STATIC void
+xfs_vm_invalidatepage(
+       struct page             *page,
+       unsigned int            offset,
+       unsigned int            length)
+{
+       trace_xfs_invalidatepage(page->mapping->host, page, offset,
+                                length);
+       block_invalidatepage(page, offset, length);
+}
+
+/*
+ * If the page has delalloc buffers on it, we need to punch them out before we
+ * invalidate the page. If we don't, we leave a stale delalloc mapping on the
+ * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
+ * is done on that same region - the delalloc extent is returned when none is
+ * supposed to be there.
+ *
+ * We prevent this by truncating away the delalloc regions on the page before
+ * invalidating it. Because they are delalloc, we can do this without needing a
+ * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
+ * truncation without a transaction as there is no space left for block
+ * reservation (typically why we see a ENOSPC in writeback).
+ *
+ * This is not a performance critical path, so for now just do the punching a
+ * buffer head at a time.
+ */
+STATIC void
+xfs_aops_discard_page(
+       struct page             *page)
+{
+       struct inode            *inode = page->mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct buffer_head      *bh, *head;
+       loff_t                  offset = page_offset(page);
+
+       if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
+               goto out_invalidate;
+
+       if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+               goto out_invalidate;
+
+       xfs_alert(ip->i_mount,
+               "page discard on page %p, inode 0x%llx, offset %llu.",
+                       page, ip->i_ino, offset);
+
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
+       bh = head = page_buffers(page);
+       do {
+               int             error;
+               xfs_fileoff_t   start_fsb;
+
+               if (!buffer_delay(bh))
+                       goto next_buffer;
+
+               start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
+               error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
+               if (error) {
+                       /* something screwed, just bail */
+                       if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+                               xfs_alert(ip->i_mount,
+                       "page discard unable to remove delalloc mapping.");
+                       }
+                       break;
+               }
+next_buffer:
+               offset += 1 << inode->i_blkbits;
+
+       } while ((bh = bh->b_this_page) != head);
+
+       xfs_iunlock(ip, XFS_ILOCK_EXCL);
+out_invalidate:
+       xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
+       return;
+}
+
+/*
+ * Write out a dirty page.
+ *
+ * For delalloc space on the page we need to allocate space and flush it.
+ * For unwritten space on the page we need to start the conversion to
+ * regular allocated space.
+ * For any other dirty buffer heads on the page we should flush them.
+ */
+STATIC int
+xfs_vm_writepage(
+       struct page             *page,
+       struct writeback_control *wbc)
+{
+       struct inode            *inode = page->mapping->host;
+       struct buffer_head      *bh, *head;
+       struct xfs_bmbt_irec    imap;
+       xfs_ioend_t             *ioend = NULL, *iohead = NULL;
+       loff_t                  offset;
+       unsigned int            type;
+       __uint64_t              end_offset;
+       pgoff_t                 end_index, last_index;
+       ssize_t                 len;
+       int                     err, imap_valid = 0, uptodate = 1;
+       int                     count = 0;
+       int                     nonblocking = 0;
+
+       trace_xfs_writepage(inode, page, 0, 0);
+
+       ASSERT(page_has_buffers(page));
+
+       /*
+        * Refuse to write the page out if we are called from reclaim context.
+        *
+        * This avoids stack overflows when called from deeply used stacks in
+        * random callers for direct reclaim or memcg reclaim.  We explicitly
+        * allow reclaim from kswapd as the stack usage there is relatively low.
+        *
+        * This should never happen except in the case of a VM regression so
+        * warn about it.
+        */
+       if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
+                       PF_MEMALLOC))
+               goto redirty;
+
+       /*
+        * Given that we do not allow direct reclaim to call us, we should
+        * never be called while in a filesystem transaction.
+        */
+       if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
+               goto redirty;
+
+       /* Is this page beyond the end of the file? */
+       offset = i_size_read(inode);
+       end_index = offset >> PAGE_CACHE_SHIFT;
+       last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
+
+       /*
+        * The page index is less than the end_index, adjust the end_offset
+        * to the highest offset that this page should represent.
+        * -----------------------------------------------------
+        * |                    file mapping           | <EOF> |
+        * -----------------------------------------------------
+        * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
+        * ^--------------------------------^----------|--------
+        * |     desired writeback range    |      see else    |
+        * ---------------------------------^------------------|
+        */
+       if (page->index < end_index)
+               end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
+       else {
+               /*
+                * Check whether the page to write out is beyond or straddles
+                * i_size or not.
+                * -------------------------------------------------------
+                * |            file mapping                    | <EOF>  |
+                * -------------------------------------------------------
+                * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
+                * ^--------------------------------^-----------|---------
+                * |                                |      Straddles     |
+                * ---------------------------------^-----------|--------|
+                */
+               unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
+
+               /*
+                * Skip the page if it is fully outside i_size, e.g. due to a
+                * truncate operation that is in progress. We must redirty the
+                * page so that reclaim stops reclaiming it. Otherwise
+                * xfs_vm_releasepage() is called on it and gets confused.
+                *
+                * Note that the end_index is unsigned long, it would overflow
+                * if the given offset is greater than 16TB on 32-bit system
+                * and if we do check the page is fully outside i_size or not
+                * via "if (page->index >= end_index + 1)" as "end_index + 1"
+                * will be evaluated to 0.  Hence this page will be redirtied
+                * and be written out repeatedly which would result in an
+                * infinite loop, the user program that perform this operation
+                * will hang.  Instead, we can verify this situation by checking
+                * if the page to write is totally beyond the i_size or if it's
+                * offset is just equal to the EOF.
+                */
+               if (page->index > end_index ||
+                   (page->index == end_index && offset_into_page == 0))
+                       goto redirty;
+
+               /*
+                * The page straddles i_size.  It must be zeroed out on each
+                * and every writepage invocation because it may be mmapped.
+                * "A file is mapped in multiples of the page size.  For a file
+                * that is not a multiple of the page size, the remaining
+                * memory is zeroed when mapped, and writes to that region are
+                * not written out to the file."
+                */
+               zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
+
+               /* Adjust the end_offset to the end of file */
+               end_offset = offset;
+       }
+
+       len = 1 << inode->i_blkbits;
+
+       bh = head = page_buffers(page);
+       offset = page_offset(page);
+       type = XFS_IO_OVERWRITE;
+
+       if (wbc->sync_mode == WB_SYNC_NONE)
+               nonblocking = 1;
+
+       do {
+               int new_ioend = 0;
+
+               if (offset >= end_offset)
+                       break;
+               if (!buffer_uptodate(bh))
+                       uptodate = 0;
+
+               /*
+                * set_page_dirty dirties all buffers in a page, independent
+                * of their state.  The dirty state however is entirely
+                * meaningless for holes (!mapped && uptodate), so skip
+                * buffers covering holes here.
+                */
+               if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
+                       imap_valid = 0;
+                       continue;
+               }
+
+               if (buffer_unwritten(bh)) {
+                       if (type != XFS_IO_UNWRITTEN) {
+                               type = XFS_IO_UNWRITTEN;
+                               imap_valid = 0;
+                       }
+               } else if (buffer_delay(bh)) {
+                       if (type != XFS_IO_DELALLOC) {
+                               type = XFS_IO_DELALLOC;
+                               imap_valid = 0;
+                       }
+               } else if (buffer_uptodate(bh)) {
+                       if (type != XFS_IO_OVERWRITE) {
+                               type = XFS_IO_OVERWRITE;
+                               imap_valid = 0;
+                       }
+               } else {
+                       if (PageUptodate(page))
+                               ASSERT(buffer_mapped(bh));
+                       /*
+                        * This buffer is not uptodate and will not be
+                        * written to disk.  Ensure that we will put any
+                        * subsequent writeable buffers into a new
+                        * ioend.
+                        */
+                       imap_valid = 0;
+                       continue;
+               }
+
+               if (imap_valid)
+                       imap_valid = xfs_imap_valid(inode, &imap, offset);
+               if (!imap_valid) {
+                       /*
+                        * If we didn't have a valid mapping then we need to
+                        * put the new mapping into a separate ioend structure.
+                        * This ensures non-contiguous extents always have
+                        * separate ioends, which is particularly important
+                        * for unwritten extent conversion at I/O completion
+                        * time.
+                        */
+                       new_ioend = 1;
+                       err = xfs_map_blocks(inode, offset, &imap, type,
+                                            nonblocking);
+                       if (err)
+                               goto error;
+                       imap_valid = xfs_imap_valid(inode, &imap, offset);
+               }
+               if (imap_valid) {
+                       lock_buffer(bh);
+                       if (type != XFS_IO_OVERWRITE)
+                               xfs_map_at_offset(inode, bh, &imap, offset);
+                       xfs_add_to_ioend(inode, bh, offset, type, &ioend,
+                                        new_ioend);
+                       count++;
+               }
+
+               if (!iohead)
+                       iohead = ioend;
+
+       } while (offset += len, ((bh = bh->b_this_page) != head));
+
+       if (uptodate && bh == head)
+               SetPageUptodate(page);
+
+       xfs_start_page_writeback(page, 1, count);
+
+       /* if there is no IO to be submitted for this page, we are done */
+       if (!ioend)
+               return 0;
+
+       ASSERT(iohead);
+
+       /*
+        * Any errors from this point onwards need tobe reported through the IO
+        * completion path as we have marked the initial page as under writeback
+        * and unlocked it.
+        */
+       if (imap_valid) {
+               xfs_off_t               end_index;
+
+               end_index = imap.br_startoff + imap.br_blockcount;
+
+               /* to bytes */
+               end_index <<= inode->i_blkbits;
+
+               /* to pages */
+               end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
+
+               /* check against file size */
+               if (end_index > last_index)
+                       end_index = last_index;
+
+               xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
+                                 wbc, end_index);
+       }
+
+
+       /*
+        * Reserve log space if we might write beyond the on-disk inode size.
+        */
+       err = 0;
+       if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
+               err = xfs_setfilesize_trans_alloc(ioend);
+
+       xfs_submit_ioend(wbc, iohead, err);
+
+       return 0;
+
+error:
+       if (iohead)
+               xfs_cancel_ioend(iohead);
+
+       if (err == -EAGAIN)
+               goto redirty;
+
+       xfs_aops_discard_page(page);
+       ClearPageUptodate(page);
+       unlock_page(page);
+       return err;
+
+redirty:
+       redirty_page_for_writepage(wbc, page);
+       unlock_page(page);
+       return 0;
+}
+
+STATIC int
+xfs_vm_writepages(
+       struct address_space    *mapping,
+       struct writeback_control *wbc)
+{
+       xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
+       return generic_writepages(mapping, wbc);
+}
+
+/*
+ * Called to move a page into cleanable state - and from there
+ * to be released. The page should already be clean. We always
+ * have buffer heads in this call.
+ *
+ * Returns 1 if the page is ok to release, 0 otherwise.
+ */
+STATIC int
+xfs_vm_releasepage(
+       struct page             *page,
+       gfp_t                   gfp_mask)
+{
+       int                     delalloc, unwritten;
+
+       trace_xfs_releasepage(page->mapping->host, page, 0, 0);
+
+       xfs_count_page_state(page, &delalloc, &unwritten);
+
+       if (WARN_ON_ONCE(delalloc))
+               return 0;
+       if (WARN_ON_ONCE(unwritten))
+               return 0;
+
+       return try_to_free_buffers(page);
+}
+
+/*
+ * When we map a DIO buffer, we may need to attach an ioend that describes the
+ * type of write IO we are doing. This passes to the completion function the
+ * operations it needs to perform. If the mapping is for an overwrite wholly
+ * within the EOF then we don't need an ioend and so we don't allocate one.
+ * This avoids the unnecessary overhead of allocating and freeing ioends for
+ * workloads that don't require transactions on IO completion.
+ *
+ * If we get multiple mappings in a single IO, we might be mapping different
+ * types. But because the direct IO can only have a single private pointer, we
+ * need to ensure that:
+ *
+ * a) i) the ioend spans the entire region of unwritten mappings; or
+ *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
+ * b) if it contains unwritten extents, it is *permanently* marked as such
+ *
+ * We could do this by chaining ioends like buffered IO does, but we only
+ * actually get one IO completion callback from the direct IO, and that spans
+ * the entire IO regardless of how many mappings and IOs are needed to complete
+ * the DIO. There is only going to be one reference to the ioend and its life
+ * cycle is constrained by the DIO completion code. hence we don't need
+ * reference counting here.
+ */
+static void
+xfs_map_direct(
+       struct inode            *inode,
+       struct buffer_head      *bh_result,
+       struct xfs_bmbt_irec    *imap,
+       xfs_off_t               offset)
+{
+       struct xfs_ioend        *ioend;
+       xfs_off_t               size = bh_result->b_size;
+       int                     type;
+
+       if (ISUNWRITTEN(imap))
+               type = XFS_IO_UNWRITTEN;
+       else
+               type = XFS_IO_OVERWRITE;
+
+       trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
+
+       if (bh_result->b_private) {
+               ioend = bh_result->b_private;
+               ASSERT(ioend->io_size > 0);
+               ASSERT(offset >= ioend->io_offset);
+               if (offset + size > ioend->io_offset + ioend->io_size)
+                       ioend->io_size = offset - ioend->io_offset + size;
+
+               if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
+                       ioend->io_type = XFS_IO_UNWRITTEN;
+
+               trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
+                                             ioend->io_size, ioend->io_type,
+                                             imap);
+       } else if (type == XFS_IO_UNWRITTEN ||
+                  offset + size > i_size_read(inode)) {
+               ioend = xfs_alloc_ioend(inode, type);
+               ioend->io_offset = offset;
+               ioend->io_size = size;
+
+               bh_result->b_private = ioend;
+               set_buffer_defer_completion(bh_result);
+
+               trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
+                                          imap);
+       } else {
+               trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
+                                           imap);
+       }
+}
+
+/*
+ * If this is O_DIRECT or the mpage code calling tell them how large the mapping
+ * is, so that we can avoid repeated get_blocks calls.
+ *
+ * If the mapping spans EOF, then we have to break the mapping up as the mapping
+ * for blocks beyond EOF must be marked new so that sub block regions can be
+ * correctly zeroed. We can't do this for mappings within EOF unless the mapping
+ * was just allocated or is unwritten, otherwise the callers would overwrite
+ * existing data with zeros. Hence we have to split the mapping into a range up
+ * to and including EOF, and a second mapping for beyond EOF.
+ */
+static void
+xfs_map_trim_size(
+       struct inode            *inode,
+       sector_t                iblock,
+       struct buffer_head      *bh_result,
+       struct xfs_bmbt_irec    *imap,
+       xfs_off_t               offset,
+       ssize_t                 size)
+{
+       xfs_off_t               mapping_size;
+
+       mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
+       mapping_size <<= inode->i_blkbits;
+
+       ASSERT(mapping_size > 0);
+       if (mapping_size > size)
+               mapping_size = size;
+       if (offset < i_size_read(inode) &&
+           offset + mapping_size >= i_size_read(inode)) {
+               /* limit mapping to block that spans EOF */
+               mapping_size = roundup_64(i_size_read(inode) - offset,
+                                         1 << inode->i_blkbits);
+       }
+       if (mapping_size > LONG_MAX)
+               mapping_size = LONG_MAX;
+
+       bh_result->b_size = mapping_size;
+}
+
+STATIC int
+__xfs_get_blocks(
+       struct inode            *inode,
+       sector_t                iblock,
+       struct buffer_head      *bh_result,
+       int                     create,
+       int                     direct)
+{
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       xfs_fileoff_t           offset_fsb, end_fsb;
+       int                     error = 0;
+       int                     lockmode = 0;
+       struct xfs_bmbt_irec    imap;
+       int                     nimaps = 1;
+       xfs_off_t               offset;
+       ssize_t                 size;
+       int                     new = 0;
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               return -EIO;
+
+       offset = (xfs_off_t)iblock << inode->i_blkbits;
+       ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
+       size = bh_result->b_size;
+
+       if (!create && direct && offset >= i_size_read(inode))
+               return 0;
+
+       /*
+        * Direct I/O is usually done on preallocated files, so try getting
+        * a block mapping without an exclusive lock first.  For buffered
+        * writes we already have the exclusive iolock anyway, so avoiding
+        * a lock roundtrip here by taking the ilock exclusive from the
+        * beginning is a useful micro optimization.
+        */
+       if (create && !direct) {
+               lockmode = XFS_ILOCK_EXCL;
+               xfs_ilock(ip, lockmode);
+       } else {
+               lockmode = xfs_ilock_data_map_shared(ip);
+       }
+
+       ASSERT(offset <= mp->m_super->s_maxbytes);
+       if (offset + size > mp->m_super->s_maxbytes)
+               size = mp->m_super->s_maxbytes - offset;
+       end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
+       offset_fsb = XFS_B_TO_FSBT(mp, offset);
+
+       error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
+                               &imap, &nimaps, XFS_BMAPI_ENTIRE);
+       if (error)
+               goto out_unlock;
+
+       if (create &&
+           (!nimaps ||
+            (imap.br_startblock == HOLESTARTBLOCK ||
+             imap.br_startblock == DELAYSTARTBLOCK))) {
+               if (direct || xfs_get_extsz_hint(ip)) {
+                       /*
+                        * Drop the ilock in preparation for starting the block
+                        * allocation transaction.  It will be retaken
+                        * exclusively inside xfs_iomap_write_direct for the
+                        * actual allocation.
+                        */
+                       xfs_iunlock(ip, lockmode);
+                       error = xfs_iomap_write_direct(ip, offset, size,
+                                                      &imap, nimaps);
+                       if (error)
+                               return error;
+                       new = 1;
+               } else {
+                       /*
+                        * Delalloc reservations do not require a transaction,
+                        * we can go on without dropping the lock here. If we
+                        * are allocating a new delalloc block, make sure that
+                        * we set the new flag so that we mark the buffer new so
+                        * that we know that it is newly allocated if the write
+                        * fails.
+                        */
+                       if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
+                               new = 1;
+                       error = xfs_iomap_write_delay(ip, offset, size, &imap);
+                       if (error)
+                               goto out_unlock;
+
+                       xfs_iunlock(ip, lockmode);
+               }
+               trace_xfs_get_blocks_alloc(ip, offset, size,
+                               ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
+                                                  : XFS_IO_DELALLOC, &imap);
+       } else if (nimaps) {
+               trace_xfs_get_blocks_found(ip, offset, size,
+                               ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
+                                                  : XFS_IO_OVERWRITE, &imap);
+               xfs_iunlock(ip, lockmode);
+       } else {
+               trace_xfs_get_blocks_notfound(ip, offset, size);
+               goto out_unlock;
+       }
+
+       /* trim mapping down to size requested */
+       if (direct || size > (1 << inode->i_blkbits))
+               xfs_map_trim_size(inode, iblock, bh_result,
+                                 &imap, offset, size);
+
+       /*
+        * For unwritten extents do not report a disk address in the buffered
+        * read case (treat as if we're reading into a hole).
+        */
+       if (imap.br_startblock != HOLESTARTBLOCK &&
+           imap.br_startblock != DELAYSTARTBLOCK &&
+           (create || !ISUNWRITTEN(&imap))) {
+               xfs_map_buffer(inode, bh_result, &imap, offset);
+               if (ISUNWRITTEN(&imap))
+                       set_buffer_unwritten(bh_result);
+               /* direct IO needs special help */
+               if (create && direct)
+                       xfs_map_direct(inode, bh_result, &imap, offset);
+       }
+
+       /*
+        * If this is a realtime file, data may be on a different device.
+        * to that pointed to from the buffer_head b_bdev currently.
+        */
+       bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
+
+       /*
+        * If we previously allocated a block out beyond eof and we are now
+        * coming back to use it then we will need to flag it as new even if it
+        * has a disk address.
+        *
+        * With sub-block writes into unwritten extents we also need to mark
+        * the buffer as new so that the unwritten parts of the buffer gets
+        * correctly zeroed.
+        */
+       if (create &&
+           ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
+            (offset >= i_size_read(inode)) ||
+            (new || ISUNWRITTEN(&imap))))
+               set_buffer_new(bh_result);
+
+       if (imap.br_startblock == DELAYSTARTBLOCK) {
+               BUG_ON(direct);
+               if (create) {
+                       set_buffer_uptodate(bh_result);
+                       set_buffer_mapped(bh_result);
+                       set_buffer_delay(bh_result);
+               }
+       }
+
+       return 0;
+
+out_unlock:
+       xfs_iunlock(ip, lockmode);
+       return error;
+}
+
+int
+xfs_get_blocks(
+       struct inode            *inode,
+       sector_t                iblock,
+       struct buffer_head      *bh_result,
+       int                     create)
+{
+       return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
+}
+
+STATIC int
+xfs_get_blocks_direct(
+       struct inode            *inode,
+       sector_t                iblock,
+       struct buffer_head      *bh_result,
+       int                     create)
+{
+       return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
+}
+
+/*
+ * Complete a direct I/O write request.
+ *
+ * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
+ * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
+ * wholly within the EOF and so there is nothing for us to do. Note that in this
+ * case the completion can be called in interrupt context, whereas if we have an
+ * ioend we will always be called in task context (i.e. from a workqueue).
+ */
+STATIC void
+xfs_end_io_direct_write(
+       struct kiocb            *iocb,
+       loff_t                  offset,
+       ssize_t                 size,
+       void                    *private)
+{
+       struct inode            *inode = file_inode(iocb->ki_filp);
+       struct xfs_inode        *ip = XFS_I(inode);
+       struct xfs_mount        *mp = ip->i_mount;
+       struct xfs_ioend        *ioend = private;
+
+       trace_xfs_gbmap_direct_endio(ip, offset, size,
+                                    ioend ? ioend->io_type : 0, NULL);
+
+       if (!ioend) {
+               ASSERT(offset + size <= i_size_read(inode));
+               return;
+       }
+
+       if (XFS_FORCED_SHUTDOWN(mp))
+               goto out_end_io;
+
+       /*
+        * dio completion end_io functions are only called on writes if more
+        * than 0 bytes was written.
+        */
+       ASSERT(size > 0);
+
+       /*
+        * The ioend only maps whole blocks, while the IO may be sector aligned.
+        * Hence the ioend offset/size may not match the IO offset/size exactly.
+        * Because we don't map overwrites within EOF into the ioend, the offset
+        * may not match, but only if the endio spans EOF.  Either way, write
+        * the IO sizes into the ioend so that completion processing does the
+        * right thing.
+        */
+       ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
+       ioend->io_size = size;
+       ioend->io_offset = offset;
+
+       /*
+        * The ioend tells us whether we are doing unwritten extent conversion
+        * or an append transaction that updates the on-disk file size. These
+        * cases are the only cases where we should *potentially* be needing
+        * to update the VFS inode size.
+        *
+        * We need to update the in-core inode size here so that we don't end up
+        * with the on-disk inode size being outside the in-core inode size. We
+        * have no other method of updating EOF for AIO, so always do it here
+        * if necessary.
+        *
+        * We need to lock the test/set EOF update as we can be racing with
+        * other IO completions here to update the EOF. Failing to serialise
+        * here can result in EOF moving backwards and Bad Things Happen when
+        * that occurs.
+        */
+       spin_lock(&ip->i_flags_lock);
+       if (offset + size > i_size_read(inode))
+               i_size_write(inode, offset + size);
+       spin_unlock(&ip->i_flags_lock);
+
+       /*
+        * If we are doing an append IO that needs to update the EOF on disk,
+        * do the transaction reserve now so we can use common end io
+        * processing. Stashing the error (if there is one) in the ioend will
+        * result in the ioend processing passing on the error if it is
+        * possible as we can't return it from here.
+        */
+       if (ioend->io_type == XFS_IO_OVERWRITE)
+               ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
+
+out_end_io:
+       xfs_end_io(&ioend->io_work);
+       return;
+}
+
+STATIC ssize_t
+xfs_vm_direct_IO(
+       struct kiocb            *iocb,
+       struct iov_iter         *iter,
+       loff_t                  offset)
+{
+       struct inode            *inode = iocb->ki_filp->f_mapping->host;
+       struct block_device     *bdev = xfs_find_bdev_for_inode(inode);
+
+       if (iov_iter_rw(iter) == WRITE) {
+               return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
+                                           xfs_get_blocks_direct,
+                                           xfs_end_io_direct_write, NULL,
+                                           DIO_ASYNC_EXTEND);
+       }
+       return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
+                                   xfs_get_blocks_direct, NULL, NULL, 0);
+}
+
+/*
+ * Punch out the delalloc blocks we have already allocated.
+ *
+ * Don't bother with xfs_setattr given that nothing can have made it to disk yet
+ * as the page is still locked at this point.
+ */
+STATIC void
+xfs_vm_kill_delalloc_range(
+       struct inode            *inode,
+       loff_t                  start,
+       loff_t                  end)
+{
+       struct xfs_inode        *ip = XFS_I(inode);
+       xfs_fileoff_t           start_fsb;
+       xfs_fileoff_t           end_fsb;
+       int                     error;
+
+       start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
+       end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
+       if (end_fsb <= start_fsb)
+               return;
+
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
+       error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
+                                               end_fsb - start_fsb);
+       if (error) {
+               /* something screwed, just bail */
+               if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+                       xfs_alert(ip->i_mount,
+               "xfs_vm_write_failed: unable to clean up ino %lld",
+                                       ip->i_ino);
+               }
+       }
+       xfs_iunlock(ip, XFS_ILOCK_EXCL);
+}
+
+STATIC void
+xfs_vm_write_failed(
+       struct inode            *inode,
+       struct page             *page,
+       loff_t                  pos,
+       unsigned                len)
+{
+       loff_t                  block_offset;
+       loff_t                  block_start;
+       loff_t                  block_end;
+       loff_t                  from = pos & (PAGE_CACHE_SIZE - 1);
+       loff_t                  to = from + len;
+       struct buffer_head      *bh, *head;
+
+       /*
+        * The request pos offset might be 32 or 64 bit, this is all fine
+        * on 64-bit platform.  However, for 64-bit pos request on 32-bit
+        * platform, the high 32-bit will be masked off if we evaluate the
+        * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
+        * 0xfffff000 as an unsigned long, hence the result is incorrect
+        * which could cause the following ASSERT failed in most cases.
+        * In order to avoid this, we can evaluate the block_offset of the
+        * start of the page by using shifts rather than masks the mismatch
+        * problem.
+        */
+       block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
+
+       ASSERT(block_offset + from == pos);
+
+       head = page_buffers(page);
+       block_start = 0;
+       for (bh = head; bh != head || !block_start;
+            bh = bh->b_this_page, block_start = block_end,
+                                  block_offset += bh->b_size) {
+               block_end = block_start + bh->b_size;
+
+               /* skip buffers before the write */
+               if (block_end <= from)
+                       continue;
+
+               /* if the buffer is after the write, we're done */
+               if (block_start >= to)
+                       break;
+
+               if (!buffer_delay(bh))
+                       continue;
+
+               if (!buffer_new(bh) && block_offset < i_size_read(inode))
+                       continue;
+
+               xfs_vm_kill_delalloc_range(inode, block_offset,
+                                          block_offset + bh->b_size);
+
+               /*
+                * This buffer does not contain data anymore. make sure anyone
+                * who finds it knows that for certain.
+                */
+               clear_buffer_delay(bh);
+               clear_buffer_uptodate(bh);
+               clear_buffer_mapped(bh);
+               clear_buffer_new(bh);
+               clear_buffer_dirty(bh);
+       }
+
+}
+
+/*
+ * This used to call block_write_begin(), but it unlocks and releases the page
+ * on error, and we need that page to be able to punch stale delalloc blocks out
+ * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
+ * the appropriate point.
+ */
+STATIC int
+xfs_vm_write_begin(
+       struct file             *file,
+       struct address_space    *mapping,
+       loff_t                  pos,
+       unsigned                len,
+       unsigned                flags,
+       struct page             **pagep,
+       void                    **fsdata)
+{
+       pgoff_t                 index = pos >> PAGE_CACHE_SHIFT;
+       struct page             *page;
+       int                     status;
+
+       ASSERT(len <= PAGE_CACHE_SIZE);
+
+       page = grab_cache_page_write_begin(mapping, index, flags);
+       if (!page)
+               return -ENOMEM;
+
+       status = __block_write_begin(page, pos, len, xfs_get_blocks);
+       if (unlikely(status)) {
+               struct inode    *inode = mapping->host;
+               size_t          isize = i_size_read(inode);
+
+               xfs_vm_write_failed(inode, page, pos, len);
+               unlock_page(page);
+
+               /*
+                * If the write is beyond EOF, we only want to kill blocks
+                * allocated in this write, not blocks that were previously
+                * written successfully.
+                */
+               if (pos + len > isize) {
+                       ssize_t start = max_t(ssize_t, pos, isize);
+
+                       truncate_pagecache_range(inode, start, pos + len);
+               }
+
+               page_cache_release(page);
+               page = NULL;
+       }
+
+       *pagep = page;
+       return status;
+}
+
+/*
+ * On failure, we only need to kill delalloc blocks beyond EOF in the range of
+ * this specific write because they will never be written. Previous writes
+ * beyond EOF where block allocation succeeded do not need to be trashed, so
+ * only new blocks from this write should be trashed. For blocks within
+ * EOF, generic_write_end() zeros them so they are safe to leave alone and be
+ * written with all the other valid data.
+ */
+STATIC int
+xfs_vm_write_end(
+       struct file             *file,
+       struct address_space    *mapping,
+       loff_t                  pos,
+       unsigned                len,
+       unsigned                copied,
+       struct page             *page,
+       void                    *fsdata)
+{
+       int                     ret;
+
+       ASSERT(len <= PAGE_CACHE_SIZE);
+
+       ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
+       if (unlikely(ret < len)) {
+               struct inode    *inode = mapping->host;
+               size_t          isize = i_size_read(inode);
+               loff_t          to = pos + len;
+
+               if (to > isize) {
+                       /* only kill blocks in this write beyond EOF */
+                       if (pos > isize)
+                               isize = pos;
+                       xfs_vm_kill_delalloc_range(inode, isize, to);
+                       truncate_pagecache_range(inode, isize, to);
+               }
+       }
+       return ret;
+}
+
+STATIC sector_t
+xfs_vm_bmap(
+       struct address_space    *mapping,
+       sector_t                block)
+{
+       struct inode            *inode = (struct inode *)mapping->host;
+       struct xfs_inode        *ip = XFS_I(inode);
+
+       trace_xfs_vm_bmap(XFS_I(inode));
+       xfs_ilock(ip, XFS_IOLOCK_SHARED);
+       filemap_write_and_wait(mapping);
+       xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+       return generic_block_bmap(mapping, block, xfs_get_blocks);
+}
+
+STATIC int
+xfs_vm_readpage(
+       struct file             *unused,
+       struct page             *page)
+{
+       return mpage_readpage(page, xfs_get_blocks);
+}
+
+STATIC int
+xfs_vm_readpages(
+       struct file             *unused,
+       struct address_space    *mapping,
+       struct list_head        *pages,
+       unsigned                nr_pages)
+{
+       return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
+}
+
+/*
+ * This is basically a copy of __set_page_dirty_buffers() with one
+ * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
+ * dirty, we'll never be able to clean them because we don't write buffers
+ * beyond EOF, and that means we can't invalidate pages that span EOF
+ * that have been marked dirty. Further, the dirty state can leak into
+ * the file interior if the file is extended, resulting in all sorts of
+ * bad things happening as the state does not match the underlying data.
+ *
+ * XXX: this really indicates that bufferheads in XFS need to die. Warts like
+ * this only exist because of bufferheads and how the generic code manages them.
+ */
+STATIC int
+xfs_vm_set_page_dirty(
+       struct page             *page)
+{
+       struct address_space    *mapping = page->mapping;
+       struct inode            *inode = mapping->host;
+       loff_t                  end_offset;
+       loff_t                  offset;
+       int                     newly_dirty;
+
+       if (unlikely(!mapping))
+               return !TestSetPageDirty(page);
+
+       end_offset = i_size_read(inode);
+       offset = page_offset(page);
+
+       spin_lock(&mapping->private_lock);
+       if (page_has_buffers(page)) {
+               struct buffer_head *head = page_buffers(page);
+               struct buffer_head *bh = head;
+
+               do {
+                       if (offset < end_offset)
+                               set_buffer_dirty(bh);
+                       bh = bh->b_this_page;
+                       offset += 1 << inode->i_blkbits;
+               } while (bh != head);
+       }
+       newly_dirty = !TestSetPageDirty(page);
+       spin_unlock(&mapping->private_lock);
+
+       if (newly_dirty) {
+               /* sigh - __set_page_dirty() is static, so copy it here, too */
+               unsigned long flags;
+
+               spin_lock_irqsave(&mapping->tree_lock, flags);
+               if (page->mapping) {    /* Race with truncate? */
+                       WARN_ON_ONCE(!PageUptodate(page));
+                       account_page_dirtied(page, mapping);
+                       radix_tree_tag_set(&mapping->page_tree,
+                                       page_index(page), PAGECACHE_TAG_DIRTY);
+               }
+               spin_unlock_irqrestore(&mapping->tree_lock, flags);
+               __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
+       }
+       return newly_dirty;
+}
+
+const struct address_space_operations xfs_address_space_operations = {
+       .readpage               = xfs_vm_readpage,
+       .readpages              = xfs_vm_readpages,
+       .writepage              = xfs_vm_writepage,
+       .writepages             = xfs_vm_writepages,
+       .set_page_dirty         = xfs_vm_set_page_dirty,
+       .releasepage            = xfs_vm_releasepage,
+       .invalidatepage         = xfs_vm_invalidatepage,
+       .write_begin            = xfs_vm_write_begin,
+       .write_end              = xfs_vm_write_end,
+       .bmap                   = xfs_vm_bmap,
+       .direct_IO              = xfs_vm_direct_IO,
+       .migratepage            = buffer_migrate_page,
+       .is_partially_uptodate  = block_is_partially_uptodate,
+       .error_remove_page      = generic_error_remove_page,
+};