Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / reiserfs / reiserfs.h
diff --git a/kernel/fs/reiserfs/reiserfs.h b/kernel/fs/reiserfs/reiserfs.h
new file mode 100644 (file)
index 0000000..2adcde1
--- /dev/null
@@ -0,0 +1,3411 @@
+/*
+ * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
+ * licensing and copyright details
+ */
+
+#include <linux/reiserfs_fs.h>
+
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+#include <linux/bug.h>
+#include <linux/workqueue.h>
+#include <asm/unaligned.h>
+#include <linux/bitops.h>
+#include <linux/proc_fs.h>
+#include <linux/buffer_head.h>
+
+/* the 32 bit compat definitions with int argument */
+#define REISERFS_IOC32_UNPACK          _IOW(0xCD, 1, int)
+#define REISERFS_IOC32_GETFLAGS                FS_IOC32_GETFLAGS
+#define REISERFS_IOC32_SETFLAGS                FS_IOC32_SETFLAGS
+#define REISERFS_IOC32_GETVERSION      FS_IOC32_GETVERSION
+#define REISERFS_IOC32_SETVERSION      FS_IOC32_SETVERSION
+
+struct reiserfs_journal_list;
+
+/* bitmasks for i_flags field in reiserfs-specific part of inode */
+typedef enum {
+       /*
+        * this says what format of key do all items (but stat data) of
+        * an object have.  If this is set, that format is 3.6 otherwise - 3.5
+        */
+       i_item_key_version_mask = 0x0001,
+
+       /*
+        * If this is unset, object has 3.5 stat data, otherwise,
+        * it has 3.6 stat data with 64bit size, 32bit nlink etc.
+        */
+       i_stat_data_version_mask = 0x0002,
+
+       /* file might need tail packing on close */
+       i_pack_on_close_mask = 0x0004,
+
+       /* don't pack tail of file */
+       i_nopack_mask = 0x0008,
+
+       /*
+        * If either of these are set, "safe link" was created for this
+        * file during truncate or unlink. Safe link is used to avoid
+        * leakage of disk space on crash with some files open, but unlinked.
+        */
+       i_link_saved_unlink_mask = 0x0010,
+       i_link_saved_truncate_mask = 0x0020,
+
+       i_has_xattr_dir = 0x0040,
+       i_data_log = 0x0080,
+} reiserfs_inode_flags;
+
+struct reiserfs_inode_info {
+       __u32 i_key[4];         /* key is still 4 32 bit integers */
+
+       /*
+        * transient inode flags that are never stored on disk. Bitmasks
+        * for this field are defined above.
+        */
+       __u32 i_flags;
+
+       /* offset of first byte stored in direct item. */
+       __u32 i_first_direct_byte;
+
+       /* copy of persistent inode flags read from sd_attrs. */
+       __u32 i_attrs;
+
+       /* first unused block of a sequence of unused blocks */
+       int i_prealloc_block;
+       int i_prealloc_count;   /* length of that sequence */
+
+       /* per-transaction list of inodes which  have preallocated blocks */
+       struct list_head i_prealloc_list;
+
+       /*
+        * new_packing_locality is created; new blocks for the contents
+        * of this directory should be displaced
+        */
+       unsigned new_packing_locality:1;
+
+       /*
+        * we use these for fsync or O_SYNC to decide which transaction
+        * needs to be committed in order for this inode to be properly
+        * flushed
+        */
+       unsigned int i_trans_id;
+
+       struct reiserfs_journal_list *i_jl;
+       atomic_t openers;
+       struct mutex tailpack;
+#ifdef CONFIG_REISERFS_FS_XATTR
+       struct rw_semaphore i_xattr_sem;
+#endif
+#ifdef CONFIG_QUOTA
+       struct dquot *i_dquot[MAXQUOTAS];
+#endif
+
+       struct inode vfs_inode;
+};
+
+typedef enum {
+       reiserfs_attrs_cleared = 0x00000001,
+} reiserfs_super_block_flags;
+
+/*
+ * struct reiserfs_super_block accessors/mutators since this is a disk
+ * structure, it will always be in little endian format.
+ */
+#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
+#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
+#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
+#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
+#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
+#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
+
+#define sb_jp_journal_1st_block(sbp)  \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
+#define set_sb_jp_journal_1st_block(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
+#define sb_jp_journal_dev(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
+#define set_sb_jp_journal_dev(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
+#define sb_jp_journal_size(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
+#define set_sb_jp_journal_size(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
+#define sb_jp_journal_trans_max(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
+#define set_sb_jp_journal_trans_max(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
+#define sb_jp_journal_magic(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
+#define set_sb_jp_journal_magic(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
+#define sb_jp_journal_max_batch(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
+#define set_sb_jp_journal_max_batch(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
+#define sb_jp_jourmal_max_commit_age(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
+#define set_sb_jp_journal_max_commit_age(sbp,v) \
+              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
+
+#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
+#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
+#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
+#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
+#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
+#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
+#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
+#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
+#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
+#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
+#define sb_hash_function_code(sbp) \
+              (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
+#define set_sb_hash_function_code(sbp,v) \
+              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
+#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
+#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
+#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
+#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
+#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
+#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
+
+#define sb_mnt_count(sbp)         (le16_to_cpu((sbp)->s_mnt_count))
+#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
+
+#define sb_reserved_for_journal(sbp) \
+              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
+#define set_sb_reserved_for_journal(sbp,v) \
+              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
+
+/* LOGGING -- */
+
+/*
+ * These all interelate for performance.
+ *
+ * If the journal block count is smaller than n transactions, you lose speed.
+ * I don't know what n is yet, I'm guessing 8-16.
+ *
+ * typical transaction size depends on the application, how often fsync is
+ * called, and how many metadata blocks you dirty in a 30 second period.
+ * The more small files (<16k) you use, the larger your transactions will
+ * be.
+ *
+ * If your journal fills faster than dirty buffers get flushed to disk, it
+ * must flush them before allowing the journal to wrap, which slows things
+ * down.  If you need high speed meta data updates, the journal should be
+ * big enough to prevent wrapping before dirty meta blocks get to disk.
+ *
+ * If the batch max is smaller than the transaction max, you'll waste space
+ * at the end of the journal because journal_end sets the next transaction
+ * to start at 0 if the next transaction has any chance of wrapping.
+ *
+ * The large the batch max age, the better the speed, and the more meta
+ * data changes you'll lose after a crash.
+ */
+
+/* don't mess with these for a while */
+/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
+#define JOURNAL_BLOCK_SIZE  4096       /* BUG gotta get rid of this */
+#define JOURNAL_MAX_CNODE   1500       /* max cnodes to allocate. */
+#define JOURNAL_HASH_SIZE 8192
+
+/* number of copies of the bitmaps to have floating.  Must be >= 2 */
+#define JOURNAL_NUM_BITMAPS 5
+
+/*
+ * One of these for every block in every transaction
+ * Each one is in two hash tables.  First, a hash of the current transaction,
+ * and after journal_end, a hash of all the in memory transactions.
+ * next and prev are used by the current transaction (journal_hash).
+ * hnext and hprev are used by journal_list_hash.  If a block is in more
+ * than one transaction, the journal_list_hash links it in multiple times.
+ * This allows flush_journal_list to remove just the cnode belonging to a
+ * given transaction.
+ */
+struct reiserfs_journal_cnode {
+       struct buffer_head *bh; /* real buffer head */
+       struct super_block *sb; /* dev of real buffer head */
+
+       /* block number of real buffer head, == 0 when buffer on disk */
+       __u32 blocknr;
+
+       unsigned long state;
+
+       /* journal list this cnode lives in */
+       struct reiserfs_journal_list *jlist;
+
+       struct reiserfs_journal_cnode *next;    /* next in transaction list */
+       struct reiserfs_journal_cnode *prev;    /* prev in transaction list */
+       struct reiserfs_journal_cnode *hprev;   /* prev in hash list */
+       struct reiserfs_journal_cnode *hnext;   /* next in hash list */
+};
+
+struct reiserfs_bitmap_node {
+       int id;
+       char *data;
+       struct list_head list;
+};
+
+struct reiserfs_list_bitmap {
+       struct reiserfs_journal_list *journal_list;
+       struct reiserfs_bitmap_node **bitmaps;
+};
+
+/*
+ * one of these for each transaction.  The most important part here is the
+ * j_realblock.  this list of cnodes is used to hash all the blocks in all
+ * the commits, to mark all the real buffer heads dirty once all the commits
+ * hit the disk, and to make sure every real block in a transaction is on
+ * disk before allowing the log area to be overwritten
+ */
+struct reiserfs_journal_list {
+       unsigned long j_start;
+       unsigned long j_state;
+       unsigned long j_len;
+       atomic_t j_nonzerolen;
+       atomic_t j_commit_left;
+
+       /* all commits older than this on disk */
+       atomic_t j_older_commits_done;
+
+       struct mutex j_commit_mutex;
+       unsigned int j_trans_id;
+       time_t j_timestamp;
+       struct reiserfs_list_bitmap *j_list_bitmap;
+       struct buffer_head *j_commit_bh;        /* commit buffer head */
+       struct reiserfs_journal_cnode *j_realblock;
+       struct reiserfs_journal_cnode *j_freedlist;     /* list of buffers that were freed during this trans.  free each of these on flush */
+       /* time ordered list of all active transactions */
+       struct list_head j_list;
+
+       /*
+        * time ordered list of all transactions we haven't tried
+        * to flush yet
+        */
+       struct list_head j_working_list;
+
+       /* list of tail conversion targets in need of flush before commit */
+       struct list_head j_tail_bh_list;
+
+       /* list of data=ordered buffers in need of flush before commit */
+       struct list_head j_bh_list;
+       int j_refcount;
+};
+
+struct reiserfs_journal {
+       struct buffer_head **j_ap_blocks;       /* journal blocks on disk */
+       /* newest journal block */
+       struct reiserfs_journal_cnode *j_last;
+
+       /* oldest journal block.  start here for traverse */
+       struct reiserfs_journal_cnode *j_first;
+
+       struct block_device *j_dev_bd;
+       fmode_t j_dev_mode;
+
+       /* first block on s_dev of reserved area journal */
+       int j_1st_reserved_block;
+
+       unsigned long j_state;
+       unsigned int j_trans_id;
+       unsigned long j_mount_id;
+
+       /* start of current waiting commit (index into j_ap_blocks) */
+       unsigned long j_start;
+       unsigned long j_len;    /* length of current waiting commit */
+
+       /* number of buffers requested by journal_begin() */
+       unsigned long j_len_alloc;
+
+       atomic_t j_wcount;      /* count of writers for current commit */
+
+       /* batch count. allows turning X transactions into 1 */
+       unsigned long j_bcount;
+
+       /* first unflushed transactions offset */
+       unsigned long j_first_unflushed_offset;
+
+       /* last fully flushed journal timestamp */
+       unsigned j_last_flush_trans_id;
+
+       struct buffer_head *j_header_bh;
+
+       time_t j_trans_start_time;      /* time this transaction started */
+       struct mutex j_mutex;
+       struct mutex j_flush_mutex;
+
+       /* wait for current transaction to finish before starting new one */
+       wait_queue_head_t j_join_wait;
+
+       atomic_t j_jlock;               /* lock for j_join_wait */
+       int j_list_bitmap_index;        /* number of next list bitmap to use */
+
+       /* no more journal begins allowed. MUST sleep on j_join_wait */
+       int j_must_wait;
+
+       /* next journal_end will flush all journal list */
+       int j_next_full_flush;
+
+       /* next journal_end will flush all async commits */
+       int j_next_async_flush;
+
+       int j_cnode_used;       /* number of cnodes on the used list */
+       int j_cnode_free;       /* number of cnodes on the free list */
+
+       /* max number of blocks in a transaction.  */
+       unsigned int j_trans_max;
+
+       /* max number of blocks to batch into a trans */
+       unsigned int j_max_batch;
+
+       /* in seconds, how old can an async commit be */
+       unsigned int j_max_commit_age;
+
+       /* in seconds, how old can a transaction be */
+       unsigned int j_max_trans_age;
+
+       /* the default for the max commit age */
+       unsigned int j_default_max_commit_age;
+
+       struct reiserfs_journal_cnode *j_cnode_free_list;
+
+       /* orig pointer returned from vmalloc */
+       struct reiserfs_journal_cnode *j_cnode_free_orig;
+
+       struct reiserfs_journal_list *j_current_jl;
+       int j_free_bitmap_nodes;
+       int j_used_bitmap_nodes;
+
+       int j_num_lists;        /* total number of active transactions */
+       int j_num_work_lists;   /* number that need attention from kreiserfsd */
+
+       /* debugging to make sure things are flushed in order */
+       unsigned int j_last_flush_id;
+
+       /* debugging to make sure things are committed in order */
+       unsigned int j_last_commit_id;
+
+       struct list_head j_bitmap_nodes;
+       struct list_head j_dirty_buffers;
+       spinlock_t j_dirty_buffers_lock;        /* protects j_dirty_buffers */
+
+       /* list of all active transactions */
+       struct list_head j_journal_list;
+
+       /* lists that haven't been touched by writeback attempts */
+       struct list_head j_working_list;
+
+       /* hash table for real buffer heads in current trans */
+       struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
+
+       /* hash table for all the real buffer heads in all the transactions */
+       struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
+
+       /* array of bitmaps to record the deleted blocks */
+       struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
+
+       /* list of inodes which have preallocated blocks */
+       struct list_head j_prealloc_list;
+       int j_persistent_trans;
+       unsigned long j_max_trans_size;
+       unsigned long j_max_batch_size;
+
+       int j_errno;
+
+       /* when flushing ordered buffers, throttle new ordered writers */
+       struct delayed_work j_work;
+       struct super_block *j_work_sb;
+       atomic_t j_async_throttle;
+};
+
+enum journal_state_bits {
+       J_WRITERS_BLOCKED = 1,  /* set when new writers not allowed */
+       J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
+       J_ABORTED,           /* set when log is aborted */
+};
+
+/* ick.  magic string to find desc blocks in the journal */
+#define JOURNAL_DESC_MAGIC "ReIsErLB"
+
+typedef __u32(*hashf_t) (const signed char *, int);
+
+struct reiserfs_bitmap_info {
+       __u32 free_count;
+};
+
+struct proc_dir_entry;
+
+#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
+typedef unsigned long int stat_cnt_t;
+typedef struct reiserfs_proc_info_data {
+       spinlock_t lock;
+       int exiting;
+       int max_hash_collisions;
+
+       stat_cnt_t breads;
+       stat_cnt_t bread_miss;
+       stat_cnt_t search_by_key;
+       stat_cnt_t search_by_key_fs_changed;
+       stat_cnt_t search_by_key_restarted;
+
+       stat_cnt_t insert_item_restarted;
+       stat_cnt_t paste_into_item_restarted;
+       stat_cnt_t cut_from_item_restarted;
+       stat_cnt_t delete_solid_item_restarted;
+       stat_cnt_t delete_item_restarted;
+
+       stat_cnt_t leaked_oid;
+       stat_cnt_t leaves_removable;
+
+       /*
+        * balances per level.
+        * Use explicit 5 as MAX_HEIGHT is not visible yet.
+        */
+       stat_cnt_t balance_at[5];       /* XXX */
+       /* sbk == search_by_key */
+       stat_cnt_t sbk_read_at[5];      /* XXX */
+       stat_cnt_t sbk_fs_changed[5];
+       stat_cnt_t sbk_restarted[5];
+       stat_cnt_t items_at[5]; /* XXX */
+       stat_cnt_t free_at[5];  /* XXX */
+       stat_cnt_t can_node_be_removed[5];      /* XXX */
+       long int lnum[5];       /* XXX */
+       long int rnum[5];       /* XXX */
+       long int lbytes[5];     /* XXX */
+       long int rbytes[5];     /* XXX */
+       stat_cnt_t get_neighbors[5];
+       stat_cnt_t get_neighbors_restart[5];
+       stat_cnt_t need_l_neighbor[5];
+       stat_cnt_t need_r_neighbor[5];
+
+       stat_cnt_t free_block;
+       struct __scan_bitmap_stats {
+               stat_cnt_t call;
+               stat_cnt_t wait;
+               stat_cnt_t bmap;
+               stat_cnt_t retry;
+               stat_cnt_t in_journal_hint;
+               stat_cnt_t in_journal_nohint;
+               stat_cnt_t stolen;
+       } scan_bitmap;
+       struct __journal_stats {
+               stat_cnt_t in_journal;
+               stat_cnt_t in_journal_bitmap;
+               stat_cnt_t in_journal_reusable;
+               stat_cnt_t lock_journal;
+               stat_cnt_t lock_journal_wait;
+               stat_cnt_t journal_being;
+               stat_cnt_t journal_relock_writers;
+               stat_cnt_t journal_relock_wcount;
+               stat_cnt_t mark_dirty;
+               stat_cnt_t mark_dirty_already;
+               stat_cnt_t mark_dirty_notjournal;
+               stat_cnt_t restore_prepared;
+               stat_cnt_t prepare;
+               stat_cnt_t prepare_retry;
+       } journal;
+} reiserfs_proc_info_data_t;
+#else
+typedef struct reiserfs_proc_info_data {
+} reiserfs_proc_info_data_t;
+#endif
+
+/* Number of quota types we support */
+#define REISERFS_MAXQUOTAS 2
+
+/* reiserfs union of in-core super block data */
+struct reiserfs_sb_info {
+       /* Buffer containing the super block */
+       struct buffer_head *s_sbh;
+
+       /* Pointer to the on-disk super block in the buffer */
+       struct reiserfs_super_block *s_rs;
+       struct reiserfs_bitmap_info *s_ap_bitmap;
+
+       /* pointer to journal information */
+       struct reiserfs_journal *s_journal;
+
+       unsigned short s_mount_state;   /* reiserfs state (valid, invalid) */
+
+       /* Serialize writers access, replace the old bkl */
+       struct mutex lock;
+
+       /* Owner of the lock (can be recursive) */
+       struct task_struct *lock_owner;
+
+       /* Depth of the lock, start from -1 like the bkl */
+       int lock_depth;
+
+       struct workqueue_struct *commit_wq;
+
+       /* Comment? -Hans */
+       void (*end_io_handler) (struct buffer_head *, int);
+
+       /*
+        * pointer to function which is used to sort names in directory.
+        * Set on mount
+        */
+       hashf_t s_hash_function;
+
+       /* reiserfs's mount options are set here */
+       unsigned long s_mount_opt;
+
+       /* This is a structure that describes block allocator options */
+       struct {
+               /* Bitfield for enable/disable kind of options */
+               unsigned long bits;
+
+               /*
+                * size started from which we consider file
+                * to be a large one (in blocks)
+                */
+               unsigned long large_file_size;
+
+               int border;     /* percentage of disk, border takes */
+
+               /*
+                * Minimal file size (in blocks) starting
+                * from which we do preallocations
+                */
+               int preallocmin;
+
+               /*
+                * Number of blocks we try to prealloc when file
+                * reaches preallocmin size (in blocks) or prealloc_list
+                is empty.
+                */
+               int preallocsize;
+       } s_alloc_options;
+
+       /* Comment? -Hans */
+       wait_queue_head_t s_wait;
+       /* increased by one every time the  tree gets re-balanced */
+       atomic_t s_generation_counter;
+
+       /* File system properties. Currently holds on-disk FS format */
+       unsigned long s_properties;
+
+       /* session statistics */
+       int s_disk_reads;
+       int s_disk_writes;
+       int s_fix_nodes;
+       int s_do_balance;
+       int s_unneeded_left_neighbor;
+       int s_good_search_by_key_reada;
+       int s_bmaps;
+       int s_bmaps_without_search;
+       int s_direct2indirect;
+       int s_indirect2direct;
+
+       /*
+        * set up when it's ok for reiserfs_read_inode2() to read from
+        * disk inode with nlink==0. Currently this is only used during
+        * finish_unfinished() processing at mount time
+        */
+       int s_is_unlinked_ok;
+
+       reiserfs_proc_info_data_t s_proc_info_data;
+       struct proc_dir_entry *procdir;
+
+       /* amount of blocks reserved for further allocations */
+       int reserved_blocks;
+
+
+       /* this lock on now only used to protect reserved_blocks variable */
+       spinlock_t bitmap_lock;
+       struct dentry *priv_root;       /* root of /.reiserfs_priv */
+       struct dentry *xattr_root;      /* root of /.reiserfs_priv/xattrs */
+       int j_errno;
+
+       int work_queued;              /* non-zero delayed work is queued */
+       struct delayed_work old_work; /* old transactions flush delayed work */
+       spinlock_t old_work_lock;     /* protects old_work and work_queued */
+
+#ifdef CONFIG_QUOTA
+       char *s_qf_names[REISERFS_MAXQUOTAS];
+       int s_jquota_fmt;
+#endif
+       char *s_jdev;           /* Stored jdev for mount option showing */
+#ifdef CONFIG_REISERFS_CHECK
+
+       /*
+        * Detects whether more than one copy of tb exists per superblock
+        * as a means of checking whether do_balance is executing
+        * concurrently against another tree reader/writer on a same
+        * mount point.
+        */
+       struct tree_balance *cur_tb;
+#endif
+};
+
+/* Definitions of reiserfs on-disk properties: */
+#define REISERFS_3_5 0
+#define REISERFS_3_6 1
+#define REISERFS_OLD_FORMAT 2
+
+/* Mount options */
+enum reiserfs_mount_options {
+       /* large tails will be created in a session */
+       REISERFS_LARGETAIL,
+       /*
+        * small (for files less than block size) tails will
+        * be created in a session
+        */
+       REISERFS_SMALLTAIL,
+
+       /* replay journal and return 0. Use by fsck */
+       REPLAYONLY,
+
+       /*
+        * -o conv: causes conversion of old format super block to the
+        * new format. If not specified - old partition will be dealt
+        * with in a manner of 3.5.x
+        */
+       REISERFS_CONVERT,
+
+       /*
+        * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
+        * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
+        * option is not required.  If the normal autodection code can't
+        * determine which hash to use (because both hashes had the same
+        * value for a file) use this option to force a specific hash.
+        * It won't allow you to override the existing hash on the FS, so
+        * if you have a tea hash disk, and mount with -o hash=rupasov,
+        * the mount will fail.
+        */
+       FORCE_TEA_HASH,         /* try to force tea hash on mount */
+       FORCE_RUPASOV_HASH,     /* try to force rupasov hash on mount */
+       FORCE_R5_HASH,          /* try to force rupasov hash on mount */
+       FORCE_HASH_DETECT,      /* try to detect hash function on mount */
+
+       REISERFS_DATA_LOG,
+       REISERFS_DATA_ORDERED,
+       REISERFS_DATA_WRITEBACK,
+
+       /*
+        * used for testing experimental features, makes benchmarking new
+        * features with and without more convenient, should never be used by
+        * users in any code shipped to users (ideally)
+        */
+
+       REISERFS_NO_BORDER,
+       REISERFS_NO_UNHASHED_RELOCATION,
+       REISERFS_HASHED_RELOCATION,
+       REISERFS_ATTRS,
+       REISERFS_XATTRS_USER,
+       REISERFS_POSIXACL,
+       REISERFS_EXPOSE_PRIVROOT,
+       REISERFS_BARRIER_NONE,
+       REISERFS_BARRIER_FLUSH,
+
+       /* Actions on error */
+       REISERFS_ERROR_PANIC,
+       REISERFS_ERROR_RO,
+       REISERFS_ERROR_CONTINUE,
+
+       REISERFS_USRQUOTA,      /* User quota option specified */
+       REISERFS_GRPQUOTA,      /* Group quota option specified */
+
+       REISERFS_TEST1,
+       REISERFS_TEST2,
+       REISERFS_TEST3,
+       REISERFS_TEST4,
+       REISERFS_UNSUPPORTED_OPT,
+};
+
+#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
+#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
+#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
+#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
+#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
+#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
+#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
+#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
+
+#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
+#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
+#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
+#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
+#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
+#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
+#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
+#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
+#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
+#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
+#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
+#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
+#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
+#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
+#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
+
+#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
+#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
+
+void reiserfs_file_buffer(struct buffer_head *bh, int list);
+extern struct file_system_type reiserfs_fs_type;
+int reiserfs_resize(struct super_block *, unsigned long);
+
+#define CARRY_ON                0
+#define SCHEDULE_OCCURRED       1
+
+#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
+#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
+#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
+#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
+#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
+
+#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
+
+#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
+static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
+                                               *journal)
+{
+       return test_bit(J_ABORTED, &journal->j_state);
+}
+
+/*
+ * Locking primitives. The write lock is a per superblock
+ * special mutex that has properties close to the Big Kernel Lock
+ * which was used in the previous locking scheme.
+ */
+void reiserfs_write_lock(struct super_block *s);
+void reiserfs_write_unlock(struct super_block *s);
+int __must_check reiserfs_write_unlock_nested(struct super_block *s);
+void reiserfs_write_lock_nested(struct super_block *s, int depth);
+
+#ifdef CONFIG_REISERFS_CHECK
+void reiserfs_lock_check_recursive(struct super_block *s);
+#else
+static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
+#endif
+
+/*
+ * Several mutexes depend on the write lock.
+ * However sometimes we want to relax the write lock while we hold
+ * these mutexes, according to the release/reacquire on schedule()
+ * properties of the Bkl that were used.
+ * Reiserfs performances and locking were based on this scheme.
+ * Now that the write lock is a mutex and not the bkl anymore, doing so
+ * may result in a deadlock:
+ *
+ * A acquire write_lock
+ * A acquire j_commit_mutex
+ * A release write_lock and wait for something
+ * B acquire write_lock
+ * B can't acquire j_commit_mutex and sleep
+ * A can't acquire write lock anymore
+ * deadlock
+ *
+ * What we do here is avoiding such deadlock by playing the same game
+ * than the Bkl: if we can't acquire a mutex that depends on the write lock,
+ * we release the write lock, wait a bit and then retry.
+ *
+ * The mutexes concerned by this hack are:
+ * - The commit mutex of a journal list
+ * - The flush mutex
+ * - The journal lock
+ * - The inode mutex
+ */
+static inline void reiserfs_mutex_lock_safe(struct mutex *m,
+                                           struct super_block *s)
+{
+       int depth;
+
+       depth = reiserfs_write_unlock_nested(s);
+       mutex_lock(m);
+       reiserfs_write_lock_nested(s, depth);
+}
+
+static inline void
+reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
+                               struct super_block *s)
+{
+       int depth;
+
+       depth = reiserfs_write_unlock_nested(s);
+       mutex_lock_nested(m, subclass);
+       reiserfs_write_lock_nested(s, depth);
+}
+
+static inline void
+reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
+{
+       int depth;
+       depth = reiserfs_write_unlock_nested(s);
+       down_read(sem);
+       reiserfs_write_lock_nested(s, depth);
+}
+
+/*
+ * When we schedule, we usually want to also release the write lock,
+ * according to the previous bkl based locking scheme of reiserfs.
+ */
+static inline void reiserfs_cond_resched(struct super_block *s)
+{
+       if (need_resched()) {
+               int depth;
+
+               depth = reiserfs_write_unlock_nested(s);
+               schedule();
+               reiserfs_write_lock_nested(s, depth);
+       }
+}
+
+struct fid;
+
+/*
+ * in reading the #defines, it may help to understand that they employ
+ *  the following abbreviations:
+ *
+ *  B = Buffer
+ *  I = Item header
+ *  H = Height within the tree (should be changed to LEV)
+ *  N = Number of the item in the node
+ *  STAT = stat data
+ *  DEH = Directory Entry Header
+ *  EC = Entry Count
+ *  E = Entry number
+ *  UL = Unsigned Long
+ *  BLKH = BLocK Header
+ *  UNFM = UNForMatted node
+ *  DC = Disk Child
+ *  P = Path
+ *
+ *  These #defines are named by concatenating these abbreviations,
+ *  where first comes the arguments, and last comes the return value,
+ *  of the macro.
+ */
+
+#define USE_INODE_GENERATION_COUNTER
+
+#define REISERFS_PREALLOCATE
+#define DISPLACE_NEW_PACKING_LOCALITIES
+#define PREALLOCATION_SIZE 9
+
+/* n must be power of 2 */
+#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
+
+/*
+ * to be ok for alpha and others we have to align structures to 8 byte
+ * boundary.
+ * FIXME: do not change 4 by anything else: there is code which relies on that
+ */
+#define ROUND_UP(x) _ROUND_UP(x,8LL)
+
+/*
+ * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
+ * messages.
+ */
+#define REISERFS_DEBUG_CODE 5  /* extra messages to help find/debug errors */
+
+void __reiserfs_warning(struct super_block *s, const char *id,
+                        const char *func, const char *fmt, ...);
+#define reiserfs_warning(s, id, fmt, args...) \
+        __reiserfs_warning(s, id, __func__, fmt, ##args)
+/* assertions handling */
+
+/* always check a condition and panic if it's false. */
+#define __RASSERT(cond, scond, format, args...)                        \
+do {                                                                   \
+       if (!(cond))                                                    \
+               reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
+                              __FILE__ ":%i:%s: " format "\n",         \
+                              __LINE__, __func__ , ##args);            \
+} while (0)
+
+#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
+
+#if defined( CONFIG_REISERFS_CHECK )
+#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
+#else
+#define RFALSE( cond, format, args... ) do {;} while( 0 )
+#endif
+
+#define CONSTF __attribute_const__
+/*
+ * Disk Data Structures
+ */
+
+/***************************************************************************
+ *                             SUPER BLOCK                                 *
+ ***************************************************************************/
+
+/*
+ * Structure of super block on disk, a version of which in RAM is often
+ * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
+ * structure containing fields never written to disk.
+ */
+#define UNSET_HASH 0   /* Detect hash on disk */
+#define TEA_HASH  1
+#define YURA_HASH 2
+#define R5_HASH   3
+#define DEFAULT_HASH R5_HASH
+
+struct journal_params {
+       /* where does journal start from on its * device */
+       __le32 jp_journal_1st_block;
+
+       /* journal device st_rdev */
+       __le32 jp_journal_dev;
+
+       /* size of the journal */
+       __le32 jp_journal_size;
+
+       /* max number of blocks in a transaction. */
+       __le32 jp_journal_trans_max;
+
+       /*
+        * random value made on fs creation
+        * (this was sb_journal_block_count)
+        */
+       __le32 jp_journal_magic;
+
+       /* max number of blocks to batch into a trans */
+       __le32 jp_journal_max_batch;
+
+       /* in seconds, how old can an async  commit be */
+       __le32 jp_journal_max_commit_age;
+
+       /* in seconds, how old can a transaction be */
+       __le32 jp_journal_max_trans_age;
+};
+
+/* this is the super from 3.5.X, where X >= 10 */
+struct reiserfs_super_block_v1 {
+       __le32 s_block_count;   /* blocks count         */
+       __le32 s_free_blocks;   /* free blocks count    */
+       __le32 s_root_block;    /* root block number    */
+       struct journal_params s_journal;
+       __le16 s_blocksize;     /* block size */
+
+       /* max size of object id array, see get_objectid() commentary  */
+       __le16 s_oid_maxsize;
+       __le16 s_oid_cursize;   /* current size of object id array */
+
+       /* this is set to 1 when filesystem was umounted, to 2 - when not */
+       __le16 s_umount_state;
+
+       /*
+        * reiserfs magic string indicates that file system is reiserfs:
+        * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
+        */
+       char s_magic[10];
+
+       /*
+        * it is set to used by fsck to mark which
+        * phase of rebuilding is done
+        */
+       __le16 s_fs_state;
+       /*
+        * indicate, what hash function is being use
+        * to sort names in a directory
+        */
+       __le32 s_hash_function_code;
+       __le16 s_tree_height;   /* height of disk tree */
+
+       /*
+        * amount of bitmap blocks needed to address
+        * each block of file system
+        */
+       __le16 s_bmap_nr;
+
+       /*
+        * this field is only reliable on filesystem with non-standard journal
+        */
+       __le16 s_version;
+
+       /*
+        * size in blocks of journal area on main device, we need to
+        * keep after making fs with non-standard journal
+        */
+       __le16 s_reserved_for_journal;
+} __attribute__ ((__packed__));
+
+#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
+
+/* this is the on disk super block */
+struct reiserfs_super_block {
+       struct reiserfs_super_block_v1 s_v1;
+       __le32 s_inode_generation;
+
+       /* Right now used only by inode-attributes, if enabled */
+       __le32 s_flags;
+
+       unsigned char s_uuid[16];       /* filesystem unique identifier */
+       unsigned char s_label[16];      /* filesystem volume label */
+       __le16 s_mnt_count;             /* Count of mounts since last fsck */
+       __le16 s_max_mnt_count;         /* Maximum mounts before check */
+       __le32 s_lastcheck;             /* Timestamp of last fsck */
+       __le32 s_check_interval;        /* Interval between checks */
+
+       /*
+        * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
+        * so any additions must be updated there as well. */
+       char s_unused[76];
+} __attribute__ ((__packed__));
+
+#define SB_SIZE (sizeof(struct reiserfs_super_block))
+
+#define REISERFS_VERSION_1 0
+#define REISERFS_VERSION_2 2
+
+/* on-disk super block fields converted to cpu form */
+#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
+#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
+#define SB_BLOCKSIZE(s) \
+        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
+#define SB_BLOCK_COUNT(s) \
+        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
+#define SB_FREE_BLOCKS(s) \
+        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
+#define SB_REISERFS_MAGIC(s) \
+        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
+#define SB_ROOT_BLOCK(s) \
+        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
+#define SB_TREE_HEIGHT(s) \
+        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
+#define SB_REISERFS_STATE(s) \
+        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
+#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
+#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
+
+#define PUT_SB_BLOCK_COUNT(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
+#define PUT_SB_FREE_BLOCKS(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
+#define PUT_SB_ROOT_BLOCK(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
+#define PUT_SB_TREE_HEIGHT(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
+#define PUT_SB_REISERFS_STATE(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
+#define PUT_SB_VERSION(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
+#define PUT_SB_BMAP_NR(s, val) \
+   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
+
+#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
+#define SB_ONDISK_JOURNAL_SIZE(s) \
+         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
+#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
+         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
+#define SB_ONDISK_JOURNAL_DEVICE(s) \
+         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
+#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
+         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
+
+#define is_block_in_log_or_reserved_area(s, block) \
+         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
+         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
+         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
+         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
+
+int is_reiserfs_3_5(struct reiserfs_super_block *rs);
+int is_reiserfs_3_6(struct reiserfs_super_block *rs);
+int is_reiserfs_jr(struct reiserfs_super_block *rs);
+
+/*
+ * ReiserFS leaves the first 64k unused, so that partition labels have
+ * enough space.  If someone wants to write a fancy bootloader that
+ * needs more than 64k, let us know, and this will be increased in size.
+ * This number must be larger than than the largest block size on any
+ * platform, or code will break.  -Hans
+ */
+#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
+#define REISERFS_FIRST_BLOCK unused_define
+#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
+
+/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
+#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
+
+/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
+#define CARRY_ON      0
+#define REPEAT_SEARCH -1
+#define IO_ERROR      -2
+#define NO_DISK_SPACE -3
+#define NO_BALANCING_NEEDED  (-4)
+#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
+#define QUOTA_EXCEEDED -6
+
+typedef __u32 b_blocknr_t;
+typedef __le32 unp_t;
+
+struct unfm_nodeinfo {
+       unp_t unfm_nodenum;
+       unsigned short unfm_freespace;
+};
+
+/* there are two formats of keys: 3.5 and 3.6 */
+#define KEY_FORMAT_3_5 0
+#define KEY_FORMAT_3_6 1
+
+/* there are two stat datas */
+#define STAT_DATA_V1 0
+#define STAT_DATA_V2 1
+
+static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
+{
+       return container_of(inode, struct reiserfs_inode_info, vfs_inode);
+}
+
+static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
+{
+       return sb->s_fs_info;
+}
+
+/*
+ * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
+ * which overflows on large file systems.
+ */
+static inline __u32 reiserfs_bmap_count(struct super_block *sb)
+{
+       return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
+}
+
+static inline int bmap_would_wrap(unsigned bmap_nr)
+{
+       return bmap_nr > ((1LL << 16) - 1);
+}
+
+/*
+ * this says about version of key of all items (but stat data) the
+ * object consists of
+ */
+#define get_inode_item_key_version( inode )                                    \
+    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
+
+#define set_inode_item_key_version( inode, version )                           \
+         ({ if((version)==KEY_FORMAT_3_6)                                      \
+                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
+            else                                                               \
+                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
+
+#define get_inode_sd_version(inode)                                            \
+    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
+
+#define set_inode_sd_version(inode, version)                                   \
+         ({ if((version)==STAT_DATA_V2)                                        \
+                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
+            else                                                               \
+                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
+
+/*
+ * This is an aggressive tail suppression policy, I am hoping it
+ * improves our benchmarks. The principle behind it is that percentage
+ * space saving is what matters, not absolute space saving.  This is
+ * non-intuitive, but it helps to understand it if you consider that the
+ * cost to access 4 blocks is not much more than the cost to access 1
+ * block, if you have to do a seek and rotate.  A tail risks a
+ * non-linear disk access that is significant as a percentage of total
+ * time cost for a 4 block file and saves an amount of space that is
+ * less significant as a percentage of space, or so goes the hypothesis.
+ * -Hans
+ */
+#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
+(\
+  (!(n_tail_size)) || \
+  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
+   ( (n_file_size) >= (n_block_size) * 4 ) || \
+   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
+     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
+   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
+     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
+   ( ( (n_file_size) >= (n_block_size) ) && \
+     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
+)
+
+/*
+ * Another strategy for tails, this one means only create a tail if all the
+ * file would fit into one DIRECT item.
+ * Primary intention for this one is to increase performance by decreasing
+ * seeking.
+*/
+#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
+(\
+  (!(n_tail_size)) || \
+  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
+)
+
+/*
+ * values for s_umount_state field
+ */
+#define REISERFS_VALID_FS    1
+#define REISERFS_ERROR_FS    2
+
+/*
+ * there are 5 item types currently
+ */
+#define TYPE_STAT_DATA 0
+#define TYPE_INDIRECT 1
+#define TYPE_DIRECT 2
+#define TYPE_DIRENTRY 3
+#define TYPE_MAXTYPE 3
+#define TYPE_ANY 15            /* FIXME: comment is required */
+
+/***************************************************************************
+ *                       KEY & ITEM HEAD                                   *
+ ***************************************************************************/
+
+/* * directories use this key as well as old files */
+struct offset_v1 {
+       __le32 k_offset;
+       __le32 k_uniqueness;
+} __attribute__ ((__packed__));
+
+struct offset_v2 {
+       __le64 v;
+} __attribute__ ((__packed__));
+
+static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
+{
+       __u8 type = le64_to_cpu(v2->v) >> 60;
+       return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
+}
+
+static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
+{
+       v2->v =
+           (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
+}
+
+static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
+{
+       return le64_to_cpu(v2->v) & (~0ULL >> 4);
+}
+
+static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
+{
+       offset &= (~0ULL >> 4);
+       v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
+}
+
+/*
+ * Key of an item determines its location in the S+tree, and
+ * is composed of 4 components
+ */
+struct reiserfs_key {
+       /* packing locality: by default parent directory object id */
+       __le32 k_dir_id;
+
+       __le32 k_objectid;      /* object identifier */
+       union {
+               struct offset_v1 k_offset_v1;
+               struct offset_v2 k_offset_v2;
+       } __attribute__ ((__packed__)) u;
+} __attribute__ ((__packed__));
+
+struct in_core_key {
+       /* packing locality: by default parent directory object id */
+       __u32 k_dir_id;
+       __u32 k_objectid;       /* object identifier */
+       __u64 k_offset;
+       __u8 k_type;
+};
+
+struct cpu_key {
+       struct in_core_key on_disk_key;
+       int version;
+       /* 3 in all cases but direct2indirect and indirect2direct conversion */
+       int key_length;
+};
+
+/*
+ * Our function for comparing keys can compare keys of different
+ * lengths.  It takes as a parameter the length of the keys it is to
+ * compare.  These defines are used in determining what is to be passed
+ * to it as that parameter.
+ */
+#define REISERFS_FULL_KEY_LEN     4
+#define REISERFS_SHORT_KEY_LEN    2
+
+/* The result of the key compare */
+#define FIRST_GREATER 1
+#define SECOND_GREATER -1
+#define KEYS_IDENTICAL 0
+#define KEY_FOUND 1
+#define KEY_NOT_FOUND 0
+
+#define KEY_SIZE (sizeof(struct reiserfs_key))
+#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
+
+/* return values for search_by_key and clones */
+#define ITEM_FOUND 1
+#define ITEM_NOT_FOUND 0
+#define ENTRY_FOUND 1
+#define ENTRY_NOT_FOUND 0
+#define DIRECTORY_NOT_FOUND -1
+#define REGULAR_FILE_FOUND -2
+#define DIRECTORY_FOUND -3
+#define BYTE_FOUND 1
+#define BYTE_NOT_FOUND 0
+#define FILE_NOT_FOUND -1
+
+#define POSITION_FOUND 1
+#define POSITION_NOT_FOUND 0
+
+/* return values for reiserfs_find_entry and search_by_entry_key */
+#define NAME_FOUND 1
+#define NAME_NOT_FOUND 0
+#define GOTO_PREVIOUS_ITEM 2
+#define NAME_FOUND_INVISIBLE 3
+
+/*
+ * Everything in the filesystem is stored as a set of items.  The
+ * item head contains the key of the item, its free space (for
+ * indirect items) and specifies the location of the item itself
+ * within the block.
+ */
+
+struct item_head {
+       /*
+        * Everything in the tree is found by searching for it based on
+        * its key.
+        */
+       struct reiserfs_key ih_key;
+       union {
+               /*
+                * The free space in the last unformatted node of an
+                * indirect item if this is an indirect item.  This
+                * equals 0xFFFF iff this is a direct item or stat data
+                * item. Note that the key, not this field, is used to
+                * determine the item type, and thus which field this
+                * union contains.
+                */
+               __le16 ih_free_space_reserved;
+
+               /*
+                * Iff this is a directory item, this field equals the
+                * number of directory entries in the directory item.
+                */
+               __le16 ih_entry_count;
+       } __attribute__ ((__packed__)) u;
+       __le16 ih_item_len;     /* total size of the item body */
+
+       /* an offset to the item body within the block */
+       __le16 ih_item_location;
+
+       /*
+        * 0 for all old items, 2 for new ones. Highest bit is set by fsck
+        * temporary, cleaned after all done
+        */
+       __le16 ih_version;
+} __attribute__ ((__packed__));
+/* size of item header     */
+#define IH_SIZE (sizeof(struct item_head))
+
+#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
+#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
+#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
+#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
+#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
+
+#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
+#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
+#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
+#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
+#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
+
+#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
+
+#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
+#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
+
+/*
+ * these operate on indirect items, where you've got an array of ints
+ * at a possibly unaligned location.  These are a noop on ia32
+ *
+ * p is the array of __u32, i is the index into the array, v is the value
+ * to store there.
+ */
+#define get_block_num(p, i) get_unaligned_le32((p) + (i))
+#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
+
+/* * in old version uniqueness field shows key type */
+#define V1_SD_UNIQUENESS 0
+#define V1_INDIRECT_UNIQUENESS 0xfffffffe
+#define V1_DIRECT_UNIQUENESS 0xffffffff
+#define V1_DIRENTRY_UNIQUENESS 500
+#define V1_ANY_UNIQUENESS 555  /* FIXME: comment is required */
+
+/* here are conversion routines */
+static inline int uniqueness2type(__u32 uniqueness) CONSTF;
+static inline int uniqueness2type(__u32 uniqueness)
+{
+       switch ((int)uniqueness) {
+       case V1_SD_UNIQUENESS:
+               return TYPE_STAT_DATA;
+       case V1_INDIRECT_UNIQUENESS:
+               return TYPE_INDIRECT;
+       case V1_DIRECT_UNIQUENESS:
+               return TYPE_DIRECT;
+       case V1_DIRENTRY_UNIQUENESS:
+               return TYPE_DIRENTRY;
+       case V1_ANY_UNIQUENESS:
+       default:
+               return TYPE_ANY;
+       }
+}
+
+static inline __u32 type2uniqueness(int type) CONSTF;
+static inline __u32 type2uniqueness(int type)
+{
+       switch (type) {
+       case TYPE_STAT_DATA:
+               return V1_SD_UNIQUENESS;
+       case TYPE_INDIRECT:
+               return V1_INDIRECT_UNIQUENESS;
+       case TYPE_DIRECT:
+               return V1_DIRECT_UNIQUENESS;
+       case TYPE_DIRENTRY:
+               return V1_DIRENTRY_UNIQUENESS;
+       case TYPE_ANY:
+       default:
+               return V1_ANY_UNIQUENESS;
+       }
+}
+
+/*
+ * key is pointer to on disk key which is stored in le, result is cpu,
+ * there is no way to get version of object from key, so, provide
+ * version to these defines
+ */
+static inline loff_t le_key_k_offset(int version,
+                                    const struct reiserfs_key *key)
+{
+       return (version == KEY_FORMAT_3_5) ?
+           le32_to_cpu(key->u.k_offset_v1.k_offset) :
+           offset_v2_k_offset(&(key->u.k_offset_v2));
+}
+
+static inline loff_t le_ih_k_offset(const struct item_head *ih)
+{
+       return le_key_k_offset(ih_version(ih), &(ih->ih_key));
+}
+
+static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
+{
+       if (version == KEY_FORMAT_3_5) {
+               loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
+               return uniqueness2type(val);
+       } else
+               return offset_v2_k_type(&(key->u.k_offset_v2));
+}
+
+static inline loff_t le_ih_k_type(const struct item_head *ih)
+{
+       return le_key_k_type(ih_version(ih), &(ih->ih_key));
+}
+
+static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
+                                      loff_t offset)
+{
+       if (version == KEY_FORMAT_3_5)
+               key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
+       else
+               set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
+}
+
+static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
+                                      loff_t offset)
+{
+       set_le_key_k_offset(version, key,
+                           le_key_k_offset(version, key) + offset);
+}
+
+static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
+{
+       add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
+}
+
+static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
+{
+       set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
+}
+
+static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
+                                    int type)
+{
+       if (version == KEY_FORMAT_3_5) {
+               type = type2uniqueness(type);
+               key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
+       } else
+              set_offset_v2_k_type(&key->u.k_offset_v2, type);
+}
+
+static inline void set_le_ih_k_type(struct item_head *ih, int type)
+{
+       set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
+}
+
+static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
+{
+       return le_key_k_type(version, key) == TYPE_DIRENTRY;
+}
+
+static inline int is_direct_le_key(int version, struct reiserfs_key *key)
+{
+       return le_key_k_type(version, key) == TYPE_DIRECT;
+}
+
+static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
+{
+       return le_key_k_type(version, key) == TYPE_INDIRECT;
+}
+
+static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
+{
+       return le_key_k_type(version, key) == TYPE_STAT_DATA;
+}
+
+/* item header has version.  */
+static inline int is_direntry_le_ih(struct item_head *ih)
+{
+       return is_direntry_le_key(ih_version(ih), &ih->ih_key);
+}
+
+static inline int is_direct_le_ih(struct item_head *ih)
+{
+       return is_direct_le_key(ih_version(ih), &ih->ih_key);
+}
+
+static inline int is_indirect_le_ih(struct item_head *ih)
+{
+       return is_indirect_le_key(ih_version(ih), &ih->ih_key);
+}
+
+static inline int is_statdata_le_ih(struct item_head *ih)
+{
+       return is_statdata_le_key(ih_version(ih), &ih->ih_key);
+}
+
+/* key is pointer to cpu key, result is cpu */
+static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
+{
+       return key->on_disk_key.k_offset;
+}
+
+static inline loff_t cpu_key_k_type(const struct cpu_key *key)
+{
+       return key->on_disk_key.k_type;
+}
+
+static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
+{
+       key->on_disk_key.k_offset = offset;
+}
+
+static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
+{
+       key->on_disk_key.k_type = type;
+}
+
+static inline void cpu_key_k_offset_dec(struct cpu_key *key)
+{
+       key->on_disk_key.k_offset--;
+}
+
+#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
+#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
+#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
+#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
+
+/* are these used ? */
+#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
+#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
+#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
+#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
+
+#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
+    (!COMP_SHORT_KEYS(ih, key) && \
+         I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
+
+/* maximal length of item */
+#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
+#define MIN_ITEM_LEN 1
+
+/* object identifier for root dir */
+#define REISERFS_ROOT_OBJECTID 2
+#define REISERFS_ROOT_PARENT_OBJECTID 1
+
+extern struct reiserfs_key root_key;
+
+/*
+ * Picture represents a leaf of the S+tree
+ *  ______________________________________________________
+ * |      |  Array of     |                   |           |
+ * |Block |  Object-Item  |      F r e e      |  Objects- |
+ * | head |  Headers      |     S p a c e     |   Items   |
+ * |______|_______________|___________________|___________|
+ */
+
+/*
+ * Header of a disk block.  More precisely, header of a formatted leaf
+ * or internal node, and not the header of an unformatted node.
+ */
+struct block_head {
+       __le16 blk_level;       /* Level of a block in the tree. */
+       __le16 blk_nr_item;     /* Number of keys/items in a block. */
+       __le16 blk_free_space;  /* Block free space in bytes. */
+       __le16 blk_reserved;
+       /* dump this in v4/planA */
+
+       /* kept only for compatibility */
+       struct reiserfs_key blk_right_delim_key;
+};
+
+#define BLKH_SIZE                     (sizeof(struct block_head))
+#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
+#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
+#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
+#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
+#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
+#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
+#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
+#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
+#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
+#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
+
+/* values for blk_level field of the struct block_head */
+
+/*
+ * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
+ * It is then  used to see whether the node is still in the tree
+ */
+#define FREE_LEVEL 0
+
+#define DISK_LEAF_NODE_LEVEL  1        /* Leaf node level. */
+
+/*
+ * Given the buffer head of a formatted node, resolve to the
+ * block head of that node.
+ */
+#define B_BLK_HEAD(bh)                 ((struct block_head *)((bh)->b_data))
+/* Number of items that are in buffer. */
+#define B_NR_ITEMS(bh)                 (blkh_nr_item(B_BLK_HEAD(bh)))
+#define B_LEVEL(bh)                    (blkh_level(B_BLK_HEAD(bh)))
+#define B_FREE_SPACE(bh)               (blkh_free_space(B_BLK_HEAD(bh)))
+
+#define PUT_B_NR_ITEMS(bh, val)                do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
+#define PUT_B_LEVEL(bh, val)           do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
+#define PUT_B_FREE_SPACE(bh, val)      do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
+
+/* Get right delimiting key. -- little endian */
+#define B_PRIGHT_DELIM_KEY(bh)         (&(blk_right_delim_key(B_BLK_HEAD(bh))))
+
+/* Does the buffer contain a disk leaf. */
+#define B_IS_ITEMS_LEVEL(bh)           (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
+
+/* Does the buffer contain a disk internal node */
+#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
+                                           && B_LEVEL(bh) <= MAX_HEIGHT)
+
+/***************************************************************************
+ *                             STAT DATA                                   *
+ ***************************************************************************/
+
+/*
+ * old stat data is 32 bytes long. We are going to distinguish new one by
+ * different size
+*/
+struct stat_data_v1 {
+       __le16 sd_mode;         /* file type, permissions */
+       __le16 sd_nlink;        /* number of hard links */
+       __le16 sd_uid;          /* owner */
+       __le16 sd_gid;          /* group */
+       __le32 sd_size;         /* file size */
+       __le32 sd_atime;        /* time of last access */
+       __le32 sd_mtime;        /* time file was last modified  */
+
+       /*
+        * time inode (stat data) was last changed
+        * (except changes to sd_atime and sd_mtime)
+        */
+       __le32 sd_ctime;
+       union {
+               __le32 sd_rdev;
+               __le32 sd_blocks;       /* number of blocks file uses */
+       } __attribute__ ((__packed__)) u;
+
+       /*
+        * first byte of file which is stored in a direct item: except that if
+        * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
+        * direct item.  The existence of this field really grates on me.
+        * Let's replace it with a macro based on sd_size and our tail
+        * suppression policy.  Someday.  -Hans
+        */
+       __le32 sd_first_direct_byte;
+} __attribute__ ((__packed__));
+
+#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
+#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
+#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
+#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
+#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
+#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
+#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
+#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
+#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
+#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
+#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
+#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
+#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
+#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
+#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
+#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
+#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
+#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
+#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
+#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
+#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
+#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
+#define sd_v1_first_direct_byte(sdp) \
+                                (le32_to_cpu((sdp)->sd_first_direct_byte))
+#define set_sd_v1_first_direct_byte(sdp,v) \
+                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
+
+/* inode flags stored in sd_attrs (nee sd_reserved) */
+
+/*
+ * we want common flags to have the same values as in ext2,
+ * so chattr(1) will work without problems
+ */
+#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
+#define REISERFS_APPEND_FL    FS_APPEND_FL
+#define REISERFS_SYNC_FL      FS_SYNC_FL
+#define REISERFS_NOATIME_FL   FS_NOATIME_FL
+#define REISERFS_NODUMP_FL    FS_NODUMP_FL
+#define REISERFS_SECRM_FL     FS_SECRM_FL
+#define REISERFS_UNRM_FL      FS_UNRM_FL
+#define REISERFS_COMPR_FL     FS_COMPR_FL
+#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
+
+/* persistent flags that file inherits from the parent directory */
+#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |        \
+                               REISERFS_SYNC_FL |      \
+                               REISERFS_NOATIME_FL |   \
+                               REISERFS_NODUMP_FL |    \
+                               REISERFS_SECRM_FL |     \
+                               REISERFS_COMPR_FL |     \
+                               REISERFS_NOTAIL_FL )
+
+/*
+ * Stat Data on disk (reiserfs version of UFS disk inode minus the
+ * address blocks)
+ */
+struct stat_data {
+       __le16 sd_mode;         /* file type, permissions */
+       __le16 sd_attrs;        /* persistent inode flags */
+       __le32 sd_nlink;        /* number of hard links */
+       __le64 sd_size;         /* file size */
+       __le32 sd_uid;          /* owner */
+       __le32 sd_gid;          /* group */
+       __le32 sd_atime;        /* time of last access */
+       __le32 sd_mtime;        /* time file was last modified  */
+
+       /*
+        * time inode (stat data) was last changed
+        * (except changes to sd_atime and sd_mtime)
+        */
+       __le32 sd_ctime;
+       __le32 sd_blocks;
+       union {
+               __le32 sd_rdev;
+               __le32 sd_generation;
+       } __attribute__ ((__packed__)) u;
+} __attribute__ ((__packed__));
+
+/* this is 44 bytes long */
+#define SD_SIZE (sizeof(struct stat_data))
+#define SD_V2_SIZE              SD_SIZE
+#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
+#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
+#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
+/* sd_reserved */
+/* set_sd_reserved */
+#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
+#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
+#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
+#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
+#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
+#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
+#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
+#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
+#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
+#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
+#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
+#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
+#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
+#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
+#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
+#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
+#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
+#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
+#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
+#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
+#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
+#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
+
+/***************************************************************************
+ *                      DIRECTORY STRUCTURE                                *
+ ***************************************************************************/
+/*
+ * Picture represents the structure of directory items
+ * ________________________________________________
+ * |  Array of     |   |     |        |       |   |
+ * | directory     |N-1| N-2 | ....   |   1st |0th|
+ * | entry headers |   |     |        |       |   |
+ * |_______________|___|_____|________|_______|___|
+ *                  <----   directory entries         ------>
+ *
+ * First directory item has k_offset component 1. We store "." and ".."
+ * in one item, always, we never split "." and ".." into differing
+ * items.  This makes, among other things, the code for removing
+ * directories simpler.
+ */
+#define SD_OFFSET  0
+#define SD_UNIQUENESS 0
+#define DOT_OFFSET 1
+#define DOT_DOT_OFFSET 2
+#define DIRENTRY_UNIQUENESS 500
+
+#define FIRST_ITEM_OFFSET 1
+
+/*
+ * Q: How to get key of object pointed to by entry from entry?
+ *
+ * A: Each directory entry has its header. This header has deh_dir_id
+ *    and deh_objectid fields, those are key of object, entry points to
+ */
+
+/*
+ * NOT IMPLEMENTED:
+ * Directory will someday contain stat data of object
+ */
+
+struct reiserfs_de_head {
+       __le32 deh_offset;      /* third component of the directory entry key */
+
+       /*
+        * objectid of the parent directory of the object, that is referenced
+        * by directory entry
+        */
+       __le32 deh_dir_id;
+
+       /* objectid of the object, that is referenced by directory entry */
+       __le32 deh_objectid;
+       __le16 deh_location;    /* offset of name in the whole item */
+
+       /*
+        * whether 1) entry contains stat data (for future), and
+        * 2) whether entry is hidden (unlinked)
+        */
+       __le16 deh_state;
+} __attribute__ ((__packed__));
+#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
+#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
+#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
+#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
+#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
+#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
+
+#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
+#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
+#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
+#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
+#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
+
+/* empty directory contains two entries "." and ".." and their headers */
+#define EMPTY_DIR_SIZE \
+(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
+
+/* old format directories have this size when empty */
+#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
+
+#define DEH_Statdata 0         /* not used now */
+#define DEH_Visible 2
+
+/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
+#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
+#   define ADDR_UNALIGNED_BITS  (3)
+#endif
+
+/*
+ * These are only used to manipulate deh_state.
+ * Because of this, we'll use the ext2_ bit routines,
+ * since they are little endian
+ */
+#ifdef ADDR_UNALIGNED_BITS
+
+#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
+#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
+
+#   define set_bit_unaligned(nr, addr) \
+       __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
+#   define clear_bit_unaligned(nr, addr)       \
+       __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
+#   define test_bit_unaligned(nr, addr)        \
+       test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
+
+#else
+
+#   define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
+#   define clear_bit_unaligned(nr, addr)       __test_and_clear_bit_le(nr, addr)
+#   define test_bit_unaligned(nr, addr)        test_bit_le(nr, addr)
+
+#endif
+
+#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
+#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
+#define mark_de_visible(deh)       set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
+#define mark_de_hidden(deh)        clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
+
+#define de_with_sd(deh)                    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
+#define de_visible(deh)                    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
+#define de_hidden(deh)             !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
+
+extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
+                                  __le32 par_dirid, __le32 par_objid);
+extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
+                               __le32 par_dirid, __le32 par_objid);
+
+/* two entries per block (at least) */
+#define REISERFS_MAX_NAME(block_size) 255
+
+/*
+ * this structure is used for operations on directory entries. It is
+ * not a disk structure.
+ *
+ * When reiserfs_find_entry or search_by_entry_key find directory
+ * entry, they return filled reiserfs_dir_entry structure
+ */
+struct reiserfs_dir_entry {
+       struct buffer_head *de_bh;
+       int de_item_num;
+       struct item_head *de_ih;
+       int de_entry_num;
+       struct reiserfs_de_head *de_deh;
+       int de_entrylen;
+       int de_namelen;
+       char *de_name;
+       unsigned long *de_gen_number_bit_string;
+
+       __u32 de_dir_id;
+       __u32 de_objectid;
+
+       struct cpu_key de_entry_key;
+};
+
+/*
+ * these defines are useful when a particular member of
+ * a reiserfs_dir_entry is needed
+ */
+
+/* pointer to file name, stored in entry */
+#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
+                               (ih_item_body(bh, ih) + deh_location(deh))
+
+/* length of name */
+#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
+(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
+
+/* hash value occupies bits from 7 up to 30 */
+#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
+/* generation number occupies 7 bits starting from 0 up to 6 */
+#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
+#define MAX_GENERATION_NUMBER  127
+
+#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
+
+/*
+ * Picture represents an internal node of the reiserfs tree
+ *  ______________________________________________________
+ * |      |  Array of     |  Array of         |  Free     |
+ * |block |    keys       |  pointers         | space     |
+ * | head |      N        |      N+1          |           |
+ * |______|_______________|___________________|___________|
+ */
+
+/***************************************************************************
+ *                      DISK CHILD                                         *
+ ***************************************************************************/
+/*
+ * Disk child pointer:
+ * The pointer from an internal node of the tree to a node that is on disk.
+ */
+struct disk_child {
+       __le32 dc_block_number; /* Disk child's block number. */
+       __le16 dc_size;         /* Disk child's used space.   */
+       __le16 dc_reserved;
+};
+
+#define DC_SIZE (sizeof(struct disk_child))
+#define dc_block_number(dc_p)  (le32_to_cpu((dc_p)->dc_block_number))
+#define dc_size(dc_p)          (le16_to_cpu((dc_p)->dc_size))
+#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
+#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
+
+/* Get disk child by buffer header and position in the tree node. */
+#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
+((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
+
+/* Get disk child number by buffer header and position in the tree node. */
+#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
+#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
+                               (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
+
+ /* maximal value of field child_size in structure disk_child */
+ /* child size is the combined size of all items and their headers */
+#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
+
+/* amount of used space in buffer (not including block head) */
+#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
+
+/* max and min number of keys in internal node */
+#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
+#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
+
+/***************************************************************************
+ *                      PATH STRUCTURES AND DEFINES                        *
+ ***************************************************************************/
+
+/*
+ * search_by_key fills up the path from the root to the leaf as it descends
+ * the tree looking for the key.  It uses reiserfs_bread to try to find
+ * buffers in the cache given their block number.  If it does not find
+ * them in the cache it reads them from disk.  For each node search_by_key
+ * finds using reiserfs_bread it then uses bin_search to look through that
+ * node.  bin_search will find the position of the block_number of the next
+ * node if it is looking through an internal node.  If it is looking through
+ * a leaf node bin_search will find the position of the item which has key
+ * either equal to given key, or which is the maximal key less than the
+ * given key.
+ */
+
+struct path_element {
+       /* Pointer to the buffer at the path in the tree. */
+       struct buffer_head *pe_buffer;
+       /* Position in the tree node which is placed in the buffer above. */
+       int pe_position;
+};
+
+/*
+ * maximal height of a tree. don't change this without
+ * changing JOURNAL_PER_BALANCE_CNT
+ */
+#define MAX_HEIGHT 5
+
+/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
+#define EXTENDED_MAX_HEIGHT         7
+
+/* Must be equal to at least 2. */
+#define FIRST_PATH_ELEMENT_OFFSET   2
+
+/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
+#define ILLEGAL_PATH_ELEMENT_OFFSET 1
+
+/* this MUST be MAX_HEIGHT + 1. See about FEB below */
+#define MAX_FEB_SIZE 6
+
+/*
+ * We need to keep track of who the ancestors of nodes are.  When we
+ * perform a search we record which nodes were visited while
+ * descending the tree looking for the node we searched for. This list
+ * of nodes is called the path.  This information is used while
+ * performing balancing.  Note that this path information may become
+ * invalid, and this means we must check it when using it to see if it
+ * is still valid. You'll need to read search_by_key and the comments
+ * in it, especially about decrement_counters_in_path(), to understand
+ * this structure.
+ *
+ * Paths make the code so much harder to work with and debug.... An
+ * enormous number of bugs are due to them, and trying to write or modify
+ * code that uses them just makes my head hurt.  They are based on an
+ * excessive effort to avoid disturbing the precious VFS code.:-( The
+ * gods only know how we are going to SMP the code that uses them.
+ * znodes are the way!
+ */
+
+#define PATH_READA     0x1     /* do read ahead */
+#define PATH_READA_BACK 0x2    /* read backwards */
+
+struct treepath {
+       int path_length;        /* Length of the array above.   */
+       int reada;
+       /* Array of the path elements.  */
+       struct path_element path_elements[EXTENDED_MAX_HEIGHT];
+       int pos_in_item;
+};
+
+#define pos_in_item(path) ((path)->pos_in_item)
+
+#define INITIALIZE_PATH(var) \
+struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
+
+/* Get path element by path and path position. */
+#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
+
+/* Get buffer header at the path by path and path position. */
+#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
+
+/* Get position in the element at the path by path and path position. */
+#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
+
+#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
+
+/*
+ * you know, to the person who didn't write this the macro name does not
+ * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
+ * maybe we should just focus on dumping paths... -Hans
+ */
+#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
+
+/*
+ * in do_balance leaf has h == 0 in contrast with path structure,
+ * where root has level == 0. That is why we need these defines
+ */
+
+/* tb->S[h] */
+#define PATH_H_PBUFFER(path, h) \
+                       PATH_OFFSET_PBUFFER(path, path->path_length - (h))
+
+/* tb->F[h] or tb->S[0]->b_parent */
+#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
+
+#define PATH_H_POSITION(path, h) \
+                       PATH_OFFSET_POSITION(path, path->path_length - (h))
+
+/* tb->S[h]->b_item_order */
+#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
+
+#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
+
+static inline void *reiserfs_node_data(const struct buffer_head *bh)
+{
+       return bh->b_data + sizeof(struct block_head);
+}
+
+/* get key from internal node */
+static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
+                                               int item_num)
+{
+       struct reiserfs_key *key = reiserfs_node_data(bh);
+
+       return &key[item_num];
+}
+
+/* get the item header from leaf node */
+static inline struct item_head *item_head(const struct buffer_head *bh,
+                                         int item_num)
+{
+       struct item_head *ih = reiserfs_node_data(bh);
+
+       return &ih[item_num];
+}
+
+/* get the key from leaf node */
+static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
+                                           int item_num)
+{
+       return &item_head(bh, item_num)->ih_key;
+}
+
+static inline void *ih_item_body(const struct buffer_head *bh,
+                                const struct item_head *ih)
+{
+       return bh->b_data + ih_location(ih);
+}
+
+/* get item body from leaf node */
+static inline void *item_body(const struct buffer_head *bh, int item_num)
+{
+       return ih_item_body(bh, item_head(bh, item_num));
+}
+
+static inline struct item_head *tp_item_head(const struct treepath *path)
+{
+       return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
+}
+
+static inline void *tp_item_body(const struct treepath *path)
+{
+       return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
+}
+
+#define get_last_bh(path) PATH_PLAST_BUFFER(path)
+#define get_item_pos(path) PATH_LAST_POSITION(path)
+#define item_moved(ih,path) comp_items(ih, path)
+#define path_changed(ih,path) comp_items (ih, path)
+
+/* array of the entry headers */
+ /* get item body */
+#define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
+
+/*
+ * length of the directory entry in directory item. This define
+ * calculates length of i-th directory entry using directory entry
+ * locations from dir entry head. When it calculates length of 0-th
+ * directory entry, it uses length of whole item in place of entry
+ * location of the non-existent following entry in the calculation.
+ * See picture above.
+ */
+static inline int entry_length(const struct buffer_head *bh,
+                              const struct item_head *ih, int pos_in_item)
+{
+       struct reiserfs_de_head *deh;
+
+       deh = B_I_DEH(bh, ih) + pos_in_item;
+       if (pos_in_item)
+               return deh_location(deh - 1) - deh_location(deh);
+
+       return ih_item_len(ih) - deh_location(deh);
+}
+
+/***************************************************************************
+ *                       MISC                                              *
+ ***************************************************************************/
+
+/* Size of pointer to the unformatted node. */
+#define UNFM_P_SIZE (sizeof(unp_t))
+#define UNFM_P_SHIFT 2
+
+/* in in-core inode key is stored on le form */
+#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
+
+#define MAX_UL_INT 0xffffffff
+#define MAX_INT    0x7ffffff
+#define MAX_US_INT 0xffff
+
+// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
+static inline loff_t max_reiserfs_offset(struct inode *inode)
+{
+       if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
+               return (loff_t) U32_MAX;
+
+       return (loff_t) ((~(__u64) 0) >> 4);
+}
+
+#define MAX_KEY_OBJECTID       MAX_UL_INT
+
+#define MAX_B_NUM  MAX_UL_INT
+#define MAX_FC_NUM MAX_US_INT
+
+/* the purpose is to detect overflow of an unsigned short */
+#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
+
+/*
+ * The following defines are used in reiserfs_insert_item
+ * and reiserfs_append_item
+ */
+#define REISERFS_KERNEL_MEM            0       /* kernel memory mode */
+#define REISERFS_USER_MEM              1       /* user memory mode */
+
+#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
+#define get_generation(s) atomic_read (&fs_generation(s))
+#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
+#define __fs_changed(gen,s) (gen != get_generation (s))
+#define fs_changed(gen,s)              \
+({                                     \
+       reiserfs_cond_resched(s);       \
+       __fs_changed(gen, s);           \
+})
+
+/***************************************************************************
+ *                  FIXATE NODES                                           *
+ ***************************************************************************/
+
+#define VI_TYPE_LEFT_MERGEABLE 1
+#define VI_TYPE_RIGHT_MERGEABLE 2
+
+/*
+ * To make any changes in the tree we always first find node, that
+ * contains item to be changed/deleted or place to insert a new
+ * item. We call this node S. To do balancing we need to decide what
+ * we will shift to left/right neighbor, or to a new node, where new
+ * item will be etc. To make this analysis simpler we build virtual
+ * node. Virtual node is an array of items, that will replace items of
+ * node S. (For instance if we are going to delete an item, virtual
+ * node does not contain it). Virtual node keeps information about
+ * item sizes and types, mergeability of first and last items, sizes
+ * of all entries in directory item. We use this array of items when
+ * calculating what we can shift to neighbors and how many nodes we
+ * have to have if we do not any shiftings, if we shift to left/right
+ * neighbor or to both.
+ */
+struct virtual_item {
+       int vi_index;           /* index in the array of item operations */
+       unsigned short vi_type; /* left/right mergeability */
+
+       /* length of item that it will have after balancing */
+       unsigned short vi_item_len;
+
+       struct item_head *vi_ih;
+       const char *vi_item;    /* body of item (old or new) */
+       const void *vi_new_data;        /* 0 always but paste mode */
+       void *vi_uarea;         /* item specific area */
+};
+
+struct virtual_node {
+       /* this is a pointer to the free space in the buffer */
+       char *vn_free_ptr;
+
+       unsigned short vn_nr_item;      /* number of items in virtual node */
+
+       /*
+        * size of node , that node would have if it has
+        * unlimited size and no balancing is performed
+        */
+       short vn_size;
+
+       /* mode of balancing (paste, insert, delete, cut) */
+       short vn_mode;
+
+       short vn_affected_item_num;
+       short vn_pos_in_item;
+
+       /* item header of inserted item, 0 for other modes */
+       struct item_head *vn_ins_ih;
+       const void *vn_data;
+
+       /* array of items (including a new one, excluding item to be deleted) */
+       struct virtual_item *vn_vi;
+};
+
+/* used by directory items when creating virtual nodes */
+struct direntry_uarea {
+       int flags;
+       __u16 entry_count;
+       __u16 entry_sizes[1];
+} __attribute__ ((__packed__));
+
+/***************************************************************************
+ *                  TREE BALANCE                                           *
+ ***************************************************************************/
+
+/*
+ * This temporary structure is used in tree balance algorithms, and
+ * constructed as we go to the extent that its various parts are
+ * needed.  It contains arrays of nodes that can potentially be
+ * involved in the balancing of node S, and parameters that define how
+ * each of the nodes must be balanced.  Note that in these algorithms
+ * for balancing the worst case is to need to balance the current node
+ * S and the left and right neighbors and all of their parents plus
+ * create a new node.  We implement S1 balancing for the leaf nodes
+ * and S0 balancing for the internal nodes (S1 and S0 are defined in
+ * our papers.)
+ */
+
+/* size of the array of buffers to free at end of do_balance */
+#define MAX_FREE_BLOCK 7
+
+/* maximum number of FEB blocknrs on a single level */
+#define MAX_AMOUNT_NEEDED 2
+
+/* someday somebody will prefix every field in this struct with tb_ */
+struct tree_balance {
+       int tb_mode;
+       int need_balance_dirty;
+       struct super_block *tb_sb;
+       struct reiserfs_transaction_handle *transaction_handle;
+       struct treepath *tb_path;
+
+       /* array of left neighbors of nodes in the path */
+       struct buffer_head *L[MAX_HEIGHT];
+
+       /* array of right neighbors of nodes in the path */
+       struct buffer_head *R[MAX_HEIGHT];
+
+       /* array of fathers of the left neighbors */
+       struct buffer_head *FL[MAX_HEIGHT];
+
+       /* array of fathers of the right neighbors */
+       struct buffer_head *FR[MAX_HEIGHT];
+       /* array of common parents of center node and its left neighbor */
+       struct buffer_head *CFL[MAX_HEIGHT];
+
+       /* array of common parents of center node and its right neighbor */
+       struct buffer_head *CFR[MAX_HEIGHT];
+
+       /*
+        * array of empty buffers. Number of buffers in array equals
+        * cur_blknum.
+        */
+       struct buffer_head *FEB[MAX_FEB_SIZE];
+       struct buffer_head *used[MAX_FEB_SIZE];
+       struct buffer_head *thrown[MAX_FEB_SIZE];
+
+       /*
+        * array of number of items which must be shifted to the left in
+        * order to balance the current node; for leaves includes item that
+        * will be partially shifted; for internal nodes, it is the number
+        * of child pointers rather than items. It includes the new item
+        * being created. The code sometimes subtracts one to get the
+        * number of wholly shifted items for other purposes.
+        */
+       int lnum[MAX_HEIGHT];
+
+       /* substitute right for left in comment above */
+       int rnum[MAX_HEIGHT];
+
+       /*
+        * array indexed by height h mapping the key delimiting L[h] and
+        * S[h] to its item number within the node CFL[h]
+        */
+       int lkey[MAX_HEIGHT];
+
+       /* substitute r for l in comment above */
+       int rkey[MAX_HEIGHT];
+
+       /*
+        * the number of bytes by we are trying to add or remove from
+        * S[h]. A negative value means removing.
+        */
+       int insert_size[MAX_HEIGHT];
+
+       /*
+        * number of nodes that will replace node S[h] after balancing
+        * on the level h of the tree.  If 0 then S is being deleted,
+        * if 1 then S is remaining and no new nodes are being created,
+        * if 2 or 3 then 1 or 2 new nodes is being created
+        */
+       int blknum[MAX_HEIGHT];
+
+       /* fields that are used only for balancing leaves of the tree */
+
+       /* number of empty blocks having been already allocated */
+       int cur_blknum;
+
+       /* number of items that fall into left most node when S[0] splits */
+       int s0num;
+
+       /*
+        * number of bytes which can flow to the left neighbor from the left
+        * most liquid item that cannot be shifted from S[0] entirely
+        * if -1 then nothing will be partially shifted
+        */
+       int lbytes;
+
+       /*
+        * number of bytes which will flow to the right neighbor from the right
+        * most liquid item that cannot be shifted from S[0] entirely
+        * if -1 then nothing will be partially shifted
+        */
+       int rbytes;
+
+
+       /*
+        * index into the array of item headers in
+        * S[0] of the affected item
+        */
+       int item_pos;
+
+       /* new nodes allocated to hold what could not fit into S */
+       struct buffer_head *S_new[2];
+
+       /*
+        * number of items that will be placed into nodes in S_new
+        * when S[0] splits
+        */
+       int snum[2];
+
+       /*
+        * number of bytes which flow to nodes in S_new when S[0] splits
+        * note: if S[0] splits into 3 nodes, then items do not need to be cut
+        */
+       int sbytes[2];
+
+       int pos_in_item;
+       int zeroes_num;
+
+       /*
+        * buffers which are to be freed after do_balance finishes
+        * by unfix_nodes
+        */
+       struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
+
+       /*
+        * kmalloced memory. Used to create virtual node and keep
+        * map of dirtied bitmap blocks
+        */
+       char *vn_buf;
+
+       int vn_buf_size;        /* size of the vn_buf */
+
+       /* VN starts after bitmap of bitmap blocks */
+       struct virtual_node *tb_vn;
+
+       /*
+        * saved value of `reiserfs_generation' counter see
+        * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
+        */
+       int fs_gen;
+
+#ifdef DISPLACE_NEW_PACKING_LOCALITIES
+       /*
+        * key pointer, to pass to block allocator or
+        * another low-level subsystem
+        */
+       struct in_core_key key;
+#endif
+};
+
+/* These are modes of balancing */
+
+/* When inserting an item. */
+#define M_INSERT       'i'
+/*
+ * When inserting into (directories only) or appending onto an already
+ * existent item.
+ */
+#define M_PASTE                'p'
+/* When deleting an item. */
+#define M_DELETE       'd'
+/* When truncating an item or removing an entry from a (directory) item. */
+#define M_CUT          'c'
+
+/* used when balancing on leaf level skipped (in reiserfsck) */
+#define M_INTERNAL     'n'
+
+/*
+ * When further balancing is not needed, then do_balance does not need
+ * to be called.
+ */
+#define M_SKIP_BALANCING               's'
+#define M_CONVERT      'v'
+
+/* modes of leaf_move_items */
+#define LEAF_FROM_S_TO_L 0
+#define LEAF_FROM_S_TO_R 1
+#define LEAF_FROM_R_TO_L 2
+#define LEAF_FROM_L_TO_R 3
+#define LEAF_FROM_S_TO_SNEW 4
+
+#define FIRST_TO_LAST 0
+#define LAST_TO_FIRST 1
+
+/*
+ * used in do_balance for passing parent of node information that has
+ * been gotten from tb struct
+ */
+struct buffer_info {
+       struct tree_balance *tb;
+       struct buffer_head *bi_bh;
+       struct buffer_head *bi_parent;
+       int bi_position;
+};
+
+static inline struct super_block *sb_from_tb(struct tree_balance *tb)
+{
+       return tb ? tb->tb_sb : NULL;
+}
+
+static inline struct super_block *sb_from_bi(struct buffer_info *bi)
+{
+       return bi ? sb_from_tb(bi->tb) : NULL;
+}
+
+/*
+ * there are 4 types of items: stat data, directory item, indirect, direct.
+ * +-------------------+------------+--------------+------------+
+ * |                   |  k_offset  | k_uniqueness | mergeable? |
+ * +-------------------+------------+--------------+------------+
+ * |     stat data     |     0      |      0       |   no       |
+ * +-------------------+------------+--------------+------------+
+ * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
+ * | non 1st directory | hash value | UNIQUENESS   |   yes      |
+ * |     item          |            |              |            |
+ * +-------------------+------------+--------------+------------+
+ * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]    |
+ * +-------------------+------------+--------------+------------+
+ * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
+ * +-------------------+------------+--------------+------------+
+ *
+ * [1] if this is not the first indirect item of the object
+ * [2] if this is not the first direct item of the object
+*/
+
+struct item_operations {
+       int (*bytes_number) (struct item_head * ih, int block_size);
+       void (*decrement_key) (struct cpu_key *);
+       int (*is_left_mergeable) (struct reiserfs_key * ih,
+                                 unsigned long bsize);
+       void (*print_item) (struct item_head *, char *item);
+       void (*check_item) (struct item_head *, char *item);
+
+       int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
+                         int is_affected, int insert_size);
+       int (*check_left) (struct virtual_item * vi, int free,
+                          int start_skip, int end_skip);
+       int (*check_right) (struct virtual_item * vi, int free);
+       int (*part_size) (struct virtual_item * vi, int from, int to);
+       int (*unit_num) (struct virtual_item * vi);
+       void (*print_vi) (struct virtual_item * vi);
+};
+
+extern struct item_operations *item_ops[TYPE_ANY + 1];
+
+#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
+#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
+#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
+#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
+#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
+#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
+#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
+#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
+#define op_unit_num(vi)                                     item_ops[(vi)->vi_index]->unit_num (vi)
+#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
+
+#define COMP_SHORT_KEYS comp_short_keys
+
+/* number of blocks pointed to by the indirect item */
+#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
+
+/*
+ * the used space within the unformatted node corresponding
+ * to pos within the item pointed to by ih
+ */
+#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
+
+/*
+ * number of bytes contained by the direct item or the
+ * unformatted nodes the indirect item points to
+ */
+
+/* following defines use reiserfs buffer header and item header */
+
+/* get stat-data */
+#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
+
+/* this is 3976 for size==4096 */
+#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
+
+/*
+ * indirect items consist of entries which contain blocknrs, pos
+ * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
+ * blocknr contained by the entry pos points to
+ */
+#define B_I_POS_UNFM_POINTER(bh, ih, pos)                              \
+       le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
+#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)                     \
+       (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
+
+struct reiserfs_iget_args {
+       __u32 objectid;
+       __u32 dirid;
+};
+
+/***************************************************************************
+ *                    FUNCTION DECLARATIONS                                *
+ ***************************************************************************/
+
+#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
+
+#define journal_trans_half(blocksize) \
+       ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
+
+/* journal.c see journal.c for all the comments here */
+
+/* first block written in a commit.  */
+struct reiserfs_journal_desc {
+       __le32 j_trans_id;      /* id of commit */
+
+       /* length of commit. len +1 is the commit block */
+       __le32 j_len;
+
+       __le32 j_mount_id;      /* mount id of this trans */
+       __le32 j_realblock[1];  /* real locations for each block */
+};
+
+#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
+#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
+#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
+
+#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
+#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
+#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
+
+/* last block written in a commit */
+struct reiserfs_journal_commit {
+       __le32 j_trans_id;      /* must match j_trans_id from the desc block */
+       __le32 j_len;           /* ditto */
+       __le32 j_realblock[1];  /* real locations for each block */
+};
+
+#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
+#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
+#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
+
+#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
+#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
+
+/*
+ * this header block gets written whenever a transaction is considered
+ * fully flushed, and is more recent than the last fully flushed transaction.
+ * fully flushed means all the log blocks and all the real blocks are on
+ * disk, and this transaction does not need to be replayed.
+ */
+struct reiserfs_journal_header {
+       /* id of last fully flushed transaction */
+       __le32 j_last_flush_trans_id;
+
+       /* offset in the log of where to start replay after a crash */
+       __le32 j_first_unflushed_offset;
+
+       __le32 j_mount_id;
+       /* 12 */ struct journal_params jh_journal;
+};
+
+/* biggest tunable defines are right here */
+#define JOURNAL_BLOCK_COUNT 8192       /* number of blocks in the journal */
+
+/* biggest possible single transaction, don't change for now (8/3/99) */
+#define JOURNAL_TRANS_MAX_DEFAULT 1024
+#define JOURNAL_TRANS_MIN_DEFAULT 256
+
+/*
+ * max blocks to batch into one transaction,
+ * don't make this any bigger than 900
+ */
+#define JOURNAL_MAX_BATCH_DEFAULT   900
+#define JOURNAL_MIN_RATIO 2
+#define JOURNAL_MAX_COMMIT_AGE 30
+#define JOURNAL_MAX_TRANS_AGE 30
+#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
+#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
+                                        2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
+                                             REISERFS_QUOTA_TRANS_BLOCKS(sb)))
+
+#ifdef CONFIG_QUOTA
+#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
+/* We need to update data and inode (atime) */
+#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
+/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
+#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
+(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
+/* same as with INIT */
+#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
+(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
+#else
+#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
+#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
+#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
+#endif
+
+/*
+ * both of these can be as low as 1, or as high as you want.  The min is the
+ * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
+ * as needed, and released when transactions are committed.  On release, if
+ * the current number of nodes is > max, the node is freed, otherwise,
+ * it is put on a free list for faster use later.
+*/
+#define REISERFS_MIN_BITMAP_NODES 10
+#define REISERFS_MAX_BITMAP_NODES 100
+
+/* these are based on journal hash size of 8192 */
+#define JBH_HASH_SHIFT 13
+#define JBH_HASH_MASK 8191
+
+#define _jhashfn(sb,block)     \
+       (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
+        (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
+#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
+
+/* We need these to make journal.c code more readable */
+#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
+#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
+#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
+
+enum reiserfs_bh_state_bits {
+       BH_JDirty = BH_PrivateStart,    /* buffer is in current transaction */
+       BH_JDirty_wait,
+       /*
+        * disk block was taken off free list before being in a
+        * finished transaction, or written to disk. Can be reused immed.
+        */
+       BH_JNew,
+       BH_JPrepared,
+       BH_JRestore_dirty,
+       BH_JTest,               /* debugging only will go away */
+};
+
+BUFFER_FNS(JDirty, journaled);
+TAS_BUFFER_FNS(JDirty, journaled);
+BUFFER_FNS(JDirty_wait, journal_dirty);
+TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
+BUFFER_FNS(JNew, journal_new);
+TAS_BUFFER_FNS(JNew, journal_new);
+BUFFER_FNS(JPrepared, journal_prepared);
+TAS_BUFFER_FNS(JPrepared, journal_prepared);
+BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
+TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
+BUFFER_FNS(JTest, journal_test);
+TAS_BUFFER_FNS(JTest, journal_test);
+
+/* transaction handle which is passed around for all journal calls */
+struct reiserfs_transaction_handle {
+       /*
+        * super for this FS when journal_begin was called. saves calls to
+        * reiserfs_get_super also used by nested transactions to make
+        * sure they are nesting on the right FS _must_ be first
+        * in the handle
+        */
+       struct super_block *t_super;
+
+       int t_refcount;
+       int t_blocks_logged;    /* number of blocks this writer has logged */
+       int t_blocks_allocated; /* number of blocks this writer allocated */
+
+       /* sanity check, equals the current trans id */
+       unsigned int t_trans_id;
+
+       void *t_handle_save;    /* save existing current->journal_info */
+
+       /*
+        * if new block allocation occurres, that block
+        * should be displaced from others
+        */
+       unsigned displace_new_blocks:1;
+
+       struct list_head t_list;
+};
+
+/*
+ * used to keep track of ordered and tail writes, attached to the buffer
+ * head through b_journal_head.
+ */
+struct reiserfs_jh {
+       struct reiserfs_journal_list *jl;
+       struct buffer_head *bh;
+       struct list_head list;
+};
+
+void reiserfs_free_jh(struct buffer_head *bh);
+int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
+int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
+int journal_mark_dirty(struct reiserfs_transaction_handle *,
+                      struct buffer_head *bh);
+
+static inline int reiserfs_file_data_log(struct inode *inode)
+{
+       if (reiserfs_data_log(inode->i_sb) ||
+           (REISERFS_I(inode)->i_flags & i_data_log))
+               return 1;
+       return 0;
+}
+
+static inline int reiserfs_transaction_running(struct super_block *s)
+{
+       struct reiserfs_transaction_handle *th = current->journal_info;
+       if (th && th->t_super == s)
+               return 1;
+       if (th && th->t_super == NULL)
+               BUG();
+       return 0;
+}
+
+static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
+{
+       return th->t_blocks_allocated - th->t_blocks_logged;
+}
+
+struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
+                                                                   super_block
+                                                                   *,
+                                                                   int count);
+int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
+void reiserfs_vfs_truncate_file(struct inode *inode);
+int reiserfs_commit_page(struct inode *inode, struct page *page,
+                        unsigned from, unsigned to);
+void reiserfs_flush_old_commits(struct super_block *);
+int reiserfs_commit_for_inode(struct inode *);
+int reiserfs_inode_needs_commit(struct inode *);
+void reiserfs_update_inode_transaction(struct inode *);
+void reiserfs_wait_on_write_block(struct super_block *s);
+void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
+void reiserfs_allow_writes(struct super_block *s);
+void reiserfs_check_lock_depth(struct super_block *s, char *caller);
+int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
+                                int wait);
+void reiserfs_restore_prepared_buffer(struct super_block *,
+                                     struct buffer_head *bh);
+int journal_init(struct super_block *, const char *j_dev_name, int old_format,
+                unsigned int);
+int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
+int journal_release_error(struct reiserfs_transaction_handle *,
+                         struct super_block *);
+int journal_end(struct reiserfs_transaction_handle *);
+int journal_end_sync(struct reiserfs_transaction_handle *);
+int journal_mark_freed(struct reiserfs_transaction_handle *,
+                      struct super_block *, b_blocknr_t blocknr);
+int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
+int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
+                        int bit_nr, int searchall, b_blocknr_t *next);
+int journal_begin(struct reiserfs_transaction_handle *,
+                 struct super_block *sb, unsigned long);
+int journal_join_abort(struct reiserfs_transaction_handle *,
+                      struct super_block *sb);
+void reiserfs_abort_journal(struct super_block *sb, int errno);
+void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
+int reiserfs_allocate_list_bitmaps(struct super_block *s,
+                                  struct reiserfs_list_bitmap *, unsigned int);
+
+void reiserfs_schedule_old_flush(struct super_block *s);
+void add_save_link(struct reiserfs_transaction_handle *th,
+                  struct inode *inode, int truncate);
+int remove_save_link(struct inode *inode, int truncate);
+
+/* objectid.c */
+__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
+void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
+                              __u32 objectid_to_release);
+int reiserfs_convert_objectid_map_v1(struct super_block *);
+
+/* stree.c */
+int B_IS_IN_TREE(const struct buffer_head *);
+extern void copy_item_head(struct item_head *to,
+                          const struct item_head *from);
+
+/* first key is in cpu form, second - le */
+extern int comp_short_keys(const struct reiserfs_key *le_key,
+                          const struct cpu_key *cpu_key);
+extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
+
+/* both are in le form */
+extern int comp_le_keys(const struct reiserfs_key *,
+                       const struct reiserfs_key *);
+extern int comp_short_le_keys(const struct reiserfs_key *,
+                             const struct reiserfs_key *);
+
+/* * get key version from on disk key - kludge */
+static inline int le_key_version(const struct reiserfs_key *key)
+{
+       int type;
+
+       type = offset_v2_k_type(&(key->u.k_offset_v2));
+       if (type != TYPE_DIRECT && type != TYPE_INDIRECT
+           && type != TYPE_DIRENTRY)
+               return KEY_FORMAT_3_5;
+
+       return KEY_FORMAT_3_6;
+
+}
+
+static inline void copy_key(struct reiserfs_key *to,
+                           const struct reiserfs_key *from)
+{
+       memcpy(to, from, KEY_SIZE);
+}
+
+int comp_items(const struct item_head *stored_ih, const struct treepath *path);
+const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
+                                   const struct super_block *sb);
+int search_by_key(struct super_block *, const struct cpu_key *,
+                 struct treepath *, int);
+#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
+int search_for_position_by_key(struct super_block *sb,
+                              const struct cpu_key *cpu_key,
+                              struct treepath *search_path);
+extern void decrement_bcount(struct buffer_head *bh);
+void decrement_counters_in_path(struct treepath *search_path);
+void pathrelse(struct treepath *search_path);
+int reiserfs_check_path(struct treepath *p);
+void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
+
+int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
+                        struct treepath *path,
+                        const struct cpu_key *key,
+                        struct item_head *ih,
+                        struct inode *inode, const char *body);
+
+int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
+                            struct treepath *path,
+                            const struct cpu_key *key,
+                            struct inode *inode,
+                            const char *body, int paste_size);
+
+int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
+                          struct treepath *path,
+                          struct cpu_key *key,
+                          struct inode *inode,
+                          struct page *page, loff_t new_file_size);
+
+int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
+                        struct treepath *path,
+                        const struct cpu_key *key,
+                        struct inode *inode, struct buffer_head *un_bh);
+
+void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
+                               struct inode *inode, struct reiserfs_key *key);
+int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
+                          struct inode *inode);
+int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
+                        struct inode *inode, struct page *,
+                        int update_timestamps);
+
+#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
+#define file_size(inode) ((inode)->i_size)
+#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
+
+#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
+!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
+
+void padd_item(char *item, int total_length, int length);
+
+/* inode.c */
+/* args for the create parameter of reiserfs_get_block */
+#define GET_BLOCK_NO_CREATE 0   /* don't create new blocks or convert tails */
+#define GET_BLOCK_CREATE 1      /* add anything you need to find block */
+#define GET_BLOCK_NO_HOLE 2     /* return -ENOENT for file holes */
+#define GET_BLOCK_READ_DIRECT 4         /* read the tail if indirect item not found */
+#define GET_BLOCK_NO_IMUX     8         /* i_mutex is not held, don't preallocate */
+#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
+
+void reiserfs_read_locked_inode(struct inode *inode,
+                               struct reiserfs_iget_args *args);
+int reiserfs_find_actor(struct inode *inode, void *p);
+int reiserfs_init_locked_inode(struct inode *inode, void *p);
+void reiserfs_evict_inode(struct inode *inode);
+int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
+int reiserfs_get_block(struct inode *inode, sector_t block,
+                      struct buffer_head *bh_result, int create);
+struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
+                                    int fh_len, int fh_type);
+struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
+                                    int fh_len, int fh_type);
+int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
+                      struct inode *parent);
+
+int reiserfs_truncate_file(struct inode *, int update_timestamps);
+void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
+                 int type, int key_length);
+void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
+                      int version,
+                      loff_t offset, int type, int length, int entry_count);
+struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
+
+struct reiserfs_security_handle;
+int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
+                      struct inode *dir, umode_t mode,
+                      const char *symname, loff_t i_size,
+                      struct dentry *dentry, struct inode *inode,
+                      struct reiserfs_security_handle *security);
+
+void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
+                            struct inode *inode, loff_t size);
+
+static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
+                                     struct inode *inode)
+{
+       reiserfs_update_sd_size(th, inode, inode->i_size);
+}
+
+void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
+void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
+int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
+
+int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
+
+/* namei.c */
+void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
+int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
+                       struct treepath *path, struct reiserfs_dir_entry *de);
+struct dentry *reiserfs_get_parent(struct dentry *);
+
+#ifdef CONFIG_REISERFS_PROC_INFO
+int reiserfs_proc_info_init(struct super_block *sb);
+int reiserfs_proc_info_done(struct super_block *sb);
+int reiserfs_proc_info_global_init(void);
+int reiserfs_proc_info_global_done(void);
+
+#define PROC_EXP( e )   e
+
+#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
+#define PROC_INFO_MAX( sb, field, value )                                                              \
+    __PINFO( sb ).field =                                                                                              \
+        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
+#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
+#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
+#define PROC_INFO_BH_STAT( sb, bh, level )                                                     \
+    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                             \
+    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );     \
+    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
+#else
+static inline int reiserfs_proc_info_init(struct super_block *sb)
+{
+       return 0;
+}
+
+static inline int reiserfs_proc_info_done(struct super_block *sb)
+{
+       return 0;
+}
+
+static inline int reiserfs_proc_info_global_init(void)
+{
+       return 0;
+}
+
+static inline int reiserfs_proc_info_global_done(void)
+{
+       return 0;
+}
+
+#define PROC_EXP( e )
+#define VOID_V ( ( void ) 0 )
+#define PROC_INFO_MAX( sb, field, value ) VOID_V
+#define PROC_INFO_INC( sb, field ) VOID_V
+#define PROC_INFO_ADD( sb, field, val ) VOID_V
+#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
+#endif
+
+/* dir.c */
+extern const struct inode_operations reiserfs_dir_inode_operations;
+extern const struct inode_operations reiserfs_symlink_inode_operations;
+extern const struct inode_operations reiserfs_special_inode_operations;
+extern const struct file_operations reiserfs_dir_operations;
+int reiserfs_readdir_inode(struct inode *, struct dir_context *);
+
+/* tail_conversion.c */
+int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
+                   struct treepath *, struct buffer_head *, loff_t);
+int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
+                   struct page *, struct treepath *, const struct cpu_key *,
+                   loff_t, char *);
+void reiserfs_unmap_buffer(struct buffer_head *);
+
+/* file.c */
+extern const struct inode_operations reiserfs_file_inode_operations;
+extern const struct file_operations reiserfs_file_operations;
+extern const struct address_space_operations reiserfs_address_space_operations;
+
+/* fix_nodes.c */
+
+int fix_nodes(int n_op_mode, struct tree_balance *tb,
+             struct item_head *ins_ih, const void *);
+void unfix_nodes(struct tree_balance *);
+
+/* prints.c */
+void __reiserfs_panic(struct super_block *s, const char *id,
+                     const char *function, const char *fmt, ...)
+    __attribute__ ((noreturn));
+#define reiserfs_panic(s, id, fmt, args...) \
+       __reiserfs_panic(s, id, __func__, fmt, ##args)
+void __reiserfs_error(struct super_block *s, const char *id,
+                     const char *function, const char *fmt, ...);
+#define reiserfs_error(s, id, fmt, args...) \
+        __reiserfs_error(s, id, __func__, fmt, ##args)
+void reiserfs_info(struct super_block *s, const char *fmt, ...);
+void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
+void print_indirect_item(struct buffer_head *bh, int item_num);
+void store_print_tb(struct tree_balance *tb);
+void print_cur_tb(char *mes);
+void print_de(struct reiserfs_dir_entry *de);
+void print_bi(struct buffer_info *bi, char *mes);
+#define PRINT_LEAF_ITEMS 1     /* print all items */
+#define PRINT_DIRECTORY_ITEMS 2        /* print directory items */
+#define PRINT_DIRECT_ITEMS 4   /* print contents of direct items */
+void print_block(struct buffer_head *bh, ...);
+void print_bmap(struct super_block *s, int silent);
+void print_bmap_block(int i, char *data, int size, int silent);
+/*void print_super_block (struct super_block * s, char * mes);*/
+void print_objectid_map(struct super_block *s);
+void print_block_head(struct buffer_head *bh, char *mes);
+void check_leaf(struct buffer_head *bh);
+void check_internal(struct buffer_head *bh);
+void print_statistics(struct super_block *s);
+char *reiserfs_hashname(int code);
+
+/* lbalance.c */
+int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
+                   int mov_bytes, struct buffer_head *Snew);
+int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
+int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
+void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
+                      int del_num, int del_bytes);
+void leaf_insert_into_buf(struct buffer_info *bi, int before,
+                         struct item_head * const inserted_item_ih,
+                         const char * const inserted_item_body,
+                         int zeros_number);
+void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
+                         int pos_in_item, int paste_size,
+                         const char * const body, int zeros_number);
+void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
+                         int pos_in_item, int cut_size);
+void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
+                       int new_entry_count, struct reiserfs_de_head *new_dehs,
+                       const char *records, int paste_size);
+/* ibalance.c */
+int balance_internal(struct tree_balance *, int, int, struct item_head *,
+                    struct buffer_head **);
+
+/* do_balance.c */
+void do_balance_mark_leaf_dirty(struct tree_balance *tb,
+                               struct buffer_head *bh, int flag);
+#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
+#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
+
+void do_balance(struct tree_balance *tb, struct item_head *ih,
+               const char *body, int flag);
+void reiserfs_invalidate_buffer(struct tree_balance *tb,
+                               struct buffer_head *bh);
+
+int get_left_neighbor_position(struct tree_balance *tb, int h);
+int get_right_neighbor_position(struct tree_balance *tb, int h);
+void replace_key(struct tree_balance *tb, struct buffer_head *, int,
+                struct buffer_head *, int);
+void make_empty_node(struct buffer_info *);
+struct buffer_head *get_FEB(struct tree_balance *);
+
+/* bitmap.c */
+
+/*
+ * structure contains hints for block allocator, and it is a container for
+ * arguments, such as node, search path, transaction_handle, etc.
+ */
+struct __reiserfs_blocknr_hint {
+       /* inode passed to allocator, if we allocate unf. nodes */
+       struct inode *inode;
+
+       sector_t block;         /* file offset, in blocks */
+       struct in_core_key key;
+
+       /*
+        * search path, used by allocator to deternine search_start by
+        * various ways
+        */
+       struct treepath *path;
+
+       /*
+        * transaction handle is needed to log super blocks
+        * and bitmap blocks changes
+        */
+       struct reiserfs_transaction_handle *th;
+
+       b_blocknr_t beg, end;
+
+       /*
+        * a field used to transfer search start value (block number)
+        * between different block allocator procedures
+        * (determine_search_start() and others)
+        */
+       b_blocknr_t search_start;
+
+       /*
+        * is set in determine_prealloc_size() function,
+        * used by underlayed function that do actual allocation
+        */
+       int prealloc_size;
+
+       /*
+        * the allocator uses different polices for getting disk
+        * space for formatted/unformatted blocks with/without preallocation
+        */
+       unsigned formatted_node:1;
+       unsigned preallocate:1;
+};
+
+typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
+
+int reiserfs_parse_alloc_options(struct super_block *, char *);
+void reiserfs_init_alloc_options(struct super_block *s);
+
+/*
+ * given a directory, this will tell you what packing locality
+ * to use for a new object underneat it.  The locality is returned
+ * in disk byte order (le).
+ */
+__le32 reiserfs_choose_packing(struct inode *dir);
+
+void show_alloc_options(struct seq_file *seq, struct super_block *s);
+int reiserfs_init_bitmap_cache(struct super_block *sb);
+void reiserfs_free_bitmap_cache(struct super_block *sb);
+void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
+struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
+int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
+void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
+                        b_blocknr_t, int for_unformatted);
+int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
+                              int);
+static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
+                                            b_blocknr_t * new_blocknrs,
+                                            int amount_needed)
+{
+       reiserfs_blocknr_hint_t hint = {
+               .th = tb->transaction_handle,
+               .path = tb->tb_path,
+               .inode = NULL,
+               .key = tb->key,
+               .block = 0,
+               .formatted_node = 1
+       };
+       return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
+                                         0);
+}
+
+static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
+                                           *th, struct inode *inode,
+                                           b_blocknr_t * new_blocknrs,
+                                           struct treepath *path,
+                                           sector_t block)
+{
+       reiserfs_blocknr_hint_t hint = {
+               .th = th,
+               .path = path,
+               .inode = inode,
+               .block = block,
+               .formatted_node = 0,
+               .preallocate = 0
+       };
+       return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
+}
+
+#ifdef REISERFS_PREALLOCATE
+static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
+                                            *th, struct inode *inode,
+                                            b_blocknr_t * new_blocknrs,
+                                            struct treepath *path,
+                                            sector_t block)
+{
+       reiserfs_blocknr_hint_t hint = {
+               .th = th,
+               .path = path,
+               .inode = inode,
+               .block = block,
+               .formatted_node = 0,
+               .preallocate = 1
+       };
+       return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
+}
+
+void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
+                              struct inode *inode);
+void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
+#endif
+
+/* hashes.c */
+__u32 keyed_hash(const signed char *msg, int len);
+__u32 yura_hash(const signed char *msg, int len);
+__u32 r5_hash(const signed char *msg, int len);
+
+#define reiserfs_set_le_bit            __set_bit_le
+#define reiserfs_test_and_set_le_bit   __test_and_set_bit_le
+#define reiserfs_clear_le_bit          __clear_bit_le
+#define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
+#define reiserfs_test_le_bit           test_bit_le
+#define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
+
+/*
+ * sometimes reiserfs_truncate may require to allocate few new blocks
+ * to perform indirect2direct conversion. People probably used to
+ * think, that truncate should work without problems on a filesystem
+ * without free disk space. They may complain that they can not
+ * truncate due to lack of free disk space. This spare space allows us
+ * to not worry about it. 500 is probably too much, but it should be
+ * absolutely safe
+ */
+#define SPARE_SPACE 500
+
+/* prototypes from ioctl.c */
+long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
+long reiserfs_compat_ioctl(struct file *filp,
+                  unsigned int cmd, unsigned long arg);
+int reiserfs_unpack(struct inode *inode, struct file *filp);