Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / ocfs2 / aops.c
diff --git a/kernel/fs/ocfs2/aops.c b/kernel/fs/ocfs2/aops.c
new file mode 100644 (file)
index 0000000..f906a25
--- /dev/null
@@ -0,0 +1,2448 @@
+/* -*- mode: c; c-basic-offset: 8; -*-
+ * vim: noexpandtab sw=8 ts=8 sts=0:
+ *
+ * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <asm/byteorder.h>
+#include <linux/swap.h>
+#include <linux/pipe_fs_i.h>
+#include <linux/mpage.h>
+#include <linux/quotaops.h>
+#include <linux/blkdev.h>
+#include <linux/uio.h>
+
+#include <cluster/masklog.h>
+
+#include "ocfs2.h"
+
+#include "alloc.h"
+#include "aops.h"
+#include "dlmglue.h"
+#include "extent_map.h"
+#include "file.h"
+#include "inode.h"
+#include "journal.h"
+#include "suballoc.h"
+#include "super.h"
+#include "symlink.h"
+#include "refcounttree.h"
+#include "ocfs2_trace.h"
+
+#include "buffer_head_io.h"
+#include "dir.h"
+#include "namei.h"
+#include "sysfile.h"
+
+static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
+                                  struct buffer_head *bh_result, int create)
+{
+       int err = -EIO;
+       int status;
+       struct ocfs2_dinode *fe = NULL;
+       struct buffer_head *bh = NULL;
+       struct buffer_head *buffer_cache_bh = NULL;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       void *kaddr;
+
+       trace_ocfs2_symlink_get_block(
+                       (unsigned long long)OCFS2_I(inode)->ip_blkno,
+                       (unsigned long long)iblock, bh_result, create);
+
+       BUG_ON(ocfs2_inode_is_fast_symlink(inode));
+
+       if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
+               mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
+                    (unsigned long long)iblock);
+               goto bail;
+       }
+
+       status = ocfs2_read_inode_block(inode, &bh);
+       if (status < 0) {
+               mlog_errno(status);
+               goto bail;
+       }
+       fe = (struct ocfs2_dinode *) bh->b_data;
+
+       if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
+                                                   le32_to_cpu(fe->i_clusters))) {
+               err = -ENOMEM;
+               mlog(ML_ERROR, "block offset is outside the allocated size: "
+                    "%llu\n", (unsigned long long)iblock);
+               goto bail;
+       }
+
+       /* We don't use the page cache to create symlink data, so if
+        * need be, copy it over from the buffer cache. */
+       if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
+               u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
+                           iblock;
+               buffer_cache_bh = sb_getblk(osb->sb, blkno);
+               if (!buffer_cache_bh) {
+                       err = -ENOMEM;
+                       mlog(ML_ERROR, "couldn't getblock for symlink!\n");
+                       goto bail;
+               }
+
+               /* we haven't locked out transactions, so a commit
+                * could've happened. Since we've got a reference on
+                * the bh, even if it commits while we're doing the
+                * copy, the data is still good. */
+               if (buffer_jbd(buffer_cache_bh)
+                   && ocfs2_inode_is_new(inode)) {
+                       kaddr = kmap_atomic(bh_result->b_page);
+                       if (!kaddr) {
+                               mlog(ML_ERROR, "couldn't kmap!\n");
+                               goto bail;
+                       }
+                       memcpy(kaddr + (bh_result->b_size * iblock),
+                              buffer_cache_bh->b_data,
+                              bh_result->b_size);
+                       kunmap_atomic(kaddr);
+                       set_buffer_uptodate(bh_result);
+               }
+               brelse(buffer_cache_bh);
+       }
+
+       map_bh(bh_result, inode->i_sb,
+              le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
+
+       err = 0;
+
+bail:
+       brelse(bh);
+
+       return err;
+}
+
+int ocfs2_get_block(struct inode *inode, sector_t iblock,
+                   struct buffer_head *bh_result, int create)
+{
+       int err = 0;
+       unsigned int ext_flags;
+       u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
+       u64 p_blkno, count, past_eof;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+
+       trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
+                             (unsigned long long)iblock, bh_result, create);
+
+       if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
+               mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
+                    inode, inode->i_ino);
+
+       if (S_ISLNK(inode->i_mode)) {
+               /* this always does I/O for some reason. */
+               err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
+               goto bail;
+       }
+
+       err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
+                                         &ext_flags);
+       if (err) {
+               mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
+                    "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
+                    (unsigned long long)p_blkno);
+               goto bail;
+       }
+
+       if (max_blocks < count)
+               count = max_blocks;
+
+       /*
+        * ocfs2 never allocates in this function - the only time we
+        * need to use BH_New is when we're extending i_size on a file
+        * system which doesn't support holes, in which case BH_New
+        * allows __block_write_begin() to zero.
+        *
+        * If we see this on a sparse file system, then a truncate has
+        * raced us and removed the cluster. In this case, we clear
+        * the buffers dirty and uptodate bits and let the buffer code
+        * ignore it as a hole.
+        */
+       if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
+               clear_buffer_dirty(bh_result);
+               clear_buffer_uptodate(bh_result);
+               goto bail;
+       }
+
+       /* Treat the unwritten extent as a hole for zeroing purposes. */
+       if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
+               map_bh(bh_result, inode->i_sb, p_blkno);
+
+       bh_result->b_size = count << inode->i_blkbits;
+
+       if (!ocfs2_sparse_alloc(osb)) {
+               if (p_blkno == 0) {
+                       err = -EIO;
+                       mlog(ML_ERROR,
+                            "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
+                            (unsigned long long)iblock,
+                            (unsigned long long)p_blkno,
+                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
+                       mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
+                       dump_stack();
+                       goto bail;
+               }
+       }
+
+       past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
+
+       trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
+                                 (unsigned long long)past_eof);
+       if (create && (iblock >= past_eof))
+               set_buffer_new(bh_result);
+
+bail:
+       if (err < 0)
+               err = -EIO;
+
+       return err;
+}
+
+int ocfs2_read_inline_data(struct inode *inode, struct page *page,
+                          struct buffer_head *di_bh)
+{
+       void *kaddr;
+       loff_t size;
+       struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
+
+       if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
+               ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
+                           (unsigned long long)OCFS2_I(inode)->ip_blkno);
+               return -EROFS;
+       }
+
+       size = i_size_read(inode);
+
+       if (size > PAGE_CACHE_SIZE ||
+           size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
+               ocfs2_error(inode->i_sb,
+                           "Inode %llu has with inline data has bad size: %Lu",
+                           (unsigned long long)OCFS2_I(inode)->ip_blkno,
+                           (unsigned long long)size);
+               return -EROFS;
+       }
+
+       kaddr = kmap_atomic(page);
+       if (size)
+               memcpy(kaddr, di->id2.i_data.id_data, size);
+       /* Clear the remaining part of the page */
+       memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
+       flush_dcache_page(page);
+       kunmap_atomic(kaddr);
+
+       SetPageUptodate(page);
+
+       return 0;
+}
+
+static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
+{
+       int ret;
+       struct buffer_head *di_bh = NULL;
+
+       BUG_ON(!PageLocked(page));
+       BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
+
+       ret = ocfs2_read_inode_block(inode, &di_bh);
+       if (ret) {
+               mlog_errno(ret);
+               goto out;
+       }
+
+       ret = ocfs2_read_inline_data(inode, page, di_bh);
+out:
+       unlock_page(page);
+
+       brelse(di_bh);
+       return ret;
+}
+
+static int ocfs2_readpage(struct file *file, struct page *page)
+{
+       struct inode *inode = page->mapping->host;
+       struct ocfs2_inode_info *oi = OCFS2_I(inode);
+       loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
+       int ret, unlock = 1;
+
+       trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
+                            (page ? page->index : 0));
+
+       ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
+       if (ret != 0) {
+               if (ret == AOP_TRUNCATED_PAGE)
+                       unlock = 0;
+               mlog_errno(ret);
+               goto out;
+       }
+
+       if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
+               /*
+                * Unlock the page and cycle ip_alloc_sem so that we don't
+                * busyloop waiting for ip_alloc_sem to unlock
+                */
+               ret = AOP_TRUNCATED_PAGE;
+               unlock_page(page);
+               unlock = 0;
+               down_read(&oi->ip_alloc_sem);
+               up_read(&oi->ip_alloc_sem);
+               goto out_inode_unlock;
+       }
+
+       /*
+        * i_size might have just been updated as we grabed the meta lock.  We
+        * might now be discovering a truncate that hit on another node.
+        * block_read_full_page->get_block freaks out if it is asked to read
+        * beyond the end of a file, so we check here.  Callers
+        * (generic_file_read, vm_ops->fault) are clever enough to check i_size
+        * and notice that the page they just read isn't needed.
+        *
+        * XXX sys_readahead() seems to get that wrong?
+        */
+       if (start >= i_size_read(inode)) {
+               zero_user(page, 0, PAGE_SIZE);
+               SetPageUptodate(page);
+               ret = 0;
+               goto out_alloc;
+       }
+
+       if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
+               ret = ocfs2_readpage_inline(inode, page);
+       else
+               ret = block_read_full_page(page, ocfs2_get_block);
+       unlock = 0;
+
+out_alloc:
+       up_read(&OCFS2_I(inode)->ip_alloc_sem);
+out_inode_unlock:
+       ocfs2_inode_unlock(inode, 0);
+out:
+       if (unlock)
+               unlock_page(page);
+       return ret;
+}
+
+/*
+ * This is used only for read-ahead. Failures or difficult to handle
+ * situations are safe to ignore.
+ *
+ * Right now, we don't bother with BH_Boundary - in-inode extent lists
+ * are quite large (243 extents on 4k blocks), so most inodes don't
+ * grow out to a tree. If need be, detecting boundary extents could
+ * trivially be added in a future version of ocfs2_get_block().
+ */
+static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
+                          struct list_head *pages, unsigned nr_pages)
+{
+       int ret, err = -EIO;
+       struct inode *inode = mapping->host;
+       struct ocfs2_inode_info *oi = OCFS2_I(inode);
+       loff_t start;
+       struct page *last;
+
+       /*
+        * Use the nonblocking flag for the dlm code to avoid page
+        * lock inversion, but don't bother with retrying.
+        */
+       ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
+       if (ret)
+               return err;
+
+       if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
+               ocfs2_inode_unlock(inode, 0);
+               return err;
+       }
+
+       /*
+        * Don't bother with inline-data. There isn't anything
+        * to read-ahead in that case anyway...
+        */
+       if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
+               goto out_unlock;
+
+       /*
+        * Check whether a remote node truncated this file - we just
+        * drop out in that case as it's not worth handling here.
+        */
+       last = list_entry(pages->prev, struct page, lru);
+       start = (loff_t)last->index << PAGE_CACHE_SHIFT;
+       if (start >= i_size_read(inode))
+               goto out_unlock;
+
+       err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
+
+out_unlock:
+       up_read(&oi->ip_alloc_sem);
+       ocfs2_inode_unlock(inode, 0);
+
+       return err;
+}
+
+/* Note: Because we don't support holes, our allocation has
+ * already happened (allocation writes zeros to the file data)
+ * so we don't have to worry about ordered writes in
+ * ocfs2_writepage.
+ *
+ * ->writepage is called during the process of invalidating the page cache
+ * during blocked lock processing.  It can't block on any cluster locks
+ * to during block mapping.  It's relying on the fact that the block
+ * mapping can't have disappeared under the dirty pages that it is
+ * being asked to write back.
+ */
+static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
+{
+       trace_ocfs2_writepage(
+               (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
+               page->index);
+
+       return block_write_full_page(page, ocfs2_get_block, wbc);
+}
+
+/* Taken from ext3. We don't necessarily need the full blown
+ * functionality yet, but IMHO it's better to cut and paste the whole
+ * thing so we can avoid introducing our own bugs (and easily pick up
+ * their fixes when they happen) --Mark */
+int walk_page_buffers( handle_t *handle,
+                       struct buffer_head *head,
+                       unsigned from,
+                       unsigned to,
+                       int *partial,
+                       int (*fn)(      handle_t *handle,
+                                       struct buffer_head *bh))
+{
+       struct buffer_head *bh;
+       unsigned block_start, block_end;
+       unsigned blocksize = head->b_size;
+       int err, ret = 0;
+       struct buffer_head *next;
+
+       for (   bh = head, block_start = 0;
+               ret == 0 && (bh != head || !block_start);
+               block_start = block_end, bh = next)
+       {
+               next = bh->b_this_page;
+               block_end = block_start + blocksize;
+               if (block_end <= from || block_start >= to) {
+                       if (partial && !buffer_uptodate(bh))
+                               *partial = 1;
+                       continue;
+               }
+               err = (*fn)(handle, bh);
+               if (!ret)
+                       ret = err;
+       }
+       return ret;
+}
+
+static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
+{
+       sector_t status;
+       u64 p_blkno = 0;
+       int err = 0;
+       struct inode *inode = mapping->host;
+
+       trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
+                        (unsigned long long)block);
+
+       /* We don't need to lock journal system files, since they aren't
+        * accessed concurrently from multiple nodes.
+        */
+       if (!INODE_JOURNAL(inode)) {
+               err = ocfs2_inode_lock(inode, NULL, 0);
+               if (err) {
+                       if (err != -ENOENT)
+                               mlog_errno(err);
+                       goto bail;
+               }
+               down_read(&OCFS2_I(inode)->ip_alloc_sem);
+       }
+
+       if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
+               err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
+                                                 NULL);
+
+       if (!INODE_JOURNAL(inode)) {
+               up_read(&OCFS2_I(inode)->ip_alloc_sem);
+               ocfs2_inode_unlock(inode, 0);
+       }
+
+       if (err) {
+               mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
+                    (unsigned long long)block);
+               mlog_errno(err);
+               goto bail;
+       }
+
+bail:
+       status = err ? 0 : p_blkno;
+
+       return status;
+}
+
+/*
+ * TODO: Make this into a generic get_blocks function.
+ *
+ * From do_direct_io in direct-io.c:
+ *  "So what we do is to permit the ->get_blocks function to populate
+ *   bh.b_size with the size of IO which is permitted at this offset and
+ *   this i_blkbits."
+ *
+ * This function is called directly from get_more_blocks in direct-io.c.
+ *
+ * called like this: dio->get_blocks(dio->inode, fs_startblk,
+ *                                     fs_count, map_bh, dio->rw == WRITE);
+ */
+static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
+                                    struct buffer_head *bh_result, int create)
+{
+       int ret;
+       u32 cpos = 0;
+       int alloc_locked = 0;
+       u64 p_blkno, inode_blocks, contig_blocks;
+       unsigned int ext_flags;
+       unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
+       unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
+       unsigned long len = bh_result->b_size;
+       unsigned int clusters_to_alloc = 0;
+
+       cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
+
+       /* This function won't even be called if the request isn't all
+        * nicely aligned and of the right size, so there's no need
+        * for us to check any of that. */
+
+       inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
+
+       /* This figures out the size of the next contiguous block, and
+        * our logical offset */
+       ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
+                                         &contig_blocks, &ext_flags);
+       if (ret) {
+               mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
+                    (unsigned long long)iblock);
+               ret = -EIO;
+               goto bail;
+       }
+
+       /* We should already CoW the refcounted extent in case of create. */
+       BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
+
+       /* allocate blocks if no p_blkno is found, and create == 1 */
+       if (!p_blkno && create) {
+               ret = ocfs2_inode_lock(inode, NULL, 1);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto bail;
+               }
+
+               alloc_locked = 1;
+
+               /* fill hole, allocate blocks can't be larger than the size
+                * of the hole */
+               clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
+               if (clusters_to_alloc > contig_blocks)
+                       clusters_to_alloc = contig_blocks;
+
+               /* allocate extent and insert them into the extent tree */
+               ret = ocfs2_extend_allocation(inode, cpos,
+                               clusters_to_alloc, 0);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto bail;
+               }
+
+               ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
+                               &contig_blocks, &ext_flags);
+               if (ret < 0) {
+                       mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
+                                       (unsigned long long)iblock);
+                       ret = -EIO;
+                       goto bail;
+               }
+       }
+
+       /*
+        * get_more_blocks() expects us to describe a hole by clearing
+        * the mapped bit on bh_result().
+        *
+        * Consider an unwritten extent as a hole.
+        */
+       if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
+               map_bh(bh_result, inode->i_sb, p_blkno);
+       else
+               clear_buffer_mapped(bh_result);
+
+       /* make sure we don't map more than max_blocks blocks here as
+          that's all the kernel will handle at this point. */
+       if (max_blocks < contig_blocks)
+               contig_blocks = max_blocks;
+       bh_result->b_size = contig_blocks << blocksize_bits;
+bail:
+       if (alloc_locked)
+               ocfs2_inode_unlock(inode, 1);
+       return ret;
+}
+
+/*
+ * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
+ * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
+ * to protect io on one node from truncation on another.
+ */
+static void ocfs2_dio_end_io(struct kiocb *iocb,
+                            loff_t offset,
+                            ssize_t bytes,
+                            void *private)
+{
+       struct inode *inode = file_inode(iocb->ki_filp);
+       int level;
+
+       /* this io's submitter should not have unlocked this before we could */
+       BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
+
+       if (ocfs2_iocb_is_sem_locked(iocb))
+               ocfs2_iocb_clear_sem_locked(iocb);
+
+       if (ocfs2_iocb_is_unaligned_aio(iocb)) {
+               ocfs2_iocb_clear_unaligned_aio(iocb);
+
+               mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
+       }
+
+       ocfs2_iocb_clear_rw_locked(iocb);
+
+       level = ocfs2_iocb_rw_locked_level(iocb);
+       ocfs2_rw_unlock(inode, level);
+}
+
+static int ocfs2_releasepage(struct page *page, gfp_t wait)
+{
+       if (!page_has_buffers(page))
+               return 0;
+       return try_to_free_buffers(page);
+}
+
+static int ocfs2_is_overwrite(struct ocfs2_super *osb,
+               struct inode *inode, loff_t offset)
+{
+       int ret = 0;
+       u32 v_cpos = 0;
+       u32 p_cpos = 0;
+       unsigned int num_clusters = 0;
+       unsigned int ext_flags = 0;
+
+       v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
+       ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
+                       &num_clusters, &ext_flags);
+       if (ret < 0) {
+               mlog_errno(ret);
+               return ret;
+       }
+
+       if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
+               return 1;
+
+       return 0;
+}
+
+static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
+               struct inode *inode, loff_t offset,
+               u64 zero_len, int cluster_align)
+{
+       u32 p_cpos = 0;
+       u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
+       unsigned int num_clusters = 0;
+       unsigned int ext_flags = 0;
+       int ret = 0;
+
+       if (offset <= i_size_read(inode) || cluster_align)
+               return 0;
+
+       ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
+                       &ext_flags);
+       if (ret < 0) {
+               mlog_errno(ret);
+               return ret;
+       }
+
+       if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
+               u64 s = i_size_read(inode);
+               sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
+                       (do_div(s, osb->s_clustersize) >> 9);
+
+               ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
+                               zero_len >> 9, GFP_NOFS, false);
+               if (ret < 0)
+                       mlog_errno(ret);
+       }
+
+       return ret;
+}
+
+static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
+               struct inode *inode, loff_t offset)
+{
+       u64 zero_start, zero_len, total_zero_len;
+       u32 p_cpos = 0, clusters_to_add;
+       u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
+       unsigned int num_clusters = 0;
+       unsigned int ext_flags = 0;
+       u32 size_div, offset_div;
+       int ret = 0;
+
+       {
+               u64 o = offset;
+               u64 s = i_size_read(inode);
+
+               offset_div = do_div(o, osb->s_clustersize);
+               size_div = do_div(s, osb->s_clustersize);
+       }
+
+       if (offset <= i_size_read(inode))
+               return 0;
+
+       clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
+               ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
+       total_zero_len = offset - i_size_read(inode);
+       if (clusters_to_add)
+               total_zero_len -= offset_div;
+
+       /* Allocate clusters to fill out holes, and this is only needed
+        * when we add more than one clusters. Otherwise the cluster will
+        * be allocated during direct IO */
+       if (clusters_to_add > 1) {
+               ret = ocfs2_extend_allocation(inode,
+                               OCFS2_I(inode)->ip_clusters,
+                               clusters_to_add - 1, 0);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       }
+
+       while (total_zero_len) {
+               ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
+                               &ext_flags);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+
+               zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
+                       size_div;
+               zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
+                       size_div;
+               zero_len = min(total_zero_len, zero_len);
+
+               if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
+                       ret = blkdev_issue_zeroout(osb->sb->s_bdev,
+                                       zero_start >> 9, zero_len >> 9,
+                                       GFP_NOFS, false);
+                       if (ret < 0) {
+                               mlog_errno(ret);
+                               goto out;
+                       }
+               }
+
+               total_zero_len -= zero_len;
+               v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
+
+               /* Only at first iteration can be cluster not aligned.
+                * So set size_div to 0 for the rest */
+               size_div = 0;
+       }
+
+out:
+       return ret;
+}
+
+static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
+               struct iov_iter *iter,
+               loff_t offset)
+{
+       ssize_t ret = 0;
+       ssize_t written = 0;
+       bool orphaned = false;
+       int is_overwrite = 0;
+       struct file *file = iocb->ki_filp;
+       struct inode *inode = file_inode(file)->i_mapping->host;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       struct buffer_head *di_bh = NULL;
+       size_t count = iter->count;
+       journal_t *journal = osb->journal->j_journal;
+       u64 zero_len_head, zero_len_tail;
+       int cluster_align_head, cluster_align_tail;
+       loff_t final_size = offset + count;
+       int append_write = offset >= i_size_read(inode) ? 1 : 0;
+       unsigned int num_clusters = 0;
+       unsigned int ext_flags = 0;
+
+       {
+               u64 o = offset;
+               u64 s = i_size_read(inode);
+
+               zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
+               cluster_align_head = !zero_len_head;
+
+               zero_len_tail = osb->s_clustersize -
+                       do_div(s, osb->s_clustersize);
+               if ((offset - i_size_read(inode)) < zero_len_tail)
+                       zero_len_tail = offset - i_size_read(inode);
+               cluster_align_tail = !zero_len_tail;
+       }
+
+       /*
+        * when final_size > inode->i_size, inode->i_size will be
+        * updated after direct write, so add the inode to orphan
+        * dir first.
+        */
+       if (final_size > i_size_read(inode)) {
+               ret = ocfs2_add_inode_to_orphan(osb, inode);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+               orphaned = true;
+       }
+
+       if (append_write) {
+               ret = ocfs2_inode_lock(inode, NULL, 1);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto clean_orphan;
+               }
+
+               /* zeroing out the previously allocated cluster tail
+                * that but not zeroed */
+               if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
+                       ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
+                                       zero_len_tail, cluster_align_tail);
+               else
+                       ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
+                                       offset);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       ocfs2_inode_unlock(inode, 1);
+                       goto clean_orphan;
+               }
+
+               is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
+               if (is_overwrite < 0) {
+                       mlog_errno(is_overwrite);
+                       ocfs2_inode_unlock(inode, 1);
+                       goto clean_orphan;
+               }
+
+               ocfs2_inode_unlock(inode, 1);
+       }
+
+       written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
+                                      offset, ocfs2_direct_IO_get_blocks,
+                                      ocfs2_dio_end_io, NULL, 0);
+       if (unlikely(written < 0)) {
+               loff_t i_size = i_size_read(inode);
+
+               if (offset + count > i_size) {
+                       ret = ocfs2_inode_lock(inode, &di_bh, 1);
+                       if (ret < 0) {
+                               mlog_errno(ret);
+                               goto clean_orphan;
+                       }
+
+                       if (i_size == i_size_read(inode)) {
+                               ret = ocfs2_truncate_file(inode, di_bh,
+                                               i_size);
+                               if (ret < 0) {
+                                       if (ret != -ENOSPC)
+                                               mlog_errno(ret);
+
+                                       ocfs2_inode_unlock(inode, 1);
+                                       brelse(di_bh);
+                                       goto clean_orphan;
+                               }
+                       }
+
+                       ocfs2_inode_unlock(inode, 1);
+                       brelse(di_bh);
+
+                       ret = jbd2_journal_force_commit(journal);
+                       if (ret < 0)
+                               mlog_errno(ret);
+               }
+       } else if (written > 0 && append_write && !is_overwrite &&
+                       !cluster_align_head) {
+               /* zeroing out the allocated cluster head */
+               u32 p_cpos = 0;
+               u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
+
+               ret = ocfs2_inode_lock(inode, NULL, 0);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto clean_orphan;
+               }
+
+               ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
+                               &num_clusters, &ext_flags);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       ocfs2_inode_unlock(inode, 0);
+                       goto clean_orphan;
+               }
+
+               BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
+
+               ret = blkdev_issue_zeroout(osb->sb->s_bdev,
+                               p_cpos << (osb->s_clustersize_bits - 9),
+                               zero_len_head >> 9, GFP_NOFS, false);
+               if (ret < 0)
+                       mlog_errno(ret);
+
+               ocfs2_inode_unlock(inode, 0);
+       }
+
+clean_orphan:
+       if (orphaned) {
+               int tmp_ret;
+               int update_isize = written > 0 ? 1 : 0;
+               loff_t end = update_isize ? offset + written : 0;
+
+               tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
+                               update_isize, end);
+               if (tmp_ret < 0) {
+                       ret = tmp_ret;
+                       goto out;
+               }
+
+               tmp_ret = jbd2_journal_force_commit(journal);
+               if (tmp_ret < 0) {
+                       ret = tmp_ret;
+                       mlog_errno(tmp_ret);
+               }
+       }
+
+out:
+       if (ret >= 0)
+               ret = written;
+       return ret;
+}
+
+static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
+                              loff_t offset)
+{
+       struct file *file = iocb->ki_filp;
+       struct inode *inode = file_inode(file)->i_mapping->host;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       int full_coherency = !(osb->s_mount_opt &
+                       OCFS2_MOUNT_COHERENCY_BUFFERED);
+
+       /*
+        * Fallback to buffered I/O if we see an inode without
+        * extents.
+        */
+       if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
+               return 0;
+
+       /* Fallback to buffered I/O if we are appending and
+        * concurrent O_DIRECT writes are allowed.
+        */
+       if (i_size_read(inode) <= offset && !full_coherency)
+               return 0;
+
+       if (iov_iter_rw(iter) == READ)
+               return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
+                                           iter, offset,
+                                           ocfs2_direct_IO_get_blocks,
+                                           ocfs2_dio_end_io, NULL, 0);
+       else
+               return ocfs2_direct_IO_write(iocb, iter, offset);
+}
+
+static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
+                                           u32 cpos,
+                                           unsigned int *start,
+                                           unsigned int *end)
+{
+       unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
+
+       if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
+               unsigned int cpp;
+
+               cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
+
+               cluster_start = cpos % cpp;
+               cluster_start = cluster_start << osb->s_clustersize_bits;
+
+               cluster_end = cluster_start + osb->s_clustersize;
+       }
+
+       BUG_ON(cluster_start > PAGE_SIZE);
+       BUG_ON(cluster_end > PAGE_SIZE);
+
+       if (start)
+               *start = cluster_start;
+       if (end)
+               *end = cluster_end;
+}
+
+/*
+ * 'from' and 'to' are the region in the page to avoid zeroing.
+ *
+ * If pagesize > clustersize, this function will avoid zeroing outside
+ * of the cluster boundary.
+ *
+ * from == to == 0 is code for "zero the entire cluster region"
+ */
+static void ocfs2_clear_page_regions(struct page *page,
+                                    struct ocfs2_super *osb, u32 cpos,
+                                    unsigned from, unsigned to)
+{
+       void *kaddr;
+       unsigned int cluster_start, cluster_end;
+
+       ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
+
+       kaddr = kmap_atomic(page);
+
+       if (from || to) {
+               if (from > cluster_start)
+                       memset(kaddr + cluster_start, 0, from - cluster_start);
+               if (to < cluster_end)
+                       memset(kaddr + to, 0, cluster_end - to);
+       } else {
+               memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
+       }
+
+       kunmap_atomic(kaddr);
+}
+
+/*
+ * Nonsparse file systems fully allocate before we get to the write
+ * code. This prevents ocfs2_write() from tagging the write as an
+ * allocating one, which means ocfs2_map_page_blocks() might try to
+ * read-in the blocks at the tail of our file. Avoid reading them by
+ * testing i_size against each block offset.
+ */
+static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
+                                unsigned int block_start)
+{
+       u64 offset = page_offset(page) + block_start;
+
+       if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
+               return 1;
+
+       if (i_size_read(inode) > offset)
+               return 1;
+
+       return 0;
+}
+
+/*
+ * Some of this taken from __block_write_begin(). We already have our
+ * mapping by now though, and the entire write will be allocating or
+ * it won't, so not much need to use BH_New.
+ *
+ * This will also skip zeroing, which is handled externally.
+ */
+int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
+                         struct inode *inode, unsigned int from,
+                         unsigned int to, int new)
+{
+       int ret = 0;
+       struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
+       unsigned int block_end, block_start;
+       unsigned int bsize = 1 << inode->i_blkbits;
+
+       if (!page_has_buffers(page))
+               create_empty_buffers(page, bsize, 0);
+
+       head = page_buffers(page);
+       for (bh = head, block_start = 0; bh != head || !block_start;
+            bh = bh->b_this_page, block_start += bsize) {
+               block_end = block_start + bsize;
+
+               clear_buffer_new(bh);
+
+               /*
+                * Ignore blocks outside of our i/o range -
+                * they may belong to unallocated clusters.
+                */
+               if (block_start >= to || block_end <= from) {
+                       if (PageUptodate(page))
+                               set_buffer_uptodate(bh);
+                       continue;
+               }
+
+               /*
+                * For an allocating write with cluster size >= page
+                * size, we always write the entire page.
+                */
+               if (new)
+                       set_buffer_new(bh);
+
+               if (!buffer_mapped(bh)) {
+                       map_bh(bh, inode->i_sb, *p_blkno);
+                       unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
+               }
+
+               if (PageUptodate(page)) {
+                       if (!buffer_uptodate(bh))
+                               set_buffer_uptodate(bh);
+               } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
+                          !buffer_new(bh) &&
+                          ocfs2_should_read_blk(inode, page, block_start) &&
+                          (block_start < from || block_end > to)) {
+                       ll_rw_block(READ, 1, &bh);
+                       *wait_bh++=bh;
+               }
+
+               *p_blkno = *p_blkno + 1;
+       }
+
+       /*
+        * If we issued read requests - let them complete.
+        */
+       while(wait_bh > wait) {
+               wait_on_buffer(*--wait_bh);
+               if (!buffer_uptodate(*wait_bh))
+                       ret = -EIO;
+       }
+
+       if (ret == 0 || !new)
+               return ret;
+
+       /*
+        * If we get -EIO above, zero out any newly allocated blocks
+        * to avoid exposing stale data.
+        */
+       bh = head;
+       block_start = 0;
+       do {
+               block_end = block_start + bsize;
+               if (block_end <= from)
+                       goto next_bh;
+               if (block_start >= to)
+                       break;
+
+               zero_user(page, block_start, bh->b_size);
+               set_buffer_uptodate(bh);
+               mark_buffer_dirty(bh);
+
+next_bh:
+               block_start = block_end;
+               bh = bh->b_this_page;
+       } while (bh != head);
+
+       return ret;
+}
+
+#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
+#define OCFS2_MAX_CTXT_PAGES   1
+#else
+#define OCFS2_MAX_CTXT_PAGES   (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
+#endif
+
+#define OCFS2_MAX_CLUSTERS_PER_PAGE    (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
+
+/*
+ * Describe the state of a single cluster to be written to.
+ */
+struct ocfs2_write_cluster_desc {
+       u32             c_cpos;
+       u32             c_phys;
+       /*
+        * Give this a unique field because c_phys eventually gets
+        * filled.
+        */
+       unsigned        c_new;
+       unsigned        c_unwritten;
+       unsigned        c_needs_zero;
+};
+
+struct ocfs2_write_ctxt {
+       /* Logical cluster position / len of write */
+       u32                             w_cpos;
+       u32                             w_clen;
+
+       /* First cluster allocated in a nonsparse extend */
+       u32                             w_first_new_cpos;
+
+       struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
+
+       /*
+        * This is true if page_size > cluster_size.
+        *
+        * It triggers a set of special cases during write which might
+        * have to deal with allocating writes to partial pages.
+        */
+       unsigned int                    w_large_pages;
+
+       /*
+        * Pages involved in this write.
+        *
+        * w_target_page is the page being written to by the user.
+        *
+        * w_pages is an array of pages which always contains
+        * w_target_page, and in the case of an allocating write with
+        * page_size < cluster size, it will contain zero'd and mapped
+        * pages adjacent to w_target_page which need to be written
+        * out in so that future reads from that region will get
+        * zero's.
+        */
+       unsigned int                    w_num_pages;
+       struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
+       struct page                     *w_target_page;
+
+       /*
+        * w_target_locked is used for page_mkwrite path indicating no unlocking
+        * against w_target_page in ocfs2_write_end_nolock.
+        */
+       unsigned int                    w_target_locked:1;
+
+       /*
+        * ocfs2_write_end() uses this to know what the real range to
+        * write in the target should be.
+        */
+       unsigned int                    w_target_from;
+       unsigned int                    w_target_to;
+
+       /*
+        * We could use journal_current_handle() but this is cleaner,
+        * IMHO -Mark
+        */
+       handle_t                        *w_handle;
+
+       struct buffer_head              *w_di_bh;
+
+       struct ocfs2_cached_dealloc_ctxt w_dealloc;
+};
+
+void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
+{
+       int i;
+
+       for(i = 0; i < num_pages; i++) {
+               if (pages[i]) {
+                       unlock_page(pages[i]);
+                       mark_page_accessed(pages[i]);
+                       page_cache_release(pages[i]);
+               }
+       }
+}
+
+static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
+{
+       int i;
+
+       /*
+        * w_target_locked is only set to true in the page_mkwrite() case.
+        * The intent is to allow us to lock the target page from write_begin()
+        * to write_end(). The caller must hold a ref on w_target_page.
+        */
+       if (wc->w_target_locked) {
+               BUG_ON(!wc->w_target_page);
+               for (i = 0; i < wc->w_num_pages; i++) {
+                       if (wc->w_target_page == wc->w_pages[i]) {
+                               wc->w_pages[i] = NULL;
+                               break;
+                       }
+               }
+               mark_page_accessed(wc->w_target_page);
+               page_cache_release(wc->w_target_page);
+       }
+       ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
+}
+
+static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
+{
+       ocfs2_unlock_pages(wc);
+       brelse(wc->w_di_bh);
+       kfree(wc);
+}
+
+static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
+                                 struct ocfs2_super *osb, loff_t pos,
+                                 unsigned len, struct buffer_head *di_bh)
+{
+       u32 cend;
+       struct ocfs2_write_ctxt *wc;
+
+       wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
+       if (!wc)
+               return -ENOMEM;
+
+       wc->w_cpos = pos >> osb->s_clustersize_bits;
+       wc->w_first_new_cpos = UINT_MAX;
+       cend = (pos + len - 1) >> osb->s_clustersize_bits;
+       wc->w_clen = cend - wc->w_cpos + 1;
+       get_bh(di_bh);
+       wc->w_di_bh = di_bh;
+
+       if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
+               wc->w_large_pages = 1;
+       else
+               wc->w_large_pages = 0;
+
+       ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
+
+       *wcp = wc;
+
+       return 0;
+}
+
+/*
+ * If a page has any new buffers, zero them out here, and mark them uptodate
+ * and dirty so they'll be written out (in order to prevent uninitialised
+ * block data from leaking). And clear the new bit.
+ */
+static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
+{
+       unsigned int block_start, block_end;
+       struct buffer_head *head, *bh;
+
+       BUG_ON(!PageLocked(page));
+       if (!page_has_buffers(page))
+               return;
+
+       bh = head = page_buffers(page);
+       block_start = 0;
+       do {
+               block_end = block_start + bh->b_size;
+
+               if (buffer_new(bh)) {
+                       if (block_end > from && block_start < to) {
+                               if (!PageUptodate(page)) {
+                                       unsigned start, end;
+
+                                       start = max(from, block_start);
+                                       end = min(to, block_end);
+
+                                       zero_user_segment(page, start, end);
+                                       set_buffer_uptodate(bh);
+                               }
+
+                               clear_buffer_new(bh);
+                               mark_buffer_dirty(bh);
+                       }
+               }
+
+               block_start = block_end;
+               bh = bh->b_this_page;
+       } while (bh != head);
+}
+
+/*
+ * Only called when we have a failure during allocating write to write
+ * zero's to the newly allocated region.
+ */
+static void ocfs2_write_failure(struct inode *inode,
+                               struct ocfs2_write_ctxt *wc,
+                               loff_t user_pos, unsigned user_len)
+{
+       int i;
+       unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
+               to = user_pos + user_len;
+       struct page *tmppage;
+
+       ocfs2_zero_new_buffers(wc->w_target_page, from, to);
+
+       for(i = 0; i < wc->w_num_pages; i++) {
+               tmppage = wc->w_pages[i];
+
+               if (page_has_buffers(tmppage)) {
+                       if (ocfs2_should_order_data(inode))
+                               ocfs2_jbd2_file_inode(wc->w_handle, inode);
+
+                       block_commit_write(tmppage, from, to);
+               }
+       }
+}
+
+static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
+                                       struct ocfs2_write_ctxt *wc,
+                                       struct page *page, u32 cpos,
+                                       loff_t user_pos, unsigned user_len,
+                                       int new)
+{
+       int ret;
+       unsigned int map_from = 0, map_to = 0;
+       unsigned int cluster_start, cluster_end;
+       unsigned int user_data_from = 0, user_data_to = 0;
+
+       ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
+                                       &cluster_start, &cluster_end);
+
+       /* treat the write as new if the a hole/lseek spanned across
+        * the page boundary.
+        */
+       new = new | ((i_size_read(inode) <= page_offset(page)) &&
+                       (page_offset(page) <= user_pos));
+
+       if (page == wc->w_target_page) {
+               map_from = user_pos & (PAGE_CACHE_SIZE - 1);
+               map_to = map_from + user_len;
+
+               if (new)
+                       ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+                                                   cluster_start, cluster_end,
+                                                   new);
+               else
+                       ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+                                                   map_from, map_to, new);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+
+               user_data_from = map_from;
+               user_data_to = map_to;
+               if (new) {
+                       map_from = cluster_start;
+                       map_to = cluster_end;
+               }
+       } else {
+               /*
+                * If we haven't allocated the new page yet, we
+                * shouldn't be writing it out without copying user
+                * data. This is likely a math error from the caller.
+                */
+               BUG_ON(!new);
+
+               map_from = cluster_start;
+               map_to = cluster_end;
+
+               ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+                                           cluster_start, cluster_end, new);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       }
+
+       /*
+        * Parts of newly allocated pages need to be zero'd.
+        *
+        * Above, we have also rewritten 'to' and 'from' - as far as
+        * the rest of the function is concerned, the entire cluster
+        * range inside of a page needs to be written.
+        *
+        * We can skip this if the page is up to date - it's already
+        * been zero'd from being read in as a hole.
+        */
+       if (new && !PageUptodate(page))
+               ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
+                                        cpos, user_data_from, user_data_to);
+
+       flush_dcache_page(page);
+
+out:
+       return ret;
+}
+
+/*
+ * This function will only grab one clusters worth of pages.
+ */
+static int ocfs2_grab_pages_for_write(struct address_space *mapping,
+                                     struct ocfs2_write_ctxt *wc,
+                                     u32 cpos, loff_t user_pos,
+                                     unsigned user_len, int new,
+                                     struct page *mmap_page)
+{
+       int ret = 0, i;
+       unsigned long start, target_index, end_index, index;
+       struct inode *inode = mapping->host;
+       loff_t last_byte;
+
+       target_index = user_pos >> PAGE_CACHE_SHIFT;
+
+       /*
+        * Figure out how many pages we'll be manipulating here. For
+        * non allocating write, we just change the one
+        * page. Otherwise, we'll need a whole clusters worth.  If we're
+        * writing past i_size, we only need enough pages to cover the
+        * last page of the write.
+        */
+       if (new) {
+               wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
+               start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
+               /*
+                * We need the index *past* the last page we could possibly
+                * touch.  This is the page past the end of the write or
+                * i_size, whichever is greater.
+                */
+               last_byte = max(user_pos + user_len, i_size_read(inode));
+               BUG_ON(last_byte < 1);
+               end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
+               if ((start + wc->w_num_pages) > end_index)
+                       wc->w_num_pages = end_index - start;
+       } else {
+               wc->w_num_pages = 1;
+               start = target_index;
+       }
+
+       for(i = 0; i < wc->w_num_pages; i++) {
+               index = start + i;
+
+               if (index == target_index && mmap_page) {
+                       /*
+                        * ocfs2_pagemkwrite() is a little different
+                        * and wants us to directly use the page
+                        * passed in.
+                        */
+                       lock_page(mmap_page);
+
+                       /* Exit and let the caller retry */
+                       if (mmap_page->mapping != mapping) {
+                               WARN_ON(mmap_page->mapping);
+                               unlock_page(mmap_page);
+                               ret = -EAGAIN;
+                               goto out;
+                       }
+
+                       page_cache_get(mmap_page);
+                       wc->w_pages[i] = mmap_page;
+                       wc->w_target_locked = true;
+               } else {
+                       wc->w_pages[i] = find_or_create_page(mapping, index,
+                                                            GFP_NOFS);
+                       if (!wc->w_pages[i]) {
+                               ret = -ENOMEM;
+                               mlog_errno(ret);
+                               goto out;
+                       }
+               }
+               wait_for_stable_page(wc->w_pages[i]);
+
+               if (index == target_index)
+                       wc->w_target_page = wc->w_pages[i];
+       }
+out:
+       if (ret)
+               wc->w_target_locked = false;
+       return ret;
+}
+
+/*
+ * Prepare a single cluster for write one cluster into the file.
+ */
+static int ocfs2_write_cluster(struct address_space *mapping,
+                              u32 phys, unsigned int unwritten,
+                              unsigned int should_zero,
+                              struct ocfs2_alloc_context *data_ac,
+                              struct ocfs2_alloc_context *meta_ac,
+                              struct ocfs2_write_ctxt *wc, u32 cpos,
+                              loff_t user_pos, unsigned user_len)
+{
+       int ret, i, new;
+       u64 v_blkno, p_blkno;
+       struct inode *inode = mapping->host;
+       struct ocfs2_extent_tree et;
+
+       new = phys == 0 ? 1 : 0;
+       if (new) {
+               u32 tmp_pos;
+
+               /*
+                * This is safe to call with the page locks - it won't take
+                * any additional semaphores or cluster locks.
+                */
+               tmp_pos = cpos;
+               ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
+                                          &tmp_pos, 1, 0, wc->w_di_bh,
+                                          wc->w_handle, data_ac,
+                                          meta_ac, NULL);
+               /*
+                * This shouldn't happen because we must have already
+                * calculated the correct meta data allocation required. The
+                * internal tree allocation code should know how to increase
+                * transaction credits itself.
+                *
+                * If need be, we could handle -EAGAIN for a
+                * RESTART_TRANS here.
+                */
+               mlog_bug_on_msg(ret == -EAGAIN,
+                               "Inode %llu: EAGAIN return during allocation.\n",
+                               (unsigned long long)OCFS2_I(inode)->ip_blkno);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       } else if (unwritten) {
+               ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
+                                             wc->w_di_bh);
+               ret = ocfs2_mark_extent_written(inode, &et,
+                                               wc->w_handle, cpos, 1, phys,
+                                               meta_ac, &wc->w_dealloc);
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       }
+
+       if (should_zero)
+               v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
+       else
+               v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
+
+       /*
+        * The only reason this should fail is due to an inability to
+        * find the extent added.
+        */
+       ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
+                                         NULL);
+       if (ret < 0) {
+               mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
+                           "at logical block %llu",
+                           (unsigned long long)OCFS2_I(inode)->ip_blkno,
+                           (unsigned long long)v_blkno);
+               goto out;
+       }
+
+       BUG_ON(p_blkno == 0);
+
+       for(i = 0; i < wc->w_num_pages; i++) {
+               int tmpret;
+
+               tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
+                                                     wc->w_pages[i], cpos,
+                                                     user_pos, user_len,
+                                                     should_zero);
+               if (tmpret) {
+                       mlog_errno(tmpret);
+                       if (ret == 0)
+                               ret = tmpret;
+               }
+       }
+
+       /*
+        * We only have cleanup to do in case of allocating write.
+        */
+       if (ret && new)
+               ocfs2_write_failure(inode, wc, user_pos, user_len);
+
+out:
+
+       return ret;
+}
+
+static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
+                                      struct ocfs2_alloc_context *data_ac,
+                                      struct ocfs2_alloc_context *meta_ac,
+                                      struct ocfs2_write_ctxt *wc,
+                                      loff_t pos, unsigned len)
+{
+       int ret, i;
+       loff_t cluster_off;
+       unsigned int local_len = len;
+       struct ocfs2_write_cluster_desc *desc;
+       struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
+
+       for (i = 0; i < wc->w_clen; i++) {
+               desc = &wc->w_desc[i];
+
+               /*
+                * We have to make sure that the total write passed in
+                * doesn't extend past a single cluster.
+                */
+               local_len = len;
+               cluster_off = pos & (osb->s_clustersize - 1);
+               if ((cluster_off + local_len) > osb->s_clustersize)
+                       local_len = osb->s_clustersize - cluster_off;
+
+               ret = ocfs2_write_cluster(mapping, desc->c_phys,
+                                         desc->c_unwritten,
+                                         desc->c_needs_zero,
+                                         data_ac, meta_ac,
+                                         wc, desc->c_cpos, pos, local_len);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+
+               len -= local_len;
+               pos += local_len;
+       }
+
+       ret = 0;
+out:
+       return ret;
+}
+
+/*
+ * ocfs2_write_end() wants to know which parts of the target page it
+ * should complete the write on. It's easiest to compute them ahead of
+ * time when a more complete view of the write is available.
+ */
+static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
+                                       struct ocfs2_write_ctxt *wc,
+                                       loff_t pos, unsigned len, int alloc)
+{
+       struct ocfs2_write_cluster_desc *desc;
+
+       wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
+       wc->w_target_to = wc->w_target_from + len;
+
+       if (alloc == 0)
+               return;
+
+       /*
+        * Allocating write - we may have different boundaries based
+        * on page size and cluster size.
+        *
+        * NOTE: We can no longer compute one value from the other as
+        * the actual write length and user provided length may be
+        * different.
+        */
+
+       if (wc->w_large_pages) {
+               /*
+                * We only care about the 1st and last cluster within
+                * our range and whether they should be zero'd or not. Either
+                * value may be extended out to the start/end of a
+                * newly allocated cluster.
+                */
+               desc = &wc->w_desc[0];
+               if (desc->c_needs_zero)
+                       ocfs2_figure_cluster_boundaries(osb,
+                                                       desc->c_cpos,
+                                                       &wc->w_target_from,
+                                                       NULL);
+
+               desc = &wc->w_desc[wc->w_clen - 1];
+               if (desc->c_needs_zero)
+                       ocfs2_figure_cluster_boundaries(osb,
+                                                       desc->c_cpos,
+                                                       NULL,
+                                                       &wc->w_target_to);
+       } else {
+               wc->w_target_from = 0;
+               wc->w_target_to = PAGE_CACHE_SIZE;
+       }
+}
+
+/*
+ * Populate each single-cluster write descriptor in the write context
+ * with information about the i/o to be done.
+ *
+ * Returns the number of clusters that will have to be allocated, as
+ * well as a worst case estimate of the number of extent records that
+ * would have to be created during a write to an unwritten region.
+ */
+static int ocfs2_populate_write_desc(struct inode *inode,
+                                    struct ocfs2_write_ctxt *wc,
+                                    unsigned int *clusters_to_alloc,
+                                    unsigned int *extents_to_split)
+{
+       int ret;
+       struct ocfs2_write_cluster_desc *desc;
+       unsigned int num_clusters = 0;
+       unsigned int ext_flags = 0;
+       u32 phys = 0;
+       int i;
+
+       *clusters_to_alloc = 0;
+       *extents_to_split = 0;
+
+       for (i = 0; i < wc->w_clen; i++) {
+               desc = &wc->w_desc[i];
+               desc->c_cpos = wc->w_cpos + i;
+
+               if (num_clusters == 0) {
+                       /*
+                        * Need to look up the next extent record.
+                        */
+                       ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
+                                                &num_clusters, &ext_flags);
+                       if (ret) {
+                               mlog_errno(ret);
+                               goto out;
+                       }
+
+                       /* We should already CoW the refcountd extent. */
+                       BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
+
+                       /*
+                        * Assume worst case - that we're writing in
+                        * the middle of the extent.
+                        *
+                        * We can assume that the write proceeds from
+                        * left to right, in which case the extent
+                        * insert code is smart enough to coalesce the
+                        * next splits into the previous records created.
+                        */
+                       if (ext_flags & OCFS2_EXT_UNWRITTEN)
+                               *extents_to_split = *extents_to_split + 2;
+               } else if (phys) {
+                       /*
+                        * Only increment phys if it doesn't describe
+                        * a hole.
+                        */
+                       phys++;
+               }
+
+               /*
+                * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
+                * file that got extended.  w_first_new_cpos tells us
+                * where the newly allocated clusters are so we can
+                * zero them.
+                */
+               if (desc->c_cpos >= wc->w_first_new_cpos) {
+                       BUG_ON(phys == 0);
+                       desc->c_needs_zero = 1;
+               }
+
+               desc->c_phys = phys;
+               if (phys == 0) {
+                       desc->c_new = 1;
+                       desc->c_needs_zero = 1;
+                       *clusters_to_alloc = *clusters_to_alloc + 1;
+               }
+
+               if (ext_flags & OCFS2_EXT_UNWRITTEN) {
+                       desc->c_unwritten = 1;
+                       desc->c_needs_zero = 1;
+               }
+
+               num_clusters--;
+       }
+
+       ret = 0;
+out:
+       return ret;
+}
+
+static int ocfs2_write_begin_inline(struct address_space *mapping,
+                                   struct inode *inode,
+                                   struct ocfs2_write_ctxt *wc)
+{
+       int ret;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       struct page *page;
+       handle_t *handle;
+       struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
+
+       handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               mlog_errno(ret);
+               goto out;
+       }
+
+       page = find_or_create_page(mapping, 0, GFP_NOFS);
+       if (!page) {
+               ocfs2_commit_trans(osb, handle);
+               ret = -ENOMEM;
+               mlog_errno(ret);
+               goto out;
+       }
+       /*
+        * If we don't set w_num_pages then this page won't get unlocked
+        * and freed on cleanup of the write context.
+        */
+       wc->w_pages[0] = wc->w_target_page = page;
+       wc->w_num_pages = 1;
+
+       ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
+                                     OCFS2_JOURNAL_ACCESS_WRITE);
+       if (ret) {
+               ocfs2_commit_trans(osb, handle);
+
+               mlog_errno(ret);
+               goto out;
+       }
+
+       if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
+               ocfs2_set_inode_data_inline(inode, di);
+
+       if (!PageUptodate(page)) {
+               ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
+               if (ret) {
+                       ocfs2_commit_trans(osb, handle);
+
+                       goto out;
+               }
+       }
+
+       wc->w_handle = handle;
+out:
+       return ret;
+}
+
+int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
+{
+       struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
+
+       if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
+               return 1;
+       return 0;
+}
+
+static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
+                                         struct inode *inode, loff_t pos,
+                                         unsigned len, struct page *mmap_page,
+                                         struct ocfs2_write_ctxt *wc)
+{
+       int ret, written = 0;
+       loff_t end = pos + len;
+       struct ocfs2_inode_info *oi = OCFS2_I(inode);
+       struct ocfs2_dinode *di = NULL;
+
+       trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
+                                            len, (unsigned long long)pos,
+                                            oi->ip_dyn_features);
+
+       /*
+        * Handle inodes which already have inline data 1st.
+        */
+       if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
+               if (mmap_page == NULL &&
+                   ocfs2_size_fits_inline_data(wc->w_di_bh, end))
+                       goto do_inline_write;
+
+               /*
+                * The write won't fit - we have to give this inode an
+                * inline extent list now.
+                */
+               ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
+               if (ret)
+                       mlog_errno(ret);
+               goto out;
+       }
+
+       /*
+        * Check whether the inode can accept inline data.
+        */
+       if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
+               return 0;
+
+       /*
+        * Check whether the write can fit.
+        */
+       di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
+       if (mmap_page ||
+           end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
+               return 0;
+
+do_inline_write:
+       ret = ocfs2_write_begin_inline(mapping, inode, wc);
+       if (ret) {
+               mlog_errno(ret);
+               goto out;
+       }
+
+       /*
+        * This signals to the caller that the data can be written
+        * inline.
+        */
+       written = 1;
+out:
+       return written ? written : ret;
+}
+
+/*
+ * This function only does anything for file systems which can't
+ * handle sparse files.
+ *
+ * What we want to do here is fill in any hole between the current end
+ * of allocation and the end of our write. That way the rest of the
+ * write path can treat it as an non-allocating write, which has no
+ * special case code for sparse/nonsparse files.
+ */
+static int ocfs2_expand_nonsparse_inode(struct inode *inode,
+                                       struct buffer_head *di_bh,
+                                       loff_t pos, unsigned len,
+                                       struct ocfs2_write_ctxt *wc)
+{
+       int ret;
+       loff_t newsize = pos + len;
+
+       BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
+
+       if (newsize <= i_size_read(inode))
+               return 0;
+
+       ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
+       if (ret)
+               mlog_errno(ret);
+
+       wc->w_first_new_cpos =
+               ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
+
+       return ret;
+}
+
+static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
+                          loff_t pos)
+{
+       int ret = 0;
+
+       BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
+       if (pos > i_size_read(inode))
+               ret = ocfs2_zero_extend(inode, di_bh, pos);
+
+       return ret;
+}
+
+/*
+ * Try to flush truncate logs if we can free enough clusters from it.
+ * As for return value, "< 0" means error, "0" no space and "1" means
+ * we have freed enough spaces and let the caller try to allocate again.
+ */
+static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
+                                         unsigned int needed)
+{
+       tid_t target;
+       int ret = 0;
+       unsigned int truncated_clusters;
+
+       mutex_lock(&osb->osb_tl_inode->i_mutex);
+       truncated_clusters = osb->truncated_clusters;
+       mutex_unlock(&osb->osb_tl_inode->i_mutex);
+
+       /*
+        * Check whether we can succeed in allocating if we free
+        * the truncate log.
+        */
+       if (truncated_clusters < needed)
+               goto out;
+
+       ret = ocfs2_flush_truncate_log(osb);
+       if (ret) {
+               mlog_errno(ret);
+               goto out;
+       }
+
+       if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
+               jbd2_log_wait_commit(osb->journal->j_journal, target);
+               ret = 1;
+       }
+out:
+       return ret;
+}
+
+int ocfs2_write_begin_nolock(struct file *filp,
+                            struct address_space *mapping,
+                            loff_t pos, unsigned len, unsigned flags,
+                            struct page **pagep, void **fsdata,
+                            struct buffer_head *di_bh, struct page *mmap_page)
+{
+       int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
+       unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
+       struct ocfs2_write_ctxt *wc;
+       struct inode *inode = mapping->host;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       struct ocfs2_dinode *di;
+       struct ocfs2_alloc_context *data_ac = NULL;
+       struct ocfs2_alloc_context *meta_ac = NULL;
+       handle_t *handle;
+       struct ocfs2_extent_tree et;
+       int try_free = 1, ret1;
+
+try_again:
+       ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
+       if (ret) {
+               mlog_errno(ret);
+               return ret;
+       }
+
+       if (ocfs2_supports_inline_data(osb)) {
+               ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
+                                                    mmap_page, wc);
+               if (ret == 1) {
+                       ret = 0;
+                       goto success;
+               }
+               if (ret < 0) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       }
+
+       if (ocfs2_sparse_alloc(osb))
+               ret = ocfs2_zero_tail(inode, di_bh, pos);
+       else
+               ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
+                                                  wc);
+       if (ret) {
+               mlog_errno(ret);
+               goto out;
+       }
+
+       ret = ocfs2_check_range_for_refcount(inode, pos, len);
+       if (ret < 0) {
+               mlog_errno(ret);
+               goto out;
+       } else if (ret == 1) {
+               clusters_need = wc->w_clen;
+               ret = ocfs2_refcount_cow(inode, di_bh,
+                                        wc->w_cpos, wc->w_clen, UINT_MAX);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+       }
+
+       ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
+                                       &extents_to_split);
+       if (ret) {
+               mlog_errno(ret);
+               goto out;
+       }
+       clusters_need += clusters_to_alloc;
+
+       di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
+
+       trace_ocfs2_write_begin_nolock(
+                       (unsigned long long)OCFS2_I(inode)->ip_blkno,
+                       (long long)i_size_read(inode),
+                       le32_to_cpu(di->i_clusters),
+                       pos, len, flags, mmap_page,
+                       clusters_to_alloc, extents_to_split);
+
+       /*
+        * We set w_target_from, w_target_to here so that
+        * ocfs2_write_end() knows which range in the target page to
+        * write out. An allocation requires that we write the entire
+        * cluster range.
+        */
+       if (clusters_to_alloc || extents_to_split) {
+               /*
+                * XXX: We are stretching the limits of
+                * ocfs2_lock_allocators(). It greatly over-estimates
+                * the work to be done.
+                */
+               ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
+                                             wc->w_di_bh);
+               ret = ocfs2_lock_allocators(inode, &et,
+                                           clusters_to_alloc, extents_to_split,
+                                           &data_ac, &meta_ac);
+               if (ret) {
+                       mlog_errno(ret);
+                       goto out;
+               }
+
+               if (data_ac)
+                       data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
+
+               credits = ocfs2_calc_extend_credits(inode->i_sb,
+                                                   &di->id2.i_list);
+
+       }
+
+       /*
+        * We have to zero sparse allocated clusters, unwritten extent clusters,
+        * and non-sparse clusters we just extended.  For non-sparse writes,
+        * we know zeros will only be needed in the first and/or last cluster.
+        */
+       if (clusters_to_alloc || extents_to_split ||
+           (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
+                           wc->w_desc[wc->w_clen - 1].c_needs_zero)))
+               cluster_of_pages = 1;
+       else
+               cluster_of_pages = 0;
+
+       ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
+
+       handle = ocfs2_start_trans(osb, credits);
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               mlog_errno(ret);
+               goto out;
+       }
+
+       wc->w_handle = handle;
+
+       if (clusters_to_alloc) {
+               ret = dquot_alloc_space_nodirty(inode,
+                       ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
+               if (ret)
+                       goto out_commit;
+       }
+       /*
+        * We don't want this to fail in ocfs2_write_end(), so do it
+        * here.
+        */
+       ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
+                                     OCFS2_JOURNAL_ACCESS_WRITE);
+       if (ret) {
+               mlog_errno(ret);
+               goto out_quota;
+       }
+
+       /*
+        * Fill our page array first. That way we've grabbed enough so
+        * that we can zero and flush if we error after adding the
+        * extent.
+        */
+       ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
+                                        cluster_of_pages, mmap_page);
+       if (ret && ret != -EAGAIN) {
+               mlog_errno(ret);
+               goto out_quota;
+       }
+
+       /*
+        * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
+        * the target page. In this case, we exit with no error and no target
+        * page. This will trigger the caller, page_mkwrite(), to re-try
+        * the operation.
+        */
+       if (ret == -EAGAIN) {
+               BUG_ON(wc->w_target_page);
+               ret = 0;
+               goto out_quota;
+       }
+
+       ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
+                                         len);
+       if (ret) {
+               mlog_errno(ret);
+               goto out_quota;
+       }
+
+       if (data_ac)
+               ocfs2_free_alloc_context(data_ac);
+       if (meta_ac)
+               ocfs2_free_alloc_context(meta_ac);
+
+success:
+       *pagep = wc->w_target_page;
+       *fsdata = wc;
+       return 0;
+out_quota:
+       if (clusters_to_alloc)
+               dquot_free_space(inode,
+                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
+out_commit:
+       ocfs2_commit_trans(osb, handle);
+
+out:
+       ocfs2_free_write_ctxt(wc);
+
+       if (data_ac) {
+               ocfs2_free_alloc_context(data_ac);
+               data_ac = NULL;
+       }
+       if (meta_ac) {
+               ocfs2_free_alloc_context(meta_ac);
+               meta_ac = NULL;
+       }
+
+       if (ret == -ENOSPC && try_free) {
+               /*
+                * Try to free some truncate log so that we can have enough
+                * clusters to allocate.
+                */
+               try_free = 0;
+
+               ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
+               if (ret1 == 1)
+                       goto try_again;
+
+               if (ret1 < 0)
+                       mlog_errno(ret1);
+       }
+
+       return ret;
+}
+
+static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
+                            loff_t pos, unsigned len, unsigned flags,
+                            struct page **pagep, void **fsdata)
+{
+       int ret;
+       struct buffer_head *di_bh = NULL;
+       struct inode *inode = mapping->host;
+
+       ret = ocfs2_inode_lock(inode, &di_bh, 1);
+       if (ret) {
+               mlog_errno(ret);
+               return ret;
+       }
+
+       /*
+        * Take alloc sem here to prevent concurrent lookups. That way
+        * the mapping, zeroing and tree manipulation within
+        * ocfs2_write() will be safe against ->readpage(). This
+        * should also serve to lock out allocation from a shared
+        * writeable region.
+        */
+       down_write(&OCFS2_I(inode)->ip_alloc_sem);
+
+       ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
+                                      fsdata, di_bh, NULL);
+       if (ret) {
+               mlog_errno(ret);
+               goto out_fail;
+       }
+
+       brelse(di_bh);
+
+       return 0;
+
+out_fail:
+       up_write(&OCFS2_I(inode)->ip_alloc_sem);
+
+       brelse(di_bh);
+       ocfs2_inode_unlock(inode, 1);
+
+       return ret;
+}
+
+static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
+                                  unsigned len, unsigned *copied,
+                                  struct ocfs2_dinode *di,
+                                  struct ocfs2_write_ctxt *wc)
+{
+       void *kaddr;
+
+       if (unlikely(*copied < len)) {
+               if (!PageUptodate(wc->w_target_page)) {
+                       *copied = 0;
+                       return;
+               }
+       }
+
+       kaddr = kmap_atomic(wc->w_target_page);
+       memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
+       kunmap_atomic(kaddr);
+
+       trace_ocfs2_write_end_inline(
+            (unsigned long long)OCFS2_I(inode)->ip_blkno,
+            (unsigned long long)pos, *copied,
+            le16_to_cpu(di->id2.i_data.id_count),
+            le16_to_cpu(di->i_dyn_features));
+}
+
+int ocfs2_write_end_nolock(struct address_space *mapping,
+                          loff_t pos, unsigned len, unsigned copied,
+                          struct page *page, void *fsdata)
+{
+       int i;
+       unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
+       struct inode *inode = mapping->host;
+       struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+       struct ocfs2_write_ctxt *wc = fsdata;
+       struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
+       handle_t *handle = wc->w_handle;
+       struct page *tmppage;
+
+       if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
+               ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
+               goto out_write_size;
+       }
+
+       if (unlikely(copied < len)) {
+               if (!PageUptodate(wc->w_target_page))
+                       copied = 0;
+
+               ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
+                                      start+len);
+       }
+       flush_dcache_page(wc->w_target_page);
+
+       for(i = 0; i < wc->w_num_pages; i++) {
+               tmppage = wc->w_pages[i];
+
+               if (tmppage == wc->w_target_page) {
+                       from = wc->w_target_from;
+                       to = wc->w_target_to;
+
+                       BUG_ON(from > PAGE_CACHE_SIZE ||
+                              to > PAGE_CACHE_SIZE ||
+                              to < from);
+               } else {
+                       /*
+                        * Pages adjacent to the target (if any) imply
+                        * a hole-filling write in which case we want
+                        * to flush their entire range.
+                        */
+                       from = 0;
+                       to = PAGE_CACHE_SIZE;
+               }
+
+               if (page_has_buffers(tmppage)) {
+                       if (ocfs2_should_order_data(inode))
+                               ocfs2_jbd2_file_inode(wc->w_handle, inode);
+                       block_commit_write(tmppage, from, to);
+               }
+       }
+
+out_write_size:
+       pos += copied;
+       if (pos > i_size_read(inode)) {
+               i_size_write(inode, pos);
+               mark_inode_dirty(inode);
+       }
+       inode->i_blocks = ocfs2_inode_sector_count(inode);
+       di->i_size = cpu_to_le64((u64)i_size_read(inode));
+       inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+       di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
+       di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
+       ocfs2_update_inode_fsync_trans(handle, inode, 1);
+       ocfs2_journal_dirty(handle, wc->w_di_bh);
+
+       /* unlock pages before dealloc since it needs acquiring j_trans_barrier
+        * lock, or it will cause a deadlock since journal commit threads holds
+        * this lock and will ask for the page lock when flushing the data.
+        * put it here to preserve the unlock order.
+        */
+       ocfs2_unlock_pages(wc);
+
+       ocfs2_commit_trans(osb, handle);
+
+       ocfs2_run_deallocs(osb, &wc->w_dealloc);
+
+       brelse(wc->w_di_bh);
+       kfree(wc);
+
+       return copied;
+}
+
+static int ocfs2_write_end(struct file *file, struct address_space *mapping,
+                          loff_t pos, unsigned len, unsigned copied,
+                          struct page *page, void *fsdata)
+{
+       int ret;
+       struct inode *inode = mapping->host;
+
+       ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
+
+       up_write(&OCFS2_I(inode)->ip_alloc_sem);
+       ocfs2_inode_unlock(inode, 1);
+
+       return ret;
+}
+
+const struct address_space_operations ocfs2_aops = {
+       .readpage               = ocfs2_readpage,
+       .readpages              = ocfs2_readpages,
+       .writepage              = ocfs2_writepage,
+       .write_begin            = ocfs2_write_begin,
+       .write_end              = ocfs2_write_end,
+       .bmap                   = ocfs2_bmap,
+       .direct_IO              = ocfs2_direct_IO,
+       .invalidatepage         = block_invalidatepage,
+       .releasepage            = ocfs2_releasepage,
+       .migratepage            = buffer_migrate_page,
+       .is_partially_uptodate  = block_is_partially_uptodate,
+       .error_remove_page      = generic_error_remove_page,
+};