Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / mpage.c
diff --git a/kernel/fs/mpage.c b/kernel/fs/mpage.c
new file mode 100644 (file)
index 0000000..3e79220
--- /dev/null
@@ -0,0 +1,717 @@
+/*
+ * fs/mpage.c
+ *
+ * Copyright (C) 2002, Linus Torvalds.
+ *
+ * Contains functions related to preparing and submitting BIOs which contain
+ * multiple pagecache pages.
+ *
+ * 15May2002   Andrew Morton
+ *             Initial version
+ * 27Jun2002   axboe@suse.de
+ *             use bio_add_page() to build bio's just the right size
+ */
+
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/mm.h>
+#include <linux/kdev_t.h>
+#include <linux/gfp.h>
+#include <linux/bio.h>
+#include <linux/fs.h>
+#include <linux/buffer_head.h>
+#include <linux/blkdev.h>
+#include <linux/highmem.h>
+#include <linux/prefetch.h>
+#include <linux/mpage.h>
+#include <linux/writeback.h>
+#include <linux/backing-dev.h>
+#include <linux/pagevec.h>
+#include <linux/cleancache.h>
+#include "internal.h"
+
+/*
+ * I/O completion handler for multipage BIOs.
+ *
+ * The mpage code never puts partial pages into a BIO (except for end-of-file).
+ * If a page does not map to a contiguous run of blocks then it simply falls
+ * back to block_read_full_page().
+ *
+ * Why is this?  If a page's completion depends on a number of different BIOs
+ * which can complete in any order (or at the same time) then determining the
+ * status of that page is hard.  See end_buffer_async_read() for the details.
+ * There is no point in duplicating all that complexity.
+ */
+static void mpage_end_io(struct bio *bio, int err)
+{
+       struct bio_vec *bv;
+       int i;
+
+       bio_for_each_segment_all(bv, bio, i) {
+               struct page *page = bv->bv_page;
+               page_endio(page, bio_data_dir(bio), err);
+       }
+
+       bio_put(bio);
+}
+
+static struct bio *mpage_bio_submit(int rw, struct bio *bio)
+{
+       bio->bi_end_io = mpage_end_io;
+       guard_bio_eod(rw, bio);
+       submit_bio(rw, bio);
+       return NULL;
+}
+
+static struct bio *
+mpage_alloc(struct block_device *bdev,
+               sector_t first_sector, int nr_vecs,
+               gfp_t gfp_flags)
+{
+       struct bio *bio;
+
+       bio = bio_alloc(gfp_flags, nr_vecs);
+
+       if (bio == NULL && (current->flags & PF_MEMALLOC)) {
+               while (!bio && (nr_vecs /= 2))
+                       bio = bio_alloc(gfp_flags, nr_vecs);
+       }
+
+       if (bio) {
+               bio->bi_bdev = bdev;
+               bio->bi_iter.bi_sector = first_sector;
+       }
+       return bio;
+}
+
+/*
+ * support function for mpage_readpages.  The fs supplied get_block might
+ * return an up to date buffer.  This is used to map that buffer into
+ * the page, which allows readpage to avoid triggering a duplicate call
+ * to get_block.
+ *
+ * The idea is to avoid adding buffers to pages that don't already have
+ * them.  So when the buffer is up to date and the page size == block size,
+ * this marks the page up to date instead of adding new buffers.
+ */
+static void 
+map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
+{
+       struct inode *inode = page->mapping->host;
+       struct buffer_head *page_bh, *head;
+       int block = 0;
+
+       if (!page_has_buffers(page)) {
+               /*
+                * don't make any buffers if there is only one buffer on
+                * the page and the page just needs to be set up to date
+                */
+               if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
+                   buffer_uptodate(bh)) {
+                       SetPageUptodate(page);    
+                       return;
+               }
+               create_empty_buffers(page, 1 << inode->i_blkbits, 0);
+       }
+       head = page_buffers(page);
+       page_bh = head;
+       do {
+               if (block == page_block) {
+                       page_bh->b_state = bh->b_state;
+                       page_bh->b_bdev = bh->b_bdev;
+                       page_bh->b_blocknr = bh->b_blocknr;
+                       break;
+               }
+               page_bh = page_bh->b_this_page;
+               block++;
+       } while (page_bh != head);
+}
+
+/*
+ * This is the worker routine which does all the work of mapping the disk
+ * blocks and constructs largest possible bios, submits them for IO if the
+ * blocks are not contiguous on the disk.
+ *
+ * We pass a buffer_head back and forth and use its buffer_mapped() flag to
+ * represent the validity of its disk mapping and to decide when to do the next
+ * get_block() call.
+ */
+static struct bio *
+do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
+               sector_t *last_block_in_bio, struct buffer_head *map_bh,
+               unsigned long *first_logical_block, get_block_t get_block)
+{
+       struct inode *inode = page->mapping->host;
+       const unsigned blkbits = inode->i_blkbits;
+       const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
+       const unsigned blocksize = 1 << blkbits;
+       sector_t block_in_file;
+       sector_t last_block;
+       sector_t last_block_in_file;
+       sector_t blocks[MAX_BUF_PER_PAGE];
+       unsigned page_block;
+       unsigned first_hole = blocks_per_page;
+       struct block_device *bdev = NULL;
+       int length;
+       int fully_mapped = 1;
+       unsigned nblocks;
+       unsigned relative_block;
+
+       if (page_has_buffers(page))
+               goto confused;
+
+       block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
+       last_block = block_in_file + nr_pages * blocks_per_page;
+       last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
+       if (last_block > last_block_in_file)
+               last_block = last_block_in_file;
+       page_block = 0;
+
+       /*
+        * Map blocks using the result from the previous get_blocks call first.
+        */
+       nblocks = map_bh->b_size >> blkbits;
+       if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
+                       block_in_file < (*first_logical_block + nblocks)) {
+               unsigned map_offset = block_in_file - *first_logical_block;
+               unsigned last = nblocks - map_offset;
+
+               for (relative_block = 0; ; relative_block++) {
+                       if (relative_block == last) {
+                               clear_buffer_mapped(map_bh);
+                               break;
+                       }
+                       if (page_block == blocks_per_page)
+                               break;
+                       blocks[page_block] = map_bh->b_blocknr + map_offset +
+                                               relative_block;
+                       page_block++;
+                       block_in_file++;
+               }
+               bdev = map_bh->b_bdev;
+       }
+
+       /*
+        * Then do more get_blocks calls until we are done with this page.
+        */
+       map_bh->b_page = page;
+       while (page_block < blocks_per_page) {
+               map_bh->b_state = 0;
+               map_bh->b_size = 0;
+
+               if (block_in_file < last_block) {
+                       map_bh->b_size = (last_block-block_in_file) << blkbits;
+                       if (get_block(inode, block_in_file, map_bh, 0))
+                               goto confused;
+                       *first_logical_block = block_in_file;
+               }
+
+               if (!buffer_mapped(map_bh)) {
+                       fully_mapped = 0;
+                       if (first_hole == blocks_per_page)
+                               first_hole = page_block;
+                       page_block++;
+                       block_in_file++;
+                       continue;
+               }
+
+               /* some filesystems will copy data into the page during
+                * the get_block call, in which case we don't want to
+                * read it again.  map_buffer_to_page copies the data
+                * we just collected from get_block into the page's buffers
+                * so readpage doesn't have to repeat the get_block call
+                */
+               if (buffer_uptodate(map_bh)) {
+                       map_buffer_to_page(page, map_bh, page_block);
+                       goto confused;
+               }
+       
+               if (first_hole != blocks_per_page)
+                       goto confused;          /* hole -> non-hole */
+
+               /* Contiguous blocks? */
+               if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
+                       goto confused;
+               nblocks = map_bh->b_size >> blkbits;
+               for (relative_block = 0; ; relative_block++) {
+                       if (relative_block == nblocks) {
+                               clear_buffer_mapped(map_bh);
+                               break;
+                       } else if (page_block == blocks_per_page)
+                               break;
+                       blocks[page_block] = map_bh->b_blocknr+relative_block;
+                       page_block++;
+                       block_in_file++;
+               }
+               bdev = map_bh->b_bdev;
+       }
+
+       if (first_hole != blocks_per_page) {
+               zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
+               if (first_hole == 0) {
+                       SetPageUptodate(page);
+                       unlock_page(page);
+                       goto out;
+               }
+       } else if (fully_mapped) {
+               SetPageMappedToDisk(page);
+       }
+
+       if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
+           cleancache_get_page(page) == 0) {
+               SetPageUptodate(page);
+               goto confused;
+       }
+
+       /*
+        * This page will go to BIO.  Do we need to send this BIO off first?
+        */
+       if (bio && (*last_block_in_bio != blocks[0] - 1))
+               bio = mpage_bio_submit(READ, bio);
+
+alloc_new:
+       if (bio == NULL) {
+               if (first_hole == blocks_per_page) {
+                       if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
+                                                               page))
+                               goto out;
+               }
+               bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
+                               min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
+                               GFP_KERNEL);
+               if (bio == NULL)
+                       goto confused;
+       }
+
+       length = first_hole << blkbits;
+       if (bio_add_page(bio, page, length, 0) < length) {
+               bio = mpage_bio_submit(READ, bio);
+               goto alloc_new;
+       }
+
+       relative_block = block_in_file - *first_logical_block;
+       nblocks = map_bh->b_size >> blkbits;
+       if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
+           (first_hole != blocks_per_page))
+               bio = mpage_bio_submit(READ, bio);
+       else
+               *last_block_in_bio = blocks[blocks_per_page - 1];
+out:
+       return bio;
+
+confused:
+       if (bio)
+               bio = mpage_bio_submit(READ, bio);
+       if (!PageUptodate(page))
+               block_read_full_page(page, get_block);
+       else
+               unlock_page(page);
+       goto out;
+}
+
+/**
+ * mpage_readpages - populate an address space with some pages & start reads against them
+ * @mapping: the address_space
+ * @pages: The address of a list_head which contains the target pages.  These
+ *   pages have their ->index populated and are otherwise uninitialised.
+ *   The page at @pages->prev has the lowest file offset, and reads should be
+ *   issued in @pages->prev to @pages->next order.
+ * @nr_pages: The number of pages at *@pages
+ * @get_block: The filesystem's block mapper function.
+ *
+ * This function walks the pages and the blocks within each page, building and
+ * emitting large BIOs.
+ *
+ * If anything unusual happens, such as:
+ *
+ * - encountering a page which has buffers
+ * - encountering a page which has a non-hole after a hole
+ * - encountering a page with non-contiguous blocks
+ *
+ * then this code just gives up and calls the buffer_head-based read function.
+ * It does handle a page which has holes at the end - that is a common case:
+ * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
+ *
+ * BH_Boundary explanation:
+ *
+ * There is a problem.  The mpage read code assembles several pages, gets all
+ * their disk mappings, and then submits them all.  That's fine, but obtaining
+ * the disk mappings may require I/O.  Reads of indirect blocks, for example.
+ *
+ * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
+ * submitted in the following order:
+ *     12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
+ *
+ * because the indirect block has to be read to get the mappings of blocks
+ * 13,14,15,16.  Obviously, this impacts performance.
+ *
+ * So what we do it to allow the filesystem's get_block() function to set
+ * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
+ * after this one will require I/O against a block which is probably close to
+ * this one.  So you should push what I/O you have currently accumulated.
+ *
+ * This all causes the disk requests to be issued in the correct order.
+ */
+int
+mpage_readpages(struct address_space *mapping, struct list_head *pages,
+                               unsigned nr_pages, get_block_t get_block)
+{
+       struct bio *bio = NULL;
+       unsigned page_idx;
+       sector_t last_block_in_bio = 0;
+       struct buffer_head map_bh;
+       unsigned long first_logical_block = 0;
+
+       map_bh.b_state = 0;
+       map_bh.b_size = 0;
+       for (page_idx = 0; page_idx < nr_pages; page_idx++) {
+               struct page *page = list_entry(pages->prev, struct page, lru);
+
+               prefetchw(&page->flags);
+               list_del(&page->lru);
+               if (!add_to_page_cache_lru(page, mapping,
+                                       page->index, GFP_KERNEL)) {
+                       bio = do_mpage_readpage(bio, page,
+                                       nr_pages - page_idx,
+                                       &last_block_in_bio, &map_bh,
+                                       &first_logical_block,
+                                       get_block);
+               }
+               page_cache_release(page);
+       }
+       BUG_ON(!list_empty(pages));
+       if (bio)
+               mpage_bio_submit(READ, bio);
+       return 0;
+}
+EXPORT_SYMBOL(mpage_readpages);
+
+/*
+ * This isn't called much at all
+ */
+int mpage_readpage(struct page *page, get_block_t get_block)
+{
+       struct bio *bio = NULL;
+       sector_t last_block_in_bio = 0;
+       struct buffer_head map_bh;
+       unsigned long first_logical_block = 0;
+
+       map_bh.b_state = 0;
+       map_bh.b_size = 0;
+       bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
+                       &map_bh, &first_logical_block, get_block);
+       if (bio)
+               mpage_bio_submit(READ, bio);
+       return 0;
+}
+EXPORT_SYMBOL(mpage_readpage);
+
+/*
+ * Writing is not so simple.
+ *
+ * If the page has buffers then they will be used for obtaining the disk
+ * mapping.  We only support pages which are fully mapped-and-dirty, with a
+ * special case for pages which are unmapped at the end: end-of-file.
+ *
+ * If the page has no buffers (preferred) then the page is mapped here.
+ *
+ * If all blocks are found to be contiguous then the page can go into the
+ * BIO.  Otherwise fall back to the mapping's writepage().
+ * 
+ * FIXME: This code wants an estimate of how many pages are still to be
+ * written, so it can intelligently allocate a suitably-sized BIO.  For now,
+ * just allocate full-size (16-page) BIOs.
+ */
+
+struct mpage_data {
+       struct bio *bio;
+       sector_t last_block_in_bio;
+       get_block_t *get_block;
+       unsigned use_writepage;
+};
+
+/*
+ * We have our BIO, so we can now mark the buffers clean.  Make
+ * sure to only clean buffers which we know we'll be writing.
+ */
+static void clean_buffers(struct page *page, unsigned first_unmapped)
+{
+       unsigned buffer_counter = 0;
+       struct buffer_head *bh, *head;
+       if (!page_has_buffers(page))
+               return;
+       head = page_buffers(page);
+       bh = head;
+
+       do {
+               if (buffer_counter++ == first_unmapped)
+                       break;
+               clear_buffer_dirty(bh);
+               bh = bh->b_this_page;
+       } while (bh != head);
+
+       /*
+        * we cannot drop the bh if the page is not uptodate or a concurrent
+        * readpage would fail to serialize with the bh and it would read from
+        * disk before we reach the platter.
+        */
+       if (buffer_heads_over_limit && PageUptodate(page))
+               try_to_free_buffers(page);
+}
+
+static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
+                     void *data)
+{
+       struct mpage_data *mpd = data;
+       struct bio *bio = mpd->bio;
+       struct address_space *mapping = page->mapping;
+       struct inode *inode = page->mapping->host;
+       const unsigned blkbits = inode->i_blkbits;
+       unsigned long end_index;
+       const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
+       sector_t last_block;
+       sector_t block_in_file;
+       sector_t blocks[MAX_BUF_PER_PAGE];
+       unsigned page_block;
+       unsigned first_unmapped = blocks_per_page;
+       struct block_device *bdev = NULL;
+       int boundary = 0;
+       sector_t boundary_block = 0;
+       struct block_device *boundary_bdev = NULL;
+       int length;
+       struct buffer_head map_bh;
+       loff_t i_size = i_size_read(inode);
+       int ret = 0;
+
+       if (page_has_buffers(page)) {
+               struct buffer_head *head = page_buffers(page);
+               struct buffer_head *bh = head;
+
+               /* If they're all mapped and dirty, do it */
+               page_block = 0;
+               do {
+                       BUG_ON(buffer_locked(bh));
+                       if (!buffer_mapped(bh)) {
+                               /*
+                                * unmapped dirty buffers are created by
+                                * __set_page_dirty_buffers -> mmapped data
+                                */
+                               if (buffer_dirty(bh))
+                                       goto confused;
+                               if (first_unmapped == blocks_per_page)
+                                       first_unmapped = page_block;
+                               continue;
+                       }
+
+                       if (first_unmapped != blocks_per_page)
+                               goto confused;  /* hole -> non-hole */
+
+                       if (!buffer_dirty(bh) || !buffer_uptodate(bh))
+                               goto confused;
+                       if (page_block) {
+                               if (bh->b_blocknr != blocks[page_block-1] + 1)
+                                       goto confused;
+                       }
+                       blocks[page_block++] = bh->b_blocknr;
+                       boundary = buffer_boundary(bh);
+                       if (boundary) {
+                               boundary_block = bh->b_blocknr;
+                               boundary_bdev = bh->b_bdev;
+                       }
+                       bdev = bh->b_bdev;
+               } while ((bh = bh->b_this_page) != head);
+
+               if (first_unmapped)
+                       goto page_is_mapped;
+
+               /*
+                * Page has buffers, but they are all unmapped. The page was
+                * created by pagein or read over a hole which was handled by
+                * block_read_full_page().  If this address_space is also
+                * using mpage_readpages then this can rarely happen.
+                */
+               goto confused;
+       }
+
+       /*
+        * The page has no buffers: map it to disk
+        */
+       BUG_ON(!PageUptodate(page));
+       block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
+       last_block = (i_size - 1) >> blkbits;
+       map_bh.b_page = page;
+       for (page_block = 0; page_block < blocks_per_page; ) {
+
+               map_bh.b_state = 0;
+               map_bh.b_size = 1 << blkbits;
+               if (mpd->get_block(inode, block_in_file, &map_bh, 1))
+                       goto confused;
+               if (buffer_new(&map_bh))
+                       unmap_underlying_metadata(map_bh.b_bdev,
+                                               map_bh.b_blocknr);
+               if (buffer_boundary(&map_bh)) {
+                       boundary_block = map_bh.b_blocknr;
+                       boundary_bdev = map_bh.b_bdev;
+               }
+               if (page_block) {
+                       if (map_bh.b_blocknr != blocks[page_block-1] + 1)
+                               goto confused;
+               }
+               blocks[page_block++] = map_bh.b_blocknr;
+               boundary = buffer_boundary(&map_bh);
+               bdev = map_bh.b_bdev;
+               if (block_in_file == last_block)
+                       break;
+               block_in_file++;
+       }
+       BUG_ON(page_block == 0);
+
+       first_unmapped = page_block;
+
+page_is_mapped:
+       end_index = i_size >> PAGE_CACHE_SHIFT;
+       if (page->index >= end_index) {
+               /*
+                * The page straddles i_size.  It must be zeroed out on each
+                * and every writepage invocation because it may be mmapped.
+                * "A file is mapped in multiples of the page size.  For a file
+                * that is not a multiple of the page size, the remaining memory
+                * is zeroed when mapped, and writes to that region are not
+                * written out to the file."
+                */
+               unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
+
+               if (page->index > end_index || !offset)
+                       goto confused;
+               zero_user_segment(page, offset, PAGE_CACHE_SIZE);
+       }
+
+       /*
+        * This page will go to BIO.  Do we need to send this BIO off first?
+        */
+       if (bio && mpd->last_block_in_bio != blocks[0] - 1)
+               bio = mpage_bio_submit(WRITE, bio);
+
+alloc_new:
+       if (bio == NULL) {
+               if (first_unmapped == blocks_per_page) {
+                       if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
+                                                               page, wbc)) {
+                               clean_buffers(page, first_unmapped);
+                               goto out;
+                       }
+               }
+               bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
+                               bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
+               if (bio == NULL)
+                       goto confused;
+       }
+
+       /*
+        * Must try to add the page before marking the buffer clean or
+        * the confused fail path above (OOM) will be very confused when
+        * it finds all bh marked clean (i.e. it will not write anything)
+        */
+       length = first_unmapped << blkbits;
+       if (bio_add_page(bio, page, length, 0) < length) {
+               bio = mpage_bio_submit(WRITE, bio);
+               goto alloc_new;
+       }
+
+       clean_buffers(page, first_unmapped);
+
+       BUG_ON(PageWriteback(page));
+       set_page_writeback(page);
+       unlock_page(page);
+       if (boundary || (first_unmapped != blocks_per_page)) {
+               bio = mpage_bio_submit(WRITE, bio);
+               if (boundary_block) {
+                       write_boundary_block(boundary_bdev,
+                                       boundary_block, 1 << blkbits);
+               }
+       } else {
+               mpd->last_block_in_bio = blocks[blocks_per_page - 1];
+       }
+       goto out;
+
+confused:
+       if (bio)
+               bio = mpage_bio_submit(WRITE, bio);
+
+       if (mpd->use_writepage) {
+               ret = mapping->a_ops->writepage(page, wbc);
+       } else {
+               ret = -EAGAIN;
+               goto out;
+       }
+       /*
+        * The caller has a ref on the inode, so *mapping is stable
+        */
+       mapping_set_error(mapping, ret);
+out:
+       mpd->bio = bio;
+       return ret;
+}
+
+/**
+ * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
+ * @mapping: address space structure to write
+ * @wbc: subtract the number of written pages from *@wbc->nr_to_write
+ * @get_block: the filesystem's block mapper function.
+ *             If this is NULL then use a_ops->writepage.  Otherwise, go
+ *             direct-to-BIO.
+ *
+ * This is a library function, which implements the writepages()
+ * address_space_operation.
+ *
+ * If a page is already under I/O, generic_writepages() skips it, even
+ * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
+ * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
+ * and msync() need to guarantee that all the data which was dirty at the time
+ * the call was made get new I/O started against them.  If wbc->sync_mode is
+ * WB_SYNC_ALL then we were called for data integrity and we must wait for
+ * existing IO to complete.
+ */
+int
+mpage_writepages(struct address_space *mapping,
+               struct writeback_control *wbc, get_block_t get_block)
+{
+       struct blk_plug plug;
+       int ret;
+
+       blk_start_plug(&plug);
+
+       if (!get_block)
+               ret = generic_writepages(mapping, wbc);
+       else {
+               struct mpage_data mpd = {
+                       .bio = NULL,
+                       .last_block_in_bio = 0,
+                       .get_block = get_block,
+                       .use_writepage = 1,
+               };
+
+               ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
+               if (mpd.bio)
+                       mpage_bio_submit(WRITE, mpd.bio);
+       }
+       blk_finish_plug(&plug);
+       return ret;
+}
+EXPORT_SYMBOL(mpage_writepages);
+
+int mpage_writepage(struct page *page, get_block_t get_block,
+       struct writeback_control *wbc)
+{
+       struct mpage_data mpd = {
+               .bio = NULL,
+               .last_block_in_bio = 0,
+               .get_block = get_block,
+               .use_writepage = 0,
+       };
+       int ret = __mpage_writepage(page, wbc, &mpd);
+       if (mpd.bio)
+               mpage_bio_submit(WRITE, mpd.bio);
+       return ret;
+}
+EXPORT_SYMBOL(mpage_writepage);